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ABSTRACT 

 

The acid gases (CO2 and H2S) removal process is very important in natural gas processing. 

The acid gases absorption process using methyldiethanolamine (MDEA) solvent has 

found increased application. Evaluation on the acid gases absorption process using 

MDEA solvent can be done using modeling and simulation on the system. Several 

attempts have been made on the modeling and simulation of the phase equilibrium and 

also the absorption column system. Some limitations were found in the attempts.  

 

The aim of this study is to construct a rigorous simulation procedure of the acid gases 

absorption from methane using methyldiethanolamine solvent. The simulation of the 

contactor column is based on equilibrium modeling. The methane solubility that was not 

considered in the previous studies is accounted in this simulation. Part of the study is the 

development of phase equilibrium model to determine the solubility of acid gases in 

MDEA solvent. The ElecGC model is used for calculation of the activity coefficient of 

the components in the liquid phase. The non-ideality of the components in the gas phase 

is accounted using Peng-Robinson Equation of State. The Astarita representation 

introduced by Hoff (2003) is used to solve the set of reaction equilibrium and component 

balance equations and to calculate the liquid phase composition.  

 

The study observed the solubility of CO2, H2S, CH4, and mixture of CO2 and H2S in 

MDEA solvent. The predicted solubility was found to be in good agreement with 

published experimental data. Relatively large error (84.7%) was found on CO2 partial 

pressure prediction at loading lower than 0.1 mole CO2/mole MDEA. The absorption 

column simulation compared the CO2 and H2S separation from methane, for the similar 

specification of the feed gas (10 mole% acid gas) and solvent (45 wt% MDEA). The 

simulation result shows that H2S composition in the product gas was lower than that of 

the CO2 composition. For the 5 stages fixed to separate the acid gas, CO2 purity in gas 

product is 0.085 mole%, while H2S purity is 0.059 mole%. Parametric analysis was 

performed to evaluate the effect of changing the solvent flow rate and the solvent 

concentration to the acid gas composition in the sweet gas.  

 

Key words: Absorption, Acid gases, Methyldiethanolamine 
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ABSTRAK 

 

Proses penyerapan gas asid (CO2 dan H2S) adalah sangat penting dalam pengolahan gas 

asli. Proses penyerapan gas asid dengan menggunakan pelarut methyldiethanolamine 

(MDEA) telah menunjukkan peningkatan aplikasi. Proses penyerapan gas asid ini boleh 

dikaji menggunakan kaedah pemodelan dan simulasi. Beberapa percubaan telah 

dilakukan dengan kaedah pemodelan dan simulasi melibatkan keseimbangan fasa dan 

kesan keatas system penyerapan tersebut. Beberapa kelemahan telah ditemui di dalam 

percubaan-percubaan tersebut. 

 

Tujuan kajian ini adalah untuk membangunkan prosedur simulasi yang lebih menyeluruh 

untuk penyerapan gas asid daripada metana dengan menggunakan pelarut MDEA. 

Kebolehlarutan metana telah tidak diambil kira dalam kajian sebelumnya. Sebahagian 

daripada kajian ini tertumpu kepada pembangunan model keseimbangan fasa untuk 

menentukan kelarutan gas asid di dalam pelarut MDEA. Model ElecGC digunakan untuk 

mengira pekali keaktifan daripada komponen-komponen dalam fasa cecair. Faktor 

ketidakunggulan komponen-komponen di dalam fasa gas diambil kira dengan 

menggunakan persamaan keadaan Peng-Robinson. “Astarita representation” yang 

diperkenalkan oleh Hoff (2003) digunakan untuk menyelesaikan serangkaian persamaan 

keseimbangan reaksi dan keseimbangan komponen bagi mengira komposisi fasa cecair. 

 

Kajian ini mengamati kelarutan CO2, H2S, CH4, dan campuran CO2 dan H2S dalam 

pelarut MDEA. Jangkaan kelarutan yang didapati daripada kajian menunjukkan 

persamaan dengan data yang didapati daripada kajian terdahulu. Ralat yang agak besar 

(84.7%) ditemui pada tekanan separa CO2 dengan muatan yang lebih rendah daripada 0.1 

mol CO2/mol MDEA. Simulasi turus penyerapan gas asid yang dilakukan 

membandingkan penyerapan antara CO2 dan H2S daripada metana, untuk spesifikasi gas 

suapan (10 mol% gas asid) dan spesifikasi pelarut yang sama (45 wt% MDEA). Hasil 

simulasi menunjukkan bahawa kandungan H2S yang terhasil lebih rendah daripada 

kandungan CO2. Bagi 5 tahap pemisahan yang ditetapkan ke atas simulasi turus 

penyerapan, ketulenan CO2 dalam gas produk adalah 0.085 mol%, sedangkan ketulenan 

H2S adalah 0.059 mol%. Analisa parametrik dilakukan untuk menilai kesan daripada  
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perubahan kadar alir pelarut dan kepekatan pelarut kepada komposisi gas asid di dalam 

gas yang terhasil. 

 

Kata kunci: Proses penyerapan, Gas asid, Methyldiethanolamine 
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1 CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

 

Absorption refers to the transfer of one or more components of a gas phase into a liquid 

phase in which they are soluble. It is one of the basic operations in many industrial 

processes, such as fertilizer industry, natural gas processing, and crude oil processing 

(Zarzycki and Chacuk, 1993). In the natural gas processing, absorption process is applied 

for removal of gas impurities like acid gases (CO2 and H2S) as absorbate by removing 

them to certain solvents functioning as the absorbent. Acid gases must be eliminated from 

the gas stream to avoid poisoning of the catalysis, to increase the heating value of the 

natural gas, and to achieve the product specifications (Kohl and Nielsen, 1997). 

 

The solvents used to absorb the acid gases in gas processing can be a physical solvents or 

chemical solvents. The difference in the two solvents is that chemical reactions take place 

when acid gases dissolve in the chemical solvents, but not for the physical solvents. 

Propylene carbonate (Flour solvent), dimethyl ether of polyethylene glycol (Selexol 

solvent) and methanol are classified as physical solvents, while alkanolamines and alkali 

salt solvents (eg: potassium carbonate and sodium carbonate) are classified as chemical 

solvents.  

 

The aqueous alkanolamine solvents have proven to have commercial interest. 

Monoethanolamine (MEA), diethanolamine (DEA) and Diisopropanol-amine (DIPA) 

have been the most widely used alkanolamine in gas processing. Later, 

methyldiethanolamine (MDEA) has found increased used (Kohl and Nielsen, 1997) due 

to its several properties which make it attractive for acid gases removal, which are: 

1. High solution concentration (up to 50-55 wt-%) 

2. High acid gas loading 

3. Low corrosion even at high solution loadings 

4. Lower heats of reaction 

5. Low vapor pressure and solution losses. 
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The primary disadvantages of MDEA are: 

1. Slow reaction rate with CO2 

2. Tendency to foam at high concentration 

3. Higher cost 

The slow reaction rate of MDEA with CO2 can be amplified with small addition of 

primary such as MEA or secondary amine such as DEA (Dawodu and Meisen, 1994). 

Activator, such as Piperazine, can also be used to improve CO2 solubility in MDEA 

solution (Chakma and Meisen, 1987).  

 

Figure 1.1 shows a basic flow scheme for alkanolamine acid gases removal. The sour 

natural gas that contains acid gases enters the bottom of the absorption column. The 

alkanolamine solvent (lean amine) is introduced at the top of the absorption column and 

come into contact in a counter-current fashion with the sour feed gas. The rich 

alkanolamine solvent that contains the dissolved acid gases exits the bottom of the 

column and is sent to a stripping column. In the stripping section, the acid gases are 

released from the solvent, while the solvent is recycled back to the absorption column.  

 

Inside the absorption column, the acid gases and the small amount of hydrocarbon are 

dissolved into the alkanolamine solution. Chemical reactions take place between the acid 

gases and the solvent components in the liquid phase. At the steady state condition, a 

vapor-liquid equilibrium exists between the vapor and the liquid phases for each of the 

components, while the chemical equilibrium exists in the liquid phase. Figure 1.2 

illustrates the chemical equilibrium, the vapor liquid equilibrium and the components 

exist in the acid gases-aqueous MDEA system. The methane component represents the 

hydrocarbon existence.  

 

Studies of acid gases absorption into aqueous MDEA solution and the process design are 

required to improve the industrial scale process. The solubility of the gases in the MDEA 

solutions is the main consideration of the absorption process. Several investigators 

(Addicks and Owren, 2002; Chakma and Meisen, 1987; Dawodu and Meisen, 1994; Jou 

et al, 1982; Jou et al, 1993; Jou et al, 1994; Li and Mather, 1994) have measured carbon 

dioxide and hydrogen sulfide solubility in aqueous methyldiethanolamine solutions.  
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Figure 1.1 Basic flow scheme for alkanolamine acid gases removal 

 

 
Figure 1.2 Illustration of the chemical equilibrium, the vapor liquid equilibrium and the 

components exist in the acid gases-aqueous MDEA system. 

 

Improving equipment design for natural gas treatment requires better knowledge on the 

phase equilibrium and the chemical equilibrium between the acid gases and 

methyldiethanolamine solution. Several studies have been conducted in modeling the 

vapor-liquid equilibrium of the acid gases-alkanolamine systems [Autsgen, 1989; 

Deshmukh and Mather, 1981; Haji Sulaiman, 1998;  Kaewsichan, 2001; Lee, 1996; Posey, 

1996; Rangsunvigit, 1998; Solbraa, 2002). One of the published vapor-liquid equilibrium 

models is ElecGC model which is used in this study. A brief explanation on the model is 

given in Chapter 2. 
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1.2 Problem Statement 

 

Simulation program on the absorption column is very useful to evaluate the design and 

operation systematically. There are two main considerations in designing absorption 

process. First, the acid gas fraction in sweet gas or the percent acid gas recovery is 

specified. For a given solvent rate, the number of stages has to be calculated. Second, the 

number of stages is specified, and then the acid gas fraction in sweet gas or the percent 

acid gas recovery has to be calculated. The former consideration is related with designing 

of new absorption column configuration. While the later is related to evaluating existing 

absorption column configuration for a different gas specification.  

 

There are several calculation procedures available for acid gases absorption using 

alkanolamine system (Vaz, 1980; Loh, 1987; Kohl, 1997) that focuses on the first design 

consideration. But, the procedures have some limitation. Vaz (1980) performed a 

calculation procedure for amine contactor and estimated of equilibrium stage requirement. 

The study has limitation due to the lack of attention given on the solubility of 

hydrocarbon in the system. The hydrocarbon solubility in the solvent is necessary to get a 

better design of the gas sweetening process. Vaz’s calculation procedure is unreliable to 

have a converged solution. Loh (1987) performed stage-by-stage calculation procedure 

with reliability to meet a converged solution. The procedure also does not give attention 

to the hydrocarbon solubility. Kohl (1997) designed an absorption calculation procedure 

that has capability to determine the lean amine circulation rate. But, it has inability of 

determining equilibrium composition at each stage, number of stage required, and 

temperature profile along the column.  

 

A more rigorous stage-by-stage calculation procedure has to be constructed to simulate 

the acid gases absorption from methane using methyldiethanolamine solution. The 

limitations of the previous procedure have to be solved. The procedure must be able to 

calculate the hidrocarbon solubility, have a reliable converged solution, and have the 

ability to predict the temperature and liquid and gas phase composition at each stage. 

 

The mathematical formulation of acid gases absorption using alkanolamine is very 

complex. In the stage-by-stage calculation procedure, the mass and energy balance relate 
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each stage with the others. The energy balance itself is relatively not simple due to the 

existence of the heat of absorption and heat of water condensation or evaporation. At 

every stage, the liquid and vapor phase are related by phase equilibrium. The acid gas-

alkanolamine-water system is a highly non-ideal system. The terms of activity coefficient 

and fugacity coefficient have to be combined to the phase equilibrium equation. 

 

In the liquid phase, the component composition is described by the chemical reaction 

equilibrium, the component mole balance and the charge balance. The equations that 

follow these three terms are non-linear equations. Solving on these non-linear equations 

produces the equilibrium composition of the components. The common way to solve the 

non-linear equations is a numerical method such as Newton method. However, the 

equations involves is very different in the order of the magnitude of the unknowns, 

leading to problems of a convergence and numerical instability. Initial guesses that are 

very close to unity have to be provided. For this problem, the iterative procedure will lead 

to high computation times. 

 

Hoff (2003) applied the Astarita representation to calculate the equilibrium composition 

of the component in the liquid phase for the system of CO2-MDEA-H2O system. The 

Astarita representation method is a simple and quick procedure to solve the non-linear 

equation in acid gases-alkanolamine system. The computation time required in the 

method is very short compare to the Newton method and it does not require an initial 

guesses. This method has not been applied to the H2S-MDEA-H2O and CO2-H2S -

MDEA-H2O systems.   

 

1.3 Objectives of Research 

 

The objectives on this research are as follows:  

1. To examine the ElecGC model for CO2 and H2S absorption using MDEA solvent.   

2. To apply the Astarita representation method in calculating the liquid phase 

composition for systems of CO2-MDEA-H2O, H2S-MDEA-H2O, and CO2-H2S-

MDEA-H2O.  

3. To construct a calculation procedure for CO2 and H2S absorption process from 

methane using MDEA solvent. The solubility of methane is taken into account in the 
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simulation. The procedure used to simulate the steady state absorption process is 

based on the equilibrium model.  

4. To do the sensitivity analysis and analyze the influence of changing solvent 

concentration and solvent flow rate on the purity of the gas product.  

 

1.4 Scope of Research 

 

The scope of research focuses on developing a reliable combination of mathematical 

models that capable of describing the acid gases absorption process using aqueous MDEA 

solvent. In this work, compatible algorithms are proposed to solve the mathematical 

models. The first algorithm would be the algorithm to calculate the liquid phase 

compositions involving the Astarita representation. The simulation results are compared 

with the literature data. The liquid phase composition algorithm becomes a part of the 

vapor liquid equilibrium algorithm that can be used to calculate the solubility of the acid 

gases in the MDEA solvent. The simulation results are compared to the established 

solubility data available in literature. Finally, the algorithm that solves the mathematical 

models will be served to simulate the absorption process. The parametric analysis is 

performed on the absorption system. This involves evaluating the changing of the solvent 

flow rate and the solvent concentration to the acid gas composition in the sweet gas. The 

simulations are performed in the MATLAB program.  

 

The first part of the study is to evaluate the single acid gas (CO2 and H2S) solubility in the 

MDEA solvent. The methane solubility is also evaluated as this component becomes the 

main constituent in the methane. The absorption column simulation is performed on the 

single acid gas absorption from methane using MDEA solvent. The second part of the 

study is evaluating the mixture acid gases solubility in the MDEA solvent. Then, the 

simulation of CO2 and H2S mixture separation from the methane stream is executed. 

 

1.5 Outline of Thesis 

 

The structure of the thesis is as follows. In Chapter 2, the review of the literatures on the 

acid gases absorption using methyldiethanolamine solvent is given. These include the 
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experimental data on acid gases solubility and heat of absorption and the phase 

equilibrium models. In Chapter 3, the mathematical models for the acid gas absorption 

system are derived. Several additional relations are constructed to improve the 

mathematical model of the system. In Chapter 4, the algorithms for the computer 

simulation of the acid gases removal system are presented. In Chapter 5, the simulation 

results on the acid gases absorption system with the literature data validation are 

displayed. Some conclusions and recommendations based on this research are given in 

Chapter 6. 
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2 CHAPTER 2 

   LITERATURE REVIEW 

 

2.1 Introduction 

 

Acid gases (CO2 and H2S) are the main impurities in natural gas. Acid gases are corrosive 

to the pipeline and have a very low heating value. These impurities have to be eliminated 

from the natural gas to increase the heating value and fulfill the product demand 

specification. One common method to remove the acid gases from natural gas is 

absorption process using alkanolamine solvents.  

 

The acid gases sweetening process using alkanolamines have been studied for decades. 

Kohl and Nielsen (1997) stated that triethanoamine (TEA) was the first commercially 

applied solvent used for the gas sweetening process. But, its low reactivity and low 

capacity due to high molecular weight has caused it to be replaced. The amines that have 

proven to be of commercial interest for gas purification are monoethanolamine (MEA), 

diethanolamine (DEA), and methyldiethanolamine (MDEA). Figure 2.1 shows the 

molecular structure of the alkanolamines.  

 

Figure 2.1 Molecular structure of some alkanolamine 

 

MDEA was introduced by Frazier and Kohl (1950) at Flour Daniel for the acid gases 

removal process from natural gas. Since then, studies about the application of the aqueous 

MDEA solvent as the acid gases absorbent has been intensively growing until nowadays. 
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Selection on the absorption column height, solvent circulation rate and solvent strength 

are required to get an optimum acid gases removal (Jou et al, 1982). Design and analysis 

of this absorption configuration require information about the equilibrium solubility of 

the gases in the solvents, the heat of absorption, and the equilibrium model. In the next 

section, the review of the studies will be highlighted.  

 

2.2 Solubility of Acid Gases in Aqueous MDEA Solution 

 

Several experiments have been conducted to study the solubility of the gases in the 

aqueous MDEA solution. Table 2.1 gives the literature review of the study. Data on acid 

gases solubility on aqueous MDEA solutions are in the form of partial pressure on the 

variation of gas loading (moles acid gas per moles of amine). The hydrocarbon solubility 

and mixture of hydrocarbon and acid gas solubility were also explored in the recent 

studies (Jou and Mather, 2006; Addicks and Owren, 2002). Figure 2.2 show the collection 

of experimental data on CO2 solubility in MDEA solvent available on the literatures at 

various concentrations of solvent and temperatures. Figure 2.3 show the literature data on 

H2S solubility in MDEA solvent while Figure 2.4 shows the CH4 solubility data. The 

graphs were reploted based on data 

 

Jou and Mather (1982) published the first equilibrium solubility data of CO2 and H2S in 

the aqueous MDEA solution. Approximately 285 solubility data were given by the 

authors. In general, the solubility of the CO2 and H2S decreases with increasing 

temperature and increasing solvent strength. Chakma and Meisen (1987) published 

solubility data of CO2 at higher temperature compared to the prior data. The solubility 

data of CO2 at 4.28 M MDEA was slightly lower than that of the previous data. The 

experimental data produced by Autsgen and Rochelle (1989) for CO2 solubility at 2 M 

MDEA was in good agreement with measurement made by Jou and Mather (1982). 

Whilst at the 4.28 M, slightly higher results were obtained by Autsgen and Rochelle 

(1989).  

 

The experimental results obtained by Shen and Li (1992), Li and Shen (1993) and 

Dawodu and Meisen (1993) becomes additional data for the prior data. Relatively small 

data for CO2 solubility were produced by Dawodu and Meisen (1994) and these data were 
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compared with the first two studies. Large deviations were observed at low loading 

compare to the high loading. The relatively similar conditions were applied by Jou et al 

(1994) and Xu et al (2002) to obtain the CO2 solubility. The data were compared with the 

Shen and Li (1992) data. The lack of data agreement was obtained by Jou et al (1994), 

meanwhile a good agreement data was obtained by Xu et al (2002).  

 

Table 2.1 Data of gases solubility in aqueous MDEA solutions 

References 
MDEA concentration 

mole/L (wt%) 

Temperature 

o
C 

Gas 

Jou et al (1982) 1.0, 2.0, 4.28 25 – 120  CO2, H2S 

Chakma and Meisen (1987) 1.69, 4.28 100 – 200 CO2 

Autsgen and Rochelle (1989) 2.0, 4.28 40 CO2 

Shen and Li (1992) (30) 40 – 100 CO2 

Li and Shen (1993) 2.57 40 – 100 H2S 

Jou et al (1993) (35) 40, 100 Mixtures 

Dawodu and Meisen (1994) 4.28 100, 120 CO2 

Jou et al (1994) (30) 40 – 100 CO2 

Kuranov et al (1996) 2 molal, 4 molal  40 – 140 CO2, H2S 

Jou et al (1998) 3.0 25-130 CH4 

Haji-Sulaiman et al (1998) 2, 4 30 – 50  CO2 

Kamps et al (2001) 4 molal, 8 molal 40 – 120  CO2, H2S 

Xu et al (2002) (30) 40, 60 CO2, H2S 

Addicks and Owren (2002) 
2.633 molal, (30), 

(50) 
25, 40, 80 

CO2 

CO2+CH4 

Jenab et al (2005) 2 25 – 70 CO2 

Mamun et al (2005) (50) 55 – 85  CO2 

Jou and Mather (2006) 8.6  25-130 CH4 

 

Additional data were reported by Kuranov et al (1996), Jou et al (1998), Haji-Sulaiman 

(1998), and Mamun et al (2005). They applied different solution strength to get the data. 

The next set of data was published by Kamps et al (2001) for the CO2 and H2S solubility. 

The data have small deviation with those one reported by Kuranov et al (1996). Jenab et 

al (2005) produced few data on CO2 solubility and compare with that by Jou et al (1982). 

A good agreement data were produced with relatively small deviation. 
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Figure 2.2 Literature data on CO2 partial pressure for system CO2-MDEA-H2O 
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Figure 2.3 Literature data on H2S partial pressure for system H2S-MDEA-H2O 
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Figure 2.4 Literature data on CH4 partial pressure for system CH4-MDEA-H2O  

[Data taken from Jou etal (1998)] 

  

From all the experiments conducted by previous researchers, most of them measured the 

solubility of the gases at relatively high partial pressure. Only small data are available for 

CO2 and H2S solubilities at very low partial pressure (lower than 0.01 kPa) which were 

pervormed by Jou et al (1982). The solubility measurements at very low loading or very 

low partial pressure are important to be done since the real acid gases absorption process 

desire a very low acid gases partial pressure in the gas product. The overall solvent 

strength used in the experiments have been represent the ussuall values utilized in the real 

acid gases absorption process using MDEA solvent.     

 

2.3 Heat of Absorption of Acid Gases in MDEA Solvent 

 

The absorption of acid gases into the aqueous MDEA solvent produce some heat that is 

called heat of absorption. Several studies on the heat of absorption of the acid gases in the 

aqueous MDEA solution have been conducted. Table 2.2 gives the literature review of the 

study. The published heat of absorption data are divided into the experimental data and 

the calculated data.  
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The heat of absorption values depend strongly on the acid gas loading at the solution. The 

values are only less affected by the solution strength, while the gas pressure has virtually 

no effect on the values (Oscarson et al, 1990). Jou et al (1982) reported that their average 

value on the calculated heat of absorption for CO2 is 60.0 kJ/mole CO2, while for H2S is 

41.2 kJ/mole H2S. The calculated heat of absorption of CO2 obtained by Jou et al (1994) 

has an average value of approximately 62 kJ/mole CO2. Kim et al (2009) did not show 

distinctly the calculated heat of absorption values. But, from the figures, their results 

show a good agreement with the published experimental data.  

 

Oscarson et al (1990) determined that within their experimental condition the heat of 

absorption of H2S values ranged from 28 kJ/mole H2S to 56 kJ/mole H2S. The next three 

experiments were performed to produce the heat of absorption of CO2 [Mathonat et al 

(1997), Carson et al (2000), and Arcis et al (2008)]. Mathonat et al (1997) published the 

values ranged from 49 kJ/mole CO2 to 58 kJ/mole CO2 for the heat of absorption at 

infinite dilution of CO2. Carson et al (2000) have the experimental data values ranged 

from 48.4 kJ/mole CO2 to 50.6 kJ/mole CO2 for the heat of absorption of CO2 at room 

temperature. Arcis et al (2008) experimental data on heat of absorption of CO2 have a 

good agreement with Mathonat et al (1997) data. Their heat of absorption at infinite 

dilution values range from 49.6 kJ/mole CO2 to 59.2 kJ/mole CO2. 

 

Table 2.2 Data of heat of absorption of acid gases in aqueous MDEA solutions 

References 
MDEA concentration 

mole/L (wt%) 

Temperature 

o
C 

Gas 

Jou et al (1982) 
b

 1.0, 2.0, 4.28 25 – 120  CO2, H2S 

Oscarson et al (1990) 
a
 1.7, 3, 4.3 299.8 – 399.8 K H2S 

Jou et al (1994) 
b
 2.56 40 – 100 CO2 

Mathonat et al (1997) 
a 

2.56 40 – 120  CO2 

Carson et al (2000) 
a
 (10 – 30) 25 CO2 

Arcis et al (2008) 
a 

15 and 30 322.5 K CO2 

Kim et al (2009) 
b 

30 40 – 120 CO2 

a
 Experiment 

b
 Calculation 
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Figure 2.5 Literature data on heat of absorption of CO2 and H2S in MDEA solvent 

 

From the Table 2.2, it can be seen that quite a few number of experiments have been done 

on measuring the heat of absorption for CO2 absorption in MDEA solvent. Only small 

data have been given for H2S absorption in MDEA solvent. The amine concentration and 

temperature range used in the experiment are wide. Figure 2.5 shows distinctly that heat 

of absorption of CO2 is higher than that of H2S. 

   

2.4 Reviews on Equilibrium Models 

 

Studies on the acid gases absorption using alkanolamine solvents were not only 

performed on the experimental investigation, bur also on the mathematical modeling that 

can represent the real process. The modeling study comprises of the vapor liquid model 

and the absorption column model. Studies on the vapor-liquid equilibrium model for acid 

gases-alkanolamine system have been done for decades. These include the model to 

account for the non-idealities of the liquid and the vapor phase. The non-ideality of the 

gas phase was accounted through the use of fugacity coefficient, while the liquid phase 

was accounted for using activity coefficient.  
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2.4.1 Kent Eisenberg Model 

 

The first widely used model for simulating acid gases-alkanolamine treatment is the Kent 

and Eisenberg (1976) model. A simple model used to describe CO2-H2S-H2O-

alkanolamine system consists of a set of reactions and their respective equilibrium 

constants. The values of the activity coefficients and fugacity coefficients are assumed to 

be unity. Henry’s law relationship is used to calculate the equilibrium partial pressure. 

