
 16

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Database replication has been an area of research for more than thirty years. The first

publications on the subject appeared in the later seventies (Thomas, 1979; Gifford,

1979; Stonebraker, 1979). Since then, database replication has been an object of

research. An important issue is that while the techniques that were proposed are

correct, they have been shown to perform badly if the number of sites increases (Gray

et al., 1996). The main reason for this is that those replication strategies were

designed to impose minimal changes in the database system environment. Another

important issue is how to build an efficient, consistent replicated database is still an

open research question (Wiesmann, 2002; Wiesmann et al., 2000; Abawajy, Deris,

and Omer, 2006; Tolia, Satyanarayanan, and Wolbach, 2007). To deal with these

issues in mobile environments, replication has become an area of interest in the past

few years. Accordingly, many replication solutions are proposed to handle these

issues in mobile environments. In this chapter, we review some of the previously

proposed strategies and we focus more on the solutions that devoted to mobile

environments and large-scale systems.

2.2 Interaction between Replicas

A replicated database system is composed of many replicas of databases distributed

across different sites. A replica can accept client's requests and interact with other

replicas to work cooperatively as a global database system to provide database

changes to clients at all sites. Some replicas can act as read-only replicas in that they

satisfy only read requests from their clients, while other replicas can satisfy both read

and write requests. There are two types of interaction between replicas: Master/Slave

and Multi-master (Gray et al., 1996; Pacitt, Minet, and Simon, 2001; Martins, Pacitti,

and Valduriez, 2006). Based on these interactions, two types of replications are

described in the following subsections.

 17

2.2.1 Master/Slave Replication

This type designates one replica as a master replica and the other replicas are slaves.

The master replica accepts update operations, while a slave replica accepts only read

operations. In this case, every update is first applied on the master replica and then it

is propagated towards the slave replicas.

The centralization of updates at a single replica introduces a potential

bottleneck and a single point of failure. Therefore, a failure in the master replica

blocks update operations and thus limits data availability, especially when the system

experiences frequent updates. Figure 2.2.1.1 shows an example of Master/Slave type

with three slaves.

Figure 2.2.1.1 An Example of Master/Slave Replication with Three Slaves

The Master/Slave replication can be implemented using Client/Server

architecture (Ekenstam et al., 2001) in which replica updates can be performed only at

the server after receiving update requests from the clients. The server node is typically

a large, well-connected, fixed (non-nomadic) node, while some or all of the clients are

less well-connected mobile nodes. Clients store a read-only copy of the data. For the

client to update any data it must connect to the server and submit a request.

A single server can only handle a finite number of clients before performance

is adversely affected. If the server is down or the connectivity between the client and

the server is lost, then the client cannot perform any updates on the database. This

solution clearly poses problems for mobile users.

 18

2.2.2 Multi-master Replication

In the Multi-master approach, multiple sites hold master replicas of the data. All these

replicas can be concurrently updated and later the exchanging of updates can occur

between them. Distributing updates avoids bottlenecks and single points of failures,

thereby improving data availability. However, in order to ensure data consistency, the

concurrent updates to different copies must be coordinated or a reconciliation

algorithm must be applied to solve replica divergences. Coordinating distributed

updates can lead to expensive communication, and on the other hand reconciliation

solutions can be complex (Saito and Shapiro, 2005; Martins, Pacitti, and Valduriez,

2006). Figure 2.2.2.1 shows an example of Multi-master replication with four master

replicas.

Figure 2.2.2.1 An Example of Multi-master Replication with Four Replicas

Table 2.2.2.1 summarizes the differences between Master/Slave replication

and Multi-master replication.

 19

Table 2.2.2.1 Master/Slave Replication vs. Multi-master Replication

Characteristic Master/Slave Multi-master
Distinguishing feature One master replica Multiple master replicas
Update approach centralized Distributed
Update blocking Master site down All master sites down
Up-to-date values at master replica unknown replica
Possible bottleneck Yes No

The Multi-master replication can be implemented as a Client/Server

replication or Peer-to-Peer replication (Reiher et al., 1996; Ekenstam et al., 2001).

These types are described in the following subsections.

2.2.2.1 Client/Server Replication

In the Client/Server replication, both client and server store a replica of the database

and issue updates operations locally on this replica. This represents a distinction from

the Client/Server replication in the case of Master/slave replication, where update

requests are sent to the server. The clients can only exchange updates with the server,

since they can only communicate with one of the servers. Accordingly, updates are

required to be sent to the server from where the other clients can then obtain these

updates. This type is implemented in replication systems such as Coda

(Satyanarayanan, 2002).

