Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Wavelet-Neural Network Based Image Compression System for Colour Images

Irijanti, Etik (2009) Wavelet-Neural Network Based Image Compression System for Colour Images. Masters thesis, UNIVERSITI TEKNOLOGI PETRONAS.

Download (3MB) | Preview


There are many images used by human being, such as medical, satellite, telescope, painting, and graphic or animation generated by computer images. In order to use these images practically, image compression method has an essential role for transmission and storage purposes. In this research, a wavelet based image compression technique is used. There are various wavelet filters available. The selection of filters has considerable impact on the compression performance. The filter which is suitable for one image may not be the best for another. The image characteristics are expected to be parameters that can be used to select the available wavelet filter. The main objective of this research is to develop an automatic wavelet-based colour image compression system using neural network. The system should select the appropriate wavelet for the image compression based on the image features. In order to reach the main goal, this study observes the cause-effect relation of image features on the wavelet codec (compression-decompression) performance. The images are compressed by applying different families of wavelets. Statistical hypothesis testing by non parametric test is used to establish the cause-effect relation between image features and the wavelet codec performance measurements. The image features used are image gradient, namely image activity measurement (IAM) and spatial frequency (SF) values of each colour component. This research is also carried out to select the most appropriate wavelet for colour image compression, based on certain image features using artificial neural network (ANN) as a tool. The IAM and SF values are used as the input; therefore, the wavelet filters are used as the output or target in the network training. This research has asserted that there are the cause-effect relations between image features and the wavelet codec performance measurements. Furthermore, the study reveals that the parameters in this investigation can be used for the selection of appropriate wavelet filters. An automatic wavelet-based colour image compression system using neural network is developed. The system can give considerably good results.

Item Type: Thesis (Masters)
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 5 not found.
Date Deposited: 04 Jun 2012 10:15
Last Modified: 25 Jan 2017 09:44
URI: http://utpedia.utp.edu.my/id/eprint/2891

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...