The component balances are incorporated to compute the liquid phase composition. The 

following reactions take place when the CO2 and H2S dissolve into alkanolamine 

solution: 

2' 'RR NH H RR NH
+ +↔ +      (2.1) 

2 3' 'RR NCOO H O RR NH HCO
− −+ ↔ +    (2.2) 

2 2 3H O CO H HCO
+ −+ ↔ +      (2.3) 

2H O H OH
+ −↔ +       (2.4) 

2

3 3HCO H CO
− + −↔ +       (2.5) 

2H S H HS
+ −↔ +       (2.6) 

2
HS H S

− + −↔ +       (2.7) 

The pseudo-equilibrium constant for the reactions are described below: 

1 2[ ][ ' ] [ ' ]K H RR NH RR NH
+ +=     (2.8) 

2 3[ ][ ' ] [ ' ]K HCO RR NH RR NCOO
− −=    (2.9) 

3 3 2[ ][ ] [ ]K H HCO CO
+ −=      (2.10) 

4 [ ][ ]K H OH
+ −=       (2.11) 

2

5 3 3[ ][ ] [ ]K H CO HCO
+ − −=      (2.12) 

6 2[ ][ ] [ ]K H HS H S
+ −=      (2.13) 

2

7 [ ] [ ] [ ]K H S HS
+ − −= +      (2.14) 

 

The equilibrium partial pressures are defined by: 

2 2 2[ ]CO COP H CO=      (2.15) 

2 2 2[ ]H S H SP H H S=      (2.16) 
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The charge balance and components balances equations are stated as: 

2 2

2 3 3' ' 2RR NH H OH RR NCOO HCO CO HS S+ + − − − − − −               + = + + + + +                (2.17) 

[ ] 2
' ' 'M RR NH RR NH RR NCOO

+ −   = + +       (2.18) 

[ ]
2

2

2H S
M H S HS Sα − −   = + +        (2.19) 

[ ]
2

2

2 3 3CO
M CO HCO COα − −   = + +       (2.20) 

 

where M is amine concentration and α is the acid gas loading. Kent and Eisenberg (1976) 

simplify and manipulate the eq. (2.08) to (2.20) to calculate the partial pressure of acid 

gases of the system. The simplification results in; 

2

2

2

3 5

7 2 51

CO

CO

H B H K K
P

H K M H CK K

+

+ +

  =
   + +   

   (2.21) 

2

2

2

6 7

71

H S

H S

H A H K K
P

H K

+

+

  =
 +  

     (2.22) 

( )( )
( ) ( )

( )( )
( )

7 7
4

1 1

2 5 2 5 2

1

1

1 1

1
         

1

A K K H
K

H
M CK H M CK

B K K K K K H M H C

M CK

+

+
+

+ +

 + +    = +  +   + 

   + + +   
+

+

  (2.23) 

where 

2 2 2H S H S H SA M P Hα= −      (2.24) 

2 2 2CO CO COB M P Hα= −      (2.25) 

( )
2 21 3 21 CO COC H K P K K H H

+ +   = + +       (2.26) 

 

The equilibrium reaction constants are the function of temperature where the first two 

constants were forced fit to the experimental data of CO2/H2S -H2O-MEA/DEA. The 

fitted parameters were tested to mixed system and the results were found to be 

satisfactory. This model succeeds in predicting the correct partial pressure, but failed to 

predict the concentration of the ionic species The model also failed to predict the partial 

pressure when the acid gas loading were either very low or very high (Posey, 1996). 
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2.4.2 Deshmukh-Mather Model 

 

Deshmukh and Mather (1979) used the same set of reactions as Kent and Eisenberg did. 

The component balances were also applied. They calculate the values of fugacity 

coefficient and activity coefficient of the model. The Peng-Robinson equation of state 

was used to calculate the fugacity coefficients value. The activity coefficients were 

determined using Guggenheim’s equation which extends the Debye-Huckel expression. 

( )
( )

2 0.5

0.5
ln 2

1

k
k kj j

k

A z
m

b

µ
γ β

µ

−
= +

+
∑      (2.27) 

The first term expresses the Debye-Huckel law and represents the electrostatic forces. 

The second term takes into account the short range of van der Waals forces. Water 

activity coefficient was assumed to be unity. However, the real value can be very 

different. The interaction parameter βkj were determined by fitting the model to the 

experimental data of H2S/CO2-MEA-H2O systems. The fitted interaction parameters were 

only been served for single gas-amine system and not for the mixed gas. Nevertheless, the 

values were used to predict the mixed acid gases equilibrium.  

 

The equilibrium reactions constants and components balances were solved to calculate 

the liquid phase composition. Brown’s method which is similar to Gaussian elimination 

was used to solve the problem. The model is valid up to an ionic strength of 5 molal. 

Deshmukh and Mather (1979) model was very popular and widely used in industrial 

application.  

 

2.4.3 Electrolyte NRTL Model 

 

Autsgen (1989) used the electrolyte-NRTL (Nonrandom Two-Liquid) equation to account 

for the liquid phase activity coefficients and Soave-Redlich-Kwong equation of state to 

account for the vapor phase fugacity coefficients. These two equations were incorporated 

to the Kent-Eisenberg set of reaction equilibrium and component balances to account for 

the non-ideality of the gas phase and electrolyte liquid phase. In the absence of acid gases 

from the system, the Electrolyte NRTL reduces to the NRTL.  
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Autsgen (1989), calculated and fitted the parameters from the available data on acid gases 

VLE in MDEA, MEA, DEA, and DGA. He applied the model and parameter to his 

experimental data for CO2 and H2S in 2 M MDEA solvent and also mixture of MDEA-

DEA and MDEA-MEA each at 2 molar at 40
o
C and 80

o
C. The binary parameter was 

fitted to the binary system (amine-water) and ternary parameter to the ternary and 

quaternary systems (CO2-amine-water, H2S-amine-water, and CO2-H2S-amine-water).  

 

Because of the lack of confidence in the MDEA-H2O binary parameters, Autsgen (1989) 

set them to zero. This means his MDEA-acid gas model asymptote to ideal solution as the 

gas concentrations approach zero. The model is also insensitive at acid gas loadings 

below approximately 0.01.  

 

Posey (1996) used the same model as Autsgen (1989) did, electrolyte-NRTL and RKS 

equation of state to study the system of acid gases in MDEA, DEA, and mixed amine. 

The main difference between the two works is that Posey (1996) utilized the freezing 

point data, heat of mixing data, pH data, conductivity data and VLE data as Autsgen 

(1989) used the VLE data only. The values of the interaction parameters are different. 

Posey (1996) improved the parameter that was set to zero by Autsgen (1989). The 

improvements also exist at low acid gas loadings. Posey (1996) found that accurate low 

loading prediction cannot be based upon VLE data alone. The additional pH and 

conductivity data are also required for the low loading prediction.  

 

2.4.4 ElecGC Model 

 

Lee (1996) combined the Mean Spherical Approximation (MSA), Hard Sphere (HS) and 

Born models to calculate the ionic activity coefficient while the neutral polar charge 

components were treated using UNIFAC group contribution (GC) of Wu-Sandler (1991). 

The Gibbs-Duhem integration for the activity coefficient was applied to account for the 

presence of the charged species to the neutral components. The MSA and HS take into 

account of the long range and the short range interaction effect, while the Born model 

converts the water solvent to aqueous alkanolamine solvent condition. The combination 

of this ionic and neutral charge activity coefficient models are called ElecGC model. The 

activity for the neutral and ion components are defined by: 
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ln ln ln

ln ln ln

UNIFAC GD
i i i

MSA Born
j j j

γ γ γ

γ γ γ

= +

= +
    (2.28) 

 

The non-ideality in the gas phase was accounted using Peng-Robinson equation of state. 

Lee (1996) successfully calculates the solubility of H2S and CO2 in the MEA, DEA, 

MDEA, and their blends covering wide range of conditions.  

 

2.4.5 Electrolyte-UNIQUAC Model 

 

Kaewschian et al (2001) used a similar approach based upon the electrolyte-UNIQUAC 

model to predict the activity. This resulted in a simplification of the activity coefficient 

expressions compared to electrolyte-NRTL model, and required fewer interaction 

parameters. The fugacity coefficient was determined using Soave-Redlich-Kwong 

equation of state. Predicted H2S and CO2 vapor pressures were in a good agreement with 

the reported experimental data for aqueous solutions of a single acid gas as well as 

mixtures of H2S and CO2 in MEA and MDEA and their mixtures. 

 

2.4.6 Electrolyte Equation of State Model 

 

A few authors have modeled the VLE of acid gases-alkanolamine-water using an 

equation of state for the liquid phase. Button and Gubbins (1999) used the Statistical 

Association Fluid Theory (SAFT) equation of state to model the vapor-liquid equilibrium 

of CO2 in aqueous MEA and DEA. The equation is expressed as the sum of 

repulsion/dispersion, chain formation, and association to the free energy. It does not 

require the knowledge of chemical reactions and the equilibrium constant. They obtained 

results that agree with experimental value of vapor liquid equilibrium for the binary 

system of CO2 water or ternary system of CO2 aqueous alkanolamines.  

 

Chunxi and Fürst (2000) applied electrolyte equation of state to the vapor liquid 

equilibrium of CO2 and H2S in aqueous solution of MDEA. The model, the molar 

Helmholtz energy is expressed by four terms. The first two terms are based on Redlich-

Kwong-Soave equation of state. The third term takes into account interaction between 
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ions and molecules or between cations and anions. This contribution is considered as 

solvation interaction.  The last term express the long range electrostatic interaction 

contribution that is represented with a simplified MSA model. Chunxi and Fürst (2000) 

approach, succeeds in representing the various data over a large range of experimental 

conditions.  

 

Solbraa (2002) evaluated the CO2 solubility in aqueous MDEA solution. Solbraa 

developed two electrolyte equation of state to model the thermodynamic properties of the 

fluid systems. The first equation is electrolyte SRK equation of state with additional MSA 

and Born term. The model was able to correlate and predict equilibrium properties of 

CO2-MDEA-water solution with good precision and also able to correlate the high 

pressure data system of methane-CO2-MDEA-water. The second model was electrolyte 

CPA (cubic-plus-association) Equation of State which has the capability to treat higher 

pressures.  

 

2.4.7 Other Models 

 

Li and Mather (1994) applied the new Pitzer equation to predict the solubility of CO2 in 

MDEA, MEA, and mixture of MDEA-MEA solution. Li-Mather used the same case 

condition as Autsgen (1989) did. The model is not reliable for the high loading acid gas 

because it does not consider the free CO2 species. The model neglects the gas phase non-

ideality and thus only suitable for the low pressure system.  

 

Poplsteinova (2004) combined the group contribution UNIFAC approach by Lee (1996) 

and extended Debye-Huckel expression by Deshmukh and Mather (1979) to calculate the 

activity coefficients. The fugacity coefficients were treated by Peng-Robinson Equation 

of State. Polpsteinova (2004) applied the model to CO2-MEA/MDEA-H2O system. This 

model is applicable for a wide range of loadings and temperatures. 
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Table 2.3 Comparison on vapor liquid equilibrium model 

VLE model Application  

Author Activity 

coefficient 

Fugacity 

coefficient 

Advantages Disadvantages 

Kent & Eisenberg  

(1976) 

- - • Accurate at loading greater than 0.1 • Can not calculate ionic speciation 

• Inaccurate for very low loading  

Deshmukh & 

Mather 1979) 

Guggenheim’s 

equation 

- • Valid for ionic strength up to 5 molal 

• Widely used in industrial application 

• Neglect mixed acid gas parameter 

Autsgen (1989) electrolyte-NRTL SRK • Binary and ternary parameter were 

fitted to binary and ternary data 

• Inaccurate for loading under 0.01 

• MDEA-H2O parameter setted to 0 

Posey (1996) electrolyte-NRTL SRK • Improved parameter from previous 

• Accurate for low loading prediction 

 

Lee (1996) ElecGc 

(UNIFAC+MSA) 

PR • Accurate calculate binary, ternary and 

quaternary system 

 

Kaewschian (2001) Electrolyte UNIQUAC SRK • Good prediction of single and mixed gas  

Chunxi & Fürst  

(2000)  

Electrolyte EoS • Succeed presenting data on large range 

experimental condition 

 

Solbraa (2002) Electrolyte EoS • Good precision on CO2-MDEA-H2O  

Poplsteinova 

 (2004) 

UNIFAC+extended 

Debye Huckle 

PR • Applicable for wide range loading and 

temperature 
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2.4.8 Model Selection 

 

Table 2.3 summarized the comparison on the vapor-liquid equilibrium model. In this 

study, the ElecGC model by Lee (1996) is chosen. The parameter from the UNIFAC 

group contribution which has reliable results for predicting vapor-liquid equilibrium for a 

wide variety of components was used. The UNIFAC model has been successfully used 

worldwide for synthesis and design of separation processes (Gmehling, 1995).  

 

The development of ElecGC model on equilibrium model has been extensive. The model 

can accurately calculate binary, ternary, and quaternary system’s VLE by using 

parameters which are consistent. ElecGC can also predict the VLE of mixed gases (acid 

gases, hydrocarbon-acid gases) in amine system. Therefore, the ElecGC model is quite 

sufficient to be adopted for simulation of acid gases absorption from methane. 

 

2.5 Modeling and Simulation of Acid Gases Absorption Using Alkanolamine 

 

There are two approaches reported in the literature, used to model the absorption column. 

The first is equilibrium model (EQ) which was introduced by Vaz (1980) and Loh (1987). 

The second is non-equilibrium model (NEQ) which was introduced by 

Tontiwachmuthikul (1990), Rinker (1997), and Baghli (2001). The later is more rigorous 

than the former. Due to the complexity of the non-equilibrium model, many researchers 

preferred to use equilibrium model for their study. The differences between the two 

approaches will be explained in this section.  

 

2.5.1 Equilibrium modeling 

 

The equilibrium (EQ) stage model assumes that the vapor and liquid phases are in 

thermodynamic equilibrium. In every single equilibrium stage of absorption column, the 

gases and liquid phases entering and leaving are described using MESH equations (Mass 

balance, Equilibrium relation, Summation of mole fraction, and Heat balance). The 

reaction equations are integrated to the equilibrium relation, to describe the reaction 
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phenomenon taking place at liquid phase at each stage. The overall separation process 

consists of several equilibrium stages.  

 

Figure 2.2 shows the schematic diagram of equilibrium model. The gas stream from the 

bottom stage is counter currently contact with the liquid stream from the above stage. The 

equilibrium exists between the gas and liquid phases leave the stage. The major process 

variables to be considered in the equilibrium stage calculation are amine circulation rate, 

column temperature, and number of trays (Vaz, 1980). The column hardware design such 

as column diameter and absorber height cannot be determined using this model. 

 

Stage n

Tg,out, Vout, yi,out

Tg,in, Vin, yi,in

Tl,in, Lin, xi,in

Tl,out, Lout, xi,out 

Figure 2.6 Schematic diagram of equilibrium model 

 

2.5.2 Rate-Base Approach (Non-Equilibrium modeling) 

 

The non-equilibrium set of equations (NEQ) are not as simple as equilibrium equations. 

The NEQ analyze the mass and heat transfer occurring on an actual tray by considering 

separate mass and energy balance for each phase. The rate equation across the interface 

that connects the balances, are calculated using film theory. Physical equilibrium is 

assumed to exist at the gas liquid interface and the chemical equilibrium is assumed to be 

at the bulk liquid solution (Al-Baghli et al, 2001). Figure 2.3 shows the schematic 

diagram of the film model as applied to a tray in an absorption column.  

 

The column hardware design such as column diameter, tray configuration (sieve plates, 

valve plates, or bubble-cap plates), and size will have a significant influence on the 

interphase heat and mass transfer rates which are not taken into account in the EQ stage 

model. In addition, physical properties such as surface tension, diffusion coefficients, 



 25 

viscosities, and others for calculation of mass and heat transfer coefficients and interfacial 

areas are required. These parameters are hardly available in open literature and restricted 

the approach from being used widely. 

 

Ci,bulk

Ci,int

Pi,int

Pi,bulk

Bulk 

Gas

Bulk 

Liquid

Liquid 

film

Gas film

Ck,bulk

Ni,z

Ci,(z)

Vout

yout

Tg,out

Vin

yin

Tg,in

Lout

xout

Tl,out

Lin

xin

Tl,in

dg dl

Ck,(z)

z = 0
Gas-liquid 

interface

 

Figure 2.7 Schematic diagram of the film model as applied to a tray absorption column. 

 

2.5.3 Simulation Model Adopted 

 

In this study, the equilibrium model was adopted to the simulation of equilibrium stages 

of acid gas absorption column using aqueous MDEA solution. By using of the 

equilibrium model, the process design variables that can be observed are amine 

circulation rate, column temperature profile, and number of trays. The gas and the liquid 

composition can also be determined.   

 

The equilibrium model is more simple compare to non-equilibrium model which requires 

much information that is hardly available. Altough numbers of study have been 

performed on the non-equilibrium model of an absorption column, but really few attempts 

concentrated on the acid gases absorption using MDEA solvent.   
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3 CHAPTER 3 

MODELING OF THE ACID GASES ABSORPTION 

SYSTEM 

 

 

In Chapter 1, it has been explained that vapor-liquid equilibrium exists on each stage of 

the absorption column. Meanwhile, the reactions take place between the dissolved acid 

gases and the solvent components. In this Chapter, the mathematical models on the vapor 

liquid equilibrium will be described together with the reaction equilibrium accompanied. 

Furthermore, the mathematical model on the equilibrium stage of acid gas absorption 

column will be explained.  

 

3.1 Equilibrium Model of Acid Gases-MDEA Solvent 

 

The ElecGC model as the selected model is applied in this study and the detail of the 

model will be explained briefly in this chapter. Previously, the explanation on the 

chemical reaction equilibrium and its connection with the vapor liquid equilibrium will be 

described in section. 

  

3.1.1 Chemical Reaction Equilibrium 

 

In every stage of absorption column, reactions take place in the liquid phase between the 

acid gas molecules, the MDEA molecules and the water molecules. At the steady state 

condition, the compositions of the components are related by the reaction equilibrium and 

the component balance. The reaction equilibrium constants are defined in the form of 

mole fractions of components. The non-ideality of the system is addressed using the 

activity coefficients.  

 

The reactions involved in the acid gases absorption into aqueous MDEA solution are 

described below. 
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Dissociation of water:  

2 32H O H O OH
+ −↔ +      (3.1a) 

3 3

2

2 2

2 2

H O OH H O OH

H O

H O H O

x x
K

x

γ γ

γ

+ − + −
∗ ∗

=      (3.1b) 

Protonation of MDEA 

2 3MDEAH H O MDEA H O
+ ++ ↔ +     (3.2a) 

3 3

2 2

MDEA MDEAH O H O

MDEA

H O H OMDEAH MDEAH

x x
K

x x

γ γ

γ γ

+ +

+ +

∗

∗
=     (3.2b) 

Dissociation of Carbon dioxide 

2 2 3 32CO H O HCO H O
− ++ ↔ +     (3.3a) 

3 3 3 3

2

2 2 2 2

2 2

HCO H O HCO H O

CO

CO H O CO H O

x x
K

x x

γ γ

γ γ

− + − +
∗ ∗

∗
=         (3.3b) 

2

3 2 3 3HCO H O CO H O
− − ++ ↔ +     (3.4a) 

2 2
3 3 3 3

3

2 23 3

CO H O CO H O

HCO
H O H OHCO HCO

x x
K

x x

γ γ

γ γ

− + − +

−

− −

∗ ∗

∗
=     (3.4b) 

Dissociation of Hydrogen Sulfide 

 2 2 3H S H O H O HS
+ −+ ↔ +      (3.5a) 

3 3

2

2 2 2 2

HS H O HS H O

H S

H S H O H S H O

x x
K

x x

γ γ

γ γ

− + − +
∗ ∗

∗
=      (3.5b) 

 2

2 3HS H O S H O
− − ++ ↔ +      (3.6a) 

2 2
3 3

2 2

S H O S H O

HS
H O H OHS HS

x x
K

x x

γ γ

γ γ

− + − +

−

− −

∗ ∗

∗
=      (3.6b) 

 

The reaction equilibrium constants are calculated using eq. (3.7). The parameters used for 

all components are given in Table 3.1.  

 iln ln
reaction i i i i

K A B T C T DT= + + +    (3.7) 

 

The acid gases reactions with aqueous alkanolamine solution produce some ions. The 

amount of the ions produced is determined using reaction equilibrium, the liquid 
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component balance and the charge balance. The material balances of each component and 

the charge balance for the system can be presented as: 

[ ] [ ]
total

MDEA MDEA MDEAH
+ = +        (3.8) 

[ ] [ ] [ ]
2

2

2 2H Stotal total
H S MDEA H S HS Sα − −   = = + +       (3.9) 

[ ] [ ] [ ]
2

2

2 2 3 3COtotal total
CO MDEA CO HCO COα − −   = = + +      (3.10) 

2 2

3 3 3
2MDEAH H O OH HCO CO HS S

+ + − − − − −             + = + + + +               (3.11) 

 

For a system that contains only one component of acid gas in the gas phase (CO2 or H2S), 

the other acid gas component attributes can be removed. For example if only CO2 acted as 

the acid gas, the dissociation of hydrogen sulfide, the H2S component balance and the HS
-
 

and S
2-

 ions in the charge balance are neglected.  

 

Furthermore, phase equilibrium occurs for the neutral components in the liquid and the 

gas phases. The determination of the phase equilibrium model is given in the section 3.1.3. 

The composition of the component in the liquid phase has to be solved in order to make 

the vapor liquid equilibrium determination complete.    

 

Table 3.1 Equilibrium reaction constant parameters 

Reaction A B C Sources 

2H Oln K  132.899 -13445.9 -22.4773 Austgen (1989) 

2COln K  231.465 -12092.1 -36.7816 Austgen (1989) 

3HCO
ln K −  216.049 -12431.7 -35.4829 Austgen (1989) 

2H Sln K  214.582 -12995.4 -33.5471 Edwards et al (1978) 

HS
ln K −  -32 -3338 0 Austgen (1989) 

MDEAln K  -46.086 -4756.9 6.4268 Posey (1996) 

 

3.1.2 Astarita Representation of Chemical Equilibrium 

 

The reaction equilibrium constants, the component balance and charge balance have to be 

solved simultaneously in order to calculate the liquid phase composition. The set of eq. 
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(3.1) to (3.11) are highly non-linear and can be solved using Newton method. Such 

method needs very good initial guesses that are really close to the solution values in order 

to get the solution. Hoff (2003) used the Astarita representation to solve the non-linear 

equations in calculating the equilibrium composition for CO2 absorption using MEA and 

MDEA solvent. In this study, the Astarita representation was not only applied to the CO2-

MDEA-water system, but also for H2S-MDEA-water system, as well as CO2-H2S-

MDEA-water system.  

 

3.1.2.1 Astarita Representation for System of Acid Gas/MDEA/Water (for Only 

One Volatile Component CO2 or H2S) 

 

If only one volatile component exist (eg: CO2), combination of the reactions (3.2) and 

(3.3) produces: 

2 2 3CO MDEA H O MDEAH HCO
+ −+ + ↔ +    (3.12) 

[ ][ ][ ]
2

3

1

2 2

CO

abs

MDEA

MDEAH HCOK
K

K MDEA CO H O

+ −      = =    (3.13) 

 

One other equilibrium is required to describe how the chemically combined CO2 

distributed between two different forms of bicarbonate and carbonate. Combination of the 

eq. (3.2) and (3.4) yields the bicarbonate/carbonate equilibrium  

2

3 3MDEA HCO MDEAH CO
− + −+ ↔ +    (3.14) 

[ ]
3

2

3

1

3

HCO

C

MDEA

K MDEAH CO
K

K MDEA HCO

−
+ −

−

      = =
  

    (3.15) 

To simplify the derivation, the chemical species are now renamed as follows: 

A = CO2 B4 = CO3
2-

 

B1 = MDEA C1 = H2O 

B2 = MDEAH
+
 C2 = H3O

+
 

B3 = HCO3
-
 C3 = OH

-
 

 

Two important concepts are introduced: the molarity (mol/l) of the chemical solvent and 

the degree of saturation (ϒ). The molarity m is the total equivalent concentration of the 

species in the liquid phase that may react equimolarly with A, or the concentration of the 
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amine. The degree of saturation ϒ is defined as follow: ϒm is the total concentration of 

chemically combined A in the liquid phase. ϒm is not the total of A in the liquid phase 

because some of A will be physically absorbed, with concentration [A]. Value of ϒ  is 

varies from 0.57 for loading around 1.2 to value very near to 1 for loading 0.001. The 

total component of A or loading A is, therefore, 

[ ]= +m A mϒ ϒ      (3.16) 

The MDEA and CO2 balance in the liquid can be formulated as: 

[ ] [ ]1 2
m B B= +      (3.17) 

[ ] [ ]= − = +
3 4

m m [ A] B Bϒ ϒ     (3.18) 

To choose the initial concentration, all chemically combined CO2 is assuming the form of 

bicarbonate. Therefore, the values of [Bj]
0
 are: 

[ ] ( )

[ ]
[ ]
[ ]
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=

=

=

0

1

0

2

0

3

0

4

B  m 1-

B  m
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B  0

ϒ

ϒ

ϒ      (3.19) 

Reaction (3.14) is preceded to the right until equilibrium is reached. This has the 

advantage that the equilibrium value for the extent of reaction ξ1 will be positive. From eq. 

