
CHAPTER TWO: LITERATURE REVIEW 6

CHAPTER TWO: LITERATURE REVIEW

 This chapter describe the foundation of autonomic computing which is essential

comprehend in this work, we as well present an important state of the art and research

that is related to this subject.

 Network systems are consist of three entities in order to perform communication. First

is sending information and receiving information, additionally the information itself

which they need to share it, second is the channel or the medium, ant third is the

agreement between the tow entities which is called protocol.

 The entities mentioned above is now a mixed of hardware and software, which is

called network or computer network. The element of hardware is composing of several

components such as: hosts, hubs, bridges, routers, gateways…ect.

 The element of the network may own resources individually, that is locally, or

globally. Network software consists of all application programs and network protocols

that are used to synchronize, coordinate, and bring about the sharing and exchange of

data among the network elements. Network software also makes the sharing of expensive

resources in all networks possible. Network elements, network software, and user all

work together so that individual user gets to exchange message and share resources on

the system that are not readily available locally. The network element together with their

resources may be of various hardware technologies and the software may be as diverse as

possible, but the whole combination must work together in union.

 The progression of computing research has gone through many generations,

beginning from a single process running on a single computer system to multiple

processes running on geographically dispersed heterogeneous computers that could

extent several continents.

CHAPTER TWO: LITERATURE REVIEW 7

 A number of systems were mostly concerned about performance, and focused intensive

research on parallel processing and high performance computer architectures and

applications to address this condition. As the scale and distribution of computer systems

and applications evolved to cover critical areas where failures can be catastrophic, the

reliability and availability of the systems and applications become a major concern. This,

in turn has lead to a separate research activities that focus on reliability and fault

tolerance computing. In the same way, the research in computing security has also

evolved to address the needs to protect the integrity and security of computing systems

and their services without consideration to other important system attributes such as

performance, reliability, and configurability because security and system assurance are

the main objective of such systems and services.

 The emerging and promising systems and applications are complex, dynamic, and their

requirements change continuously within one application or a class of applications.

Consequently, their high performance, fault tolerance, security, availability,

configurability requirements might change dynamically at runtime. Hence, it is very

critical for future computing systems and/or software architecture to be adaptive in all its

attributes and functionalities (performance, security, fault tolerance, configurability,

maintainability, etc.). There has been research to integrate all these techniques into one

computing system and is mainly being characterized as ad hoc. However, the integration

of these isolated techniques into one system produces a system that is complex,

unpredictable, unmanageable and insecure; the actions performed by the security

technique might cancel the actions taken by the high performance computing technique

and so on.

 It is considerably challenging research problem to integrate all these different

techniques such that it is practicable to maintain simultaneously and efficiently in real-

time all system functionality and attributes such as performance, fault, and security.

Fundamentally, a new paradigm is needed to design and develop large-scale complex and

adaptive systems and applications.

CHAPTER TWO: LITERATURE REVIEW 8

 In our approaches we develop a Model that is based on autonomic computing to self-

regenerate the system component.

2.1 Autonomic Computing

 Autonomic computing systems are those systems that repeatedly administer or control

themselves by performing tasks that have been usually performed by computer

specialists.

 Autonomic Computing is an initiative started by IBM (Horn, 2001) in 2001. Its

crucial aim is to create self-managing computer systems to overcome their rapidly

growing complexity and to enable their further growth. The term autonomic is derived

from human biology.

 The autonomic nervous system monitors your heartbeat, checks your blood sugar level

and keeps your body temperature close to 98.6°F without any conscious effort on your

part. In much the same way, self-managing autonomic capabilities anticipate IT system

requirements and resolve problems with minimal human intervention. As a result, IT

professionals can focus on tasks with higher value to the business.

 However, there is an important distinction between autonomic activity in the human

body and autonomic activities in IT systems. Many of the decisions made by autonomic

capabilities in the body are involuntary. In contrast, self-managing autonomic capabilities

in computer systems perform tasks that IT professionals choose to delegate to the

technology according to policies. Adaptable policy - rather than hard-coded procedure -

determines the types of decisions and actions that autonomic capabilities perform.

 Self-managing capabilities in a system accomplish their functions by taking an

appropriate action based on one or more situations that they sense in the environment.

The function of any autonomic capability is a control loop that collects details from the

system and acts accordingly.

