
CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE

 In this chapter we present our system and elaborate it, the model is self-regenerative

based. In order to meet this self-regenerative goal from biologically inspired mechanism,

we should find a biological self-regenerative process so that we can map it to the

architecture of our model.

 3.1 Self-Regenerating System (SRS)

 The goal of the SRS program is to develop technology for building computing systems

that provide critical functionality at all times, in spite of damage caused by unintentional

errors or attacks. All current systems suffer eventual failure due to the accumulated

effects of errors or attacks.

 Regeneration means reproducing or reconstructing of a lost or injured body part

(Carlson, 2007). In computer science, to achieve the SRS program goals, the program

will address several key technology areas, such as detection, configuration, updating, ect.

3.2 Bio-inspired

Bio-inspired is the strategies which is acquired or extracted from biology and mapped to

computer system in order to have the algorithms typically behaving as a bio-system. The

resulting of this mapping will be a system that is robust and regenerative, ect. By

adopting properties of biological systems, designed systems operate adequately even in

the presence of catastrophic failures and large scale attacks (George, 2003).

 We introduce the biologically inspired mechanism, which we have used in the system;

the bio-inspired technique we have found is the cell biochemical reaction during the

regeneration. In fact, when cell is performing division it has some important process in

order to ensure the success of the regenerative activity.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 21

3.3 Cell regeneration and Internal Operations

 Cell biochemical reactions contain very complicated operations. When cell initiate

division, it starts complex procedure of producing a new cell based on copying the DNA.

DNA contains the information of every molecules that acting and performing activities

inside the cell. This will lead to enhance networking survivability if applied to Multi-

agent system with communication between agents in distributed nodes.

When hormones approach a cell, they first look for a door that to access the cell. Every

molecule is stopped by the door, to see whether it is beneficial to the cell or not, the door

open only for useful molecule. If a harmful material such as a virus tries to enter the cell

door, the situation changes, the cell door analyze the material, discover that it is a harmful

and reject it.

Figure 3-1: Mapping of the Cell regeneration to our Model

 When entering the cell, a combination of advance technology and complexity is

found. When hormone steps in the door, it immediately taken under control by special

protein which carries out the function of the cell, this protein is called enzyme. If

required, enzyme immediately put the newly arrived in use, if there is no need for this

hormones at that moment, they are placed in storage compound of the cell.

Computational

Identifica
tion of
the gene Identification of

software
components

Configuration of
software components

Detection of malicious
activity

Theoretical model

D-tell
production
plan of a
thousand

Enzyme
open the
DNA

Enzyme
divide the
DNA

Enzyme
read and
copy DNA

Enzyme
close the
DNA

Read, copy, configure

Copy software
components

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 22

 If cell initialize regeneration, first it has procedure and plan for this system which

coded in a DNA chain. This coding system includes the production plan of a thousand

different enzyme and protein used in the cell. The project of all organic molecules that

would be structured in the cells is written in a DNA down to smallest procedure. The

production of organic molecule such as protein starts with the identification of the gene

that contains required information among the DNA found in the chromosome the enzyme

exclusively in charge of this task open the DNA. Another group of enzymes come and

divide the DNA into tow, other enzyme goes over one pieces and quirkily read and copy

the data. When the replication process is complete, two DNA molecules — identical to

each other and identical to the original — have been produced. This mode of replication

is described as semi-conservative: one-half of each new molecule of DNA is old; another

is new (Camazing et al, 2003).

 Now the perfect copy of production plan in a DNA is obtained after completion of the

replication process. An enzyme closes the DNA and restores it to the original states. The

copy produced from the DNA is called messenger RNA; RNA contains the production

plan of protein required for the cell.

 The aforementioned natural model can be applied for network software survivability

and restoration of resources so as achieve continuity of the services. In our model we

have agent that works as enzymes, agent detect components defect in real time. After any

detection of software components failure, message is sent by the detection agent to others

agents to act. In cell operation we see enzymes generate information concerning

procedures of the DNA to be .

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 23

3.4 Bio-inspired Self-Regenerative Model

 Our Self-regenerative model is a process whereby any system can have the ability to

recover from failure. In applying this mechanism to the system, we introduce a multi

agent system to model the ability, basically with the purpose of monitoring and detecting

the activity of the nodes. The detection system detects the attacks, then by emphasis all

nodes to enforce security system and prevent any suspected incoming malady.

 The system executes an emergency procedure to first analyze and diagnose the

attacks, infected component of the software, afterward performing the localizations of

component for the availability.