(3.14) components concentration at equilibrium are: 

[ ] ( )
[ ]
[ ]
[ ]

= −

= +

= −

=

1 1

2 1

3 1

4 1

B  m 1-

B  m

B  m

B  

ϒ ξ

ϒ ξ

ϒ ξ

ξ

     (3.20) 

Substituting the value of [Bj] to the eq. (3.15) yields: 

[ ]
[ ][ ]
[ ][ ]

( )
( ) ( )

+ −

−

      = =
  

+
=

− − −  

2

3 2 4

C1

1 33

1 1

1 1

MDEAH CO B B
K

B BMDEA HCO

m
     

m 1 m

ϒ ξ ξ

ϒ ξ ϒ ξ

   (3.21) 

The solution of ξ1 is given as roots of second order polynomial. The true solution must 

satisfy the following constrains in order for all the [Bj] to be non-negative: 



 31 

 

( )

≥

≤

≤ −

1

1

1

0

m

m 1

ξ

ξ ϒ

ξ ϒ
      (3.22) 

The solution for ξ1 which follows the above constrains is 

( )

2 2 2 2 2 2

C1 C1 C1 C1 C1 C1

1

C1

K m m m K 6 K 4K 4K 4K

2 K 1
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+ − + + − + −
=

−
 (3.23)  

From the mole balance and charge balance, the concentration of A, C1, C2, and C3 can be 

calculated as follow.  
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 [ ] [ ][ ]
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B B
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B C K
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For the case where only H2S is absorbed, the following relations are taken: 

2H S MDEA MDEAH HS
+ −+ ↔ +     (3.28) 
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    (3.31) 

The chemical species are now renamed as follows: 

D = H2S 

E1 = MDEA 

E2 = DEAH
+
 

E3 = HS
-
 

E4 = S
2-

 

F1 = H2O 

F2 = H3O
+
 

F3 = OH 
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Applying the similar procedure with the CO2, the solution for extent of the reaction is 

given below  

( )

2 2 2 2 2 2

2 2 2 2 2 2

2

2

' 6 ' ' 4 ' 4 ' 4 '

2 1

C C C C C C

C
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−
 (3.32) 

The concentration of D, F1, F2, and F3 can be calculated as follow:  
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3.1.2.2 Astarita Representation for System of Acid Gases/MDEA/Water (for Two 

Volatile Components CO2 and H2S) 

 

For system of acid gases-MDEA solvent mixture, a similar procedure is applied. Since 

the second dissociation of H2S is very slow, the component S
2-

 will not be added into the 

calculation and the eq. (3.6) is neglected. The chemical species are renamed as  

A1 = CO2 

A2 = H2S 

B1 = MDEA 

B2 = MDEAH
+
 

B3 = HCO3
-
 

B4 = CO3
2-

 

B5 = HS
- 

C1 = H2O 

C2 = H3O
+
 

C3 = OH
-

 

The MDEA, CO2, and H2S balance in the liquid can be formulated as: 

[ ] [ ]1 2
m B B= +      (3.37) 

[ ] [ ]3 4
m B Bϒ = +      (3.38) 

[ ]5
'm Bϒ =       (3.39) 
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The values of the initial concentrations are: 

[ ] ( )

[ ] ( )

[ ]
[ ]
[ ]

0

1

0

2

0

3

0

4

0

5

 1- '

 '

 '

 0

 '

B m

B m

B m

B

B m

ϒ ϒ

ϒ ϒ

ϒ

ϒ

= −

= +

=

=

=

     (3.40) 

At equilibrium, the concentrations of the components are given below: 

[ ] ( )
[ ] ( )
[ ]
[ ]
[ ]

1 1

2 1

3 1

4 1

5

 1 - '

 '

 '

 

'

B m

B m

B m

B

B m

ϒ ϒ ξ

ϒ ϒ ξ

ϒ ξ

ξ

ϒ

= − −

= + +

= −

=

=

     (3.41) 

Substituting the value of [Bj] to the eq. (3.15) yields: 

[ ]
[ ][ ]
[ ][ ]

( )
[ ]( )

2

3 2 4

1

1 33

1 1

1 1

'
     

'

C

MDEAH CO B B
K

B BMDEA HCO

m m

m m m m

ϒ ϒ ξ ξ

ϒ ϒ ξ ϒ ξ

+ −

−

      = =
  

+ +
=

− − − −

   (3.42) 

 

The solution for ξ1 is derived below 

( )

2 2 2 2 2

1 1 1 1

2 2

1 1 1 1 1 1

2 2 2 2 2

1 1 1

1

1

6 4 4

' ' 4 2 ' 2 ' 6 '

' 2 ' 2 ' ' 4 '

2 1

C C C C

C C C C C C

C C C

C

K K K K

K m K m m m m K K K K

K K K

K

ϒ ϒ ϒ ϒ

ϒ ϒ ϒ ϒ ϒ ϒ ϒϒ

ϒ ϒ ϒϒ ϒ ϒϒ
ξ

+ + − +

− + + − − − + −

+ − + + +
=

−
  (3.43) 

The concentration of A1, A2, C1, C2, and C3 can be calculated as follows:  

[ ]
[ ] [ ] [ ] [ ] [ ]

[ ]
[ ]

2 5 3 4 2

1

2

1

2 3

1

total

MDEA

H O B B B B
C

B K

B

− − − +
=

 
+  

 

   (3.44) 

[ ] [ ][ ]
[ ]

2 1

2

1

MDEAB C K
C

B
=     (3.45) 

[ ]
[ ]

[ ]
2

2

1

3

2

H OC K
C

C
=      (3.46) 
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[ ] [ ][ ]
[ ][ ]

2 3

1

1 1 1abs

B B
A

B C K
=      (3.47) 

[ ] [ ][ ]
[ ]

2 5

2

1 2abs

B B
A

B K
=      (3.48) 

 

3.1.2.3 Conversion of Equilibrium Constants  

 

The equilibrium reaction constants in Section 3.1.1 are reported in mole fraction scale. 

Since the liquid speciation calculation is performed based on molar concentration, a 

conversion for the equilibrium constant is required especially for the first reaction of CO2 

dissociation. This reaction equilibrium constant is corrected by the molar density of 

water, cw
0
. 

( )2

2

,

0 0

1
exp 231.465 -12092.1 -36.7816ln

CO origin

CO

w w

K
K T T

c c
= =  (3.49) 

 

The other conversion that has to be adjusted is the reaction equilibrium constants. As 

shown by eq. (3.1) to eq. (3.6), the activity coefficients are put together with the value of 

mole fractions in the establishment of the reaction equilibrium constants. For example 

reaction (3.3) 

3 3 3 3

2

2 2 2 2

2 2

HCO H O HCO H O

CO

CO H O CO H O

x x
K

x x

γ γ

γ γ

− + − +
∗ ∗

∗
=     (3.50) 

, ,i i x iK K Kγ=       (3.51) 

 

Hoff (2003) called the Kx,i as the apparent equilibrium constants. These apparent 

equilibrium constants are the ones that are used in Astarita representation to calculate the 

liquid phase composition. So that, the value Kx,i have to be determined by the following 

equation. The activity coefficient values are calculated using the activity coefficient 

model which is described in the Section 3.1.5.  

,
,

i
x i

i

K
K

Kγ
=       (3.52) 
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3.1.3 Vapor Liquid Equilibrium 

 

After the liquid composition has been solved, the vapor liquid equilibrium can be 

determined. In this part, the vapor liquid equilibrium model is given. The basis for the 

formulation of vapor-liquid equilibrium was described using chemical potentials which 

must be the same in both phases.  

V L

i i
µ µ=       (3.53) 

However, the chemical potential term cannot relate distinctly the temperature, pressure, 

liquid phase composition, and gas phase composition. Since the chemical potential has 

some practical and conceptual shortcomings, the term fugacity, f, was introduced.  

V L

i if f=       (3.54) 

 

The non-idealities of the liquid phase involve the two types of component, non-

supercritical component and supercritical component. The components are non-

supercritical if they are liquid at temperature and pressure system. The supercritical 

components are the components which is gas or solid at temperature and pressure system. 

In the case of acid gases treatment, the non-supercritical components are water and 

alkanolamine while the supercritical components are CO2, H2S, and CH4. Different 

approach is used to treat the two types of component. Eq. (3.2) is applied to non-

supercritical components while eq. (3.28) to the supercritical components.  

( )exp
sat

V sat sat sati
i i i i i i i

V
y P x P P P

RT
φ γ φ

 
= − 

 
       (3.55) 

                       ( ),* 0

, exp
i SV sat

i i i i i S i

V
y P x H P P

RT
φ γ

∞ 
= −  

 
              (3.56) 

where φi
V
 is the fugacity coefficient, yi is the fraction of the component in gas phase and P 

is total pressure of gas phase. φi
sat

 is the fugacity coefficient at saturation of each 

component, xi is the mole fraction of the component in the liquid phase, γi is the activity 

coefficient of component i, while Pi
sat

 is saturated pressure at temperature system. Hi,s, 

Vi
sat

 and Vi,S
∞
 are Henry’s law constant at system condition, saturation molar volume of 

component i, and molar volume of component i at infinite dilution, respectively. The 

saturated pressure of water is estimated using the Antoine’s equation below. 
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[ ]
[ ]

3985.44
ln 16.5362

38.9974

sat

w
P kPa

T K
= −

−
   (3.57) 

 

The water molar volume ( sat

w
V ) is taken to be 18.0 cm

3
/mole (Lee, 1996). The partial 

molar volume of gas at infinite dilution in water is calculated using the following 

equation 

 
2

,i S i i i
V a b T c T∞ = + +      (3.58) 

with the coefficient ai, bi, and ci are given in Table 3.2. 

 

Table 3.2 Coefficients for partial molar volume at infinite dilution in water 

Component a b c 

CO2 74.31498 -0.309091 5.7 x 10
-4 

H2S 78.70247 -0.32458 6 x 10
-4 

CH4 80.1504 -0.32459 6.102 x 10
-4 

Source : Brelvi and O’Connell (1972) 

 

3.1.4 Fugacity Coefficient Model 

 

The fugacity coefficient of components in the gas phase is required for calculating the 

deviation of gas fugacity from the ideal gas. This value is important for calculating the 

vapor-liquid equilibrium. In this study, Peng-Robinson equation of state is used to 

calculate the fugacity coefficient of the components in the gas phase. The equation is 

described as follow: 

( ) ( )
RT a

P
v b v v b b v b

= −
− + + −

    (3.59) 

where constants a and b for pure component are given by  

2 2

,

,

,

,

0.45724

0.0778

c i

i

c i

c i

i

c i

R T
a

P

RT
b

P

α
 

=   
 

 
=   

 

     (3.60) 
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Subscript c denotes the critical point and α is the temperature-dependent function which 

takes into account the attractive forces between molecules. The values of α are calculated 

using eq. (3.61). 

( )( )2
1/ 21 1

i r
Tα ϖ= + −      (3.61) 

Tr is the reduced temperature T/TC and ϖ is function of acentric factor ω, which can be 

derived from eq. (3.62). 

20.37464 1.54226 0.26992
i i i

ϖ ω ω= + ⋅ − ⋅    (3.62) 

 

For mixture, the following mixing rules are used 

( )1

i j ij

i j

i i

i

ij ij i j

a y y a

b y b

a k a a

=

=

= −

∑∑

∑       (3.63) 

In the compressibility factor form, the Peng-Robinson equation of state is transform to  

( )2 22

v av
Z

v b RT v vb b
= −

− + −
    (3.64) 

Rearranging the eq. (3.64), a polynomial form of compressibility factor is obtained as 

( ) ( ) ( )3 2 2 2 31 3 2 0Z B Z A B B Z AB B B− − + − − − − − =   (3.65) 

where A and B are defined below  

( ) ( )1/2

1

i j ij

i j

i i

i

ij i j ij

A y y A

B y B

A A A k

=

=

= −

∑∑

∑     (3.66) 

ij
k  are set to 0 

2 2i i

i i

P
A a

R T

P
B b

RT

 =  
 

 =  
 

    (3.67) 

To calculate the fugacity coefficient, the following relations is used: 

( ) ( ) ( )
( )
( )

21 2
ln 1 ln ln

8 1 2

i i

i i i
i

y AZ BB BA
Z Z B

B A BB Z B
φ

  + +
  = − − − − −
  + −
    

∑
   (3.68) 
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Critical properties are required to obtain the parameters above. The MDEA component is 

assumed to be non-volatile and only the acid gases, hydrocarbon and water exist in the 

gas phase. The critical properties of the components involved are given in Table 3.3. 

 

Table 3.3 Critical properties of gas phase components 

Component MW TC [K] PC [bar] ω 

H2O 18.015 647.13 220.55 0.345 

CH4 16.043 190.58 46.04 0.011 

CO2 44.01 304.19 73.82 0.228 

H2S 34.082 373.53 89.63 0.083 

MDEA 119.164 678 38.8 1.304 

Source: Yaws, Chemical Properties Handbook (1999) 

 

3.1.5 Activity Coefficient Model 

 

The prediction of the activity coefficient is important to calculate the vapor liquid 

equilibrium and reaction equilibrium constant. The applications of activity coefficient to 

the vapor liquid equilibrium are shown by eq. (3.55) and (3.56). Activity coefficient is 

required to calculate the composition of the liquid phase from the reaction equilibrium 

constant. In the vapor liquid equilibrium, the activity coefficient is assigned only to 

neutral components (H2O, CO2, H2S, and CH4). Since the reaction also involves the ions, 

the activity coefficient model for electrolyte has to be determined.  

 

There were various models proposed, such as NRTL, UNIQUAC, and UNIFAC. ElecGC 

model by Lee (1996) use the combination of the UNIFAC model and derivation of Gibbs-

Duhem equation applied to calculate the activity coefficient of the neutral components. 

The UNIFAC model is applied to a system where ions do not exist. Since the acid gas 

aqueous alkanolamine systems contain ions which interact with the neutral ones, the 

value of activity coefficient has to be corrected. Lee (1996) used Gibbs-Duhem equation 

to solve this problem. The ions are treated using the mean spherical approximation 

(MSA) theory and Born’s equation to cope with the change of reference state from 
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infinite dilution in water to infinite dilution in aqueous alkanolamine solution. The 

ElecGC model is described as 

ln ln ln

ln ln ln

UNIFAC GD
i i i

MSA Born
j j j

γ γ γ

γ γ γ

= +

= +
    (3.69) 

where i is for all neutral species and j is for all ions. Each of the term is explained further 

in section. 

 

3.1.5.1 Activity Coefficient Normalization 

 

Activity coefficient is used to measure deviation of the liquid phase from ideality. In this 

work, the solvent activity coefficient value approach 1 as the solvent mole fraction 

approaches 1. The solute and ions activity coefficient value approach 1 as its mole 

fraction approaches 0 in solvent. 

Solvents: 1,  as   1
i i

xγ → →      (3.70) 

Solutes, ions: 1,  as   0
i i

xγ ∗ → →  in water   (3.71) 

Since solutes and ions are normalized differently than water, their activity coefficients are 

termed as unsymmetrically normalized. The convention for the activity coefficients of 

solvents is known as symmetrically normalized. The superscript * is an unsymmetric 

convention of activity coefficient.  

 

The unsymmetric activity coefficient is derived from the symmetric activity coefficient 

by division with the symmetric activity coefficient at infinite dilution (Thomsen, 2005): 

* i
i

i

γ
γ

γ ∞
=  where 

0
0

lim
i

j i

i i
x
x

γ γ
≠

∞

→
=

=      (3.72) 

where i

∞γ is the symmetric activity coefficient of i at infinite dilution in the solvent. The 

unsymmetric activity coefficients utilized in the vapor liquid equilibrium and reaction 

equilibrium are derived from the above equation.    
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3.1.5.2 The UNIFAC Model 

 

The UNIFAC is the abbreviation of Universal quasichemical Functional Activity 

Coefficient. The model works based on functional groups that built in a molecule and it is 

called group-contribution method. The UNIFAC method provides a reasonable method 

for predicting the properties of mixtures in the absence of reliable experimental data. For 

a mixture, the intermolecular parameter of the functional groups can be found from the 

other mixtures that have the same functional groups. The UNIFAC model contains two 

sub terms which are expressed below: 

ln ln lnUNIFAC C Rγ γ γ= +     (3.73) 

The subscript C and R stands for combinatorial and residual. The combinatorial part is 

given by the following equation: 

ln ln ln
2

C i i i
i i j j

ji i i

z
q l x l

x x

θ
γ

Φ Φ
= + + −

Φ ∑    (3.74) 

( ) ( )1 ;       10;
2

i i i i

z
l r q r z= − − − =     (3.75) 

  ;           i i i i
i i

j j j j

j j

q x r x

q x r x
θ = Φ =

∑ ∑
    (3.76) 

( ) ( )             i i

i k k i k k

k k

r R q Qν ν= =∑ ∑     (3.77) 

where xi is the mole fraction of component i; θi and Φi are the area fraction and segment 

(similar to volume) fraction. Parameter Ri and Qi are the measures of molecular van der 

Waals volumes and molecular surface areas of component i. νk
(i)

 is the number of k group 

in component i. The residual part of UNIFAC equation is given by: 

( )ln ln lnR i i

k k k

k

vγ  = Γ − Γ ∑     (3.78) 

where Γk is the group residual activity coefficient, and Γi
k is the residual activity 

coefficient of group k. Γk can be expressed as: 

ln 1 ln /k k m mk m km n nm

m m n

q
  

Γ = − Θ Ψ − Θ Ψ Θ Ψ  
  
∑ ∑ ∑   (3.79) 

( )

( )
        and    

j

m j

jm m
m m j

m m n j

m j n

v x
Q X

X
Q X v x

Θ = =
∑

∑ ∑∑
   (3.80) 
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2
exp /mn mn

mn mn

b c
a RT

T T

  Ψ = − + +  
  

    (3.81) 

 

The required parameters for the use of UNIFAC are group volume, Rk, group surface area, 

Qk, and interaction parameters, Ψnm. Lee (1996) applied eq. (3.81) to calculate the 

interaction parameters. The group division of MDEA based on Wu-Sandler’s prescription 

(1991) was used and shown in Figure 3.1. Table 3.4 exhibits the value of group volume 

and group surface area parameter of the UNIFAC equation. The CH4, CO2, H2S, and H2O 

components are stand alone as single group.  

 

 

Figure 3.1 Group division for MDEA for UNIFAC model 

 

 

Table 3.4 Group volume and group surface area parameters for UNIFAC model 

Functional  group Rk Qk 

CO2 1.3000 1.12 

H2S 1.1723 1.070 

CH4 1.2390 1.152 

H2O 0.9200 1.400 

N(CH2)3 2.5353 2.020 

CH2OH 1.2044 1.124 

Sources: Fredenslund et al (1977), Bondi (1968) 

 

3.1.5.3 The MSA Model 

 

As explained in Section 3.1.5, the liquid phase in acid gases absorption using aqueous 

MDEA consists not only of the neutral components, but also ions. The ions that are 
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formed by the acid gases-solvent reactions comprise of MDEAH
+
, HCO3

-
, CO3

2-
, HS

-
, S

2-
, 

H3O
+
, and OH

-
. The ions are treated using the mean spherical approximation (MSA) 

theory. Born’s equation is used to handle the change of reference state from infinite 

dilution in water to infinite dilution in aqueous alkanolamine solution.  

 

The mean spherical approximation (MSA) is a simple analytical theory that is very 

powerful to calculate the thermodynamic properties of electrolytes (Nakhaei, 2004). The 

MSA includes the volume of the ions, the charge, the concentration of the ions, and the 

short range as well as the long range interaction effect, so that it can be used for a wide 

range concentration of the solutions. A hard sphere equation of state (HS-EoS) is put 

together to the model to represent the effect of ions volume. The MSA expression for the 

activity coefficient of electrolyte solution can be presented by the expression below: 

 

ln ln lnMSA ele HS
j j jγ γ γ= +      (3.82) 

where,    

2

2 2

2

2
ln

4 12

j j j n jele

j j n j

j j

z e a z P
a P

kT

σ π
γ α σ

ε σ α σ

 Γ  = − − Γ +     ∆ ∆  
          (3.83) 

2
2 4 e

kT

π
α

ε
=       (3.84) 

31      ξ∆ = −       (3.85) 

1

   0,1, 2,3
6

n
n

n j j

j

n
π

ξ ρ σ
=

= =∑     (3.86) 

1

1

1

N
j j j

n

j j

z
P

ρ σ

σ=

=
Ω + Γ∑      (3.87) 

3

1

1
2 1

j

N
j

j j

ρ σπ
σ=

Ω = +
∆ + Γ∑     (3.88) 

( )

2 2

2

2 1

j j n

j

j

z P

a

π
α σ

σ

  −   ∆  =
Γ + Γ

    (3.89) 

where N = number of species in the solution 

ρi = number density of ion j [m
-3

] 

σj = diameter of ion j [m] 

zj = charge of ion j 
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εj = dielectric constant of solution 

Г = shielding length  

k = Boltzmann’s constant = 1.38045 x 10
-16

 erg/K 

T = temperature in Kelvin 

e = electronic charge = 1.60206 x 10
-19

 coulomb 

 

The shielding length can be obtained from the formula below 

( )
2

2

2 2

1

2
4

1

N
j j n

j

j j

z Pπ σ
α ρ

σ=

 − ∆
Γ =  

+ Γ  
∑     (3.90) 

The term Γ represents the long-range electrostatic interaction while the term Pn represents 

the short-range interaction. An iterative calculation with an initial guess for Г = κ/2, 

where κ is the Debye inverse length, the eq. (3.90) can be solved.  

1/ 2

2

1

N

j j

j

zκ α ρ
=

 
=  

 
∑     (3.91) 

The hard sphere (HS) contribution to the activity coefficient of ionic species is expressed 

as  

3 2 3 2 2 3 3

0 1 2 1 2 2 2

2 3

3 3 3 9 2 3
ln ln

j j j j j jHS

j

σ ξ σ ξ σ ξ σ ξ ξ σ ξ σ ξ
γ

+ + +
= − ∆ + + +

∆ ∆ ∆
 (3.92) 

31
6

j j

j

π
ρ σ∆ = − ∑      (3.93) 

    ; 0,1,2,3
6

n

n j j

j

n
π

ξ ρ σ= =∑    (3.94) 

Number density of ion (ρj) has unit of [m
-3

] and is defined as 

j L jN Cρ =      (3.95) 

NL is the Avogadro number (6.02214178 x 10
23

 mole
-1

) while Cj is ionic concentration in 

mole/m
3
. The values of σj are given in Appendix A. 

 

3.1.5.4 The Born Model 

 

An expression is required to change the activity coefficient from the reference state of 

infinite dilution in water to the infinite dilution in aqueous alkanolamine solution. The 

Born contribution is applied to solve this problem and is expressed as 
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22 1 1
ln

2

jBorn

j

j M W

ze

kT
γ

σ ε ε
 −

= − 
 

     (3.96) 

where εM and εW are the dielectric constants of ion in the aqueous alkanolamine solution 

and in the pure water continued.  

 

Dielectric constant is the value of compound’s ability to stabilize ions. The higher the 

dielectric constants, the more likely the components exist in the form of ions. The 

dielectric constant of MDEA is taken from Austgen (1989) who fitted the equation to his 

experimental results. A mixing rule is required to calculate the value for mixture (εmix). 

Equations (3.97-3.99) show the formula to calculate the dielectric constant value which 

the parameters are listed in Table 3.5. 

1 1
  

273.15
MDEA A B

T
ε  = + − 

 
    (3.97) 

( )
2

21   ; 25H O A B T C T T Tcε = − ⋅ ∆ + ⋅ ∆ ∆ = −    (3.98) 

sf
mix i i

i

xε ε=∑       (3.99) 

where 

T = temperature in K       

Tc= temperature in 
o
C       

sf
ix  = the solute free mass fraction     

iε  = dielectric constant of component i.     

 

Table 3.5 Parameters for dielectric constant 

 A B C Ref 

MDEA 24.74 8989.3 - Autsgen (1989) 

H2O 78.54 0.0046 8.8 x 10
-6 

Lee (1996) 

 

3.1.5.5 Gibbs-Duhem equation 

 

Lee (1996) modified the Gibbs-Duhem equation to get the activity coefficient derivation. 

The following equation is applied for each neutral species that take place in the acid 

gases-MDEA-water system. 
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23 21
ln

3 8

GD

all
ion

HSn
i ineutral

ispecies

k

k

P
Z

α
γ ρ

π
ρ

 
Γ   = + −  ∆   

∑

∑

  (3.100) 

The Z
HS

 is hard sphere compressibility factor that can be found from Carnahan-Starling 

equation (Carnahan-Starling, 1969) as follow  

( )

2 3

3

1

1

HS
Z

η η η

η

+ + −
=

−
    (3.101) 

where η is packing factor which can be described as 

3

6

πρσ
η =      (3.102) 

ρ is the number density of the component and σ is the hard sphere diameter that can be 

calculated using eq. (3.103). b is van der Waals volume parameter with unit m
3
/mole. The 

values of critical properties for calculating the parameter b is shown in Table 3.3. 

1 3
3

2 L

b

N
σ

π
 

=  
 

    (3.103) 

8

c

c

RT
b

P
=      (3.104) 

 

3.1.6 Henry’s Law Constants Determination 

 

The Henry’s law constants are required to fulfill the vapor-liquid equilibrium 

determination. The Henry’s law constant of CO2 and H2S are determined base on their 

value in pure water. The CH4 is treated based on its solubility in both solvent i.e. water 

and amine.  

 

The Henry’s law constant correlation is a function of temperature. Since the 

determination of this correlation is based on experimental data, several equations are 

formed differently. Here, the different determination for the three components is used. 

[ ], 2 2ln ln           i = CO , H Si

i w i i i

B
H Pa A C T D T

T
= + + +   (3.105) 
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[ ]
4 , 2

ln i i

CH j i

B C
H bar A

T T
= + +     (3.106) 

4, 1 4, 2 4, 12 1 2

12
               

ln ln ln    

0.0715 19.531

CH mix CH w CH MDEAH x H x H x x

T

α

α

= + −

= ⋅ −
  (3.107) 

where x is the mole fraction of the component in the mixture. The subscripts 1 and 2 

defined the water and MDEA respectively. 

 

In this study, Henry’s constant parameter for CH4 in MDEA was fitted to Jou-Mather 

(2006) data with the same correlation used for CH4 in H2O. Jou-Mather (2006) used a 

mixing rule and a parameter related to the deviation of the two solvents from an ideal 

mixture (α12) to calculate the Henry’s law constant of CH4 in mixture of H2O/MDEA. Eq. 

(3.105) shows the applied equation. All the parameter used in Henry’s law constants are 

displayed in Table 3.6. 