CHAPTER TWO: LITERATURE REVIEW 9

 In a self-managing autonomic environment, system components - from hardware (such

as storage units, desktop computers and servers) to software (such as operating systems,

middleware and business applications) - can include embedded control loop functionality.

Although these control loops consist of the same fundamental parts, their functions can

be divided into four broad embedded control loop categories (Horn, 2001) (Ganek et al,

2003) (Kephartet al, 2003). These categories system (Aaron, 2005) (Zach, 2005)

(Vincent, 2006) are considered to be attributes of the system components and are defined

as:

 Self-configuring

Self-configuring components adapt dynamically to changes in the environment, using

policies provided by the IT professional. Such changes could include the deployment of

new components or the removal of existing ones, or dramatic changes in the system

characteristics

 Self-healing

 Self-healing components can detect system malfunctions and initiate policy-based

corrective action without disrupting the IT environment. Corrective action could involve

a product altering its own state or effecting changes in other components in the

environment.

 Self-optimizing

 Self-optimizing components can tune themselves to meet end-user or business needs.

The tuning actions could mean reallocating resources—such as in response to

dynamically changing workloads—to improve overall utilization, or ensuring that

particular business transactions can be completed in a timely fashion.

Self-optimization helps provide a high standard of service for both the system’s end

users and a business’s customers. Without self-optimizing functions, there is no easy way

CHAPTER TWO: LITERATURE REVIEW 10

to divert excess server capacity to lower priority work when an application does not fully

use its assigned computing resources. In such cases, customers must buy and maintain a

separate infrastructure for each application to meet that application’s most demanding

computing needs.

 Self-protecting

 Anywhere Self-protecting components can detect hostile behaviors as they occur and

take corrective actions to make their components less vulnerable. The hostile and

aggressive behaviors can include unauthorized access and use, virus infection and

proliferation, and denial-of-service attacks. Self-protecting capabilities allow businesses

to consistently enforce security and privacy policies.

 It is an important to note that an autonomic computing system addresses these issues in

an integrated manner rather than being treated in isolation as is currently done.

Consequently, in autonomic computing, the system design paradigm takes a holistic

approach that can integrate all these attributes seamlessly and efficiently. The autonomic

system can be viewed as a collection of autonomic components (AC) or building blocks

that each can support the four properties outlined above. That means, each AC can be

dynamically and automatically configured (self-configuration), seamlessly tolerate any

component failure (self-healing), automatically detect attacks and protect against them

(self-protection), and automatically change its configuration parameters to improve

performance. Once it deteriorates beyond certain performance threshold (Self-

optimization), once these autonomic components become available, we can dynamically

build an autonomic computing system to meet any static or dynamic requirement such as

cost-effective high performance systems, high performance and secure systems, etc.

CHAPTER TWO: LITERATURE REVIEW 11

2.2 Computer Threats

 Computer malicious software is evolved from what was once a manifestation of skills

to what is now a worldwide criminal industry, motivated by financial profits as well as

political and militarily persuasions. Computer viruses and worms are increasingly being

used to carry out cyber attacks on corporations and individuals. Motivations for these

attacks include financial gain, access to classified information, and disruption of services.

This trend continues to grow at an extraordinary rate making it difficult for the current

cyber defense industry to maintain full protection against attacks.

2.2.1 Computer Attack Detection

 The goal of intrusion detection is to monitor network assets to detect anomalous

behavior and misuse. This concept has been around for nearly twenty years but only

recently has it seen a dramatic rise in popularity and incorporation into the overall

information security infrastructure.

2.2.2 Types of Intrusion Detection Systems

 Intrusion detectors nowadays used different technique to detect intruders and

anomalies or attacks. Different structure implement different detectors, commonly

intrusion detection systems fall into two broad categories. Which are:

- Network based systems (NIDS): These types of systems are placed on the network,

nearby the system or systems being monitored. They examine the network traffic and

determine whether the traffic is legitimate.

- Host based systems (HIDS): These types of systems actually run on the system being

monitored. These examine the system to determine whether the activity on the system is

acceptable.

CHAPTER TWO: LITERATURE REVIEW 12

2.3 Distributed Component Techniques

 Component-Based Development is becoming a main stream software development

paradigm which reuses the off-the-shelf components and assembles them together to

form a component-based application.