The Client/Server replication tremendously simplifies the design of a

replicated system, at the cost of limiting its flexibility. This is because all updates

must go through the server, since the server acts as a physical synchronization point.

This mode of synchronization (i.e. through the server) becomes a problem in mobile

environments when the mobile clients are both in a location far from the location of

the server. Accordingly, if the two mobile clients are adjacent to each other, requiring

them to send their data over large distance to the server is unreasonable.

2.2.2.2 Peer-to-Peer Replication

In this type (Reiher et al., 1996), all nodes holding replicas can synchronize with each

other without needing to send their updates to the servers. It is used to avoid the

inflexibilities of Client/Server architecture. This type allows mobile peers to

synchronize their updates via pairwise synchronization when connectivity is available.

 20

It is implemented in systems such as Ficus (Richard et al., 1990), Bayou

(Petersen et al., 1997), Rumor (Richard et al., 1998), and Roam (Ratner, Reiher, and

Popek, 2004).

This type, however, has poor scalability because each node must store all

replicas information, since every replica is forced to learn about other replica’s

existence (Ratner et al., 2001). Such an approach consumes a large amount of space at

each node and additional communication costs are needed to synchronize all replicas

information.

2.3 Abstract Replication Strategy

The complexity of keeping replicas consistent at the presence of update operations is

the topic of replication strategies (Ozsu and Valduriez, 1999). A replication strategy

can be described abstractly using five generic phases (see figure 2.3.1) (Wiesmann et

al., 2000; Barreto, 2003). These phases run on a system that is assumed to be

composed of a set of replicas over which operations must be performed. Each node

stores a replica is called replica server. The operations are issued by clients. The

operation is assumed to be either a single read or write operation. The client can be

any node or an application using the database. Communication between different

system components (clients and replicas) takes place by exchanging messages.

The five phases are generally involved when an operation request is sent from

a client to a replica server. The actual actions that performed on each phase are

specific to each particular replication solution (strategy). Moreover, some solutions

may skip some phases, order them in a different manner or iterate over some of them.

Thus, the protocols can be compared by the way they implement each one of the

phases and how they combine the different phases. The five phases are as follows.

Request. The client submits an operation to one (or possibly more) replicas.

Coordination. The replica servers coordinate with each other in order to perform the

operation request consistently. Typically, a decision is made to ensure that the replicas

agree on the place of the operation in a common execution order that preserves any

ordering requirements of the operations.

Execution. The replica servers execute the request upon their replicas. This phase is a

good indicator of how each strategy treats and distributes the operations. This phase

only represents the actual execution of the operation. The applying of the update is

typically done in the Agreement Phase. Thus, in this phase, the effect of the operation

 21

is not applied to the local replica (i.e. updating it in a permanent manner) until a

consensus upon this effect is reached in the agreement phase.

Agreement. The replica servers reach a consensus upon the effect of the requested

operation.

Response. The outcome of the operation is transmitted back to the client by the node

that received the original request or another designated node.

Figure 2.3.1 Phases involved in a replica operation request
(Wiesmann et al., 2000)

2.3.1 Classification of Replication Strategies

Replication strategies can be classified into pessimistic and optimistic strategies

according to a dimension that concerns the trade-off between consistency and

availability (Davidson, Molina, and Skeen, 1985; Barreto, 2003; Saito and Shapiro,

2005). A fundamental difference between these types can be seen by considering the

order of the five phases described above and the actions that are performed on each

phase (Wiesmann et al., 2000). Typically, pessimistic replication follows the five

phases in the same order and with same actions as described above. As a

consequence, after issuing an operation request, a client has to wait for all the

remaining phases to complete before obtaining a response. If a network partition or a

failure of some replica server prevents the coordination or agreement phases from

performing their distributed algorithms, then the request response will as well be

disrupted. As a consequence, the replication system’s availability is reduced.

In contrast, to provide a higher availability in comparison to pessimistic

replication, the optimistic replication orders the execution and response phases before

the coordination and agreement phases (Barreto, 2003). In the execution phase, the

operation is executed only at the replica server that received the client's request. After

 22

executing the request, the replica server responds immediately to the client in the

response phase. This way, the client issuing the request does not have to wait for the

replica server to contact the other, possibly inaccessible, peers in order to complete

the coordination and agreement steps. Since, from a client’s viewpoint, an operation

request is served as soon as the client has received the response from the replica

manager, a high availability is accomplished.

A consequence of anticipating the execution and response phases is that

inconsistencies may occur if different replicas are updated concurrently. Accordingly,

optimistic strategies typically offer weak consistency guarantees.

To restore replica consistency, replica servers must detect update conflicts

and, if necessary, resolve them. Hence, the coordination and agreement phases are

combined into one phase that is be responsible for dealing with detection and

resolution of potential conflicts that may have occurred.