 

Table 3.6 Henry’s law constants parameters 

i/j A B C D Ref 

CO2 110.034525 -6789.04 -11.4519 -0.010454 Posey (1996) 

H2S 18.1937 -2808.5 2.5629 -0.01868 Posey (1996) 

CH4 in H2O 0.1305 7.8879 x 10
3
 -1.4196 x 10

6 
 Ferrando, et al (2006)   

CH4 in MDEA 5.6776 1.5357 x 10
3 

-2.6776 x 10
5 

 This work 

  

3.2 Equilibrium model of Acid Gases Absorption Process 

 

In this section the equilibrium model for absorption column is provided. Inside the 

absorption column, the gas from the bottom is counter currently contacted with the liquid 

solvent from the top. At steady state condition, the absorption column consists of several 

numbers of stages. In each stage, the vapor phase from the stage below come into contact 

with the liquid phase descendants from the upper stage. Some amount of acid gases is 

transferred to the liquid phase during the contact. As the vapor phase move up along the 

column, the acid gases composition decreases. Figure 3.2 shows the equilibrium stage of 

absorption column. 
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The temperature of a stage and also the composition of the gas and liquid phase leaving 

and entering the stage can be calculated from the column material and energy balance. 

Equilibrium of the vapor and liquid phase takes place in each stage. The MESH (Mass 

balance, Equilibrium relationship, Summation equation, and Energy (Heat) balance) are 

used to solve the composition of individual components an temperature at each stage. The 

equilibrium relationship has been explained in the previous section. 

 

 

Figure 3.2 Equilibrium tray of absorption column 

 

3.2.1 Material Balance 

 

The material balance calculation of each equilibrium stage involves the gas and the liquid 

streams entering and leaving the stage. In the absorption column, the calculation of steady 

state composition and temperature along the column are determined by solving the 

material and energy balance simultaneously. Figure 3.3 shows the heat and material 

balance model of one equilibrium stage of absorption. In the gas phase, T is temperature, 

V is flowrate in mole/hr, WG is mass flowrate in kg/hr, Ptot is total pressure of gas stream, 

yi is mole fraction of components, HG is enthalpy of the gas stream, Ppar,i is partial pressure 

of components in gas stream, and VH2O is amount of water in gas. Meanwhile, the 

specification for the liquid phase consists of; L is flowrate in mole/hr, WL is mass 

flowrate in kg/hr, xj is mole fraction of components in liquid phase, and CpL is heat 



 48 

capacity of the stream.  The components i in the gas phase comprise of CO2, H2S, CH4 

and H2O. The existence of the MDEA component can be ignored due to its extremely low 

volatility. The j components in the liquid phase are CO2, H2S, CH4, H2O, MDEA and the 

ions are MDEAH
+
, HCO3

-
, CO3

2-
, HS

-
, S

2-
, H3O

+
, and OH

-
.  

 

 

Figure 3.3 Heat and material balance model of one equilibrium stage of absorption 

 

The material balance equation comprises of two general terms namely total material 

balance and components balances. Both are in the unit of mole flow rate. The equations 

for both terms are shown below. 

 

Total material balance: 

1 1n n n nV L V L− ++ = +      (3.108) 

Components balance: 

4 4 4 4

2 2 2 2

2 2 2 2

2 2 2 2

1 , 1 1 , 1 , ,

1 , 1 1 , , 1 , , ,

1 , 1 1 , , 1 , , ,

1 , 1 1 , , 1 ,

n CH n n CH n n CH n n CH n

n CO n n CO total n n CO n n CO total n

n H S n n H S total n n H S n n H S total n

n H O n n H O total n n H O n n H O

V y L x V y L x

V y L x V y L x

V y L x V y L x

V y L x V y L x

− − + +

− − + +

− − + +

− − + +

+ = +

+ = +

+ = +

+ = + , ,

1 , , 1 , ,               

total n

n MDEA total n n MDEA total nL x L x+ + =

 (3.109) 

 

The xj in the liquid phase does not only represent the mole fraction of the neutral 

component but also the ions that are formed from the reactions. The xj for the components 

in the liquid phase consists of: 
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2
2 2 3 3

2
2 2

2 2 3

,

,

,

,

CO total CO HCO CO

H S total H S HS S

MDEA total MDEA MDEAH

H O total H O H O OH

x x x x

x x x x

x x x

x x x x

− −

− −

+

+ −

= + +

= + +

= +

= + +

    (3.110) 

 

3.2.2 Energy Balance 

 

Derivation of the energy balance equations are shown in this section. From figure 3.3, the 

energy balance of stage n is written as: 

( )
( )

21 , 1 1 , 1 1

, ,                                      

n G n n L n n ref abs H O

n G n n L n n ref

V H L Cp T T Q Q

V H L Cp T T

− − + + ++ − + + =

+ −
  (3.111) 

 

Given that the stage number is counted from bottom up, the subscript n-1 represents for 

the gas entering the stage and n+1 represents the liquid entering the stage n. The subscript 

n is for gas or liquid leaving the stage. The Qabs is the heat of absorption for the acid gases 

absorption into alkanolamine solution while QH2O is the heat loss or gain associated with 

water condensing or evaporating. 

 

Enthalpies of gas entering and leaving the stage n are calculated using eq. (3.112). Vaz 

(1980) and Loh (1987) set the reference temperature to be the same as the temperature of 

gas inlet to simplify the energy balance equation.  

,  

ref

T

G i i G

T

H y Cp dT= ∫      (3.112) 

Tref = Tn-1       

 

The gas heat capacity formula is taken from Yaws (1999) and given in the following 

formula with the parameters values are specified in Table 3.7. 

2 3 4
,G i i i i i iCp a b T c T d T e T= + + + +    (3.113) 

 

The enthalpy loss or gain is calculated using the following equation: 

( )
2 2 2 2, , 1 ,nH O H O T H O n H O nQ V Vλ −= −    (3.114) 
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( )
2

0.321

, 647.1352.053 1 T
H O Tλ = −    (3.115) 

where λ is heat of vaporization in kJ/mole and T in Kelvin  

 

Table 3.7 Parameter for heat capacity of gas 

Component a b c d e 

CO2 27.437 4.2315e-2 -1.9555e-5 3.9968e-9 -2.9872e-13 

H2S 33.878 -1.1216e-2 5.2578e-5 -3.8397e-8 9.0281e-12 

CH4 34.942 -3.9957e-2 1.9184e-4 -1.5303e-7 3.9321e-11 

H2O 33.933 -8.4186e-3 2.9906e-5 -1.7825e-8 3.6934e-12 

Source: Yaws, Chemical Properties Handbook (1999) 

 

The heat of absorption is the heat produced when a quantity of acid gas is absorbed to 

change the loading from the initial loading to the final loading. In this matter, the initial 

loading is the loading of the stage n-1 and the final loading is the loading of the stage n. 

The quantity of acid gas that is absorbed by stage n can also be found from the difference 

of the mole acid gas in the gas entering the stage and leaving the stage. Furthermore, the 

heat of absorption derivation is given below 

 ( ) , 1  ,abs abs acid gas n acid gas nQ H V V−= ∆ −    (3.116) 

 

Bullin (2006) stated that the heat of absorption either for CO2 or H2S can be expressed in 

simplified terms as follows:  

Fraction Heat of Heat of Heat
Fraction

Heat of absorption = physically physical physical of
ionized

absorbed absorption absorption dissociation

     
      + +                 

 (3.117) 

 

Enthalpy of absorption that covers both heat of physical absorption and heat of 

dissociation can be calculated using the following Gibbs-Helmholtz equation: 

ln

1
i

i abs

x

P H

R
T

 ∂ −∆  =
 ∂ 

     (3.118) 

where P is the partial pressure of the acid gas component i and x is the mole fraction of 

the acid gas component in the liquid. 
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The other term that has to be determined is liquid heat capacity, CpL. Chiu and Li (1999) 

reported the heat capacity of aqueous MDEA solution for different amine mass fraction 

and temperature. The Redlich-Kister equation for excess molar heat capacity expression 

was applied to count the heat capacity of alkanolamine aqueous solutions. The liquid heat 

capacity for binary mixture is defined in the following equation.  

E

L i i
Cp Cp Cpχ= +∑      (3.119)  

( ) 1

2 2

1

n
iE

H O MDEA i MDEA H O

i

Cp Aχ χ χ χ −

=

= −∑     (3.120) 

i i i
A a b T= +        (3.121) 

2 3

1 2 3 4i
Cp c c T c T c T= + + +      (3.122) 

where  CpL  = liquid heat capacity [J/mole K]     

Cp
E
    = excess molar heat capacity [J/mole K]    

T  = temperature in [Kelvin]      

χi  = mole fraction of components     

Subscript: i = MDEA, H2O      

 

The parameters used in excess molar heat capacity calculation are served in Table 3.8, 

while the heat capacity of each substance listed in Table 3.9.  

 

Table 3.8 Excess molar heat capacity parameters 

Parameters Values 

a1 -105.74 

b1 0.45871 

a2 11.466 

b2 -0.07449 

Source: Chiu and Li (1999) 

 

Table 3.9 Heat capacity parameters for single component 

i A b c d 

MDEA 105.151 1.3564 -3.3459 x 10
-3 

3.4589 x 10
-6 

H2O 92.053 -3.9953 x 10
-2 

-2.1103 x 10
-4 

5.3469 x 10
-7 

Source: Yaws (1999) 
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3.2.3 Summation of Phases 

 

For each gas and liquid phase at every stage, the total component mole fraction must be 

unity. These summation constraints are defined by eq. (3.124). The xj is for the liquid 

phase composition while the yi is for the gas phase. 

 
1

1

j

j

i

i

x

y

=

=

∑

∑
     (3.123) 

3.3 Other Relations  

 

Several other relations involve in the mathematical models of the absorption column. 

These relations are the equation to calculate the water content in sour methane and the 

density of aqueous MDEA solvent.  

  

3.3.1 Water Content in Sour Methane 

 

In natural gas processing, the feed gas that enters the absorption column usually contains 

water. The calculation of this water content is required in the material and energy balance 

calculation. Method for calculating the water content in methane was adapted from 

Maddox (1998). The water content is contributed by CH4, CO2, and H2S. The McKetta-

Wehe charts are used to find the value for each gas. The elemental contributor gases to 

the total water content are calculated by the mol fraction of the gases in the mixture. The 

equation for the water content approximation is 

 

1 1 2 2hc
W yW y W y W= + +      (3.124) 

 

where W  = water content in gas mixture [kg/10
6
 std m

3
] 

 Whc  = water content in sweet gas 

 W1 = effective water content contribution of H2S to the gas mixture 

 W2 = effective water content contribution of CO2 to the gas mixture 

y = mole fraction of sweet gas in mixture 

y1 = mole fraction of H2S in gas mixture 

y2 = mole fraction of CO2 in gas mixture 
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A mathematical expression needs to be constructed from the charts to facilitate the 

computer calculation. The pressure function correlation was defined as shown in eq. 

(3.125). To convert the unit into mole fraction, water content is divided by the value of 

751320 (Maddox, 1998). The linear interpolation is applied to calculate the effect of 

temperature. The values of constants A1, A2, and A3 for carbon dioxide, hydrogen sulfide 

and methane are given in Appendix A. 

 ( )2

1 2 3
log log logW A P A P A= + +     (3.125) 

where P in Mpa and Win kg/10
6
 std m

3 

 

3.3.2 Density of Aqueous MDEA Solution 

 

In the design of absorption column, the composition of solvent entering the column is 

usually specified in the unit of either mass fraction or molarity. The density of aqueous 

MDEA solution must be determined for conversion between the two units. Density of 

aqueous MDEA solvent used was taken from Al-Ghawas (1989) which is described in the 

equation below.  

2

1 2 3

2 3

,1 ,2 ,3 ,4

        

i i i M i M i M

K K T K T

K k k w k w k w

ρ = + +

= + + +
   (3.126) 

where   ρ = density of aqueous MDEA in g/mL  

T = temperature in Kelvin  

wM  = MDEA mass fraction in the solvent 

The variables ki,j are given in Table 3.10. 

 

Table 3.10 Variable for density of water-MDEA solvent 

ki,j 

i\j 1 2 3 4 

1 0.715929 0.395951 0.927974 -0.794931 

2 2.13799 x 10
-3

 -1.98173 x 10
-3

 -3.87553 x 10
-3

 3.04228 x 10
-3

 

3 -4.00972 x 10
-6

 3.07038 x 10
-6

 3.58483 x 10
-6

 -2.70947 x 10
-6

 

Source: Al-Ghawas, H.A. et.al. (1989) 
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3.4 Stage Efficiency  

 

A stage is said to be theoretical stage when the concentration of components in the gas 

and liquid streams leaving the stage are in equilibrium. On a real stage it is impossible to 

reach physicochemical equilibrium since this would require an infinitely long contact 

time. The different in the behavior of the real and theoretical stages is defined by 

Murphree stage efficiency. The efficiency of Murphree stages for the j-th stage for 

component i is determined from the formula: 

, 1 ,
, ,

, 1 ,

i j i j
MV i j

i j i j

y y
E

y y

−
∗

−

−
=

−
    (3.127) 

If the Murphree stage efficiency for component j is assumed to be the same for each stage, 

the Murphree vapor stage efficiency of component j on top stage is the same as that on 

the bottom stage.   

, ,1 , ,MV j MV j NE E=     (3.128) 

where , ,1  MV jE  and , ,MV j NE  are the Murphree stage efficiency of component j on the 

bottom and top stage, respectively. This term also can be expressed with the partial 

pressure of component i in the contactor 

, 1 , , 1 ,

, 1 , , 1 ,

i j i j i N i N

i j i j i N i N

P P P P

P P P P

− −
∗ ∗

− −

− −
=

− −
    (3.129) 

where superscript * is the equilibrium value. Murphree stage efficiency is useful to scale-

up the design from the equilibrium stage column to the actual stage column.  

 

3.5 Summary 

 

The equilibrium model expressed in this chapter generally is similar with the previous 

model applied by other researcher (Vaz, 1980; Loh, 1987). The differences exist on the 

phase equilibrium model and the Astarita representation used to calculate the liquid phase 

composition. The Astarita representation gives a faster solution in the simulation compare 

to the Newton method. White this improvement, the time consumed in the simulation part 

will be less. In the next section, the calculation procedure of an absorption column 

applied in this study will be explained further.  
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4 CHAPTER 4 

COMPUTER SIMULATION OF THE ACID GASES 

ABSORPTION SYSTEM 

 

 

In Chapter 3, the mathematical model of the acid gases absorption using aqueous MDEA 

solvent has been discussed. A simulation procedure was developed in this work to 

perform the rigorous stage-by-stage calculation of the gas absorption column based on the 

models discussed in Chapter 3. There were several assumptions made in line with the 

developed models. These assumptions were: 

1. The system is an adiabatic system and there is no heat loss to the surrounding. 

2. The alkanolamine substance has extremely low volatility and therefore only exists 

in the liquid phase. At temperature range 130-170
o
C, the range of vapor pressure 

of MDEA is 0.01-0.065 bar. At the operating temperature of amine absorption 

process (<100
o
C), the vapor pressure of MDEA is very low.   

3. Heat of mixing at every stage is negligible. 

 

Figure 4.1 shows the schematic representation of acid gases absorption column from 

methane using MDEA solvent. The gas phase contains the acid gases, methane and water. 

The acid gases dissolved in the solvent and so does the methane. The column contains N 

equilibrium stages where in each of the stage, vapor liquid equilibrium and chemical 

reaction equilibrium exist.  

 

In designing the absorption column, the general input are the sour gas condition 

(composition, pressure, temperature and flow rate), and the lean solvent condition 

(concentration of the amine, temperature, and gas content). For a fixed number of stage 

required, the major process variables to be calculated were amine circulating rate, outlet 

gas purity (sweet gas), column temperature profile, and gas and liquid composition profile. 

The absorption simulation procedure is explained in the Section 4.1. 
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Figure 4.1 Schematic representation of the equilibrium tray of absorption column 

 

4.1 Equilibrium Stage Absorption Column Calculation 

 

The combination of material conservation, energy conservation, equilibrium relationship, 

and the summation constraint (MESH equations) are required to determine the 

temperatures and the gas composition at each stage of the contactor. The stage-by-stage 

calculations are executed to simulate the column at steady state operation. The calculation 

of the whole contactor starts from the bottom stage of the column. Figure 4.2 shows the 

algorithm for the equilibrium stage absorption column calculation and the calculation 

procedure is described below: 

1. Input feed gas specification, lean solvent specification, and number of stages (N), 

and pressure drop per stage (∆P). The feed gas specification consists of flow rate of 

feed gas stream (V0), temperature (T0), pressure (P0), and dry gas composition 

(yCO2,bulk, yH2S,bulk and yCH4,bulk). The water content in the feed gas is calculated using 

the eq. (3.124). The feed gas composition is corrected with the additional 

composition of H2O. 
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= −

= −

= −

=

   (4.1) 

The lean solvent specification consists of temperature TN+1, wt%-MDEA, flow rate 

(LN+1), mole MDEA and H2O in lean solvent (LMDEA,N+1 and LH2O, N+1) and loading 

CO2, H2S and CH4 in lean solvent (αCO2,N+1, αH2S,N+1 and αCH4,N+1).  

2. Guess the CO2 and H2S mole fraction in the sweet gas outlet (yCO2,N,guess and 

yH2S,N,guess) within range 0.05 to 0.00005 

3. Guess temperature of the sweet gas (TN,guess). The value used is equal to TN+1.  

4. Guess temperature of rich solvent, T1,guess. The value used is equal to T0+20
o
C.  

5. Guess the percent amount of CO2 and H2S absorbed during the absorption process 

(%CO2 and %H2S recovery). A simple calculation can be used to calculate the initial 

value of %CO2 recovery.  

( )
4 2

2

2 2

2

, 0 ,
, 0

, ,

2
, 0

1
%  cov

CH sour CO sw

CO sour

CO sw H S sw

CO sour

y V y
y V

y y
CO re ery

y V

 × ×
 × −
 − −
 =

×
  (4.2) 
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% S cov

CH sour H S sw
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CO sw H S sw
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y V y
y V

y y
H re ery

y V

 × ×
 × −
 − −
 =

×
  (4.3) 

6. Calculate the total loading of CO2 and H2S in rich solvent using the following 

formula:  

2

2

2

2

, 0 2

,1
,1

, 0 2

,1
,1

%  cov

% S cov

CO sour

CO
MDEA

H S sour

H S
MDEA

y V CO re ery

L

y V H re ery

L

α

α

× ×
=

× ×
=

                         (4.4) 

 

The MDEA was assumed to be non-volatile, so that the mole MDEA in rich solvent 

is equal to the amount of MDEA in lean solvent (LMDEA,1 = LMDEA,N+1). 

7. Guess the CH4 loading in αCH4,1. The value of αCH4,1 is between 0.015-0.035 mole 

CH4/mole MDEA.  
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                Input sour gas specification (T, yi, Ppar,i, flowrate), 

        and solvent specification (T, MDEA wt-%, xCO2, xCH4, flow rate)       

     number of stages (N), column Pressure Pcolumn, pressure drop ( P)

Guess T sweet gas (TN,guess)

No 

Yes

Perform MESH calculation at stage n to get the 

Vn, Ln+1, xi,n+1, Tn+1, and yi,n+1

No 

Continue 

to the next 

equilibrium stage
Yes

No 

Yes

Finish

Guess T rich solvent (T1,guess)

Guess % CO2 & % H2S recovery

Guess CH4 in rich solvent

Calculate CO2 & H2S in rich solvent

Calculate VLE of stage 1

No 

Yes

Calculate yCO2,N & yH2S,N 
from overall material balance

Yes

No 

Start

        Guess sweet gas composition (yi,N,guess)

No 

 = |Ptot,1-P1|

≤  0.01 ?

 = |yCO2,N,guess - yCO2,N|/yCO2,N,guess
 = |yH2S,N,guess – yH2S,N|/yH2S,N,guess

≤ 0.01 ?

 = |T1-T1,guess|

≤  0.1 ?

Stage number (n+1) = N

 = |yCO2,N,guess - yCO2,N|/yCO2,N
 = |yH2S,N,guess – yH2S,N|/yH2S,N

≤  0.01 ?

Calculate T1

 = |TN-TN,guess|

≤ 0.1 ?

 

Figure 4.2 Calculation algorithm for equilibrium stage absorption column  
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8. Perform a vapor liquid equilibrium (VLE) calculation for stage 1, with the input of 

T1, αCH4,1, αCO2,1, αH2S,1, and wt% MDEA in rich solvent. The procedure for the 

VLE calculation is shown in Section 4.2.  The wt% MDEA in rich solvent in the 

rich solvent is assume to be the same as the wt% of MDEA in lean solvent. From 

the VLE calculation, compare the total pressure (Ptot,1) with  the stage pressure 

(P1=P0-∆P ) with the formula Diff = Ptot,1 - P1. If the abs(Diff) is smaller than 

tolerance, go to the next step, if not return to step 7 and renew the CH4 loading. The 

tolerance value is 0.01. If the difference is negative, increase the value of αCH4,1. If 

difference is positive, decrease the value of αCH4,1. 

9. Calculate the mole fraction of gases in the sweet gas (yi,N). A simple mass balance 

can be applied to correlate the sour gas, lean solvent, rich solvent and sweet gas.  

0 1 1N NV V L L+= + −                           (4.5) 

4 4 4 4

2 2 2 2

2 2 2 2

2 2 2 2

, 0 ,0 1 , 1 1 ,1

, 0 ,0 1 , 1 1 ,1

, 0 ,0 1 , 1 1 ,1

, 0 ,0 1 , 1 1 ,1

N CH N CH N CH N CH

N CO N CO N CO N CO

N H S N H S N H S N H S

N H O N H O N H O N H O

V y V y L x L x

V y V y L x L x

V y V y L x L x

V y V y L x L x

+ +

+ +

+ +

+ +

= + −

= + −

= + −

= + −

  (4.6) 

 

Compare the value of calculated yCO2 and yH2S with the specified yCO2,N. and yH2S,N 

(diff = (yCO2,N - yCO2)/ yCO2,N). If the abs(diff) is lower than tolerance, go to the next 

step. If not, renew the value of %CO2 recovery and %H2S recovery and return to 

step 6. The value of tolerance is 0.01. If the difference is positive, decrease values 

of %CO2 recovery and %H2S recovery, vice versa.  

10. Perform an overall energy balance between the sour gas, sweet gas, lean solvent and 

rich solvent to calculate the rich solvent temperature (T1) 

( ) ( )
21 , 1 1 ,

1
1 ,1

N L N N ref abs H O N V N N ref

ref

L

L Cp T T Q Q V Cp T T
T T

L Cp

+ + + − + + − −
= +    (4.7) 

( ) ( )
( )

2 2 2 2

2 2 1 2 2

, ,1 ,1 , ,1 ,1

, ,0 ,

abs abs CO CO MDEA abs H S H S MDEA

H O H O T H O H O N

Q H L H L

Q V V

α α

λ

= ∆ + ∆

= −
  (4.8) 

Tref is temperature of the sour gas (T0). 



 60 

Compare the calculated value of T1 with the T1,guess in step 4. If abs(T1 – T1,guess) is 

smaller than 0.1, go to the next step. If not, return to step 4. The next T1,guess is equal 

to T1. 

11. The next step is the stage by stage calculation until N stage to get the composition of 

the sweet gas. From Figure 3.2, the MESH equations at stage n have to be 

performed to get the temperature and the loading of the liquid entering the stage. 

Figure 3.2 is recall in this procedure to ease the calculation investigation.  

 

 

 

The MESH calculation is quite difficult to be solved simultaneously. 

Therefore, the following procedure is used to assist in solving the equations.  

a. Guess the mole fraction of the methane in the liquid entering the stage 

(αCH4,n+1). From the previous stage calculation, the gas Vn-1, yi,n-1, Ln, xi,n, and 

yi,n are specified 

b. Solve the total material balance and component material balance to calculate 

the unknown flow rate and composition using the eq. (3.108) and (3.109). 

c. Guess the temperature of liquid entering the stage (Tn+1,guess) and calculate the 

CpL,n+1. 

d. Perform an energy balance to calculate the temperature of the stage n+1. The 

eq. (3.111) is rearranged to obtain the Tn+1 

( )( )
2, 1 , 1 ,

1
1 , 1

n G n n G n n L n n ref abs H O

n ref
n L n

V H V H L Cp T T Q Q
T T

L Cp

− −
+

+ +

− + − − −
= +     (4.9) 

To simplify the equation, the value of Tref is taken as the temperature of the 

gas inlet to the stage. So the second term inside the bracket is zero, and the 

equation become  
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( )( )
2, ,

1
1 , 1

n G n n L n n ref abs H O

n ref

n L n

V H L Cp T T Q Q
T T

L Cp
+

+ +

+ − − −
= +  (4.10) 

e. Compare the value of Tn+1 with the guess Tn+1,guess in step (c). If the difference 

is smaller than 0.1, go to the next step. If not, return to step c until the value 

converged. The next TN+1,guess is equal to TN+1. 

f. Perform VLE calculation for the stage n+1. The procedure to for VLE 

calculation is demonstrated in Section 4.2. Compare the total pressure (Ptot,n+1) 

with the stage pressure (Pn+1 = Pn - ∆P ) using formula (Diff = Ptot,n+1,,1 – Pn+1). 

If the abs(Diff) is lower than tolerance, go to the next step. If not, return to 

stage (a) until the value converged. The tolerance value is 0.01. If the 

difference is negative, increase the value of αCH4,n+1. If difference is positive, 

decrease the value of αCH4,n+1. 

12. Perform the material and energy balances and VLE calculation for the next stage 

followed by all the remaining stage.  

After the equilibrium stage is obtained (N), compare the temperature of the gas 

outlet (TN) the stage with the TN,guess. If the difference (abs(TN – TN,guess)) is lower 

than the tolerance, continue to the next stage. If not, return to step 3. The next 

TN,guess is equal to TN. The value of tolerance is 0.1. 

13. Compare the yCO2,N and yH2S,N with the guess values in step 2 using formula (diff1 = 

(yCO2,N – yCO2,N,guess)/yCO2,N & diff2 = (yH2S,N – yH2S,N,guess)/yH2S,N). If the abs(diff1) and 

abs(diff2) are smaller than 0.01, continue to the next stage. If not, return to step 2. 

The next guess values are equal to yCO2,N and yH2S,N. The calculation is finished.  

 

The vapor liquid equilibrium calculation is treated as part of the absorption column 

calculation and the procedure is given in the following section.  