 A widely accepted perspective is that component is a black box, and the interface

specification is an abstraction of component’s behavior and also the abstraction of the

service that components require or provide. Based on this principle, engineers and

researchers provided their own solution to cope with software behavior description and

analysis problem. For example OMG proposed the CORBA architecture, Microsoft

proposed the COM/COM+ technique, and SUN proposed the EJB solution.

 All these measures have a common feature that they all regarded interface description

language (IDL) as interface specification and also regarded it as component’s behavior

specification. However, IDL only describes the services types, parameters and what

services the component provide and require, and omit the more important facades,

internal and external behavior/state transition process, so in this sense, the IDL does not

entirely solve the component behavior relativity analysis problem(Wang Wei, 2008).

 Based on that concept, a variety of distributed component models have been

effectively implemented in industry, as well as in academia. DCOM, .Net, CORBA, EJB,

CCA Microsoft’s COM and DCOM are examples for distributed technique existing at the

present time. These frameworks have been fundamental to interoperability in Windows

based applications. Their current web service oriented .NET framework is also a

component based and is gaining widespread acceptance. Web Services present another

alternative distributed computing infrastructure; an alternative that is being strongly

promoted as preferable to the use of distributed object middleware such as

CORBA(Szyperski, 2002) or Java RMI.

 Web service is a self-contained, self-describing, modular, loosely coupled and

reusable application that can be published, located, and invoked across the web.

CHAPTER TWO: LITERATURE REVIEW 13

2.4 Related Work

 In this part we present a handful of research done in different area, such as bio-

inspired technology and immune system.

 The development in the area of bio-inspired engineering is basically relying on the

artificial immune system, swarm intelligence, evolutionary (genetic) algorithms, and cell

and molecular biology based approaches (Camazing et al, 2003). The response of the

immune system, even to unknown attacks, is a high-adaptive process. Therefore, it seems

noticeable to apply the same mechanisms for self-organization and self-healing

operations in computer networks.

 Current researches areas are concern mostly in cell and molecular biology based

approaches. All organisms are constructed in same way. Composed of organs, which

consist of tissues and finally of cells (Dressler, 2004). This structure is very similar to

computer networks, which is also true for the signaling pathways.

 Therefore, research on methods in cell and molecular biology promises high potentials

for computer networking in general and network security in particular. His focus is on

cell biology as a key for computer networking. He first shows structural similarities

followed by some information about the signaling pathways within single cells and

between tissues.

 Based on obvious similarities, high potentials of this analysis are worked out which will

lead to paradigms and algorithms showing a higher efficiency in computer networking.

Network security concerned of Cellular information exchange examines the information

exchange in Cellular environments and to extract the issues in computer networks, that

can be addressed by the utilization of these mechanisms .applying it to the computer

network. Information exchange between cells, called signaling pathways, follows the

same requirements as between network nodes. A message is sent to a destination and

transferred, possibly using multiple hops, to this target (Dressler, 2004).

CHAPTER TWO: LITERATURE REVIEW 14

 The information transfer works as follows. A specific signal reaches only cells in the

neighborhood. The signal induces a signaling cascade in each target cell resulting in a

very specific answer which vice versa affects neighboring cells. A cell is shown with a

single receptor that is able to receive a very specific signal and to activate a signaling

cascade which finally forms the cellular response (Dressler, 2004).

 Such mechanisms are there in networking environments. Toward network security

solutions, monitoring probes gather information about the ongoing traffic in the network.

The collected data will be sent to an attached intrusion detection system for further

processing. Firewall systems are configured with rules concerning the actual behavior in

the network. General issues have been addresses in such a network are: Adaptive group

formation, Optimized task allocation, efficient group communication, Data aggregation

and filtering, Reliability and redundancy (Dressler, 2004).

 Proteins are used as information particles between cells. A signal can be released into

the blood stream, a medium which carries it to distant cells and induces an answer in

these cells which then passes on the information or can activate helper cells (e.g. the

immune system). The interesting property of this transmission is that the information

itself addresses the destination. Only cells with a very specific receptor are able to receive

the information, i.e. the protein binds at the receptor (Dressler, 2004).

 The mechanism is self-organizing. In the past, such mechanisms were provided for

identifying individual nodes based on an individual property, e.g. routing protocols are in

some manner self-configuring by identifying neighboring nodes. yet, the final goal is to

put new nodes into an existing network without any preconfigured knowledge. The

properties of the nodes can be described in some common way. Bio-inspired

communication mechanisms learnt from intercellular signaling pathways provides the

appropriate mechanisms (Dressler, 2004).