 After detection of attacks the system would deliver signal to all nodes, theses signals

or messages are categorized into two, from one node to many node, and from many nodes

to many nodes. This messages dedicated to inform nodes them about the incoming

attacks and the potential harm expected harm. Furthermore, the nodes would duplicate

the component of software respectively to secure continues execution of program.

Figure 3-2: System Overview

Attack

 Messages

 Attack Propagation

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 24

 Here we introduce the notion of cell regeneration Model as an approach to self-

regenerate network software. Figure 3-2 shows the network nodes and the

communication of software agent throughout the network. Network reliability can be

determined by its ability to automatically recover rapidly from attacks and to ensure

survivability and availability of software. This ability relies on so many parts such as the

ability to determine whether a behavior of a particular program is intrusive or not.

 We use agent to describe the procedure, agent can be defined to be autonomous

(Hyacinth, 1996) problem solving computational entity, capable of effecting operation in

dynamic and open environment, agent can multiple and can have interaction between

them, multi-agent system have been proposed for our various process: detection,

malicious software part, configuration, and protection part.

3.5 Agent Based System

Agent-based modeling facilitates the implementation of tools for the analysis of

environment change. An agent can characterize an individual with capabilities to perceive

and react to events in the environment, taking into account its mental state (beliefs,

goals), and to interact with other agents in its MAS environment (Pavo´n et al, 2007)

Agent has a characteristic behavior that differentiates itself from other kind of

software; there character is used in case of modeling behaviors of agent in system. Some

of the attributes are:

• Reactivity: the ability to selectively sense and act.

• Autonomy: goal-directedness, proactive and self-starting behavior

• Collaborative behavior: can work in concert with other agents to achieve a common

goal.

• “Knowledge-level” (Newell 1982) communication ability: the ability to communicate

with persons and other agents with language more resembling humanlike “speech

acts” than typical symbol-level program-to-program protocols

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 25

• Inferential capability: can act on abstract task specification using prior knowledge of

general goals and preferred methods to achieve flexibility; goes beyond the

information given, and may have explicit models of self, user, situation, and/or other

agents.

• Temporal continuity: persistence of identity and state over long periods of time.

• Personality: the capability of manifesting the attributes of a “believable” character

such as emotion.

• Adaptively: being able to learn and improve with experience.

• Mobility: being able to migrate in a self-directed way from one host platform to

another (Pavo´na et al, 2007).

 In our model we are going implement and add the GSR monitoring technique

into the detection part to trigger the other part of the system. The monitor will

detect the function call and identify then analyses the call to make a decision if

the function call is a pattern of any malicious.

 Replication activities also monitored and set, if any malicious try to replicate

within a file or performing a replication to different node, the monitor will detect.

After the detection the agent sent messages to perform actions.

Monitor

API Processing
Unite

Function call System call analysis

Take decision

Replication
detection

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 26

 As we can see the monitor decide whether the faction has been successfully

executed or not, if the call is done the monitor send messages to a particular

agent, in case of the call detected prior to the execution also the agent send

message to a previously agent

3.8 Run Time Management

 RTM is the control system associated with a component that continuously

monitors the component operations, analyzes the current state, plans the

appropriate corrective actions if needed, and executes these actions to bring the

component back to acceptable normal state of operation. The RTM control and

management algorithm is shown in below.

If message received

Receive component (ID, location..ect)

Check component

While (true)

 If (any changes in CMI management polices)

 Read and update CMI polices

 Execute component

 end if

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 27

 end while

end if

 The CMI provides three ports to specify the control and management

requirements associated with each software component and/or network

resource, as the configuration attributes that are required to automate the

process of setting up the execution environment of a software component, And

the policies that must be enforced to govern the operations of the component

and/or a resource as well as its interactions with other components or resources.

3.9 The Proposed Architecture of Self-regenerative System

 This section carries out a detail description of the architecture presented is

representing the self-regenerative system, the model is designed based on the behavior

monitoring explained previously. Firstly an overall structure of the agent involved in the

process is modeled.

Software execution
detection

Monitor initializations

Identification of code
Software component identification

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 28

Figure 3-7: The Proposed Self-regenerative Model

 We have in this module the component of the procedure that is involving in order to

perform the self-regeneration, it perform detection of attacks software which is

initializing an execution, this software may be useful, and some of them may be intrusive

and dangerous, and could cause damage to the normal software.