 

4.2 Vapor Liquid Equilibrium Calculation 

 

The vapor liquid equilibrium calculation procedure for the CO2-H2S-CH4-aqueous 

MDEA system which connects with the absorption column is given in this section. The 

Murphree stage efficiency is applied to the partial pressure calculation for the acid gases. 

The calculation of the vapor liquid equilibrium requires the component composition in the 
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liquid phase at the system temperature and solvent composition. This liquid phase 

composition is discussed in Section 4.3. The block algorithm of the VLE calculation is 

shown in Figure 4.3 with the steps shown below: 

1. Specify loading of the gases (αCO2, αH2S and αCH4) in liquid phase, temperature (T), 

and solvent composition (wt% MDEA). 

2. Calculate liquid phase composition for a given gases loading, temperature, and 

solvent composition. 

3. From the liquid phase composition, the mole fraction of the CO2, H2S and CH4 

physically absorb, and H2O (xCO2, xH2S, xCH4, and xH2O) will be identified.  

4. Set the Poynting corrections, and fugacity coefficients of the components to unity. 

5. Calculate the Henry’s law constant pressure for CO2, H2S and CH4 in the amine 

solvent by applying eq. (3.105) for CO2 and H2S eq. (3.107) for CH4. 

6. Calculate the partial pressure of each component by using eq. (3.55) for H2O and 

eq. (3.56) for CO2, H2S and CH4. The partial pressure of CO2 and H2S are 

corrected using the Murphree vapor efficiency as in the eq. (4.11). 

( ), , 1 , , , 1 ,i j i j MV i j i j i jP P E P P
∗

− −= − −    (4.11) 

7. Calculate total pressure for all four components by using the following equation 

par
i

tot
i

P
P

φ
=∑     (4.12) 

8. Calculate the mole fraction of gas phase (yi) using the following equation 

par
i

i
tot i

P
y

P φ
=      (4.13) 

9. Update the value of the Poynting corrections, and the fugacity coefficient of the 

components. 

10. Recalculate the partial pressure, total pressure, and mole fractions as done in step 

6, 7, and 8. 

11. Redo the calculation of the Poynting corrections, and the fugacity coefficient of 

the components. 

12. Compare the calculated total pressure (Ptot) with the previous value (Ptot,old) using 

formula (diff = Ptot,old – Ptot). If abs(diff) is lower than tolerance, vapor liquid 

equilibrium calculation is finish. If not, return to step 6 until the value converged. 

The tolerance value is 1x10
-5

. 
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The above calculation steps are applied to calculate the vapor liquid equilibrium for each 

equilibrium stage in the absorption process where the presence of methane was taken into 

account. A simplified VLE calculation is required to calculate the single gas or mixture 

gases solubility in the aqueous MDEA solvent. The aim of the gases solubility calculation 

is to validate the model adopted. The folowing calculation steps are utilized to calculate 

the gas solubility for single gas (eg. CO2) in MDEA solvent. 

1. Specify loading of the gases (αCO2) in liquid phase, temperature (T), and solvent 

composition (wt% MDEA). 

2. Calculate liquid phase composition for a given gases loading, temperature, and 

solvent composition. 

3. From the liquid phase composition, the mole fraction of the physically absorb, and 

H2O (xCO2, xH2O) will be identified.  

4. Set the Poynting corrections, and fugacity coefficients of the components to unity. 

5. Calculate the Henry’s law constant pressure for CO2 using eq. (3.105. 

6. Calculate the partial pressure of each component by using eq. (3.55) for H2O and 

eq. (3.56) for CO2.  

7. Calculate total pressure for all four components using the following equation 

par
i

tot
i

P
P

φ
=∑      (4.12) 

8. Calculate the mole fraction of gas phase (yi) using the following equation 

par
i

i
tot i

P
y

P φ
=      (4.13) 

9. Update the value of the Poynting corrections, and the fugacity coefficient of the 

components. 

10. Recalculate the partial pressure, total pressure, and mole fractions as done in step 

6, 7, and 8. 

11. Redo the calculation of the Poynting corrections, and the fugacity coefficient of 

the components. 

12. Compare the calculated total pressure (Ptot) with the previous value (Ptot,old) using 

formula (diff = Ptot,old – Ptot). If abs(diff) is lower than tolerance, vapor liquid 

equilibrium calculation is finish. If not, return to step 6 until the value converged. 

The tolerance value is 1x10
-5

. 
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Figure 4.3 Vapor liquid Equilibrium Calculation Algorithm 
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4.3 Liquid Composition Calculation 

 

The computation scheme to calculate the composition of the liquid for a given input of 

aqueous alkanolamine solution temperature is listed below. The block algorithm of the 

liquid phase composition calculation is shown in Figure (4.4). 

1. Specify the solution temperature, the solvent composition (wt% of MDEA), acid 

gases loading (αCO2,input, αH2S,input) and methane loading (αH2S,input).  

2. Calculate the chemical reaction equilibrium constants using eq. (3.7)  

3. Set the activity coefficients of all components (neutral and ionic) to be 1. 

4. Guess the fraction of acid gases loading reacted with amine (ϒm). The best guess 

values for ϒm are: 

If loading > 0.9 the value of ϒm = 0.8 loading 

If 0.7 < loading ≤ 0.9 the value of ϒm = 0.9 loading 

If 0.5 < loading ≤ 0.7 the value of ϒm = 0.95 loading 

If loading ≤ 0.5 the value of ϒm = 0.98 loading 

5. Start the Astarita representation to calculate the mole fraction of components : 

a. Calculate the equilibrium extent reaction value, ξ. If the acid gas is CO2 then 

eq. (3.23) is used. If the acid gas is H2S then eq. (3.32) is applied. For the 

mixture of CO2 and H2S, the value for the extent of reaction is calculated 

using eq. (3.43). 

b. Calculate mole fraction of elemental components, x. The concentration of the 

components must be calculated previously using the following equation: 

• for CO2, the eq. (3.20) and eq. (3.24) to (3.27) are used 

• for H2S, the eq. (3.33) to (3.36) are used  

• for mixture CO2 and H2S, eq. (3.41) and eq. (3.44) to (3.48)are used.  

 The concentration of methane is calculated using the multiplication of 

methane loading with amine concentration m.  

6. Calculate the activity coefficient γi for the neutral and the ion components using 

mole fraction calculated in previous step. 

7. Calculate apparent reaction equilibrium constant, Kx,i, using eq. (3.52) and the 

values of γ from step 6. 

8. Recalculate the mole fraction using Astarita representation as described in step 5. 
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Figure 4.4 Liquid Phase Calculation Algorithm 

 

9. Compare the mole fractions with the previous calculation in step 5. If the 

deviation (Σ|xi – xi,old|) within tolerance (1x10
-10

), go to step 10. If not, return to 

step 6. 

10. Calculate the total loading. Compare the calculated total loading with the specified 

loading (αCO2,input, αH2S,input) using formula (diff1 = (αCO2,input - αCO2,calc)/αCO2,input 

& diff = (αH2S,input - αH2S,calc)/α H2S,input). If abs(diff) are lower than 0.001, the 

calculation has converged. If not, return to step 4 until the loading calculation 

converges. 
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4.4 Summary 

 

In this chapter, a rigorous stage-by-stage calculation procedure for acid gases absorption 

from methane using aqueous MDEA solvent has been described. A detail explanation on 

the each step on the procedure has been given. A technique to get the converged solution 

with the value of the tolerance has also been explained. The Murphree vapor efficiency is 

applied to the simulation procedure to scale-up the design from the equilibrium stage 

column to the actual stage column. In Chapter 5, this procedure will be utilized for system 

of single and mixtureacid gases absorption from methane using MDEA solvent. 
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5 CHAPTER 5 

RESULTS AND DISCUSSION 

 

 

The ElecGC model for determining vapor liquid equilibrium of acid gases alkanolamine 

system was proposed by Lee (1996). In this study, the model was adopted to the system 

of acid gases in aqueous MDEA system. Lee (1996) applied the Newton method to 

calculate the liquid phase composition. The Astarita representation employed in this study 

provides the alternative way to calculate the liquid phase composition. The description of 

the ElecGC model, Astarita representation and the equilibrium model of acid gases 

absorption process were given in Chapter 3. Based on the models adopted, the calculation 

procedure was described in Chapter 4. 

 

The mathematical model and calculation procedure of the absorption column was 

simulated in the MATLAB program. MATLAB is a high-performance language for 

technical computing in an easy-to-use environment. The simulations were performed 

using the iteration procedure of the main routines and sub-routines until the value 

converged and fulfill the tolerance values given. 

 

The study consists of two parts. The first part is model validation which is performed on 

the gases solubility and heat of absorption in MDEA solvent at various conditions against 

published literature data. The second part is model extention for an absorption column 

calculation for acid gases separation from methane. The sequence of the results is as 

follow. First, the partial pressures of gas in the system of CO2-MDEA-H2O, H2S-

MDEA-H2O, and CH4-MDEA-H2O in various MDEA strengths are described. The heat 

of absorption of single acid gas in explained further. Second, the simulation results on 

CO2 or H2S absorption from methane is described. Third, the model validation is given 

for mixture acid gases absorption in MDEA solvent (CO2-H2S-MDEA-H2O system). At 

last, the simulation results on mixture of acid gases absorption column is provided.  
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5.1 CO2 Solubility in Aqueous MDEA Solvent 

 

The solubility of CO2 in aqueous MDEA solvent was examined in this study. The CO2 

solubility study was in the form of partial pressure calculation on the specified CO2 

loading in the solvent. Before the partial pressure prediction is given, the liquid phase 

composition prediction of the system CO2-MDEA-H2O was conducted to prove the 

Astarita representation method. Figures 5.1 and 5.2 illustrate the mole fraction of species 

in the liquid phase for CO2-MDEA-H2O system. The simulation results were compared 

with the results from Jakobsen et al (2005) which were obtained experimentally at 23 

wt% of MDEA and temperature 20
o
C and 40

o
C. Generally, the simulation results were 

found satisfy.  

 

At the two temperatures, the simulation results on the components mole fraction show the 

same trend. The mole fractions of H3O
+
 and OH

-
 were very low and thus, were not shown 

in the figures. The mole fractions of H2O appear as horizontal lines with value near to 

unity. Reaction (5.1) shows that when CO2 dissolved in the solvent, the MDEA 

dissociation is promoted and the MDEAH
+
 and HCO3

2-
 ions are produced. The higher the 

loading, the amount (in term of mole) of CO2 reacted with solvent is higher. But, the mole 

fraction of CO2 reacted with the solvent is less. This is shown by the increasing of mole 

fraction of physically dissolved CO2. As more amount of CO2 reacted with solvent, 

MDEA will be consumed more. With the increasing of CO2 loading, the mole fraction of 

MDEA decreases, while the MDEAH
+
 and HCO3

2-
 ions increase.   

 

2 2 3CO MDEA H O MDEAH HCO
+ −+ + ↔ +      (5.1) 

 

Reaction between CO2 and MDEA solvent is an equilibrium reaction. When CO2 

dissolved in the solvent, not all of CO2 will transform into HCO3
-
, but some will still 

remains as CO2. The reacted CO2 is chemically absorbed by the solvent, while the 

remaining CO2 is physically absorbed by the solvent. At the observation temperature, it 

can be seen that when the loading exceed 0.8 mole CO2/mole MDEA, the CO2 mole 

fraction starts to increase rapidly, and the MDEAH
+
 and HCO3

2- 
ions approach constant 

values. At this critical loading, the physical absorption starts to dominate the chemical 

absorption. The CO3
2-

 mole fraction curve also falls at loading 0.8 mole CO2/mole 

MDEA. Due to the equilibrium reaction (5.1), one mole of MDEA will not consume one 
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mole of CO2. In the other words, the critical loading will not be at the value of 1 mole 

CO2/mole MDEA. It will be lower. Lee (1996) found that the critical loading of the CO2-

MDEA-H2O system is 0.8 mole CO2/mole MDEA 

  

The Jakobsen et al data on the mole fraction of CO2 for both temperatures were only 

given at the loading 0.8 mole CO2/mole MDEA. Meanwhile, the simulation can predict 

the mole fraction of CO2 for a wider range of CO2 loading. Jakobsen et al (2005) 

explained that due to the limitation of the equipments, the effect of temperature on the 

CO2 mole fraction can not be observed. At temperature of 20
o
C and 40

o
C, the mole 

fractions of CO2 have the same value which is 0.0001 (Jakobsen et al, 2005). Meanwhile, 

for the same CO2 loading, the simulation results in this study show that the CO2 mole 

fraction at 40
o
C is higher than that at 20

o
C. This result indicates that at temperature 40

o
C, 

less fraction of CO2 reacts with the solvent compared at temperature of 20
o
C. Reaction 

between CO2 and MDEA solvent is an exotermic reaction. The behaviour of an exotermic 

reaction is that when the temperature lower, the reaction (5.1) is shifted to the forward 

direction and more reactants CO2 and MDEA will react.    
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Figure 5.1 Mole fractions of species in liquid phase for CO2-MDEA-H2O system at 23 

wt-% MDEA and 20
o
C [Lines are generated from the model and symbols are 

experimental data of Jakobsen et al (2005)] 
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Figure 5.2 Mole fractions of species in liquid phase for CO2-MDEA-H2O system at 23 

wt-% MDEA and 40
o
C [Lines are generated from the model and symbols are 

experimental data of Jakobsen et al (2005)] 

 

From Figures 5.1 and 5.2, the Astrarita representation and ElecGC model can predict the 

liquid phase composition of CO2-MDEA-H2O system. The accuracy of the predicted 

mole fraction of all the components is acceptable.   

 

The CO2 partial pressure prediction for variation loading was examined. The simulation 

results were compared to the experimental data published by Jou et al (1982). Figure 5.3 

shows the comparison on partial pressure between the model and the data at high CO2 

loading. Meanwhile Figure 5.4 shows the comparison at low loading. Jou et al (1982) 

served a numbers of data of CO2 partial pressure varying from 0.001 to more than 1000 

kPa. Generally, for the same CO2 loading, the CO2 partial pressure increases as the 

temperature increases. Shown in Figure 5.3, the model gives a good agreement at low 

temperature. As the temperature increases, larger deviation from experimental data was 

noticed. Figures 5.3 and 5.4 show that partial pressure increase with increasing loading.  
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Figure 5.3 Partial pressure of CO2 in 2 M MDEA solution at high loading [Lines are 

generated using the model and symbols are experimental data of Jou et al (1982)] 
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Figure 5.4 Partial pressure of CO2 in 2 M MDEA solution at low loading [Lines are 

generated using the model and symbols are experimental data of Jou et al (1982)] 

 

Figure 5.3 demonstrates that the model can predict the CO2 partial pressure with good 

agreement for loading higher than 0.1. While Figure 5.4 shows that the model gives 

significant disagreement at loading lower than 0.1. These are probably due to the 



 73 

inconsistent of the data. Jou and coworkers (1982) utilized two different equipments for 

different range of loading. For the high loading, the closed system equipment was used. 

The acid gases was circulated and bubbled through an amine solution contained in a 

windowed equilibrium cell. For the low loading, the flow apparatus was used where the 

gas bubbles through series of amine solution container. The second equipment was more 

difficult to operate, particularly at the higher temperature. At temperature 40
o
C, the 

relative error of the result for loading higher than 0.1 is 26%. Meanwhile, for the loading 

lower than 0.1, the relative error is 84.7%. The relative error for the high loading at 

temperature of 70
 o

C is 44% while for low loading is 72.4%. The relative error for 

temperature 100
o
C is 98%. Overall, the model is only fit for low temperature and high 

loading.  

 

The relatively low agreement on the low loading may be affected by the equilibrium 

reaction constants for MDEA protonation reaction, KMDEA. There are several KMDEA 

correlations available in literature. Each of them gives different results on the solubility of 

CO2 in MDEA solvent. Lee (1996) applied the KMDEA relation from Schwabe (1959). 

This KMDEA could give good results for the CO2 solubility at low loading. But, on high 

loading case, the KMDEA gives a large deviation. If the KMDEA relation from Schwabe 

(1959) were applied to the system of H2S-MDEA-H2O and CO2-H2S-MDEA-H2O, the 

large deviations were also observed.  

  

5.2 H2S Solubility in Aqueous MDEA Solvent 

 

The speciation of H2S-MDEA-water ternary system is provided. During this study, the 

experimental data on this system were unavailable. Figure 5.5 illustrates the mole fraction 

of components in the liquid phase for the H2S absorption in the 50 wt% of MDEA 

solution. Due to the very low mole fractions of the S
2-

 and OH
-
 ions, the values were not 

shown. The main ionic species are MDEAH
+
 and HS

-
. The concentrations of the two ions 

balance each other due to the charge neutrality. The mole fraction of H2O also appears as 

a horizontal line with a value close to unity. The following reaction described distincly 

how H2S react with MDEA.  

2H S MDEA MDEAH HS
+ −+ ↔ +     (5.2) 
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As the loading increase, the fraction of the H2S react with MDEA is lower. This is shown 

by the increase in mole fraction of physically dissolved H2S. These are because at high 

loading, the amount of H2S reacted with the solvent decreases as the physical absorption 

dominates of the absorption process.  From reaction (5.2), the ions MDEAH
+
 and HS

-
 are 

formed when H2S react with MDEA. At certain value of loading, the mole fraction of bort 

ions will appear constant as the physical absorption dominates of the absorption process. 

The value of this loading is a critical loading. The critical loading for H2S-MDEA-H2O is 

around 0.8 mole H2S/mole MDEA. Lee (1996) reported the critical loading of the H2S-

MDEA-H2O system is 0.8 mole H2S/mole MDEA. 
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Figure 5.5 Mole fractions of species in liquid phase for H2S-MDEA-H2O 

at 50 wt-% MDEA and 40 
o
C 

 

Figure 5.6 shows the partial pressure of H2S in the 1 M of aqueous MDEA solution. 

Figure 5.7 depicts the same system as Figure 5.6 focusing on the low loading region. The 

simulation results were compared with the experimental data from Jou, et.al (1982). The 

solubility of H2S prediction was executed at temperature of 40
o
C, 70

o
C, and 100

o
C. At 

the range of the temperature observed, the VLE model with the Astarita representation 

was able to predict the partial pressure of H2S satisfactorily although the deviation seems 

to be higher at temperature 100
o
C. The relative error for all the data shown in the Figure 

5.6 and 5.7 is 32%. 
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Figure 5.6 Partial pressure of H2S in 1 M MDEA solution at high loading. [Lines are 

generated using the model and symbols are experimental data of Jou et al (1982)] 
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Figure 5.7 Partial pressure of H2S in 1 M MDEA solution at low loading [Lines are 

generated using the model and symbols are experimental data of Jou et al (1982)] 
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The same phenomenon as for CO2 system was observed for this system. As the 

temperature increases, partial pressure of H2S increases. Reaction between H2S and 

MDEA solvent is an exoterm reaction. From the reaction (5.2), as the temperature 

increase, the reaction is shifted to the reverse direction and more reactants are formed. As 

the temperature increases, higher pressure is required to achieve the same loading of H2S. 

 

5.3 CH4 Solubility in Aqueous MDEA Solvent 

 

The methane solubility prediction is provided in Figure 5.8. Jou et al (1998) experimental 

data were used as comparison. The calculation on the methane solubility was done for 3 

M of MDEA solvent at temperature of 40
o
C and 70

o
C. The experimental data shows that 

by changing the temperature from 40
o
C to 70

o
C, the methane solubility only vary slightly, 

and so does the predicted values from the model. Over the range of temperature shown in 

Figure 5.8, the solubility of the methane in MDEA solvent is quite insensitive. This is due 

to methane remaining gaseous throughout this range of temperature (Carroll et al, 1998). 

Generally, the comparison on the literature data and the predicted value from the model 

has a very good agreement. The relative error produced is 16.9%    
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Figure 5.8 Partial pressure of CH4 in 3 M MDEA solution [Lines are generated from the 

model and symbols are experimental data of Jou et al (1998)] 
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5.4 Heat of Absorption of CO2 and H2S in Aqueous MDEA Solvent 

 

The heat of absorption is an important variable in acid gases treatment. The heat is 

produced when the acid gases dissolve and react with the solvent. This heat raises the 

temperature of the solution. In Section 3.2.2, the formula to calculate the enthalpy change 

due to acid gas absorption was described. The heat of absorption was reported as a 

function of gas loading and concentration of solution. The enthalpy of absorption of CO2 

in aqueous MDEA solution is shown in Figure 5.9 where they are compared with the 

experimental data from Arcis et al (2008).  

 

The predicted heat of absorption of CO2 calculated using eq. (3.118) matches with the 

experimental data up to a loading of 0.8 mole CO2/mole MDEA. A gradual decrease in 

the value of the heat of absorption was observed for the range of loading up to 0.8 mole 

CO2/mole MDEA. When the loading exceeds 0.8 mole CO2/mole MDEA the heat of 

absorption value decreases significantly until it reaches the enthalpy of physical 

absorption of CO2 in MDEA solvent. At this high loading, the solution starts to get 

saturated with CO2 and only physical absorption occurs.  

 

Figure 5.9 demonstrates that the calculated heat of absorption of CO2 shows different 

trend with the experimental heat of absorption of CO2. In the calculated heat of 

absorption shown by the line, a sudden decrease presents at the loading near to 0.8. 

Meanwhile, a gradual decrease presents in the experimental heat of absorption shown by 

the symbol. The different trend of heat of absorption column is due to the different of 

loading interval used in the two terms. The calculated heat of absorption was obtained at a 

very small loading interval. Meanwhile, the experimental heat of absorption was obtained 

at interval zero loading to the final loading.  

 

When acid gases dissolved in the MDEA solvent, a part of the gases remains physically 

absorbed while the other part is chemically absorbed. The heat of physical absorption is 

much lower than heat of chemical absorption. At low loading, the chemical absorption 

dominates the physical absorption. That is why the heat of absorption at the low loading 

is high. At loading higher than 0.8 mole CO2/mole MDEA, the calculated heat of 

absorption which is integrated at very small loading interval will be the value of heat of 
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physical absorption. Meanwhile, the experimental heat of absorption which is obtained 

from zero loading and the final loading will be combination of physical absorption and 

chemical absorption, with the physical absorption dominates the chemical absorption. 

Therefore, the higher the loading the total heat of absorption is lower. The calculated heat 

of absorption is called differential heat of absorption while the experimental heat of 

absorption is an integral heat of absorption (Kim et al, 2009). 

 

Figure 5.10 shows the heat of absorption for H2S absorption into 1 M MDEA solution. 

These calculated results were compared with the literature data by Jou et.al (1982). In this 

study, the predicted heat of absorption of H2S was calculated using eq. (3.118). The 

partial pressure of H2S was taken from the calculated value obtained from the model. Jou 

et al (1993) also performed the calculation of heat of absorption using eq. (3.118). Jou et 

al (1993) used the partial pressure values obtained in their experiment study. The heat of 

absorption obtained in this study and Jou et al (1993) show similar trend. Relatively large 

deviation was found from the two studies. The deviation is probably obtained due to 

different sources of partial pressure data. Jou el al used the experimental data of partial 

pressure of their study. In this study, the simulation results give loading of H2S 0.8 mole 

H2S/mole MDEA as the critical loading point.    
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Figure 5.9 Enthalpy of absorption of CO2 in 30-wt% MDEA solution 
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Figure 5.10 Enthalpy of absorption of H2S in 1 M MDEA solution 

 

The heat of absorption values depend strongly on the acid gas loading in the solvent. The 

values are only less affected by the solution strength, while the gas pressure has virtually 

no effect on the values (Oscarson et al, 1990). These phenomena can be seen in Figure 

2.5. Due to the less effect of solution strength, the heat of absorption prediction result can 

be compared between CO2 and H2S. The comparison made at the loading below the 

critical loading. Jou et al (1982) made comparison between CO2 and H2S at loading range 

loading 0-0.3 mole gas/mole MDEA. Applying the same range of loading in this study, 

the average heat of absorption for CO2 is 61.6 kJ/mole CO2 and for H2S is 46.5 kJ/mole 

H2S. In conclusion, heat of H2S absorption in MDEA is lower than heat of CO2 

absorption. 

 

5.5 Sour Methane Treatment Containing either CO2 or H2S 

 

In this work, the acid gases treatment from the methane was studied. The methane 

contains either one acid gas, CO2 or H2S. There are two approaches in designing the 

absorption process. The first approach is designing a new absorption column. In this case, 

the acid gas fraction in sweet gas or in the other words, the % acid gas recovery is 

specified. Then, the number of stages is calculated. The second approach is evaluating the 

existed absorption column. Here, the number of stages is specified, and the % acid gas 
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recovery is calculated. In this work the second approach was used for the system of CO2 

or H2S absorption from methane. The algorithm described in Section 4.1 was applied.  

 

To make a comparison between the case for CO2 and H2S, the feed gas and the lean 

solvent composition and condition were made equal. The strength of MDEA solvent is 45 

wt% of MDEA and its flowrate is 3 MMSCFD. The circulation rates of amine solvent 

used were also made equal which was 2.73 mole solvent/mole sour gas. The total pressure 

drop along the column is assumed to be 1 bar. The mole fraction of acid gas in the amine 

is 10 mole%.  

 

Loh (1987) performed a simulation of CO2 from natural gas using MDEA solvent. He 

calculated the Murphree vapor efficiency of the separation from the overall vapor 

efficiency. The calculated Murphree vapor efficiency is 7.4% and 8.7%. Another study 

conducted by Mofarahi et al (2008) uses 35% value for Murphree vapor efficiency. From 

those two works, it can be concluded that the value of Murphree vapor efficiency is not 

fixed. In industrial absorption process, the Murphree vapor efficiency usually ranged 

between 65-85%. In this work the Murphree vapor efficiency of 65% is used for both 

gases.  

 

Table 5.1 shows the comparison result for the CO2 and H2S systems. The number of 

stages was set to be 5 stages. This number was selected based on trial and error on the 

simulation to get the purity of desired gas product which is lower than 0.16 % mole acid 

gases. For the CO2 absorption system, the outlet CO2 fraction in sweet gas is 0.085%. 

The % CO2 recovery is 99.33%. The same number of stages is applied to the H2S 

absorption system. The outcomes are 0.059% for the H2S mole fraction in sweet gas and 

99.51 for % H2S recovery. The detail stage to stage simulation results are provided in 

Appendix B.2. 