CHAPTER TWO: LITERATURE REVIEW 15

 Self-organization (Dressler, 2004) issues are promising to be the key answer to build

large and complex systems fulfilling different tasks out of many simple independent

autonomous entities. Such systems can be found quite often in computer networking.

Network security, pervasive computing environments..ect.

 Another biological paradigm (Bush et al, 2003) toward adaptation as a computer

security paradigm is protein pathway mapping. Living organisms have complex

metabolic pathways consisting of interactions between proteins and enzymes, which may

themselves have multiple subunits, alternate forms, and alternate specificities.

 Molecular biologists have spent decades investigating these biochemical pathways in

organisms. These pathways usually relate to a known physiological process or phenotype

and together constitute protein networks. These networks are very complex, with several

alternate pathways through the same start and end point. The partitioning of networks

into pathways is, however, often arbitrary, with the start and finish points chosen based

on “important” or easily understood compounds. The models for biochemical pathways

that have been developed thus far primarily demonstrate the working of the cellular

machinery for specific tasks, such as metabolic flux and signaling.

 Similar to the cellular networks in organisms, computer networks are complex in

nature and collectively exhibit complex behavior. In these networks, start and end points

can be arbitrarily chosen, and multiple paths may exist between the same nodes. Protein

networks are predetermined and stay fairly static, whereas computer networks are

constantly evolving with the addition of new nodes and network links. In protein

networks, interactions among proteins, enzymes, and catalysts culminate in specific

events. Analogously to protein networks, interactions among nodes of computer networks

result in specific events or conditions in the network. The events may include propagation

of viruses, denial-of-service attacks, and congestion on the network. Investigation of the

network pathways along which the events propagate will enable us in forensic analysis to

determine the root cause of the failures, as well as helping in developing intelligence for

prediction of network events.

CHAPTER TWO: LITERATURE REVIEW 16

 Bush used the biological paradigm of the immune system, coupled with information

theory, to create security models for network security. Information theory allows generic

metrics and signatures to be created which transcend the specific details of a system or an

individual piece of code. They compare information-theoretic approaches with traditional

string-matching techniques. They also provide an analytic model that uses the

epidemiological paradigm to study the behavior of the nodes (Bush et al, 2003).

 The role of the human immune system is to protect our body from pathogens Such as

viruses, bacteria, and microbes. The immune system consists of various kinds of cells,

which operate autonomously and through interaction with each other to create complex

chains of events leading to the destruction of pathogens. At a high level, cells can be

categorized into two groups: detectors and effectors. Detectors identify pathogens, and

effectors neutralize them. There are two kinds of immune responses evoked by the

immune system, innate response and adaptive response. The innate immune response is

the natural resistance of the body to foreign antigens and is non-specific toward invaders

in the body. During this response, a specialized class of cells called phagocytes

(macrophages and neutrophils) is used. These specialized cells, which have surface

receptors that match many common bacteria, have remained unchanged throughout

evolution.

 Artificial immune systems (Bush et al, 2003) consist of detectors and effectors that are

able to recognize specific pathogen signatures and neutralize the pathogens. To detect

pathogens, the signature of incoming traffic packets is matched against signatures of

potential viruses stored in an immune system database. An immune system that is capable

of recognizing most pathogens requires a large number of detectors. Low-specificity

detectors that identify and match several viruses are often used to reduce the number of

detectors at the cost of increased false positives.

 Computational complexity of a computer immune system remains fairly high, and

individual nodes are incapable of garnering enough resources to match against a large

CHAPTER TWO: LITERATURE REVIEW 17

signature set. The computational complexity gets worse as network traffic grows due to

use of broadband networks, and it is straining the capacities of conventional security tools

such as packet-filtering firewalls. Massive parallelism and molecular-level pattern

matching allow the biological immune system to maintain a large number of detectors

and efficiently match pathogens. However, artificial immune systems have not achieved

these levels of efficiency. To reduce the computational burden on any individual node in

the network, all nodes need to pool their resources, share information, and collectively

defend the network. In addition, such inspection should be done within the network itself,

to improve efficiency and reduce the time required for reacting to an event in the

network. This concept of collective defense enabled by a unified framework .To enable

this concept of collective network defense; they have proposed an approach based on

information theory principles using Kolmogorov Complexity measures.

 To study the parameters and different schemes of detection and sampling in the

immune system, Goel have developed a simulation model using RePast (Schaeffer et al,

2004), a simulation tool typically used for model.