Optimistic replication protocols are beneficial in mobile environments. This is

because unreliable and intermittent connectivity between nodes affect the execution of

both coordination and the agreement phases. This leads to delay coordination and

agreement of client updates until the client reconnects.

2.4 Pessimistic Strategies

Pessimistic strategies prevent inconsistencies by limiting availability. They operate

under a pessimistic assumption that if an inconsistency can occur, it will occur

(Davidson, Molina, and Skeen, 1985). Therefore, these strategies restrict updates to a

single replica or a group of replicas by locking access to these replicas during the

processing of update requests. Then, updates are applied to all other replicas (Saito

and Shapiro, 2005). Accordingly, the pessimistic strategies provide the strong

consistency guarantee that is called one-copy equivalence (Ozsu and Valduriez,

1999). This consistency guarantee requires that all replicas be mutually consistent (i.e.

have identical values for all shared data items) at the end of each update operation.

According to Bernstein, Hadzilacos, and Goodman (1987), A replicated

database system is one-copy serializable, if it ensures both one-copy equivalence and

the serializable execution of transactions (i.e. accesses to the database). One-copy-

serializability is considered as the correctness criterion of the replicated database

system. It requires that an execution of a set of accesses (read and write) on a

replicated database is equivalent to a serial execution of these accesses on a non-

 23

replicated database. A simple protocol for ensuring one-copy serializability is ROWA

(see section 2.4.1), which requires a transaction to execute every write operation by

writing all copies of the object and a read operation to read any copy.

This section provides a description for four well-known pessimistic replication

strategies that are proposed to guarantee strong consistency for applications.

2.4.1 Read One Write All (ROWA)

In this strategy (Bernstein, Hadzilacos, and Goodman, 1987; Helal, Heddaya, and

Bhargava, 1996), an update operation is applied to all the replicas. Reads, on the other

hand, can be performed on any single replica. This achieved by converting a read

operation on any a data item to one read operation on any a single replica, and a write

operation to n writes, one at each replica. Thus, when the write operation commits, all

of the replicas have the same value.

The obvious advantages of this approach are its simplicity and its ability to

process reads despite site or communication failures, so long as at least one site

remains up and reachable. But, in the event of even one replica being down or

unreachable, the protocol would have to block all write operations until the failure is

repaired, which means that the update operation cannot be terminated. Accordingly,

ROWA fails in meeting one of the fundamental goals of replication, namely providing

higher availability (Ozsu and Valduriez, 1999).

2.4.2 Primary-copy Approach

In this approach, a specific copy of a data item is designated as the primary copy

(Stonebraker, 1979; Breitbart and Korth, 1997). The remaining copies are called

backups. A write operation is carried out at the primary copy and all operational

backups while a read operation is executed only at the primary copy (this represents a

difference between this strategy and ROWA). An update that writes the replicated

item is allowed to commit only after the primary and all operational backups have

successfully recorded the write operation.

The advantage of this replication strategy is that at least one replica of each

data item (i.e. the primary) exists, which has all updates. Moreover, ordering of

updates is easy to achieve, since all updates are directed to the primary. However, the

primary replica might become overloaded. While a crash of backup replica does not

 24

require specific actions by the replication protocol, a crash of the primary replica

requires reconfiguration since a new primary needs to be promoted.

2.4.3 Tokens Approach

This approach is very similar to the primary-copy approach except that the primary

copy of an item can change for reasons other than site failure (Minoura and

Wiederhold, 1982). In this approach, each data item has an associated token, which

allows the replica holding it to access the item's replicated data. Whenever a replica

needs to access specific data item to perform a write operation, it locates and obtains

the token from the replica that is currently holding it. When a network partition takes

place, only the partition which includes the token holder will thus be able to access

the corresponding data item. One disadvantage of this approach lies in the fact that the

token can be lost as a result of a communication or replica server failure.

2.4.4 Voting

This strategy generalizes ROWA scheme by trading off read and write availability

(Gifford, 1979). The fundamental idea is to synchronize a quorum of servers to

perform an operation prior to performing it and this done by requesting servers to vote

for or against performing a certain operation. Quorums are formed such that

conflicting operations require overlapping quorums (i.e. quorum intersection

property), ensuring that no two conflicting operations can be executed concurrently.

The benefit of this approach is that it enables higher availability and fault-tolerance

than ROWA approach. A drawback of this approach is that multiple sites need be

contacted even for a read operation.

According to the description of the aforementioned strategies, it can generally

be said that these strategies rely on two factors as follows. The first factor is a reliable

and constant communication between replicas. The second factor is the coordination

between the replica servers that are involved in the performing of operations, which

may require the blocking of access to these servers during performing the operations.