In our system (Model) we have a four component, these component are working

continuously to monitor all system behavior:

 Detection.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 29

 Replication and configuration,

 Run time management.

 Prevention.

The first component (i.e Detection) perform the detection of the instructions and the

purpose of the instructions or function call, according to the instruction analyze the

system will decide whether it is harmful or not, if it is harmful, the system would

initialize a signaling to all nodes in this network, this signals or massages aim to inform

nodes about the initialization and the execution of the malicious software which is found

in the first node.

 The first node would identify the malicious software. According to the prevention

technique of the other node, nodes would tries to prevent the particular malicious

software from propagation, and therefore we will limit the propagation of malicious

software.

3.10 Functions Description

 In this section we elaborate our agents, as mentioned previously, that we have three

kind of agent:

 Detection agent.

 Replication and configuration agent

 Runtime management agent.

 Prevention agent.

To describe more clearly we implement finite state theory to have more details of the

procedure, and according to our module we have set of states and input, as it assumed

above in our model we have four participants.

Each agent has more than one state during the execution, according to the

environmental change, the agent sense the change and act accordingly.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 30

Let’s say if we have an attack trying to carry out some change or modification in the

software component, in this case the detection part monitor and detect an act of software

execution, additionally will detect intrusion and function call that involving in the

execution of a particular command. We have precise previously the instruction that is

totally intrusive and would cause damage to the software will be categorized as harmful

or attack, and then this function call will be evaluated whether it is done executed or not.

Furthermore, we can see in the first of the detection the malicious software may not tries

to cause any harm to this particular Node, it will try to propagate first and then attack .

We have also signaling to other nodes for strengthen their protection in case of

replication.

Figure3-8: self-regenerative Component
3.10.1 Detection agent

 The detection agent has a set of states, and set of input, one start state and set of

accepting states, it also has a transition function, our event in this agent are :

1. The detection detects a new software execution.

2. The detection detects an instruction or function call.

3. The detection analyze the instruction or function call to see whether it is intrusive

of not, in order to analyze the instruction, the system would check the content of

Environment

Detection agent Replication and
Configuration agent

Prevention agent Run time
management

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 31

the instruction and argument or function call. If the content of the instruction has

a command such as addition to any other software of delete the agent of any other

software, the state would a potential harm to the software. This event would be

considered a harmful.

4. The detection evaluates to see whether the instruction is already done or not.

5. The detection detect whether the malicious software is trying to propagate to other

node fro more infection or not.

6. The act of signaling to other nodes.

7. The detection of component fault.

 Theses event are totally done with care, such detection of any software or any other

event will be checked up precisely, the event must confirm that it has been done, and this

would cause an initialization of other event respectively throughout the regeneration

cycle.

In diagram below we show the event of this agent. for example, the action or

monitoring Software execution would affect only this agent and would cause a transition

to another state, let us examine first this automaton, in figure 3.9 the start state sd1 is the

normal state of the software, sd2 it represent the situation where the software has already

executed but has been detected by the software execution detection.

Whenever the environment has changed, it makes the detection agent move from state

to another. Furthermore, when the detection agent in stat sd3, we can say it has sense the

environment change, which mean the attack execute its instruction.

 Sd4 The state whereby attack replication happen

 Sd6 The state whereby mean the instruction is intrusive

 Sd7 The state whereby mean signal has been send

 Sd8 The state whereby mean the attack already happen or not

 Sd9 is the last state

 In this agent we have a function or class which is involving to demonstrate full

regeneration of components. The functions are as follow:

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 32

 Software execution detection (SED)

 Instruction detection (ID)

 Instruction analyze (IA) (intrusive or not)

 Instruction Execution Evaluation (IEE)(yes or no)

 Malicious software propagation detection (RD)

 Signaling to other nodes.

 Figure 3-9: The Detection flow

3.10.2 Attacks Situation

 In this section, let us consider figure 3-10 which is depict the automaton representing

the action of the attack. The attack first start in situation where it is in state sm1, when the

software initiates or executes it goes to state sm2. Furthermore, the software would

execute its instruction or tries to replicate itself to other node in order to infect or

propagate to as many as possible Nodes, the automaton continue from state sm2 to either

sm4 or sm3 stats , and the automaton would reach to its final state which is state sm5 .

The possible event:

1. The initialization of the attack.

2. The attack may tries to replicate.

3. The attack tries to execute its instruction.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 33

 In order to save place we introduce an abbreviation for the process of the attack, which

is the names of states inputs:

 The software execution (SE).