 The security models for detection and elimination of pathogens that overrun computer

networks have been based on perimeter defense. Such defenses are proving inept against

fast-spreading viruses and worms.

 The current tools are unable to guarantee adequate protection of data and unfettered

access to services. It is imperative to complement these existing security models with

reactive systems that are able to detect new strains of pathogens reliably and are able to

destroy them before they can cause damage and propagate further. Several biological

paradigms provide a rich substrate to conceptualize and build computer security models

that are reactive in nature. Three specific mechanisms in mammalian organisms present

the most potential.

 Falco Dressler (Dressler, 2007), creates two separate feedback loops as inspired by

similar solutions found in nature. These feedback loops represent promoter /inhibitor

CHAPTER TWO: LITERATURE REVIEW 18

functions, for example they either stimulate monitoring probes to send data, such as

higher quality data or they suppress this amplification effect if the detection modules

approach their maximum capacity. On-demand re-configuration is required in the case of

resource shortages. Self-optimization refers to the overall detection quality. This can be

achieved by exchanging information about identified attacks or suspicious network

connections and also by statistically forwarding parts of collected data packets and

network statistics to neighboring probes.

 He develops a simulation models to analyze the scalability of the developed

approaches. Basically, he implemented the behavior of monitoring, firewall, and attack

detection systems. In order to allow practically significant simulations and to easily

compare different configurations, he used previously monitored data for trace-driven

input modeling, and then studied the configuration and possible adaptation of individual

subsystems to increase the scalability and reliability of the overall system. It turned out

that the dynamic reconfiguration depending on the current network behavior is possible

without any global control.

 He also identified appropriate mechanisms in cell biology and to adapt them to

networking technology with the focus on self-organization based on adaptive feedback

loops. A structural comparison of organisms and computer networks depicts that both

show high similarities.

 Also, the communications between the systems, the signal transduction pathways,

follow the same requirements. His developed adaptive control scheme depends on the

current network behavior, such as, on the observed traffic as well as on the current state

of the individual subsystems. He wants to adapt the parameters of the monitoring

environment depending on the load of the detection system and of the current network

behavior.

 Two kinds of feedback loops have been implemented by Dressler; they are used in

combination, positive feedback for short-term amplification and negative feedback for

CHAPTER TWO: LITERATURE REVIEW 19

long-term regulation. The intrusion detection reports detected attacks to the firewall that

in turn blocks this traffic and, therefore, reduces the number of packets that have to be

monitored. Additionally, the detection system reports legitimate traffic to the monitor.

This monitor stops reporting on packets belonging to these flows and, therefore, reduces

the number of packets that have to be analyzed. Obviously, both configurations cannot be

permanent. Sources sending legitimate traffic might begin to send attack packets at any

time. In addition, previously attacking machines might become ’corrected’ and should

not be starved by our firewalls. The target of his researcher is the adaptation of

biologically inspired promoter/ inhibitor schemes for adaptive parameter control in

network security environments, using an amplifying positive feedback loop and a

suppressing negative feedback loop (Dressler, 2004)

 Our Autonomic agent architecture is similar to IBM’s approaches. However, we define

general detection and component management interface (CMI) as well as configuration.

We are going to build our Component Runtime Manager (CRM) as different agent to

computerize and automate the control and management of networked software.

3.6 Fundamental of Detection and Identification of Malicious Software

 In order to analyze or study computer attacks, one has got to have the

resources to recognize and distinguish their presence and identify them. This is

true whether one is trying to isolate viruses from diseased hosts or to simply

study their properties. The presence of a virus in a host body is recognized by

the occurrence of either of the following:

 Abnormal demonstration

 Direct observation of virus components.

CHAPTER TWO: LITERATURE REVIEW 20

 The detection of new malicious, rarely depends on direct observation of virus

components, since components specific to the virus are yet to be discovered. as an

alternative, the malicious is usually discovered based on an observation of its abnormal

manifestation. In fact, only after initial observation of the malicious actions, the

malicious body is revealed after careful analysis of its internal components.

 Whenever we suspect the presence of malicious software we must find a set of

conditions, a suitable host, and a suitable replication environment in which the

virus will reproduce and continue the infection process.

 Based on the previews, any malware researches that consist of setting up

experimental infection begin in an appropriate and a reliable environment

established after malicious software introduction.