 

In Section 5.1 and 5.2, it has been described the partial pressure prediction of acid gas 

based on equilibrium model given in Chapter 3. In general, the model can predict the 

partial pressure with an acceptable deviation. The VLE model which can predict the gas 

solubility becomes a part of the absorption column simulation. The result on the 

absorption column simulation can show explicitly the similar behaviour with the 

solubility prediction. In the solubility prediction, the H2S partial pressure required is 
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lower than that of CO2 to achieve the same loading. In the other word, the solubility of 

H2S is higher than that of CO2. The similar outcome happens to the absorption simulation 

where the H2S mole fraction in gas product is lower than that of CO2.        

 

Table 5.1 Simulation results for CO2 and H2S absorption from methane using MDEA 

solution 

System CO2-CH4-MDEA-H2O H2S-CH4-MDEA-H2O 

Solution, wt-% MDEA 45* 45* 

Feed gas:  

Flow rate, MMSCFD 

Temperature, 
o
C 

Acid gas, % mole 

Methane, % mole 

 

3.0* 

37* 

10* 

90* 

 

3.0* 

37* 

10* 

90* 

No. of Stages 5* 5* 

Pressure, bar 

Top 

Bottom 

 

59* 

60* 

 

59* 

60* 

Stage Efficiency, % 65* 65* 

Lean Solution analysis 

Temperature, 
o
C 

Loading, mole/mole amine 

 

38* 

0.0001* 

 

38* 

0.0001* 

Circulation rate 

Mole solvent/mole sour gas 

 

2.73* 

 

2.73* 

Acid gas recovery, % 99.33 99.51 

Rich Solution analysis 

Temperature, 
o
C 

Loading, mole/mole amine 

CH4, mole/mole amine 

 

61.83 

0.3306  

0.01843 

 

55.35   

0.3312  

0.01833 

Outlet gas 

Acid gas, % mole 

 

0.085 

 

0.059 

* indicate the specified values 
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Figure 5.11 to Figure 5.13 show the column profile of the two separation system. Figure 

5.11 shows the temperature profile along the column. The stage 0 is the inlet of feed sour 

gas. When the lean convent comes into contact with the gas at the top of the column, the 

heat is generated in the liquid phase due to the acid gas absorbed to the solvent. This heat 

raises the temperature of the liquid and causes further heat transfer to the gas. The liquid 

phase absorbs more acid gases from the gas phase when it moving down and the liquid 

temperature is increase. It can be seen that as the stage moving from the top to bottom, 

the temperature is increases and at the lowest part of the column, the temperature will 

extremely decreases (Kohl & Nielsen, 1997). The temperature “bulge” is a result of the 

cool inlet gas absorbing heat from rich solutions at the bottom of the column, then losing 

this heat to the cooler solution near to the upper part of the column (Kohl & Nielsen, 

1997). The stage temperature of the CO2 system is higher than that of the H2S. This is due 

to the higher heat of absorption of CO2 in aqueous MDEA solution compare to heat of 

absorption of H2S as been described in Section 5.4. 

 

Figure 5.12 illustrates the profile of the acid gas mole fraction in the gas phase. At the top 

of the column, the mole fraction of H2S is lower than that of CO2. This is due to the 

fraction of amine absorbed by the solvent is higher than that of CO2. H2S is react rapidly 

compare to CO2 in MDEA solvent. This is because H2S react simultaneously with MDEA 

by proton transfer. The CO2 reaction can only occur after the CO2 dissolves in the water 

to form a bicarbonate ion because MDEA is a tertiary amine and does not have hydrogen 

attached to the nitrogen (Savage & Funk, 1981). 
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Figure 5.11 Column temperature profile of CO2 and H2S absorption in MDEA solution 
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Figure 5.12 Profile of mole fraction of acid gas in gas phase for of CO2 and H2S 

absorption in MDEA solution 

 

The effect of MDEA concentration and solvent flow rate were analyzed to determine their 

influence on acid gas recovery. Percent acid gas recovery is amount of gas transferred to 

solvent relative to the initial amount of the gas in the feed. In this study, the feed gas 

contains 20% of acid gas and the number of stages is fixed at 5 stages. For the effect of 

MDEA concentration study, the flow rate of the solvent is 3.638 mole solvent/mole feed 

gas. For the effect of the flow rate study, the concentration of solvent is fixed at 45 wt% 

MDEA. Figure 5.13 shows the effect of MDEA concentration to the % recovery of CO2 

absorption and H2S absorption. The MDEA concentration was varied from 30 to 55 wt% 

MDEA. The concentration values were taken at the typical MDEA concentration used in 

industry. From Figure 5.13, it can be seen that recovery of the acid gas is increase by 

increasing the strength of solution. This is because more MDEA present in the liquid 

phase to react with the acid gas molecules. The higher H2S recovery than CO2 recovery is 

due to the H2S react rapidly compare to CO2. The results show that when the 

concentration increase from 30 to 55 wt% MDEA, the recovery of the CO2 increases by 

2.3%, while the recovery of H2S increases by 1.7%.  

 

For the effect of the flow rate study, the concentration of solvent is fixed at 45 wt% 

MDEA. The solvent flow rate was varied from 2.7 to 7.3 mole solvent/mole feed gas. 

Figure 5.14 shows that as the flow rate increases, the recovery of both gases increase. By 

increasing the flowrate of solvent, the more gases will transfer to the liquid phase.  As the 
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flow rate increases from 2.7 to 7.3 mole solvent/mole feed gas, the CO2 recovery was 

increased by 5.3%. While for H2S, it was increased by 5 %. 
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Figure 5.13 Effect of MDEA concentrations to the acid gas recovery 
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Figure 5.14 Effect of solvent flow rate to the acid gas recovery 

 

From the results and explaination above, generally, the simulation absorption on acid gas 

either CO2 or H2S from methane using aqueus MDEA solution show a good prediction of 

the behaviour of the system. The absorption column simulation was extended to the 

mixture of CO2 and H2S absorption from methane. A result on the system is explained in 

Section 5.7.   
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5.6 Mixture of CO2 and H2S Solubility in Aqueous MDEA Solvent 

 

In the real case of natural gas treatment, the gas feed usually contains not only CO2 but 

also H2S. The absorption process involves separating both gases. In this part, the 

solubility of mixture of the gases was analyzed. The experiment data on partial pressure 

of mixed acid gases in 35 wt-% MDEA solution system at 40
o
C was taken from Jou et.al 

(1993). The comparison of the experimental partial pressure and calculated partial 

pressure of CO2 and H2S are shown in Figure 5.15 and 5.16, respectively. The complete 

data for this work is shown in Appendix B1.  

 

The accuracy of the calculated partial pressure of CO2 and H2S are was found to be higher 

for partial pressure higher than 1 kPa compare to the partial pressure lower than 1 kPa.  

The relative errors for this range higher than 1 kPa are 38% for CO2 and 25% for H2S.  

Meanwhile, the relative errors for the low loading are 61.4% for CO2 and 60% for H2S. 

The total relative error for CO2 partial pressure is 45.8%, while for H2S is 30.7%. The low 

accuracy of the calculated partial pressure of CO2 in CO2-H2S-MDEA-H2O system is 

similar with the calculated partial pressure of CO2 in CO2-MDEA-H2O system. The 

inconsictency of the experimental data and the application of the KMDEA to the calculation 

of liquid phase composition are the main reasons of this low accuracy of the calculated 

partial pressure of CO2. The same phenomena exist in the calculated partial pressure of 

H2S in CO2-H2S-MDEA-H2O system with the calculated partial pressure of H2S in H2S-

MDEA-H2O system. A better accuracy of H2S partial pressure compare to CO2 is found.   

 

A study on the effect of the additional H2S loading to the partial pressure of CO2 for a 

variation of CO2 loading at the same condition above was also made. The H2S loading of 

0.34 was selected randomly from the Jou et al (1993) data. The result from the study is 

shown in Figure 5.17. The additional of H2S to the system increases the CO2 partial 

pressure required to achieve the same loading as the system without H2S, i.e, the 

solubility of CO2 decreases. The existence of another acid gas component in the system 

affects the solubility of the other acid gas.  
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Figure 5.15 Comparison of the calculated partial pressure of CO2 and experimental value 

for mixture of H2S and CO2 in aqueous MDEA solutions [Jou et al,1993] 
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Figure 5.16 Comparison of the calculated partial pressure of H2S and experimental value 

for mixture of H2S and CO2 in aqueous MDEA solutions [Jou et al,1993] 
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Figure 5.17 Effect of additional 0.34 H2S loading to the partial pressure of CO2 at the 

system of CO2-H2S-MDEA-H2O at 40
o
C and 35 wt-% MDEA solvent 

 

5.7 Sour Methane Treatment Containing Mixture CO2 and H2S 

 

In the previous methane treatment, the feed gas contains either acid gas component (CO2 

or H2S). In this section, the feed methane contains mixture of CO2 and H2S. Table 5.2 

displays the summary of the absorption simulation of mixture acid gases absorption using 

aqueous MDEA solvent. The simulation parameter and specification was not based on the 

experimental or industrial absorption column data. Feed gas contains 8 mole% CO2 and 8 

mole% H2S. The solvent concentration is 45 wt% MDEA. The number of stages was 

fixed to be 5 stages and the Murphree vapor efficiency for each of acid gas is 65%. The 

flow rate of the solvent is the same as previous single acid gas simulation, 2.73 mole 

solvent/mole feed gas.  

 

For a given specification above, the outlet gas contains 0.23 mole% CO2 and 0.085 

mole% H2S. These are equal to 97.37% CO2 recovery and 99.05% H2S recovery. For the 

same acid gas flow rate input, the outlet gas of H2S is much lower than that of CO2. 

Figures 5.19 shows profile of mole fraction of acid gas in gas phase for of CO2 and H2S 

absorption system using aqueous MDEA solution, while Figure 5.20 shows profile the 
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gases loading in the liquid phase in the absorption system. The figures show that the H2S 

mole fraction in the gas phase and H2S loading in liquid phase decreases faster than CO2 

from the bottom stage to the top. This is due to the H2S reacts faster than that of CO2. The 

fast H2S reaction with MDEA is because H2S react simultaneously with MDEA by proton 

transfer. The CO2 reaction can only occur after the CO2 dissolves in the water to form a 

bicarbonate ion (Savage & Funk, 1981).  

 

In Section 5.5, simulation on single acid gas absorption from methane has been given. For 

the 10 mole% of acid gas in the feed gas and 5 equilibrium stages fixed to the system, the 

mole fraction of CO2 in the gas product while 0.085 mole%, while H2S was 0.059 mole%. 

In this system, the 8 mole% of CO2 and 8 mole% of H2S exist in the feed gas. The same 

number of stages was used. The gas product in this simulation has higher percentage of 

acid gases (0.23 mole% CO2 and 0.085 mole% H2S) compare to the single acid gas 

absorption, even for a lower acid gases composition in the feed gas. This is because the 

existence of another acid gas component in the system decreses the solubility of the acid 

gas. The same phenomenon has been shown in Section 5.6.  
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Figure 5.18 Column temperature profile of mixture CO2 and H2S absorption system in 

aqueous MDEA solution 
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Figure 5.19 Profile of mole fraction of acid gas in gas phase for of CO2 and H2S 

absorption system in aqueous MDEA solution 
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Figure 5.20 Gases loading profile in liquid phase for mixture CO2 and H2S absorption 

system in aqueous MDEA solution 
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Table 5.2 Simulation results for mixture CO2 and H2S absorption from methane using 

MDEA solution 

Solution, wt-% MDEA 45 

Feed gas:  

Flow rate, MMSCFD 

Temperature, 
o
C 

CO2, % mole 

H2S, % mole 

CH2, % mole 

 

3.0* 

37* 

8* 

8* 

86* 

No. of Stages 5* 

Pressure, bar 

Top 

Bottom 

 

59* 

60* 

Stage Efficiency  

CO2, % 

H2S, % 

 

65* 

65* 

Lean Solution analysis 

Temperature, 
o
C 

CO2, mole/mole amine 

H2S, mole/mole amine 

 

38* 

0.0001* 

0.0001* 

Circulation rate 

Mole solvent/mole sour gas 

 

2.73* 

CO2 recovery, % 

H2S recovery, % 

97.37          

99.05 

Rich Solution analysis 

Temperature, 
o
C 

CO2, mole/mole amine 

H2S, mole/mole amine 

CH4, mole/mole amine 

 

71.1 

0.2592 

0.2637 

0.0281  

Outlet gas 

CO2, % mole 

H2S, % mole 

 

0.23 

0.085 

             * specified values 
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The partial pressure prediction of CO2 and H2S in the system of CO2-H2S-MDEA-H2O 

have been shown in Section 5.5 Generally, a good prediction of the partial pressure was 

given by the VLE model. The VLE model was extent to the absorption column 

calculation. In conclusion, behaviour of the acid gases absorption from methane using 

MDEA solution can be predicted finely from the calculation procedure given in Chapter 4. 

 

 

5.8 Summary 

 

In this chapter, the results on modeling and simulation of acid gases absorption from 

methane using aqueous MDEA solution have been described. The solubility prediction of 

single gas (CO2, H2S, and CH4) and mixture of gases (CO2 and H2S) in various strength 

of MDEA solvent have been given. Good results were obtained in the H2S and CH4 

partial pressure prediction. CO2 partial pressure prediction has relatively high error at the 

loading lower than 0.1 mole CO2/mole MDEA. Meanwhile, the partial pressure prediction 

for the CO2-H2S-MDEA-H2O has also a good agreement at high loading, but higher error 

was reported at low loading. The heat of absorption prediction of single acid gas in 

MDEA solvent were also has been given. The result was obtained satisfactory for CO2-

MDEA-H2O system, but relatively high error was found for H2S-MDEA-H2O system. 

The simulations on the CO2 or H2S absorption and mixture acid gases absorption from 

methane using aqueous MDEA solution based on the calculation procedure in Chapter 4 

have been given.  
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6 CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Conclusions 

 

The following conclusions can be drawn based on results of this study: 

1. The combination of the ElecGC model to describe the activity coefficient and 

Peng-Robinson equation of state to calculate the fugacity coefficient are capable 

to calculate the acid gases solubility in the aqueous methyldiethanol- amine 

solutions. For the system of CO2-MDEA-H2O, the model can predict finely the 

solubility at loading higher than 0.1 loading. Hence, for loading lower than 0.1 the 

predicted partial pressure has a relative error 84.7% with the published 

experimental data. In the other case, the model can predict precisely the H2S 

solubility in aqueous MDEA solvent. The predicted solubilities of CO2 and H2S 

for the system of CO2-H2S-MDEA-H2O have a good agreement with the 

published experimental data. 

2. The Astarita representation that was used to solve the reaction equilibriums and 

component balance equations in the liquid can be applied to calculate the liquid 

phase composition of the acid gases-MDEA solvent systems. In this study, the 

Astarita representation was applied CO2-MDEA-H2O system, H2S-MDEA-water 

system, and CO2-H2S-MDEA-H2O system.  

3. A rigorous stage by stage calculation procedure to predicting system of acid gases 

absorption from methane has been constructed. Moreover, the procedure was also 

capable to calculate the methane solubility in the solvent.  

4. The procedure has capability of predicting the temperature profile along the 

column, gas composition of each stage, and gases loading in liquid at every stage, 

for a given feed gas and solvent specification and also the number of stages. 
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6.2 Recommendations 

 

The following recommendations can be drawn based on results of this study: 

 

1. The reaction equilibrium constant for protonation of MDEA, KMDEA is an 

important value in calculating the acid gases solubility. There are various KMDEA 

equations reported in literature. Investigation to the effect of the different KMDEA 

is has to be done in order to get the better predicted value of acid gases in aqueous 

MDEA solution 

2. An improvement has to be made to the Astarita representation to be applied to the 

CO2 solubility at low loading. The solubility of acid gases at low loading is very 

important since the market demand on sweet gas product need the very low acid 

gases content. 

3. The simulation of the single acid gas or mixture acid gases absorption from 

methane is important to be performed at the real plant gas specification and the 

sweet gas product specification in order to perify the model adopted and the 

calculation procedure. According to Flemming et al (2006), the sweet gas product 

must have below 0.16 mole% of acid gases befor entering the pipeline. 

4. The application of another vapor-liquid equilibrium model is essential to be done. 

The model has to be able to predict the precisely the partial pressure of the single 

gas or mixture gases at low and high loading. 
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8 APPENDIX A 

PARAMETERS USED IN THE CALCULATION 

 

Table A.1 Group interaction parameters for Wu-Sandler  

amn 

n\m CO2 H2S CH4 H2O MDEA-I CH2OH 

CO2 0 204.0 0 491.14523 700 700 

H2S -463.98 0 0.0 514.7971 700.0 700.0 

CH4 0 0.0 0 10753.155 1000 -948.3506 

H2O 269.16452 595.962 -24466.4 0 58.0 -83.88 

MDEA-I 700 700.0 1000 6.985 0 -263.518 

CH2OH 700 700.0 1464.286 93.97 352.7907 0 

bmn 

n\m CO2 H2S CH4 H2O MDEA-I CH2OH 

CO2 0 -55019.8 0 0 0 0 

H2S 195020 0 0 0 0 0 

CH4 0 0 0 -749169.2371 0 0 

H2O 0 0 17010700 0 6.985007 0 

MDEA-I 0 0 0 -78637.4 0 168732.6 

CH2OH 0 0 0 0 -135875.0 0 

cmn 

n\m CO2 H2S CH4 H2O MDEA-I CH2OH 

CO2 0 0 0 0 0 0 

H2S 0 0 0 0 0 0 

CH4 0 0 0 72823200 0 0 

H2O 0 0 -2807710000 0 0 0 

MDEA-I 0 0 0 0 0 0 

CH2OH 0 0 0 0 0 0 

Ref : Lee (1996) 
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Table A.2 Parameter for water content calculation in methane  

T [
o
C] A1 A2 A3 

30 0.1303 -0.8963 3.5014 

40 0.1271 -0.9076 3.7344 

50 0.1192 -0.9080 3.9477 

60 0.1466 -0.9625 4.1613 

70 0.1643 -1.0060 4.3621 

80 0.1574 -1.0090 4.5423 

90 0.1740 -1.0528 4.7231 

100 0.1886 -1.1003 4.8955 

 

Table A.3 Parameter for water content calculation in carbon dioxide  

T [
o
C] A1 A2 A3 

30 0.3403 -1.1539 3.6697 

40 0.3115 -1.1640 3.9500 

50 0.3279 -1.1477 4.1907 

60 0.2682 -1.0738 4.3587 

70 0.2198 -1.0039 4.5247 

 

Table A.4 Parameter for water content calculation in hydrogen sulfide  

T [
o
C] A1 A2 A3 

30 0.2986 -0.7136 3.6280 

40 0.3294 -0.7720 3.8296 

50 0.3204 -0.8014 4.0300 

60 0.3306 -0.8218 4.2238 

70 0.3597 -0.9095 4.4543 
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Table A.6 Ionic Size used in MSA model and Born model 

Ion σ in MSA [Angstrom] σ in Born 

[Angstrom] 

HCO3
-
 0.57372177 + 5.4569945 I 

-0.45072176 
30.0 

CO3
2- 

2.8832274 + 9.151789 I 
-0.42580691 

30.0 

HS
-
 56.832343

2.2031963
1 56.832343*1.9785833* I

6.583458

1 6.583458*0.17106646* I

+
+

+
+

 

25.0 

S
2-

 3.1 12.0 

OH
- 

3.0 3.0 

H3O
+ 

3.0 7.0 

MDEAH
+ 

20.99086
0.74895748

1 20.99086*0.67916318* I

5.4487239

1 5.4487239*0.014791757 * I

− +
+

+
+

 

25.0 

I = ionic strength in mole/L 

n
2

i i

i

I 0.5 C z= ∑  

C is ion concentration in mole/L 

Ref : Lee (1996) 
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9 APPENDIX B 

SIMULATION RESULTS 

 

 

B.1 Solubility of gas mixture CO2-H2S in aqueous MDEA systems 

 

Table B.1 Simulation results for CO2-H2S solubility in MDEA-H2O system   

Loading 

Data 

Partial Pressure (kPa) 

Calculated 

Partial Pressure (kPa) 

CO2 H2S CO2 H2S CO2 H2S 

0.523 0.0769 23.9 3.7 44.97777 4.101484 

0.399 0.0678 15.1 2.45 19.28234 2.175206 

0.316 0.0784 11 2.51 10.97904 1.88972 

0.0813 0.0161 0.976 0.122 0.391912 0.077403 

0.0726 0.0356 0.919 0.258 0.380577 0.182192 

0.00101 0.448 0.0361 8.38 0.034875 11.2321 

0.00061 0.146 0.014 2.07 0.003762 0.849662 

0.00044 0.215 0.00621 4.3 0.004703 1.951269 

0.00076 0.143 0.0151 1.61 0.004559 0.814433 

0.00077 0.104 0.0174 1.06 0.002945 0.419943 

0.00129 0.0847 0.0188 0.734 0.003778 0.279931 

0.00074 0.0605 0.0144 0.437 0.001304 0.140135 

0.00668 0.0535 0.0727 0.348 0.012215 0.127345 

0.00819 0.064 0.0796 0.415 0.019585 0.183465 

0.00659 0.103 0.12 1.24 0.02752 0.444443 

0.00248 0.108 0.0498 1.15 0.010492 0.467622 

0.00654 0.36 0.228 10.4 0.167805 6.767861 

0.0068 0.49 0.193 12.9 0.308626 15.21735 

0.00179 0.699 0.14 48.9 0.192979 47.4979 

0.00259 0.811 0.264 76.6 0.484972 91.8174 

0.00452 0.873 0.661 97.1 1.215078 138.6273 
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0.0114 0.873 2.5 98 2.877701 138.8607 

0.047 0.266 1.05 5.12 0.912546 4.001117 

0.0126 0.746 1.02 59.1 1.605944 62.16524 

0.0489 0.815 9.4 86.6 11.06316 116.4848 

0.194 0.65 33.8 68.8 41.34254 86.83259 

0.516 0.304 70.2 31.8 108.66 39.18211 

0.649 0.127 88.8 13.9 114.1653 13.66885 

0.758 0.0863 97.4 6.34 201.1128 13.58702 

0.588 0.049 33.7 1.21 54.71281 2.921626 

0.455 0.0406 18.1 0.644 23.36791 1.416528 

0.375 0.0553 9.08 0.587 14.51929 1.502955 

0.154 0.16 3.43 2.09 3.250784 2.575799 

0.0958 0.341 2.16 7.88 3.304325 8.494784 

0.0201 0.715 1.65 53.4 2.300026 53.82683 

0.0007 0.882 0.0978 101 0.174141 138.4654 

0.00144 0.805 0.154 71.3 0.232328 83.82375 

0.00021 0.583 0.0153 27.5 0.01248 23.93489 

0.00017 0.303 0.00506 6.51 0.003028 4.238031 

0.00118 0.194 0.0279 2.96 0.010949 1.566885 

0.00093 0.047 0.0103 0.233 0.001122 0.08472 

0.00118 0.0241 0.00559 0.0641 0.000523 0.023228 

0.00554 0.0167 0.0227 0.0323 0.002415 0.016024 

0.021 0.0166 0.111 0.0401 0.025148 0.030077 

0.788 0.0101 101 0.743 163.4489 1.256451 

0.0205 0.366 0.719 10.19 0.548443 7.301364 

0.0307 0.353 1.099 9.7 0.816271 6.999774 

0.0318 0.355 1.207 10.46 0.857656 7.128259 

0.0388 0.352 1.618 10.42 1.069348 7.202176 

0.0775 0.339 3.271 10.92 2.43501 7.77696 

0.0673 0.358 2.824 11.56 2.18108 8.448227 

0.0873 0.343 3.417 10.85 2.919076 8.314646 

0.102 0.341 4.213 11.25 3.619492 8.710294 
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0.249 0.355 14.53 16.97 17.79928 16.9864 

0.291 0.331 19.09 18.72 22.72536 17.13622 

0.31 0.31 20.46 17.46 24.201 16.02195 

0.26 0.321 14.88 15.33 17.04644 14.17535 

0.226 0.346 13.17 16.68 14.10199 14.63543 

0.168 0.338 8.695 13.23 7.901272 11.08872 

0.0273 0.2 0.457 2.71 0.326037 1.989744 

0.0324 0.197 0.719 3.16 0.394404 1.991262 

0.0533 0.204 1.35 3.85 0.78014 2.407143 

0.0756 0.236 2.16 5 1.489881 3.591585 

0.0908 0.23 2.67 5.14 1.890257 3.668374 

0.112 0.214 3.19 4.5 2.424535 3.52806 

0.127 0.219 3.95 5.19 3.03924 3.938355 

0.164 0.209 5.44 5.47 4.51073 4.240395 

0.178 0.193 5.45 4.41 4.8952 3.912415 

0.218 0.209 7.81 5.84 7.700524 5.280858 

0.252 0.208 9.34 6.01 10.30273 5.980389 

0.27 0.177 9.42 4.9 10.58671 4.896019 

0.242 0.222 9.51 6.5 10.00203 6.449814 

0.237 0.192 7.65 4.91 8.519221 4.922353 

0.199 0.149 4.61 3.32 5.029042 2.800769 

0.184 0.161 4.17 3.91 4.547483 2.969887 

0.594 0.00351 28.7 0.139 47.43502 0.181655 

0.591 0.0118 28.9 0.609 48.13136 0.621911 

0.612 0.0623 39 4.49 66.92392 4.307841 

0.506 0.0836 21.7 4.17 37.8564 4.099286 

0.42 0.076 14.3 2.81 21.2731 2.62446 

0.539 0.117 31.9 8.12 53.16 7.388479 

0.537 0.0947 24.1 4.99 47.96925 5.456883 

0.498 0.0752 16.9 2.92 34.88272 3.472472 

0.342 0.0473 7.55 1.06 11.1112 1.101432 

0.349 0.0584 9.43 1.52 12.21044 1.452088 
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0.599 0.0865 20.3 3.46 68.33602 6.227773 

