
CHAPTER FIVE: CASE STUDY

5.1 Distributed System

 A distributed system is a collection of independent computer that appear to its user as a

single coherent system.

 This definition has important aspects. The first one is that a distributed system consists

of components that are autonomous. A second aspect is that user thinks they are dealing

with a single system. This mean one way or the other the autonomous components need

to collaborate how to establish this collaboration lies at the heart of developing

distributed system.

 Concerning the characteristics of distributed system, one important characteristic is that

differences between that various computer and the ways is which they communicate are

mostly hidden from user. The same holds for the internal organization of the distributed

system. Another important characteristic is that user and application can interact with a

distributed system in consistent and uniform way, regardless of where and when

interaction take place.

 In principle, distributed system should also be relatively easy to expand or scale. And a

distributed system will normally be continuously available, although perhaps some part

may be temporally out of order. User and applications should not notice that part are

being replaced or fixed In order to support heterogeneous computers and networks while

offering a single system view, distributed system are often organized by means of layer

of software-that is , logically placed between a higher-level layer consisting of users and

applications, and a layer underneath consisting of operating systems and basic

communication facilities .

CHAPTER FIVE: CASE STUDY 84

 84

 Node 1 Node 2 Node 3 Node 4

Figure 5-1: The Distributed Systems

5.2 System Architecture

 In term of architecture, distributed system are often complex pieces of software of

which the components are by definition dispersed across multiple machines. The

organization of distributed system is mostly about the software components that

constitute the system. Theses software architecture tells us how the various software

component are to be organized and how they should interact. The actual realization of a

distributed system requires that we instantiate and place software components on real

machines. There many different choices that ca be made in doing so. The final

instantiation of software architecture is also referred to as system architecture. Software

architecture is considering where software component are placed. Deciding on software

component, their interaction and their placement leads to an instance of software

architecture.

 The centralized architecture is also known as client and server system, the basic of

client server model, processes in a distributed system are divided into two groups. A

server is a process implementing a specific service, for example, a file system service. A

client is a process that requests a service from a server by sending it a request and

Comp
onent

A

Component B

Distributed system layer (middleware)

OS 1 OS 2 OS 3 OS 4

Comp
onent

C

Network

CHAPTER FIVE: CASE STUDY 85

 85

subsequently waiting for the server’s reply. This client-server interaction, also known as

request-reply behavior, the diagram explains that:

Figure 5-2: Centralized Architecture

5.3 Component-based Software

 Component based software engineering (CBSE) promises enhancements in software

development due to separation of concern, component reuse, and other component

oriented methodologies. Individual reusable components are plugged together via

interfaces, which are used for component interaction. Several industrial grade server

component architectures have been defined, such as Sun’s Enterprise JavaBeans (EJB),

Microsoft’s COM+ and the CORBA Component Model (CCM) (Schmo et al, 2007).

Szyperski defines a component as: ‘‘A software component is a unit of composition with

contractually specified interfaces and explicit context dependencies only” (Szyperskiet al,

2002) that means to be able to compose components into applications, each component

must provide one or more interfaces. These interfaces form a contract between the

component and its environment. The component interfaces clearly define which services

a component provides. Also, software usually depends on a specific context, such as

particular database schemas or other system resources. To support the composability of

components, such dependencies must be explicitly specified (Schmo, 2007).

Server

Request

Client Client Client

CHAPTER FIVE: CASE STUDY 86

 86

5.4 Case Study

 As a case study we utilize two type of network, the first is peer to pee and the second is

cluster network. We map our model into peer to peer form, peer to peer is a kind of

network that each node has its own capabilities to act is a kind of decentralize network,

cluster network is a group of network that has an specific node controlling the activity.

 5.5 Peer to Peer

 A peer-to-peer (or P2P) computer network uses diverse connectivity between

participants in a network and the cumulative bandwidth of network participants rather

than conventional centralized resources where a relatively low number of servers provide

the core value to a service or application. P2P networks are typically used for connecting

nodes via largely ad hoc connections. Such networks are useful for many purposes.

Sharing content files (see file sharing) containing audio, video, data or anything in digital

format is very common, and real time data, such as telephony traffic, is also passed using

P2P technology.

 A pure P2P network does not have the notion of clients or servers but only equal peer

nodes that simultaneously function as both "clients" and "servers" to the other nodes on

the network. This model of network arrangement differs from the client-server model

where communication is usually to and from a central server. A typical example of a file

transfer that is not P2P is an FTP server where the client and server programs are quite

distinct: the clients initiate the download/uploads, and the servers react to and satisfy

these requests.