 If the malware has been introduced to a node, an analysis can be performed in it

behaviors or its body and so on.

 Malware Propagation

 In view of the fact that the main property by which computer malware are recognized

is their Infectiousness, the study of malware replication is based on measurements of

the infectivity of a computer malware as a function of time after successful

inoculation of the virus. The first and basic attempts to apply replication models

of biological viruses to determine rates of propagation in their computer

counterparts were done by Cohe(Cohen et al, 1988) and others.

CHAPTER TWO: LITERATURE REVIEW 21

Figure3-3: Attacks Propagation

 It said that malware can spread through computer system or network, which is

if an infected Node A can infect Node B and propagate further to Node B through

Node C. in this case we can say there is a propagation from Node A to Node G.

3.7 Current Detections Method

 The most important indication of an attack infection on a vulnerable Node is a

unexpected system malfunction, that is, the disruption of the normal operational

process that accompanies a change in software components and/or system

structure, as well as the presence of newly attack particles. The disruption is

caused by attack operations that are often designed to be hidden from the main

operation cycle. Such behavior depends on the specific computer malware

implementation.

 There has been a continuous adaptation of attacks to avoid new detection

techniques, and at the same time, significant improvements to the detection

process have facilitated an arms race between the attackers and the defenders.

 Direct infection

 Indirect infection

 Node

 Attackers Node

Attack

Attack

Attack

Node A Node B

Node C

Node D

Node E

Node F

Node G

Node H

CHAPTER TWO: LITERATURE REVIEW 22

 Attempts have been made to straighten safety measures. These attempts

achieved various levels of success and adaptation, and into these main

categories:

 Monitors.

 Scanners.

3.7.1 Scanners

 Earlier, a software toolkit made to target known attacks based on their

signatures and behaviors appeared on the market, including Peter Tippett’s

heuristic scanner capable of detecting various malicious.

 Scanner is a computer program designed to search for and identify code

sequences or signatures that are indicative of the presence of known attack in an

application, computer or network. With first versions developed in late 1980s,

scanners still maintain the leading position. Although they are recognized by

many (FitzGerald, 2003) as a very ineffective and unsuccessful protection

approach in computer security, scanners are still being used to detect known

malicious threads.

 Relative simplicity of development and maintenance are the key factors in the

high popularity of scanners. This is especially true for the programs that only

facilitate detection of a known virus object, before the discussion on disinfection

or further investigation. The Main components of such scanners comprise:

 Scanning engine

 Known attacks Database.

 During initializations or execution, the scanner searches through the Node in

an effort to find a match to a known virus signature stored in the database. Such

signatures are often called scan strings. User maintenance of such scanners only

requires systematic updates of virus signatures in databases, and systematic

scans of the entire system to make sure that no programs are infected.

CHAPTER TWO: LITERATURE REVIEW 23

 There are a few challenges in the development of such scanners, often

directed on improvement of scan speed and detection accuracy, however, overall

development maintenance is limited to extracting signatures from known

malware and updating the database.

 In addition, scanners provide the capability to detect malware without executing

the infected program. This illuminates the potential risk of compromising the

system during the execution of a malware, but it also comes at a price of having

a false sense of security when the scanner is not properly updated, or it is not

capable of detecting attacks under certain conditions (e.g. encrypted,

polymorphic, unknown host type, etc.).

 Scanners have boundaries as well. Since the technology is based on signature

matching, it is only applicable to signatures that are already known. New attacks,

as well as modifications of known attacks appear to be different from what the

scanner would expect, and therefore, they will not be detected, identified and

disarmed.

 This difficulty is especially acute due to the extremely high rate of malware

production (tens of thousands per year as of 2006, and the number increases

each year). Except the database of signatures is being updated continuously, the

scanner becomes out of date in a very short period of time. This provides users

with a false sense of security, as the scanner reports no infections when in fact; it

fails to identify new threats.

 Users are required to maintain attack signature databases updated in order to

be protected from new threats. Before the signature is ready to be included in an

update to the database, it must be extracted from the malware in such a way that

it will not interfere with any known non malicious programs, thereby avoiding

false positives. While signature extraction and generation is a relatively simple

CHAPTER TWO: LITERATURE REVIEW 24

process when done by a skilled professional, complications arise when the rate

of new malware release is high. Since a fully automated, error prone way of

signature generation is not yet feasible.