 The software replication (R).

 The instruction execution (IE)

Figure 3-10: Malicious Software Behavior Path

 3.10.3 Replication and Configuration and Run Time Management Agent (RC)

 Every agent in our self-regenerative model has a specific roll and function, the

replication and configuration agent in this part we have two roll in our agent, they are as

follow:

Role 1:
Identification of code (IC)
Code copy (CC)

Role2:
Software configuration (SC)

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 34

 Lets guest the detail in Fig 2.3, we see The replication and configuration agent start first

when the harmful software tries to execute its instruction in order to cause a harm to the

normal software, the automaton from state sr1 would identify which code of the software

or which part of the software will be destroyed, the automaton would move to stat sr2.

The next action in the RCA automaton is to copy or replicate the particular component,

from this state will continue to state sr3. After the code has been copied the automaton

event next is the configuration and the management of the run time of the code replicated

the procedure now in its final state which is sd4.

Figure 3-11: The Replication and Configuration Part

3.10.4 Prevention Agent (P)

 In this part we explain the prevention of the malicious software that causes the first

node from spreading or propagating from the first to other. Let’s assume that the harmful

software tries to propagate from the node another, if the malicious software follow the

path which is the execution of its command or function call that we explain in state sm3

in attack situation, the prevention agent will send a signal to other node to take a

preventive action regarding the propagation. Furthermore, if the malicious software

follows the sm4 state in malicious software behavior, the procedure is taken and it is

signaling to other nodes, this action will take the prevention agent from state sp2 to sp3.

 Furthermore, in figure 2.4 we have the automata move to sp4 by performing the

prevention of the malicious which is trying to propagate from first node.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 35

Figure 3-12: The Prevention Process

3.10.5 Run Time Management Agent (RC)

 Run time management is associated with the replication and configuration agent that

continuously manage the components operation. Replication and configuration agent

keep replicate component if it receives signals of threat from detection agent, if

replication and configuration agent change a particular component it automatically

inform the replication and configuration agent to manage the component run time.

 Managing component run time is to execute the component in order to deliver the

service required by the other nodes from these components. For example, if a node is in

state of utilizing a certain component and suddenly an attack happen to the other node

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 36

making that component in risk. The replication and configuration agent take the charge to

replicate the component, after replicating the component, it then configured. After

configuration, the replication and configuration agent send message to the run time

management. The run time manages starts running the component for the requested node.

Figure 3-13: The Process of Component

3.11 Finite State Automaton Theory Implementation

 A finite state machine (FSM) or finite state automaton or simply a state machine, is a

model of behavior composed of a finite number of states, transitions between those states,

and actions. A finite state machine is an abstract model of a machine with a primitive

internal memory.

 Current state is determined by past states of the system. As such, it can be said to

record information about the past, i.e. it reflects the input changes from the system start to

the present moment. A transition indicates a state change and is described by a condition

that would need to be fulfilled to enable the transition. An action is a description of an

activity that is to be performed at a given moment. A FSM can be represented using a

 Agents

Replicate Configure Run

Componant
Attack

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 37

state diagram (or state transition diagram). Besides this, several state transition table

types are used.

Before we start describing using the finite state machine, we present some explanation of

certain abbreviation.

Alphabet Description
SED Software execution detection
IA Instruction analyze (intrusive or not)
RD Replication detection
IEE Instruction execution evaluation (done or not)
S Signaling to nodes
SE Software execution
IE Instruction execution
R Replication
IC Identification of codes (which will be harmed)
CC Copy of code
SC Software configuration
P Prevention

Table 3-1: Agents Alphabet

 We introduce the formal notice associated with finite automata. First we suppose our
automata are:
 F= (Sd, ,, Sd1, F)

Where:

1. Sd is a finite set of states.

2. Σ is a finite set of input symbols.

3. Sd1, a member of Sd , is the start state.

4. F, a subset of Sd, is the set of final (or accepting) state.

5. δ, the transition function is a function that takes a state in Q and an input symbol

in Σ as argument and returns a subset of Q.

3.11.1 Part 1: The Detection Agent

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 38

 In the case of the first agent that is the detection agent, the possible way that the agent

might follow in a successful round can one of this ways specified in the figure below.

The detection can either detect initialization of malicious software after that detect

replication or detect initialization after that execution of malicious function call, and so

on.