0.709 0.0702 91.5 7.68 129.5768 7.797233 

0.679 0.0525 89.7 5.92 97.67173 4.666594 

0.658 0.0435 53.3 3.28 82.1929 3.393483 

0.556 0.0369 33.7 2 42.97663 1.858076 
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B.2 Summary of the stages specification for CO2 absorption  

 

=========================================== 

          STAGE 1 DATA COMPILATION 

  

     Temperature of stage = 334.9815 K 

  

     Partial pressure of gas entering stage 

             CO2 = 4.5769 bar  (or 0.09985 mole fraction) 

             CH4 = 48.351 bar  (or 0.89865 mole fraction) 

             H2O = 0.048678 bar  (or 0.001498 mole fraction) 

  

     Partial pressure of gas leaving stage 

             CO2 = 2.4033 bar  (or 0.048961 mole fraction) 

             CH4 = 52.3423 bar  (or 0.94607 mole fraction) 

             H2O = 0.18614 bar  (or 0.0049663 mole fraction) 

  

     Flow rate gas out = 2463.3272 mole/s 

     Flow rate gas in  = 2594.1784 mole/s 

  

     Solvent circulation rate = 2.7795 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             CO2 = 0.1527 mole/mole amine  

             CH4 = 0.01743 mole/mole amine  

  

     Loading of amine solution leaving stage 

             CO2 = 0.33059 mole/mole amine  

             CH4 = 0.018428 mole/mole amine  

=========================================== 

  

 

 

 

============================================== 

          STAGE 2 DATA COMPILATION 

  

     Temperature of stage = 325.8015 K 

  

     Partial pressure of gas entering stage 

             CO2 = 2.4033 bar  (or 0.048961 mole fraction) 

             CH4 = 52.3423 bar  (or 0.94607 mole fraction) 

             H2O = 0.18614 bar  (or 0.0049663 mole fraction) 

  

     Partial pressure of gas leaving stage 

             CO2 = 0.90058 bar  (or 0.018739 mole fraction) 

             CH4 = 53.3859 bar  (or 0.97771 mole fraction) 

             H2O = 0.12875 bar  (or 0.0035546 mole fraction) 

  

     Flow rate gas out = 2383.3221 mole/s 

     Flow rate gas in  = 2463.3272 mole/s 

  

     Solvent circulation rate = 2.8947 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             CO2 = 0.055111 mole/mole amine  

             CH4 = 0.017047 mole/mole amine  

  

     Loading of amine solution leaving stage 

             CO2 = 0.1527 mole/mole amine  

             CH4 = 0.01743 mole/mole amine  

============================================== 
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=========================================== 

          STAGE 3 DATA COMPILATION 

  

     Temperature of stage = 317.1415 K 

  

     Partial pressure of gas entering stage 

             CO2 = 0.90058 bar  (or 0.018739 mole fraction) 

             CH4 = 53.3859 bar  (or 0.97771 mole fraction) 

             H2O = 0.12875 bar  (or 0.0035546 mole fraction) 

  

     Partial pressure of gas leaving stage 

             CO2 = 0.3181 bar  (or 0.0067705 mole fraction) 

             CH4 = 53.3865 bar  (or 0.99075 mole fraction) 

             H2O = 0.086279 bar  (or 0.0024753 mole fraction) 

  

     Flow rate gas out = 2351.9147 mole/s 

     Flow rate gas in  = 2383.3221 mole/s 

  

     Solvent circulation rate = 2.9787 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             CO2 = 0.018184 mole/mole amine  

             CH4 = 0.017022 mole/mole amine  

  

     Loading of amine solution leaving stage 

             CO2 = 0.055111 mole/mole amine  

             CH4 = 0.017047 mole/mole amine  

=========================================== 

  

 

 

 

============================================== 

          STAGE 4 DATA COMPILATION 

  

     Temperature of stage = 312.6715 K 

  

     Partial pressure of gas entering stage 

             CO2 = 0.3181 bar  (or 0.0067705 mole fraction) 

             CH4 = 53.3865 bar  (or 0.99075 mole fraction) 

             H2O = 0.086279 bar  (or 0.0024753 mole fraction) 

  

     Partial pressure of gas leaving stage 

             CO2 = 0.11147 bar  (or 0.0024042 mole fraction) 

             CH4 = 53.2196 bar  (or 0.99557 mole fraction) 

             H2O = 0.069158 bar  (or 0.0020281 mole fraction) 

  

     Flow rate gas out = 2340.5087 mole/s 

     Flow rate gas in  = 2351.9147 mole/s 

  

     Solvent circulation rate = 3.0136 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             CO2 = 0.0049533 mole/mole amine  

             CH4 = 0.016978 mole/mole amine  

  

     Loading of amine solution leaving stage 

             CO2 = 0.018184 mole/mole amine  

             CH4 = 0.017022 mole/mole amine  

============================================== 
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=========================================== 

          STAGE 5 DATA COMPILATION 

  

     Temperature of stage = 310.9315 K 

  

     Partial pressure of gas entering stage 

             CO2 = 0.11147 bar  (or 0.0024042 mole fraction) 

             CH4 = 53.2196 bar  (or 0.99557 mole fraction) 

             H2O = 0.069158 bar  (or 0.0020281 mole fraction) 

  

     Partial pressure of gas leaving stage 

             CO2 = 0.039019 bar  (or 0.00084886 mole fraction) 

             CH4 = 52.9301 bar  (or 0.99727 mole fraction) 

             H2O = 0.063311 bar  (or 0.0018769 mole fraction) 

  

     Flow rate gas out = 2340.5087 mole/s 

     Flow rate gas in  = 2351.9147 mole/s 

  

     Solvent circulation rate = 3.0136 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             CO2 = 0.0001 mole/mole amine  

  

     Loading of amine solution leaving stage 

             CO2 = 0.0049533 mole/mole amine  

             CH4 = 0.016978 mole/mole amine  
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B.3 Summary of the stages specification for H2S absorption 

 

=========================================== 

          STAGE 1 DATA COMPILATION 

  

     Temperature of stage = 328.4963 K 

  

     Partial pressure of gas entering stage 

             H2S = 4.1295 bar  (or 0.099837 mole fraction) 

             CH4 = 48.3807 bar  (or 0.89854 mole fraction) 

             H2O = 0.051978 bar  (or 0.0016258 mole fraction) 

  

     Partial pressure of gas leaving stage 

             H2S = 1.6366 bar  (or 0.036721 mole fraction) 

             CH4 = 52.6439 bar  (or 0.95949 mole fraction) 

             H2O = 0.13792 bar  (or 0.00379 mole fraction) 

  

     Flow rate gas out = 2456.8008 mole/s 

     Flow rate gas in  = 2624.4155 mole/s 

  

     Solvent circulation rate = 2.7666 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             H2S = 0.11265 mole/mole amine  

             CH4 = 0.017233 mole/mole amine  

  

     Loading of amine solution leaving stage 

             H2S = 0.33116 mole/mole amine  

             CH4 = 0.018327 mole/mole amine  

=========================================== 

 

 

 

 

============================================== 

          STAGE 2 DATA COMPILATION 

  

     Temperature of stage = 319.6163 K 

  

     Partial pressure of gas entering stage 

             H2S = 1.6366 bar  (or 0.036721 mole fraction) 

             CH4 = 52.6439 bar  (or 0.95949 mole fraction) 

             H2O = 0.13792 bar  (or 0.00379 mole fraction) 

  

     Partial pressure of gas leaving stage 

             H2S = 0.58165 bar  (or 0.013343 mole fraction) 

             CH4 = 53.3542 bar  (or 0.98392 mole fraction) 

             H2O = 0.096335 bar  (or 0.0027356 mole fraction) 

  

     Flow rate gas out = 2395.6506 mole/s 

     Flow rate gas in  = 2456.8008 mole/s 

  

     Solvent circulation rate = 2.9305 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             H2S = 0.03867 mole/mole amine  

             CH4 = 0.017053 mole/mole amine  

  

     Loading of amine solution leaving stage 

             H2S = 0.11265 mole/mole amine  

             CH4 = 0.017233 mole/mole amine  

============================================== 
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=========================================== 

          STAGE 3 DATA COMPILATION 

  

     Temperature of stage = 314.4463 K 

  

     Partial pressure of gas entering stage 

             H2S = 0.58165 bar  (or 0.013343 mole fraction) 

             CH4 = 53.3542 bar  (or 0.98392 mole fraction) 

             H2O = 0.096335 bar  (or 0.0027356 mole fraction) 

  

     Partial pressure of gas leaving stage 

             H2S = 0.20426 bar  (or 0.0047594 mole fraction) 

             CH4 = 53.3927 bar  (or 0.99304 mole fraction) 

             H2O = 0.075592 bar  (or 0.0021961 mole fraction) 

  

     Flow rate gas out = 2373.6132 mole/s 

     Flow rate gas in  = 2395.6506 mole/s 

  

     Solvent circulation rate = 2.9961 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             H2S = 0.012419 mole/mole amine  

             CH4 = 0.017018 mole/mole amine  

  

     Loading of amine solution leaving stage 

             H2S = 0.03867 mole/mole amine  

             CH4 = 0.017053 mole/mole amine  

=========================================== 

 

 

 

 

============================================== 

          STAGE 4 DATA COMPILATION 

  

     Temperature of stage = 312.2263 K 

  

     Partial pressure of gas entering stage 

             H2S = 0.20426 bar  (or 0.0047594 mole fraction) 

             CH4 = 53.3927 bar  (or 0.99304 mole fraction) 

             H2O = 0.075592 bar  (or 0.0021961 mole fraction) 

  

     Partial pressure of gas leaving stage 

             H2S = 0.071549 bar  (or 0.0016811 mole fraction) 

             CH4 = 53.279 bar  (or 0.99633 mole fraction) 

             H2O = 0.067765 bar  (or 0.0019909 mole fraction) 

  

     Flow rate gas out = 2365.7893 mole/s 

     Flow rate gas in  = 2373.6132 mole/s 

  

     Solvent circulation rate = 3.0206 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             H2S = 0.0031216 mole/mole amine  

             CH4 = 0.017017 mole/mole amine  

  

     Loading of amine solution leaving stage 

             H2S = 0.012419 mole/mole amine  

             CH4 = 0.017018 mole/mole amine  

============================================== 
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=========================================== 

          STAGE 5 DATA COMPILATION 

  

     Temperature of stage = 311.4763 K 

  

     Partial pressure of gas entering stage 

             H2S = 0.071549 bar  (or 0.0016811 mole fraction) 

             CH4 = 53.279 bar  (or 0.99633 mole fraction) 

             H2O = 0.067765 bar  (or 0.0019909 mole fraction) 

  

     Partial pressure of gas leaving stage 

             H2S = 0.025114 bar  (or 0.00059325 mole fraction) 

             CH4 = 53.061 bar  (or 0.99748 mole fraction) 

             H2O = 0.065058 bar  (or 0.001922 mole fraction) 

  

     Flow rate gas out = 2365.7893 mole/s 

     Flow rate gas in  = 2373.6132 mole/s 

  

     Solvent circulation rate = 3.0206 mole/mole feed gas 

  

     Loading of amine solution entering stage 

             H2S = 0.0001 mole/mole amine  

  

     Loading of amine solution leaving stage 

             H2S = 0.0031216 mole/mole amine  

             CH4 = 0.017017 mole/mole amine  

=========================================== 
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B4. Summary of the stages specification for mixture CO2-H2S absorption 

 

=========================================== 

          STAGE 1 DATA COMPILATION 

  

     Temperature of stage = 344.2934 K 

     Partial pressure of gas entering stage 

             CO2 = 3.6301 bar  (or 0.07987 mole fraction) 

             H2S = 3.2823 bar  (or 0.07987 mole fraction) 

             CH4 = 45.1942 bar  (or 0.83863 mole fraction) 

             H2O = 0.051359 bar  (or 0.0016279 mole fraction) 

     Partial pressure of gas leaving stage 

             CO2 = 3.8029 bar  (or 0.076913 mole fraction) 

             H2S = 1.849 bar  (or 0.040368 mole fraction) 

             CH4 = 48.5369 bar  (or 0.87585 mole fraction) 

             H2O = 0.26158 bar  (or 0.0068695 mole fraction) 

     Flow rate gas out = 2539.885 mole/s 

     Flow rate gas in  = 2650.5948 mole/s 

     Solvent circulation rate = 2.849 mole/mole feed gas 

     Loading of amine solution entering stage 

             CO2 = 0.23766 mole/mole amine  

             H2S = 0.12635 mole/mole amine  

             CH4 = 0.03022 mole/mole amine  

     Loading of amine solution leaving stage 

             CO2 = 0.25922 mole/mole amine  

             H2S = 0.26371 mole/mole amine  

             CH4 = 0.028105 mole/mole amine  

=========================================== 

  

 

============================================== 

          STAGE 2 DATA COMPILATION 

  

     Temperature of stage = 340.3634 K 

     Partial pressure of gas entering stage 

             CO2 = 3.8029 bar  (or 0.076913 mole fraction) 

             H2S = 1.849 bar  (or 0.040368 mole fraction) 

             CH4 = 48.5369 bar  (or 0.87585 mole fraction) 

             H2O = 0.26158 bar  (or 0.0068695 mole fraction) 

     Partial pressure of gas leaving stage 

             CO2 = 2.2607 bar  (or 0.04588 mole fraction) 

             H2S = 0.80016 bar  (or 0.017513 mole fraction) 

             CH4 = 51.3983 bar  (or 0.93045 mole fraction) 

             H2O = 0.23385 bar  (or 0.0061557 mole fraction) 

     Flow rate gas out = 2392.0266 mole/s 

     Flow rate gas in  = 2539.885 mole/s 

     Solvent circulation rate = 2.915 mole/mole feed gas 

     Loading of amine solution entering stage 

             CO2 = 0.13002 mole/mole amine  

             H2S = 0.050105 mole/mole amine  

             CH4 = 0.031613 mole/mole amine  

     Loading of amine solution leaving stage 

             CO2 = 0.23766 mole/mole amine  

             H2S = 0.12635 mole/mole amine  

             CH4 = 0.03022 mole/mole amine  

============================================== 
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=========================================== 

          STAGE 3 DATA COMPILATION 

  

     Temperature of stage = 327.2534 K 

     Partial pressure of gas entering stage 

             CO2 = 2.2607 bar  (or 0.04588 mole fraction) 

             H2S = 0.80016 bar  (or 0.017513 mole fraction) 

             CH4 = 51.3983 bar  (or 0.93045 mole fraction) 

             H2O = 0.23385 bar  (or 0.0061557 mole fraction) 

     Partial pressure of gas leaving stage 

             CO2 = 0.8583 bar  (or 0.01789 mole fraction) 

             H2S = 0.29202 bar  (or 0.0065875 mole fraction) 

             CH4 = 52.8591 bar  (or 0.97176 mole fraction) 

             H2O = 0.13675 bar  (or 0.0037665 mole fraction) 

     Flow rate gas out = 2291.4044 mole/s 

     Flow rate gas in  = 2392.0266 mole/s 

     Solvent circulation rate = 3.0531 mole/mole feed gas 

     Loading of amine solution entering stage 

             CO2 = 0.043563 mole/mole amine  

             H2S = 0.01641 mole/mole amine  

             CH4 = 0.032899 mole/mole amine  

     Loading of amine solution leaving stage 

             CO2 = 0.13002 mole/mole amine  

             H2S = 0.050105 mole/mole amine  

             CH4 = 0.031613 mole/mole amine  

=========================================== 

  

 

 

 

 

 

============================================== 

          STAGE 4 DATA COMPILATION 

  

     Temperature of stage = 316.8934 K 

     Partial pressure of gas entering stage 

             CO2 = 0.8583 bar  (or 0.01789 mole fraction) 

             H2S = 0.29202 bar  (or 0.0065875 mole fraction) 

             CH4 = 52.8591 bar  (or 0.97176 mole fraction) 

             H2O = 0.13675 bar  (or 0.0037665 mole fraction) 

     Partial pressure of gas leaving stage 

             CO2 = 0.30277 bar  (or 0.0064757 mole fraction) 

             H2S = 0.10294 bar  (or 0.0023921 mole fraction) 

             CH4 = 52.9986 bar  (or 0.98868 mole fraction) 

             H2O = 0.085018 bar  (or 0.0024489 mole fraction) 

     Flow rate gas out = 2252.8508 mole/s 

     Flow rate gas in  = 2291.4044 mole/s 

     Solvent circulation rate = 3.1704 mole/mole feed gas 

     Loading of amine solution entering stage 

             CO2 = 0.010363 mole/mole amine  

             H2S = 0.0042058 mole/mole amine  

             CH4 = 0.03374 mole/mole amine  

     Loading of amine solution leaving stage 

             CO2 = 0.043563 mole/mole amine  

             H2S = 0.01641 mole/mole amine  

             CH4 = 0.032899 mole/mole amine  

============================================== 
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=========================================== 

          STAGE 5 DATA COMPILATION 

  

     Temperature of stage = 312.2134 K 

     Partial pressure of gas entering stage 

             CO2 = 0.30277 bar  (or 0.0064757 mole fraction) 

             H2S = 0.10294 bar  (or 0.0023921 mole fraction) 

             CH4 = 52.9986 bar  (or 0.98868 mole fraction) 

             H2O = 0.085018 bar  (or 0.0024489 mole fraction) 

     Partial pressure of gas leaving stage 

             CO2 = 0.10602 bar  (or 0.0022981 mole fraction) 

             H2S = 0.03607 bar  (or 0.00085102 mole fraction) 

             CH4 = 52.9116 bar  (or 0.99486 mole fraction) 

             H2O = 0.067544 bar  (or 0.0019901 mole fraction) 

     Flow rate gas out = 2252.8508 mole/s 

     Flow rate gas in  = 2291.4044 mole/s 

     Solvent circulation rate = 3.1704 mole/mole feed gas 

     Loading of amine solution entering stage 

             CO2 = 0.0001 mole/mole amine  

             H2S = 0.0001 mole/mole amine  

     Loading of amine solution leaving stage 

             CO2 = 0.010363 mole/mole amine  

             H2S = 0.0042058 mole/mole amine  

             CH4 = 0.03374 mole/mole amine  

===========================================
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10 APPENDIX C 

SAMPLE OF MATLAB CODE 

 

 

CO2 solubility calculation 
 

Main Matlab M-file Routine 
 

clc 
clear all 
T = 40+273.15; 
cw = 1000/18; % mol/L 
K1 = exp(132.899-13445.9/T-22.4773*log(T)); 
K2 = 1/cw*exp(231.465-12092.1/T-36.7816*log(T)); 
K3 = exp(216.049-12431.7/T-35.4819*log(T)); 
K4 = exp(-46.086-4756.9/T+6.4268*log(T)); % by posey 
Kc1 = K3/K4; 
Kabs = K2/K4; 
%1=H2O 
%2=MDEA 
massfrac = [1-0.2354605 0.2354605]; % T = 40 
%massfrac = [1-0.239318 0.239318]; % T = 70 
%massfrac = [1-0.244695 0.244695]; % T = 100 
ys = input('ys = '); %0.1; 
% ======== cons_water calculation ========== 
%----------Density of aqueous MDEA ------ 
MR = [18.02 119.2]; 
density = densityMDEAalghawas(T,massfrac); 
density = density*1000; % in kg/m3 
mass_solvent = 1000; % g 
volume_solvent = mass_solvent/density; % L 
mol_MDEA = massfrac(2)*mass_solvent/MR(2); 
mol_H2O = massfrac(1)*mass_solvent/MR(1); 
cons_MDEA = mol_MDEA/volume_solvent 
cons_water = mol_H2O/volume_solvent; 

  
%=========================================== 
m = cons_MDEA; % concentrasi MDEA total mol/L 
cacing(1) = (Kc1*m+m*ys-m*sqrt(Kc1^2+6*Kc1*ys+ys^2-

4*Kc1^2*ys+4*Kc1^2*ys^2-4*Kc1*ys^2))/(2*(Kc1-1)); 
cacing(2) = (Kc1*m+m*ys+m*sqrt(Kc1^2+6*Kc1*ys+ys^2-

4*Kc1^2*ys+4*Kc1^2*ys^2-4*Kc1*ys^2))/(2*(Kc1-1)); 

 
mys = m*ys; 
mymin = m*(1-ys); 
if cacing(1)>=0 & cacing(1)<=mys & cacing(1)<=mymin 
    jawab = cacing(1); 
else if cacing(2)>=0 & cacing(2)<=mys & cacing(2)<=mymin 
    jawab = cacing(2); 
    end 
end 
B1 = m*(1-ys)-jawab; 
B2 = m*ys+jawab; 
B3 = m*ys-jawab; 
B4 = jawab; 
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jawab; 
 

C1 = (cons_water-2*B3-3*B4+B2)/(1+2*B2*K4/B1); % newest set 
A = B2*B3/B1/C1/Kabs; 
C2 = K4*B2*C1/B1; 
%C2 = K3*B3*C1/B4; 
C3 = K1*C1^2/C2; 

 
cons(1) = A; 
cons(2) = C1; 
cons(3) = B1; 
cons(4) = C3; 
cons(5) = C2; 
cons(6) = B3; 
cons(7) = B4; 
cons(8) = B2; 
cons'; 

  
for i = 1:8 
    moli(i) = cons(i)*volume_solvent; 
end 
moli; 
mol_tot = sum(moli); 
xt(1) = moli(1)/mol_tot; 
xt(2) = moli(2)/mol_tot; 
xt(3) = moli(3)/mol_tot; 
xt(4) = moli(4)/mol_tot; 
xt(5) = moli(5)/mol_tot; 
xt(6) = moli(6)/mol_tot; 
xt(7) = moli(7)/mol_tot; 
xt(8) = moli(8)/mol_tot; 
format long g 

  
x_tot = sum(xt); 
gamma= GAMMA_ELECGC(xt,T,mol_tot,volume_solvent,massfrac); 
gammai = gamma; 
 

Kc1app = Kc1/(gammai(8)*gammai(7)/(gammai(3)*gammai(6))); 
Kabsapp = Kabs/(gammai(8)*gammai(6)/(gammai(1)*gammai(3)*gammai(2))); 
K1app = K1/(gammai(5)*gammai(4)/(gammai(2)*gammai(2))); 
K2app = K2/(gammai(6)*gammai(5)/(gammai(1)*gammai(2)*gammai(2))); 
K3app = K3/(gammai(7)*gammai(5)/(gammai(6)*gammai(2))); 
K4app = K4/(gammai(5)*gammai(3)/(gammai(2)*gammai(8))); 

  
cacing(1) = (Kc1app*m+m*ys-m*sqrt(Kc1app^2+6*Kc1app*ys+ys^2-

4*Kc1app^2*ys+4*Kc1app^2*ys^2-4*Kc1app*ys^2))/(2*(Kc1app-1)); 
cacing(2) = (Kc1app*m+m*ys+m*sqrt(Kc1app^2+6*Kc1app*ys+ys^2-

4*Kc1app^2*ys+4*Kc1app^2*ys^2-4*Kc1app*ys^2))/(2*(Kc1app-1)); 

  
if cacing(1)>=0 & cacing(1)<=mys & cacing(1)<=mymin 
    jawab = cacing(1); 
else if cacing(2)>=0 & cacing(2)<=mys & cacing(2)<=mymin 
    jawab = cacing(2); 
    end 
end 
B1 = m*(1-ys)-jawab; 
B2 = m*ys+jawab; 
B3 = m*ys-jawab; 
B4 = jawab; 
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C1 = (cons_water-2*B3-3*B4+B2)/(1+2*B2*K4app/B1); % newest set 
A = B2*B3/B1/C1/Kabsapp; 
C2 = K4app*B2*C1/B1; 
C3 = K1app*C1^2/C2; 
 

cons(1) = A; 
cons(2) = C1; 
cons(3) = B1; 
cons(4) = C3; 
cons(5) = C2; 
cons(6) = B3; 
cons(7) = B4; 
cons(8) = B2; 
cons'; 
for i = 1:8 
    moli(i) = cons(i)*volume_solvent; 
end 
moli; 
mol_tot = sum(moli); 
xt_old = xt'; 
xt(1) = moli(1)/mol_tot; 
xt(2) = moli(2)/mol_tot; 
xt(3) = moli(3)/mol_tot; 
xt(4) = moli(4)/mol_tot; 
xt(5) = moli(5)/mol_tot; 
xt(6) = moli(6)/mol_tot; 
xt(7) = moli(7)/mol_tot; 
xt(8) = moli(8)/mol_tot; 
format long g 
xt'; 

  
tolerance = 1e-10; 
deltax = abs(xt_old(1)-xt(1))+abs(xt_old(2)-xt(2))+abs(xt_old(3)-

xt(3))+abs(xt_old(4)-xt(4))+abs(xt_old(5)-xt(5))+abs(xt_old(6)-

xt(6))+abs(xt_old(7)-xt(7))+abs(xt_old(8)-xt(8)); 

  
while deltax > tolerance 
    x_tot = sum(xt); 
    gamma = GAMMA_ELECGC(xt,T,mol_tot,volume_solvent,massfrac); 
    gammai = gamma; 
    Kc1app = Kc1/(gammai(8)*gammai(7)/(gammai(3)*gammai(6))); 
    Kabsapp = 

Kabs/(gammai(8)*gammai(6)/(gammai(1)*gammai(3)*gammai(2))); 
    K1app = K1/(gammai(5)*gammai(4)/(gammai(2)*gammai(2))); 
    K2app = K2/(gammai(6)*gammai(5)/(gammai(1)*gammai(2)*gammai(2))); 
    K3app = K3/(gammai(7)*gammai(5)/(gammai(6)*gammai(2))); 
    K4app = K4/(gammai(5)*gammai(3)/(gammai(2)*gammai(8))); 

  
    cacing(1) = (Kc1app*m+m*ys-m*sqrt(Kc1app^2+6*Kc1app*ys+ys^2-

4*Kc1app^2*ys+4*Kc1app^2*ys^2-4*Kc1app*ys^2))/(2*(Kc1app-1)); 
    cacing(2) = (Kc1app*m+m*ys+m*sqrt(Kc1app^2+6*Kc1app*ys+ys^2-