 To exemplify the idea and concept of design and operation of a typical

advanced scanner, this is capable of detecting the presence of known attack in

infected node. We should be having multiple entry points (EP) by utilizing a

scanning technique. In its attempt to detect an attack, the detector employs most

modern detection techniques including Code Emulation and Scanning.

 As described in figure below, the algorithm can detect pattern of malware by

executing the P-code. There is certain malware definition embedded into the P-

code. The definition has to be scanned and posted for emulation. If the patten is

a signature to a malware, the algorithm takes decision to describe the software

as a malware. Figure 3-4 describes the processes.

Post

Execute P-code

Post for
scan

Post

Post for
emulation

F

T

CHAPTER TWO: LITERATURE REVIEW 25

Figure 3-4: Show a typical scanning technique (Volynkin, 2007)

3.7.2 Monitors

 Monitors are usually supplemental to malware scanners and are used in order

to reduce the scanning area. Essentially, monitors are memory resident

programs, which continuously monitor some functionality of the operating

system. Depending on the system, the functionality includes access to

dangerous interrupts, memory locations, system files, etc. Such functionality is

considered and measured indicative of viral behavior. When a program tries to

access dangerous areas in the OS, the monitor intercepts the demand and either

denies it totally or asks the user for permission to release the program.

F

T

T

F T

F

T

F

F
T

CHAPTER TWO: LITERATURE REVIEW 26

 Monitors are not only for detecting malware. Therefore are capable of

detecting previously unknown attacks based exclusively on the code’s behavior.

In addition, monitors are part of the decision making process in most modern

anti-virus software tools.

 Most computer epidemics are carried out via the Internet by the transmission

of files that contain the code of a computer attacks. Upon receiving the file, the

target computer executes the malicious code resulting in the reproduction of the

virus or worm and the delivery of its potentially destructive payload. Self-

replication, which is uncommon in legitimate programs, is vital to the spread of

computer viruses and worms.

 This mechanism allows them maximize the effectiveness of the attack and

create computer epidemics. As with any function, self-replication is programmed;

the sequence of operations resulting in the self-replication is present in the

computer code of the virus. The implementation of the function of self-replication

is not unique; there is more than one sequence of operations that can perform

this task. Moreover, it is assumed that these sequences are dispersed

throughout the entire body of the code and cannot be detected as an explicit

pattern.

 The implementation is for extracting self-replication sequences from such

viruses. The technology presented herein is applicable to executable malware,

which represent the most common and difficult to detect forms of malware. The

detection is conducted at run-time during normal code execution under regular

conditions by monitoring the behavior of every process with regard to system

calls, their input and output arguments and the result of their execution. Unlike

existing antivirus software, this methodology facilitates advanced proactive

protection from both known and previously unknown attacks.

CHAPTER TWO: LITERATURE REVIEW 27

3.7.2.1 Definition of the gene of self-replication for process Behavior
analysis

 The GSR is viewed as a specific sequence of commands passed to the

computer operating system by a running program that causes the program’s

code to be replicated through the system or multiple systems. Replication can be

accomplished in several ways depending on a particular computer system and

the software the system is running (Volynkin et al, 2007).

 For example, early computer attacks designed for the Microsoft DOS

operating system utilized direct access to hardware for this purpose. The

widespread introduction of microprocessors that allowed for different privilege

levels and operating systems supporting and enforcing these levels facilitated

new methods of self-replication.

3.7.2.2 GSR Structure

 Virtually every process running in a system issues system calls; however, they

are not mixed and can easily be differentiated for every process and thread. The

system calls generated at run time by a process represent a direct time line

sequence of events, which can be analyzed during execution. Depending on the

nature of the process and on the system resources it is trying to access, this

sequence can be long or relatively short (Volynkin et al, 2007). Though the GSR is

contained within the sequence of calls produced by a malicious process, it can

be dispersed throughout that sequence.

3.7.2.3 Behavior monitoring:

 Behavior monitoring is to catch calls and determine whether it malware or not.

A complex computer operating system such as Microsoft Windows XP receives

thousands of calls every second from many different processes. Most of the

function calls, produced by an application in user mode deal with secure objects

CHAPTER TWO: LITERATURE REVIEW 28

and hardware resources such as File System, Processes and Threads, Graphical

System Services, System Registry, etc., are transferred into the Kernel mode of

the operating system for further execution in a secure environment. During this

process, function calls are processed into system calls for unification,

compatibility, security and other reasons. At the Kernel level, system calls are

processed by the System Service Dispatcher (SSD) and routed to a designated

service (Volynkin et al, 2007).