SE
D

SED

IEE

S

Figure 3-14: The Detection Agent Flow

We specify that a successful detection can be formally as:

}){,,,},,...({ 911 SdSdSdSd n 

The agent has some finite set of state, let it be:

S= {Sd1,Sd2,………Sdn} 9>n>0

 We now try to describe the automaton formally, in order to get some notation

describing the model, now we present some meaning of states appeared in figure above.

State Description

Sd1 Is the state of before the attack happen

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 39

(normal state of the node)

Sd2 Is where the initialization of the malicious software

Sd3 The malicious initialize and tried to replicate in order to infect more nodes

Sd4 The attack is trying to carry out an instruction

Sd5 Is the state where the attack propagate and carry out an instruction

Sd6 State where it the instruction contain (delete , add,) an intrusive action

Sd7 A state which the signal to other node has been sent or the instruction has been

analyzed that it is intrusive

Sd8 Where the instruction evaluation has been done , which the result is positive in a

particular way of the agent

Sd9 Is final state

Table 3-2: Describes states meanings

The formal description of the detection agent is:

}){,,},,,,,,{},...,({ 9121 SdSdSIEEIARDIDSEDSdSdSd n 

 In the automaton of the detection agent, we have four accepting string of inputs. We

describe only one accepting states in this thesis. The others path would follow the same

as path one description.

Path 1 :{SED,RD,ID,IA,IEE}

Path 2 :{SED,ID,RD,IA,IEE}

Path 3: {SED,ID,IA,S,IEE}

Path 4: {SED,ID,IA,IEE,S}

Path 1:

Path of possible accepting state of the detection agent {SED, RD, ID, IA, IEE,S}

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 40

Figure 3-15: detection process

 L= {ω | ω has string of (SED,ID,IA,IEE,S)}

 δ*(Sd, ω)= δ(δ* (Sd, x),a)

 ω =xa

x is the string of states

a is the last and final accepting state

 First we have

 δ* (Sd, x)

 δ*(Sd, x)=p

Then we formulate by

 δ* (Sd, ω)= δ (p, a)

We specify that

M=({Sd1,Sd2,….Sdn},{SED,ID,RD,IA,IEE,S}, δ, Sd1,{Sd9}) 0<n<or equal 9}

δ*(Sd1,ε)= Sd1

δ*(Sd1,SED)= δ (δ*(Sd1,ε)SDE)= δ(Sd1,SED)=Sd2

δ*(Sd1,{SED,ID})= δ (δ*(Sd1,SED)ID)= δ(Sd2,ID)=Sd3

δ*(Sd1,{SED,ID,IA})= δ (δ*(Sd1,{SED,ID}IA)= δ(Sd3,IA)=Sd6

δ*(Sd1,{SED,ID,IA,IEE})= δ (δ*(Sd1,{SED,ID,IA}IEE)= δ(Sd6,IEE)=Sd8

δ*(Sd1,{SED,ID,IA,IEE,S})= δ (δ*(Sd1,{SED,ID,IA,IEE}S)= δ(Sd8,S)=Sd9

The transitional table is:

 SED ID IA IEE S

*Sd1 {Sd2}    

Sd2  {Sd3}   

SD3   {Sd6}  

Sd4     

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 41

Sd5     

Sd5     

Sd6    {Sd8} 

Sd7     

Sd8     {Sd9}

#Sd9     

 Table 3-3: The Transitional Table of the Process

We can say that a system reached its final state :

 L(M)={x Є Σ*| δ* (Sd, x) F   }

 The property of the part1, I mean the accepting string is that all states can be reached

from start state to final accepting state.

 We now see the state transitions probability; Furthermore, the system is only in one

state at each time step.

 Our detection agent automaton has a certain finite probability of its accepting string of

state. When the malicious software initialize, it either tries to harm or tries to replicate for

more infection, thus the detection detect the tow action When the automaton follow the

way of executing its instruction first , there is one chance of tow that it instruction

Analyze and one chance out of tow that it detect replication. For every agent execution

in the environment, there exist sequences of actions.

 Part 2: Replication and Configuration and Run Time Management Agent (RC)

 In this part we have functions of our agent, the function are as follow:

 Identification of code (IC)
 Code copy (CC)
 Runtime manager
 Software configuration (SC)

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 42

 Lets guest the detail in figure 3-14, we see The replication and configuration agent start

first when the harmful software tries to execute its instruction in order to cause a harm to

the normal software, the automaton from state a would identify which code of the

software or which part of the software will be destroyed, the automaton would move to

stat b. The next action in the RCA automaton is to copy of replicate the particular code ,

from this state will continue to state c. after the code has been copied the automaton event

next is the configuration of the code replicated , the will now in the its final state which

is d .