4*Kc1app^2*ys+4*Kc1app^2*ys^2-4*Kc1app*ys^2))/(2*(Kc1app-1)); 

  
    if cacing(1)>=0 & cacing(1)<=mys & cacing(1)<=mymin 
        jawab = cacing(1); 
    else if cacing(2)>=0 & cacing(2)<=mys & cacing(2)<=mymin 
        jawab = cacing(2); 
        end 
    end 
    B1 = m*(1-ys)-jawab; 
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    B2 = m*ys+jawab; 
    B3 = m*ys-jawab; 
    B4 = jawab; 

     
    C1 = (cons_water-2*B3-3*B4+B2)/(1+2*B2*K4app/B1); % newest set 
    A = B2*B3/B1/C1/Kabsapp; 
    C2 = K4app*B2*C1/B1; 
    C3 = K1app*C1^2/C2; 

     
    cons(1) = A; 
    cons(2) = C1; 
    cons(3) = B1; 
    cons(4) = C3; 
    cons(5) = C2; 
    cons(6) = B3; 
    cons(7) = B4; 
    cons(8) = B2; 
    cons'; 
    for i = 1:8 
        moli(i) = cons(i)*volume_solvent; 
    end 
    moli; 
    mol_tot = sum(moli); 
    xt_old = xt'; 
    xt(1) = moli(1)/mol_tot; 
    xt(2) = moli(2)/mol_tot; 
    xt(3) = moli(3)/mol_tot; 
    xt(4) = moli(4)/mol_tot; 
    xt(5) = moli(5)/mol_tot; 
    xt(6) = moli(6)/mol_tot; 
    xt(7) = moli(7)/mol_tot; 
    xt(8) = moli(8)/mol_tot; 
    format long g 
    xt'; 
    deltax = abs(xt_old(1)-xt(1))+abs(xt_old(2)-xt(2))+abs(xt_old(3)-

xt(3))+abs(xt_old(4)-xt(4))+abs(xt_old(5)-

xt(5))+abs(xt_old(6)-xt(6))+abs(xt_old(7)-

xt(7))+abs(xt_old(8)-xt(8)); 
end 
 

xt'; 
loading = (ys*m+A)/m; 
[H_CO2 H_CH4] = HENRY_NG_water_MDEA2(T); 
fug_gas = [1 1]; 
poynting_solute = [1 1]; 
poynting_solvent = [1 1]; 
Ppar(1) = xt(1)*gammai(1)*H_CO2*poynting_solute(1); 
Ppar(2) = xt(2)*gammai(2)*poynting_solvent(1); % bar 
P = Ppar(1)/fug_gas(1)+Ppar(2)/fug_gas(2); 
y_gas = [Ppar(1)/P/fug_gas(1) Ppar(2)/P/fug_gas(2)] 
Pold=P; 
fug_gas = PR_NG_MDEA_CO2_H2O(y_gas,P,T) 
poynting_solute = poynting_solute_MDEA(T,P); 
poynting_solvent = poynting_solvent_MDEA(T,P); 
Ppar(1) = xt(1)*gammai(1)*H_CO2*poynting_solute(1); 
Ppar(2) = xt(2)*gammai(2)*poynting_solvent(1) % bar; 
P = Ppar(1)/fug_gas(1)+Ppar(2)/fug_gas(2) 
y_gas = [Ppar(1)/P/fug_gas(1) Ppar(2)/P/fug_gas(2)]; 
delta = (Pold-P)/(P); 
 

while abs(delta) > 0.001 
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    Pold=P; 
    fug_gas = PR_NG_MDEA_CO2_H2O(y_gas,P,T); 
    poynting_solute = poynting_solute_MDEA(T,P); 
    poynting_solvent = poynting_solvent_MDEA(T,P); 
    Ppar(1) = xt(1)*gammai(1)*H_CO2*poynting_solute(1); 
    Ppar(2) = xt(2)*gammai(2)*poynting_solvent(1); % bar 
    P = Ppar(1)/fug_gas(1)+Ppar(2)/fug_gas(2); 
    y_gas = [Ppar(1)/P/fug_gas(1) Ppar(2)/P/fug_gas(2)]; 
    delta = (Pold-P)/(P) 
end 
CS(1) = Ppar(1)*100; 
CS(2) = loading; 
CS(3) = ys; 
CS' 

 

 

M-file densityMDEAalghawas 
 

function density_MDEA = densityMDEAalghawas(T,massfrac) 
wMDEA = massfrac(2); 
T; 
Kd1 = 0.715929+0.395951*wMDEA+0.927974*wMDEA^2-0.794931*wMDEA^3; 
Kd2 = 2.13799e-3-1.98173e-3*wMDEA-3.87553e-3*wMDEA^2+3.04228e-3*wMDEA^3; 
Kd3 = -4.00972e-6+3.07038e-6*wMDEA+3.58483e-6*wMDEA^2-2.70947e-

6*wMDEA^3; 
density_MDEA = Kd1+Kd2*T+Kd3*T^2; %in kg/L 

 

 

M-file GAMMA_ELECGC 
 
function gamma = GAMMA_ELECGC(xi,T,mol_tot,volume_solvent,massfrac) 
% System CO2-H2O-MDEA 
%======================== 
% 1 = CO2 
% 2 = H2O 
% 3 = MDEA 
%======================================================================= 
% Main group   m   subgroup   k     Rk      Qk    vk(1) vk(2) vk(3)  
%    CO2       56    CO2      56   1.3000  1.120    1     0     0               
%    H2O       7     H2O      16   0.9200  1.400    0     1     0     
%    MDEA-I                        2.5353  2.020    0     0     1     
%    CH2OH                         1.2044  1.124    0     0     2     
%======================================================================= 

 
Rk = [1.3000;0.92;2.5353;1.2044]; 
Qk = [1.12;1.4;2.02;1.124]; 
v = [1 0 0 0 ;0 1 0 0;0 0 1 2]; 

  
r = v*Rk; 
q = v*Qk; 
v=v'; 
for i = 1:3; 
    for k = 1:4; 
        e(k,i) = v(k,i)*Qk(k)/q(i); 
    end 
end 

  
a_nm = [0 491.14523 700 700;269.16452 0 58.0 -83.88;700 6.985 0  

-263.518;700 93.97 352.7907 0]; 
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b_nm = [0 0 0 0;0 0 6.985007 0;0 -78637.4 0 168732.6;0 0 -135875.0 0]; 
c_nm = [0 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0]; 
R = 8.314; 
for m = 1:4 
    for k = 1:4 
        tao(m,k) = exp(-(a_nm(m,k)+b_nm(m,k)/T+c_nm(m,k)/T^2)/(R*T)); 
    end 
end 

  
beta = e'*tao; 

  
teta1=(xi(1)*q(1)*e(1,1)+xi(2)*q(2)*e(1,2)+xi(3)*q(3)*e(1,3))/(xi(1)*q(1

)+ xi(2)*q(2)+xi(3)*q(3)); 
teta2=(xi(1)*q(1)*e(2,1)+xi(2)*q(2)*e(2,2)+xi(3)*q(3)*e(2,3))/(xi(1)*q(1

)+ xi(2)*q(2)+xi(3)*q(3)); 
teta3=(xi(1)*q(1)*e(3,1)+xi(2)*q(2)*e(3,2)+xi(3)*q(3)*e(3,3))/(xi(1)*q(1

)+ xi(2)*q(2)+xi(3)*q(3)); 
teta4=(xi(1)*q(1)*e(4,1)+xi(2)*q(2)*e(4,2)+xi(3)*q(3)*e(4,3))/(xi(1)*q(1

)+ xi(2)*q(2)+xi(3)*q(3)); 

  
s1 = teta1*tao(1,1)+teta2*tao(2,1)+teta3*tao(3,1)+teta4*tao(4,1); 
s2 = teta1*tao(1,2)+teta2*tao(2,2)+teta3*tao(3,2)+teta4*tao(4,2); 
s3 = teta1*tao(1,3)+teta2*tao(2,3)+teta3*tao(3,3)+teta4*tao(4,3); 
s4 = teta1*tao(1,4)+teta2*tao(2,4)+teta3*tao(3,4)+teta4*tao(4,4); 

   
Ji(1) = r(1)/(r(1)*xi(1)+r(2)*xi(2)+r(3)*xi(3)); 
Ji(2) = r(2)/(r(1)*xi(1)+r(2)*xi(2)+r(3)*xi(3)); 
Ji(3) = r(3)/(r(1)*xi(1)+r(2)*xi(2)+r(3)*xi(3)); 

  
Li(1) = q(1)/(q(1)*xi(1)+q(2)*xi(2)+q(3)*xi(3)); 
Li(2) = q(2)/(q(1)*xi(1)+q(2)*xi(2)+q(3)*xi(3)); 
Li(3) = q(3)/(q(1)*xi(1)+q(2)*xi(2)+q(3)*xi(3)); 

  
lngamma_C(1) = 1-Ji(1)+log(Ji(1))-5*q(1)*(1-

Ji(1)/Li(1)+log(Ji(1)/Li(1))); 
lngamma_C(2) = 1-Ji(2)+log(Ji(2))-5*q(2)*(1-

Ji(2)/Li(2)+log(Ji(2)/Li(2))); 
lngamma_C(3) = 1-Ji(3)+log(Ji(3))-5*q(3)*(1-

Ji(3)/Li(3)+log(Ji(3)/Li(3))); 

  
lngammaR(1) = q(1)*(1-((teta1*beta(1,1)/s1-

e(1,1)*log(beta(1,1)/s1))+(teta2*beta(1,2)/s2-

e(2,1)*log(beta(1,2)/s2))+(teta3*beta(1,3)/s3-

e(3,1)*log(beta(1,3)/s3))+(teta4*beta(1,4)/s4-

e(4,1)*log(beta(1,4)/s4)))); 
lngammaR(2) = q(2)*(1-((teta1*beta(2,1)/s1-

e(1,2)*log(beta(2,1)/s1))+(teta2*beta(2,2)/s2-

e(2,2)*log(beta(2,2)/s2))+(teta3*beta(2,3)/s3-

e(3,2)*log(beta(2,3)/s3))+(teta4*beta(2,4)/s4-

e(4,2)*log(beta(2,4)/s4)))); 
lngammaR(3) = q(3)*(1-((teta1*beta(3,1)/s1-

e(1,3)*log(beta(3,1)/s1))+(teta2*beta(3,2)/s2-

e(2,3)*log(beta(3,2)/s2))+(teta3*beta(3,3)/s3-

e(3,3)*log(beta(3,3)/s3))+(teta4*beta(3,4)/s4-

e(4,3)*log(beta(3,4)/s4)))); 

  
xsatu(2) = xi(2)/(xi(2)+xi(3)); 
xsatu(3) = xi(3)/(xi(2)+xi(3)); 
xsatu = [1e-20 xsatu(2) xsatu(3)]; 
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teta1satu=(xsatu(1)*q(1)*e(1,1)+xsatu(2)*q(2)*e(1,2)+xsatu(3)*q(3)*e(1,3

))/(xsatu(1)*q(1)+xsatu(2)*q(2)+xsatu(3)*q(3)); 
teta2satu=(xsatu(1)*q(1)*e(2,1)+xsatu(2)*q(2)*e(2,2)+xsatu(3)*q(3)*e(2,3

))/(xsatu(1)*q(1)+xsatu(2)*q(2)+xsatu(3)*q(3)); 
teta3satu=(xsatu(1)*q(1)*e(3,1)+xsatu(2)*q(2)*e(3,2)+xsatu(3)*q(3)*e(3,3

))/(xsatu(1)*q(1)+xsatu(2)*q(2)+xsatu(3)*q(3)); 
teta4satu=(xsatu(1)*q(1)*e(4,1)+xsatu(2)*q(2)*e(4,2)+xsatu(3)*q(3)*e(4,3

))/(xsatu(1)*q(1)+xsatu(2)*q(2)+xsatu(3)*q(3)); 

  
s1satu=teta1satu*tao(1,1)+teta2satu*tao(2,1)+teta3satu*tao(3,1)+teta4sat

u*tao(4,1); 
s2satu=teta1satu*tao(1,2)+teta2satu*tao(2,2)+teta3satu*tao(3,2)+teta4sat

u*tao(4,2); 
s3satu=teta1satu*tao(1,3)+teta2satu*tao(2,3)+teta3satu*tao(3,3)+teta4sat

u*tao(4,3); 
s4satu=teta1satu*tao(1,4)+teta2satu*tao(2,4)+teta3satu*tao(3,4)+teta4sat

u*tao(4,4); 

  
Jisatu(1) = r(1)/(r(1)*xsatu(1)+r(2)*xsatu(2)+r(3)*xsatu(3)); 
Lisatu(1) = q(1)/(q(1)*xsatu(1)+q(2)*xsatu(2)+q(3)*xsatu(3)); 

 
lngammaCin(1)=1-Jisatu(1)+log(Jisatu(1))-5*q(1)*(1-

Jisatu(1)/Lisatu(1)+log(Jisatu(1)/Lisatu(1))); 
lngammaRin(1)=q(1)*(1-((teta1satu*beta(1,1)/s1satu-

e(1,1)*log(beta(1,1)/s1satu))+(teta2satu*beta(1,2)/s2satu-

e(2,1)*log(beta(1,2)/s2satu))+(teta3satu*beta(1,3)/s3satu-

e(3,1)*log(beta(1,3)/s3satu))+(teta4satu*beta(1,4)/s4satu-

e(4,1)*log(beta(1,4)/s4satu)))); 
 

gamma_net(1) = exp(lngamma_C(1)+lngammaR(1)-lngammaCin(1)-

lngammaRin(1)); 
gamma_net(2) = exp(lngamma_C(2)+lngammaR(2)); 
gamma_net(3) = exp(lngamma_C(3)+lngammaR(3)); 
gamma_net; 
 

zi = [-1 1 -1 -2 1]; 
mol = xi.*mol_tot; 
C = mol./volume_solvent; 

  
%======================== 
% ion: 
% 1 = OH- 
% 2 = H3O+ 
% 3 = HCO3- 
% 4 = CO3-2 
% 5 = MDEAH+ 
%================================================================= 
% MSA 
%----------------------------------------------------------------- 
% input : ion concentration [mol/L] 
%         temperature [K]  

 
k_Boltz = 1.38045e-23;  %[J/K]      
e_charge = 1.60206e-19; %[coulomb] 
Nl = 6.02214178e23;     %[/mol] avogadro number  
 

% dielectric calculation 
MR = [18.02 119.2]; 
n_dens = C.*Nl; 
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moltotal = 1; 
totalmass = 0; 
diel(2) = 24.74+8989.3*(1/T-1/273.15); 
Tc = T-273.15; 
deltaT = Tc-25; 
diel(1) = 78.54*(1-0.0046*deltaT+8.8e-6*deltaT^2);  
diel = diel*1e-12; 
dielectric = massfrac(1)*diel(1)+massfrac(2)*diel(2); 
 

% ionic strength calculation 
Ion_str=1/2*(C(1+3)*(zi(1))^2+C(2+3)*(zi(2))^2+C(3+3)*(zi(3))^2+C(4+3)*(

zi(4))^2+C(5+3)*(zi(5))^2); 
 

% ionic size calculation (in Angstrom) 
Ion_size_Born = [3.0e-10 7.0e-10 30e-10 30e-10 25e-10]; 
Ion_size = [3.0e-10 3.0e-10 (0.57372177+5.4569945*Ion_str^-

0.45072176)*1e-10 (2.8832274+9.151789*Ion_str^-0.42580691)*1e-10 (-

0.74895748+20.99086/(1+20.99086*0.67916318*Ion_str)+5.4487239/(1+5.44872

39*0.014790757*Ion_str))*1e-10]; 
%----------------------------------------------------- 

  
alffa = 4*pi*e_charge^2/(dielectric*k_Boltz*T); 
kappa=alffa*(n_dens(1+3)*(zi(1))^2+n_dens(2+3)*(zi(2))^2+n_dens(3+3)*(zi

(3))^2+n_dens(4+3)*(zi(4))^2+n_dens(5+3)*(zi(5))^2)^.5; 
tato = kappa/2; 
%------------------------------------------------------- 
tolen = 1e-20; 
delta_tato = 10; 
while delta_tato > tolen 
    curl_3 = 

pi/6*(n_dens(1+3)*(Ion_size(1))^3+n_dens(2+3)*(Ion_size(2))^3+n_dens(3+3

)*(Ion_size(3))^3+n_dens(4+3)*(Ion_size(4))^3+n_dens(5+3)*(Ion_size(5))^

3); 
    delta = 1-curl_3; 
    sumforomega = 0; 
    for i = 1:5 
  

sumforomega=sumforomega+n_dens(i+3)*(Ion_size(i))^3/(1+tato*Ion_size(i))

; 
    end 
    omega = 1+pi/(2*delta)*sumforomega; 
    sumforPn = 0; 
    for i = 1:5 
      

sumforPn=sumforPn+n_dens(i+3)*Ion_size(i)*zi(i)/(1+tato*Ion_size(i)); 
    end 
    Pn = 1/omega*sumforPn; 
    sumfortato = 0; 
    for i =1:5 
        sumfortato=sumfortato+n_dens(i+3)*((zi(i)-

(pi/2/delta*(Ion_size(i))^2*Pn))/(1+tato*Ion_size(i)))^2; 
    end 
    tatoold = tato; 
    tato = sqrt(alffa^2/4*sumfortato); 
    delta_tato = abs((tatoold-tato)/tatoold); 
end 
%------------------------------------------------------- 
for i = 1:5 
    ai(i) = alffa^2*(zi(i)-

(pi/2/delta)*(Ion_size(i))^2*Pn)/(2*tato*(1+tato*Ion_size(i)

)); 
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    Mi(i) = (2*tato*ai(i)/alffa^2-zi(i))/Ion_size(i); 
    ln_gamma_MSA(i) = zi(i)*e_charge^2*Mi(i)/(dielectric*k_Boltz*T)-

Pn*Ion_size(i)/(4*delta)*(tato*ai(i)+pi/12/delta*alffa^2*Pn*

Ion_size(i)^2); 
end 
gamma_MSA = exp(ln_gamma_MSA); 
%=================================================================== 
% Hard Sphere 
curl_0=pi/6*(n_dens(1+3)*(Ion_size(1))^0+n_dens(2+3)*(Ion_size(2))^0+n_d

ens(3+3)*(Ion_size(3))^0+n_dens(4+3)*(Ion_size(4))^0+n_dens(5+3)*

(Ion_size(5))^0); 
curl_1=pi/6*(n_dens(1+3)*(Ion_size(1))+n_dens(2+3)*(Ion_size(2))+n_dens(

3+3)*(Ion_size(3))+n_dens(4+3)*(Ion_size(4))+n_dens(5+3)*(Ion_siz

e(5))); 
curl_2=pi/6*(n_dens(1+3)*(Ion_size(1))^2+n_dens(2+3)*(Ion_size(2))^2+n_d

ens(3+3)*(Ion_size(3))^2+n_dens(4+3)*(Ion_size(4))^2+n_dens(5+3)*

(Ion_size(5))^2); 
curl_3=pi/6*(n_dens(1+3)*(Ion_size(1))^3+n_dens(2+3)*(Ion_size(2))^3+n_d

ens(3+3)*(Ion_size(3))^3+n_dens(4+3)*(Ion_size(4))^3+n_dens(5+3)*

(Ion_size(5))^3); 
delta = 1-curl_3; 
for i = 1:5 
    ln_gamma_HS(i)=-

log(delta)+((Ion_size(i))^3*curl_0+3*(Ion_size(i))^2*

curl_1+3*Ion_size(i)*curl_2)/delta+(3*(Ion_size(i))^3

*curl_1*curl_2+9/2*(Ion_size(i))^2*curl_2^2)/delta^2+

3*(Ion_size(i))^3*curl_2^3/delta^3; 
end 
gamma_HS = exp(ln_gamma_HS); 
%===================================================================== 
% BORN 
for i = 1:5 
    ln_gamma_Born(i) = 

e_charge^2/2/k_Boltz/T*(zi(i))^2/Ion_size_Born(i)

*(1/dielectric-1/diel(1))*1e-2; 
end 
T; 
gamma_Born = exp(ln_gamma_Born); 
for i =1:5 
    gamma_ion(i) = gamma_MSA(i)*gamma_HS(i)*gamma_Born(i); 
end 
gamma_ion; 

  
for i = 4:8 
    gamma(i) = gamma_ion(i-3); 
end 

  
sum_net = n_dens(1)+n_dens(2)+n_dens(3); 
sum_ion = n_dens(4)+n_dens(5)+n_dens(6)+n_dens(7)+n_dens(8); 
 

b = [4.282e5 3.049e5 18.16e5]; 
for i=1:3 
    HS_dia(i) = (b(i)*3/(2*pi*Nl))^(1/3); 
    pack_factor(i) = pi*n_dens(i)*(HS_dia(i))^3/6; 
    Z_HS(i) = (1+pack_factor(i)+(pack_factor(i))^2-

(pack_factor(i))^3)/(1-pack_factor(i))^3; 
end 
for i = 1:3 
    ln_gamma_GD(i) = 1/sum_net*(tato/3/pi+alffa^2/8*(Pn/delta)^2-

Z_HS(i)*sum_ion); 
    gamma_GD(i) = exp(ln_gamma_GD(i)); 
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end 

  
for i = 1:3 
    gamma(i) = gamma_net(i)*gamma_GD(i); 
end 
gamma; 

 

 

 

 

M-file HENRY_NG_water_MDEA2 
 

function [H_CO2 H_CH4] = HENRY_NG_water_MDEA2(T) 
% 1 = CO2 
% 2 = CH4 
% 3 = H2O 
ln_H_T(1) = 110.034525-6789.04/T-11.4519*log(T)-0.010454*T; % in Pa 
H_CO2 = exp(ln_H_T(1)); % in Pa 
H_CO2 = H_CO2/1e5; 

  
A2 = 0.1305; 
B2 = 7.8879e3; 
C2 = -1.4196e6; 
ln_H_T(2) = A2+B2/T+C2/T^2; % in bar 
H_CH4 = exp(ln_H_T(2)); % in bar 

 

 

M-file poynting_solvent_MDEA 
 

function poynting_solvent = poynting_solvent_MDEA(T,P) 
D1 = [72.55 26.137]; 
D2 = [-7206.7 -7588.5]; 
D5 = [-7.1385 0]; 
D6 = [4.046e-6 0]; 
D7 = [2 0]; 
P = P*1e5; %Pa 
for i = 1:1 
    v_sat = [18.0 115.779]; %cm3/mol 
    v_sat(i) = v_sat(i)/1e6; %m3/mol 
    ln_P_sat(i) = 16.5362-3985.44/(T-38.9974); %kPa 
    P_sat(i) = exp(ln_P_sat(i))*1000; % Pa 
    P_satb(i) = P_sat(i)/1e5; % bar 

     
    poynting_solvent(i) = P_satb(i)*exp(v_sat(i)*(P-P_sat(i))/8.314/T); 
end 

 

 

M-file poynting_solute_MDEA 
 

function poynting_solute = poynting_solute_MDEA(T,P) 
%1 = CO2 
%2 = H2S 
%3 = CH4 
a = [74.31498 78.70247 80.1504]; 
b = [-0.309091 -0.32458 -0.32459]; 
c = [5.7e-4 6.0e-4 6.102e-4]; 
D1 = [72.55]; 
D2 = [-7206.7]; 
D5 = [-7.1385]; 
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D6 = [4.046e-6]; 
D7 = [2]; 
P = P*1e5; %Pa 
for i = 1:3 
    v_inf(i) = a(i)+b(i)*T+c(i)*T^2; %cm3/mol 
    v_inf(i) = v_inf(i)/1e6; %m3/mol 
    ln_P_sat_w = D1+D2/T+D5*log(T)+D6*T^(D7); %Pa 
    P_sat_w = exp(ln_P_sat_w); % Pa 
    poynting_solute(i) = exp(v_inf(i)*(P-P_sat_w)/8.324/T); 
end 

M-file PR_NG_MDEA_CO2_H2O 
 
function fug_coeff_v = PR_NG_MDEA_CO2_H2O(y,P,T) 

  
% System CO2-H2O 
% 1 = CO2 
% 2 = H2O 

  
Tc = [304.19 647.13]; % [K] 
Pc = [73.82e5 220.55e5]; % [pa] 
w = [0.228 0.345]; 
R = 8.314; % [J/mol K] or [m3 Pa/mol K] 
P = P*1e5; 
for i = 1:2 
    Tr(i) = T/Tc(i); 
    k(i) = 0.37464+1.54226*w(i)-0.26992*w(i)^2; 
    alfa(i) = (1+k(i)*(1-sqrt(Tr(i))))^2; 
    a_i(i) = 0.45724*R^2*Tc(i)^2/Pc(i)*alfa(i); 
    b_i(i) = 0.077796*R*Tc(i)/Pc(i); 
    A(i) = a_i(i)*P/(R^2*T^2); 
    B(i) = b_i(i)*P/(R*T); 
end 
mij = 1.224-0.0044*T+3.251e-5*T^2; 
for i = 1:2 
    for j = 1:2 
        Al(i,j) = sqrt(A(i)*A(j)); 
    end 
end 
Al; 
A_mix = y*Al*y'; 
B_mix = y*B'; 

 
z1 = 1;  
z2 = -(1-B_mix); 
z3 = A_mix-3*B_mix^2-2*B_mix; 
z4 = -(A_mix*B_mix-B_mix^2-B_mix^3); 

  
zroot = roots([z1 z2 z3 z4]); 
zroot = real(zroot); 
z = max(zroot); 
fug_coeff_v(1) = exp(-log(z-B_mix)+B(1)/B_mix*(z-1)-

A_mix/(2*B_mix*sqrt(2))*(log((z+(1+sqrt(2))*B_mix)/(z+(1-

sqrt(2))*B_mix)))*(2*(y(1)*Al(1,1)+y(2)*Al(1,2))/A_mix-

B(1)/B_mix)); 
fug_coeff_v(2) = exp(-log(z-B_mix)+B(2)/B_mix*(z-1)-

A_mix/(2*B_mix*sqrt(2))*(log((z+(1+sqrt(2))*B_mix)/(z+(1-

sqrt(2))*B_mix)))*(2*(y(1)*Al(2,1)+y(2)*Al(2,2))/A_mix-

B(2)/B_mix)); 

 