 The Operating System itself provides us with almost no support for monitoring

its Kernel level for security reasons; therefore such a software monitor has to be

created. While it is not a unimportant task, as it requires very low-level system

design and implementation, a very basic idea for the monitor is shown in figure 3-

5.

 When the Kernel receives a function call from the user mode, it has to decide

which Kernel interface to call to process this function. The API Processing Unit,

also known as System Service Dispatcher (KiSystemService) is responsible for

making this decision by looking up an appropriate system call handler in its

System Service Table (SST) and invoking it. The SST stores handlers to every

system call supported by the Kernel (see Appendix D.1 for details). If the handler

to a particular system call in SST is replaced with a fake one pointing to other

memory location, the System Service Dispatcher will simply execute a different

function at that location. This extra function can be designed to gather

information about the system call, its parameters and the origin of the call

(Volynkin et al, 2007).

 When all needed information is collected, the function calls, the original system

call, and the entire system proceeds as usual.

 All system calls, once invoked at the Kernel level, are expected and likely to

produce a result. This result is represented by the output arguments of the

CHAPTER TWO: LITERATURE REVIEW 29

system call, as well as the return value that confirms successful execution, or

indicates errors. All system calls, intercepted by the monitor, appear in two parts:

system call with input arguments and system call with output arguments.

``

 Having the information, observed by the monitor, it is possible to conclude,

that a particular Thread that belongs to a particular Process, invoked a system

call for the purpose of opening a file named “virus.exe”.

 In order to detect if such a call belongs to any parts of the virus’s self-

replication, most of its input and output arguments must be considered. While it is

obvious that any system call by itself with all possible combinations of

input/output arguments cannot be considered as a threat, certain APIs called with

Monitor

API Processing
Unite

Function call System call handler
(fake)

System call
information
dispatcher

System call handler
(origin)

System call Kernel User mode

Figure 3-5: Functionality of the System Calls Monitor (Volynkin et al, 2007)

CHAPTER TWO: LITERATURE REVIEW 30

certain arguments are combined, they represent a clear pattern of self

replication.

 During the GSR detection process, every system call intercepted by our monitor

comes into the Replication Detector, where it goes through a complete range of

different detection and filtration mechanisms (Volynkin et al, 2007).

3.7.2.4 Replication Behavior Analysis

 The concept of GSR definition requires building a pyramidal structure with

basic system calls at the bottom, combinations of calls represented by Blocks in

the middle, and the GSR itself at the top. While replication is usually not a very

complicated process, it involves using system calls to perform a number of

operations. Therefore, the complexity of the GSR definition depends on several

facts:

• The number of unique system calls involved.

• The number of inter-functional relationships among system calls.

• The complexity of inter-functional relationships.

 Since the margin between malicious and normal behavior can occasionally be

small, it is important to keep the preciseness of the GSR definition at the highest

level possible in order to avoid false positives. On the other hand, some flexibility

when connecting blocks of the GSR is needed to prevent false negatives

3.7.2.5 Replication over the local Network and the Internet

 Once computers started communicating with each other using local networks,

malwares writers exploited this feature for self-replication. Networking opens

continuous possibilities for an attack to replicate itself to as many computer

systems as it possibly can within the network instead of just infecting a limited

number of compoannts on a single host machine. Such remote replication is

CHAPTER TWO: LITERATURE REVIEW 31

possible with the use of specific network protocols implemented by the operating

system.

 Replication over the network is very alike to local replication with the main

difference being the necessity for a computer virus to enumerate available

network resources before it can access target files on a remote computer.

Therefore, a complete algorithm of virus replication for a parasitic virus, which

attaches itself to an existing file by injecting its code into the body of the

executable and replacing code entry points, would look as follows (Volynkin et al,

2007):

1. Open “Virus.exe”

2. Read “Virus.exe” Code

3. Enumerate network resources

4. Open remote “Host.exe”

5. Inject Code into “Host.exe”

6. Patch “Host.exe” Entry point

 For this reason, we only need to add one block into the Gene’s syntax

describing Network resources enumeration in order for the detector to recognize

the behavior. However, enumeration can be accomplished in several different

ways, including sockets, remote procedure calls, named pipes, NetBIOS and

other networking APIs.