Figure 3-16: The Replication and Configuration Part

The following table explains the state role and sign which is used in the definition.

Sign Description
Φ1 The state where the agent receive the input of

(IA) which is attack instruction evaluation
Φ2 The state of the potential software been

identified
Φ3 This state in after identification of code that is

going to infected or harmed
Φ4 The state where the code of the software been

configure to ensure scalable , and run time
management

Table 4: The States descriptions

Let say:

L = {ω |ω has string of (IA,IC,CC,SC)}

And

 M=({ Φ1, Φ 2,…. Φn},{,IAIC,CC,SC}, δ, Φ1,{ Φ4})

We have a transition from state Φ1 to the finale and accepting state Φ4 according to the

string of input which is (IA,IC,CC,SC), the calculation is:

δ (Φ1,IC)= Φ2

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 43

And the extended transition function of the accepting string is:

δ*(Φ1,{ IA,IC,CC,SC})= δ (δ*(Φ1,{ IA,IC,CC }SC)= δ(Φ3,SC)= Φ4

 We can now say that the system complete the self-regeneration if it fulfill the state

transition to the end. I the detection agent the system should start from the fist state the

finish to at the finale state which is instruction execution evaluation. In case of replication

and run time management it start from the identification of code and end at

3.12 Agent Interaction Description

 Agent in our model are interacting and producing action which will result the self-

regenerative action. These agent are taking sensory detection from the environment

which they have been deployed in, according to the figure below we have the detection

agent detect the change in the component of the system, or detect malicious activities

which will harm the component .following that we have replication and configuration and

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 44

run time management agent comes timely to configure the system. We have in addition

the prevention agent which will prevent malicious from harming the system and from

spreading throughout the network.

Figure 3-17: Flow of Agents Messaging

3.13 Agent Specification

 In general, when specifying a system, we are interested not only in a description of the

system but also in ensuring that the system fulfils certain requirement.

 When Agent behaves in its environment, it takes sensory input from the environment

and produces as output actions that affect it. The interaction is usually an ongoing, non

termination on.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 45

 Normally an agent will have a repertoire of action available to it; this set of possible

action represents the agent capability. The key problem facing agent is that of deciding

which of its action it should perform in order to best satisfy its design objectives.

 One possible solution is to have the agent explicitly reason about and predicts

behaviors of the system.

 And the aspect of the interaction between agent and environment is the concept of

real time put at its most abstract, a real time interaction is simply one in which time play

a part in the evaluation of an agent performance.

 The specification of function of the agents formally is described below; we divide into

each agent, such as Module 1 is for the detection agent and module 2 for the replication

and configuration agent and so on.

 Module 1: The Detection Agent

 In our model we specify that we would like to build a proactive action in order to

detect the malicious activities and also change in the component and reactive in order to

create a self-regenerative system. In the proactive part we have the detection agent that

would detect the malicious.

 We can easily formalize the abstract view of our agent which it has been described so

far; let us assume that the detection agent environment may be in any of a finite se H of

discrete, instantaneous state.

,...}.',{ hhH 

 Detection gent (DA) assumed to have a repertoire of possible actions available to them

which transform the state of the environment. Let

,...}.',{ A

Be the finite set the agent action.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 46

 The basic model of this of this agent interaction with their environment can respond

with a number of possible states. However, only one state will actually result, through of

course, the agent does not know in advance which it will be on the basis of this second

state, the agent again choose an action to perform . The environment responds with one

of a set of possible states, the agent then chooses another action, and so on.

In detection agent we have the possible environment is finite

Let say:

Figure 3-18: Detection Agent Possible Actions

The environment is

},,,,,{ 543,210 hhhhhhH 

A run, r, of the detection agent in an environment is thus a sequence of interleaved

environment states and actions, in the first h0 malicious try to execute its command or

instruction, in the same time we have the detection agent sense the environment change,

thus accordingly the agent will perform an action, and we have:

uhhhhr u 110: 210


The above notation maps the run of the detection agent. Let

 R be the set of all such possible finite sequences (over H and A)

 RA be the subset of these that end with an action

 RH be the subset of these that end with an environment

 In order to represent that an effect that the detection agent’s action have on an

environment, we introduce a state transformer function:

)(: HR A  

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 47

 Thus a state transformer function maps a run (assumed to end with the action of the

detection agent) to a set of possible environment states – those that could result from

performing the action.