 Peer-to-peer (P2P) systems have become very popular of late, and are widely used for

sharing resources, such as music files, software components. Software component

reliability and availability is a crucial operation in distributed component based system;

and there has been considerable recent work in devising effective algorithm to answer

these problems.

CHAPTER FIVE: CASE STUDY 87

 87

 Let’s say that we have component in each of the node these nodes are connected in

peer to peer structure see figure below

5.6 Distributed Architecture

Figure 5-3: Distributed Architecture

 By adding our model to the above structure, each node is have the model component

which is the agent the detection agent of the monitoring agent, the replication and

configuration agent, the prevention agent, the runtime management agent.

The system will resemble the figure 5-4.

Components

Node A Node B Node C Node D

CHAPTER FIVE: CASE STUDY 88

 88

Node E

Node D

Node C

Figure 5-4: Mapping our Approaches to Peer to Peer

 In case of any attack to the software component of the network, the monitor or the

detector agent will detect any malicious activity; the detection will be as shown in chapter

three. After the detection the system would react and accomplish the regeneration part in

order to protect the software component.

First the agent need locate component in an optimum way, the after localization the node

send request in order to copy the component.

CB means that al components of node B

CA means all component of node A

Agents

Component

Node A

Node B
Messaging

CHAPTER FIVE: CASE STUDY 89

 89

CB = CB1+ CB2+ CB3+…. CBn

CA = CA1+ CA2+ CA3+… CAn

 If attack happens to node A and try to harm component CA1 the agent would interact

and send

A sends CA1 to B

B receive CA1 from A

After the regeneration the component would resend back to A

B sends CA1 to A

A receive CA1 from B

Figure 5-5: Model flow

CHAPTER FIVE: CASE STUDY 90

 90

0

50

100

150

200

250

300

1 2 3 4

ACL massages
Numbers of nodes

 We present the experiment in the peer to peer model, this experiment show how to

apply our approach to self regenerate in the different four scenarios.

 The result show the interaction of agent in the regeneration in four scenario vs the

number of node and number of message needed to accomplish a whole system function.

As the number of nodes increases the agent interaction messages increase as well, in

addition the time of the regeneration decrease as the number of node increase. The figure

below depicts the scenario number one in an ACL message vs number of nodes.

Figure 5-6: The ACL messages VS numbers of nodes

V
al

ue

Tests

CHAPTER FIVE: CASE STUDY 91

 91

 Comparatively in the four scenarios we test certain number of node vs ACL message

interaction in the four scenarios.

Figure 5-7: The ACL messages VS numbers of nodes in the four scenarios

0

100

200

300

400

500

600

700

800

900

1 2 3 4

AC
L

 m
es

sa
ge

s scenario 4
scenario 3
scenario 2
scenario 1
No of nodes

Tests

CHAPTER FIVE: CASE STUDY 92

 92

Cluster A

Cluster B
Cluster C

 5.5 Cluster Network

 A computer cluster is a group of linked computers, working together closely so that

in many respects they form a single computer. The components of a cluster are

commonly, but not always, connected to each other through fast local area networks.

Clusters are usually deployed to improve performance and/or availability over that

provided by a single computer, while typically being much more cost-effective than

single computers of comparable speed or availability (Bader et al)

 In this section we describe the component-based systems software that has actually

been deployed on our cluster. It consists of an infrastructure for component interaction, as

show in the figure below

Figure 5-7: The Cluster System deployment

CHAPTER FIVE: CASE STUDY 93

 93

 As we can see in cluster system we can say the interaction of agents in the cluster

system is less than the one in the peer to peer system according to the figure below.

0

10

20

30

40

50

60

70

80

1 2 3 4

tests

va
lu

es ACL messages

No of cluster

Figure 5-7: The ACL Messages VS Numbers of Nodes in the four Scenarios

5.6 Summary

 Throughout this chapter we consider two key case studies, the first is using the peer to

peer system and the second is in a cluster environment. Component based in a peer to

peer environment are getting significant attention at the present time, therefore the

availability of the component is very essential. Our approach is tested in the peer to peer

environment to see how it vigorously self regenerate the component. The second case

study is the cluster system, cluster network now is used for high bandwidth and latency

and also used for high availability, and we show our model in a cluster environment and

present considerable results.

CHAPTER FIVE: CASE STUDY 94

 94