 If  )(r (where r is assumed to end with an action of the detection agent), then there

are no possible successor state to the run of the detection agent. In this case , we say that

the system has ended its run , we will therefore consider that all runs of the detection

agent is terminated .

As for modeling the Detection agent in the system, we say an environment Hv is a

triple  ,, 0hHHv where

H : is a set of environment states.

Hh 0 : is an initial state.

 : is a state transformer function.

 We now need to introduce a model of the detection agent that inhabit our system,

Let  be the symbol of the detection agent, we now say that:

AR H :

 Thus an agent make a decision about what action to perform based on the history of the

system that it has witnessed to date.

 Notice that while environments are implicitly non-deterministic, the agents assumed to

be deterministic.

Let AG be the set of all agents.

 We say a system is a pair containing an agent and environment , any system will have

associated with it a set o of possible run ; we denote the set of runs of agents  in

environment Hv by  EnvR , contain only terminated run , e.i run r such that r has

no possible successor state :  )(r

Formally, a sequence

,...),,(321,1 hhh 

Represent a run of an agent  in an environment  ,, 1hHHv if

 h1 is the initial state of Hv.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 48

 1 =  (h1); and

 U>0.

)),...,((121  uu hh 

 Detection agent algorithm:

Algorithm below

If environment is change Hh 1 is true
 Then Detection agent is detecting Б
 Identify function call
 If call=malicious function call
 Prevent h1

 Else
 Allow h1
Else if environment is change H=h2
 Then detect h2
 Analyze instruction
 If h2=’damage’
 Prevent h2
 Else h2 !=’damage’
 Ignore
Else if H=h3

Then signaling to other nodes ŋ
Else ignore

 Module 2: The Replication and Configuration Agent c

The replication and configuration agent is considered as a tow part:

- the action of detection in performing i from the detection agent and

 According to the б Instruction Analyze in detection agent, RC agent would indentify

which of part of component is going to damaged, if the code identified
 is the identification of the component.

 We will then have the replication of the component .

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 49

If the  is done then the replication is succeeded

The RC agent is in the state of configuration of software, if the component has been

copied or if the component is available somewhere else. The component is configured

 Then the agent will put the configured component in runtime to scale the system.

Figure 3-19: The Agents Involved in the Process

 If The RC Agent succeed in its mission then we can say that the system is achieving its

design objectives, therefore, the system is bio-inspired integrated, according to the model

of the internal cell operation that we have mentioned in the beginning of the chapter, we

will adjust our survivable model if it is encountered any malfunction or failure .

RC agent algorithm:

If IA = attack then
 Identify component
 If IEE = not done then
 Copy component
 Else locate the component
 If old component = not new then
 Configure component
 Configure Runtime
 Else ignore
Else ignore
End

Replication of
the code

Configuration Runtime
Management

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 50

 Module 3: Prevention Agent

 This model is the prevention agent, it is also sending signal to other nodes in the

network.

 In this agent we have a set of environment change, which going to be the interaction

between the agent in some part between tow agent in one node , and the other between

tow agent on different nodes.

The interactions from:

 S : signal from detection agent p

µ : replication detection by detection agent p

ŋ :signal from other nodes

The actions available to this agent is :

Ŋ : signal to other nodes

r : Replication prevention

e : Execution prevention

 Let say if the agent receive signal from the detection agent, it will automatically send a

signals to other node and perform the prevention execution e .

Again if the prevention agent see the detection agent d detect an attack replication it will

then perform the signal to other node ŋ and the replication prevention r .

If the prevention agent e receive a signal from other node’ prevention agent S it will

prevent the attack replication from other nodes.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 51

3.14 CASES CONSIDERATION & SCENARIOS

 We introduce the phases of the system which it is going respond to environment

change to prevent the damage and improve services:

3.14.1 Scenario No 1: Attack with Propagation

If attack has happened in one node; there is a two hypothesis:

 It may cause a damage to this node software component , and

 Then transfer itself to another node in the network.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 52

 At this point we have an attack to one node, in this part the system would have to

perform a proactive regeneration of the component and the functions of the software to

prevent interruption. Beside, the system again perform a reactive action for other node in

the network, because, the attack might propagate itself to those node and cause different

damage.

 Regeneration of the actual node is performed by the actions of the agent which is RC

agent , this agent react if the is any attack detected by the detection agent the two agent

are interacting in order to perform the component regeneration

Figure 3-20: Detection Agent Interact with the RC Agent

The part of the attack propagation is also a crucial in this case; the system now has to

send some signal to the other node in order to protect themselves from this thread. If the

detection agent detects the attack in the first node, it will automatically send the signal

through prevention agent (P Agent).

Figure 3-21: Detection Agent and the Prevention Agent

 Figure below illustrate how the first Node detects the malisons, and then if the attack

try to propagate, the Node will send a signaling to other node in order to take the

proactive action.

RC
agent

D
agent

D
agent

P
 agent

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 53

Figure 3-22: Attacks and its Propagation

 The following figure depict the effect of the messaging among the the agent over time,

in this scenario which the attack is happen sequentially in one node to another in the

system, as we can see the detection agent first detect the software execution

S E D I D I A R D I E E Id of code CC S C S O N R D P R T M

message

message

message

message

message

message

message

message

message

message

previntion agent RC agent detection agent

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 54

Figure 3-23: Attack and Propagation Sequence Diagram

 Scenario above illustrates how the model interacts and responds if attack happen and

there is an attack preparation going on.

3.14.2 Scenario N 2: Only one Attack

 If attack happen to one only node and then not propagate to other node, in this case we

have only one hypothesis:

 Damage may happen to this node software component.

 This probability is when attack initializes or start executing, which in result will cause

damage to the component of the software, or cause the system to loose runtime software.

In the detection agent of this node with the software execution detection (SED), and

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 55

again through the instruction detection (ID) and instruction analyze (IA). The result of

this procedure is the system is under attack. The detection has two parts; it may detect the

malicious execution before performing its mission, or after the damage has been done.

If it is before the damage the action will be:

Figure 3-24: The detection agent

And the component regeneration is:

Figure 3-25: The RC Agent

S E D I D I A R D I E E I C CC S C S O N R D P R M

message

message

message

message

message

message

message

previntion agent RC agent detection agent

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 56

Figure 3-26: Only one attacks Sequence Diagram

 The above sequence diagram shows how the interactions between agents during

attack, the specific scenario is in case of only one attack, we can see the detection

monitor the functions call and identify whether its a pattern of a malicious or not. The

monitor interacts with other agent in order to finish the regeneration of the components as

depicted in figure 3-22.

3.14.3 Scenario No 3: Concurrent Attack

 If we have multiple attacks in same time, we consider the network is under total attack,

the hypothesis of this case is:

 Attack happen to all nodes in the network, and potentially the component of this

node is damaged.

 Attack happened to most of the node.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 57

 In this case the attack initialize in all the node in the network , as we have said in the

previews case , if the attack try to execute its instruction it is been detected by the

detection agent (D agent). In the detection agent we have the software instruction

detection (SED) detect the initialization of the attack by attack instruction.

After the detection of the attack, the replication and regeneration agent (RC agent) will

identify the software component, which is after the attack been performed its damage.

Then (RC agent) would configure the component of the software

Figure 3-27: The Behavior of the Nodes Agent in Case of Concurrent Attack

S E D I D I A R D I E E I C CC S C S O N R D P R T M

message

message

message

message

message

message

message
message

previntion agent RC agent detection agent

message

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 58

Figure 3-28: Concurrent Attacks Sequence Diagram

 Figure 3-24 sequence diagram illustrate how the communications between agents

during attack, the particular scenario in this case is concurrent attacks, we can see the

detection monitor the functions call and identify whether it’s a pattern of a malicious or

not, alongside the replication also considered. The monitor interacts with other agent in

order to finish the regeneration of the components as explained in figure 3-24.

3.14.4 Scenario No 4: Sequential Attack

 If attack happened sequentially to the nodes, the hypothesis in this case is attack happen

in one node then another attack to another node and so on.

 The attack in this case is happening in a sequential mode, which is in the first the

malicious attack one node then to the second.

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 59

 In the first attack to the node, we have the detection agent which will detect the

initialization of the attack by its instruction, then generate the malicious signature and

distribute to the nodes in the network, in this moment the same attack would not be able

to cause any thread to other node.

Figure 3-29: The Sequential attack

 If the malicious attack sequentially, this may be node B or node C. The node would

perform the same proactive action in order to come out of this attack, beside it send the

attack signature to other node.

S E D I D I A R D I E E I C CC S C S O N R D P R M

message

previntion agent RC agent detection agent

message

message

message

CHAPTER THREE: SELF-REGENERATIVE SYSTEM ARCHITECTURE 60

Figure 3-30: Sequential Attacks Sequence Diagram