However, these factors are not feasible in mobile environments where frequent

disconnections is common, which makes these pessimistic strategies are not suitable

for maintaining consistency of replicated data in such environments, especially when

some (or all) mobile nodes act as replica servers (i.e. they hold an updatable replica).

 25

2.5 Optimistic strategies

In contrast with pessimistic strategies, optimistic strategies do not limit availability.

Operations (read and write) may be executed on any replica. These strategies operate

under the optimistic assumption that inconsistencies, even if possible, rarely occur

(Saito and Shapiro, 2005). At reconnection time, the system must first detect

inconsistencies and then resolve them. Accordingly, optimistic replication allows

replicas to access and update data independent from one another by delaying

consistency checks. Then, replicas exchange updates with one another in a process

called reconciliation which occurred periodically (Parker and Ramos, 1982; Ekenstam

et al., 2001; Ratner, Reiher, and Popek, 2004). During the reconciliation process, two

replicas exchange all updates that occurred since the last reconciliation and employ

mechanisms for update conflicts detection and resolution. Optimistic replication

(Ekenstam et al., 2001) can use a Client/Server model or a Peer-to-Peer model, which

are described above.

Optimistic replication is often used to increase database availability in systems

where communication is unreliable or nodes require access to data while disconnected

from the network (e.g. mobile environments) (Barreto, 2003). However, optimistic

replication strategies face the challenge of keeping replicas consistent. This challenge

is complicated, because these strategies let updates to be issued at multiple replicas at

the same time. Accordingly, optimistic replication strategies cannot guarantee strong

consistency through achieving one-copy equivalence (and thus one-copy

serializability). Instead of that, they provide a weak type of replica consistency

guarantee called eventual consistency (Yu and Vahdat, 2000; Saito and Shapiro,

2005).

Eventual consistency guarantees that the contents of all the replicas become

identical eventually. Eventual consistency is important because it is the minimal

requisite of a replication strategy; without this guarantee, the replica contents may

remain corrupted forever, making the system practically useless. To achieve eventual

consistency, optimistic replication algorithms should provide mechanisms for quick

propagation (dissemination) of updates among replicas in order to minimize the

divergence between them.

Update propagation (which occurs during the reconciliation process) involves

a site accumulating changes while being isolated from others, detecting when it can

 26

communicate with another, computing the set of changes to be transferred to the other

site to make the two replicas consistent with each other, and transferring the changes

quickly. This propagation ensures that replicas are up to date by minimizing the

divergence between them. However, updates propagation does not ensure that all

replicas sort and apply the received updates in a well-defined order. Accordingly, a

total ordering for updates can be implemented to achieve eventual consistency in a

manner that forces all replicas to apply updates in same order (see section 2.7, which

contains updates ordering in optimistic replication).

Yu and Vahdat (2000) consider eventual consistency (i.e. provided by

optimistic replication) and strong consistency (i.e. provided by pessimistic

replication) to clarify the relationship between consistency, availability, and

performance, which is depicted in Figure 2.5.1. In moving from strong consistency to

eventual consistency, application performance and availability increase. This benefit

comes at the expense of an increasing probability that individual accesses will return

inconsistent results, e.g., stale/dirty reads. Accordingly, to achieve increased

performance, applications must tolerate a corresponding increase in inconsistent

accesses.

Figure 2.5.1 The Spectrum between Strong and Eventual Consistency as
measured by a bound on the Probability of Inconsistent Access [adapted from

Yu and Vahdat (2000)]

 27

Based on the descriptions of both pessimistic and optimistic replication

strategies, the main differences between them are summarized in Table 2.5.1 by

considering some characteristics of both of them.

Table 2.5.1 Optimistic Replication vs. Pessimistic Replication

Characteristics Pessimistic replication Optimistic replication
Distinguishing feature Updates occur in certain

replica (or replicas), then
immediate synchronization
with other replicas.

Updates occur in any
replica and then are
propagated to other
replicas.

Consistency guarantee Strong consistency Eventual consistency
Availability Weak Strong
Local reads Return up to date values No guarantees
Scalability A few tens or hundreds of

sites
Larger number of sites

Size of applications Small or medium Large scale
Environment Local Area Network

(LAN)
Anywhere

Source: Martins, Pacitti, and Valduriez (2006)

Optimistic replication is used in several solutions for handling data replication

issues in mobile environments. This is because it meets the goal of providing higher

availability. In the following subsections, a brief description of some representative

optimistic strategies is provided.

2.5.1 Cedar

Cedar (Tolia, Satyanarayanan, and Wolbach, 2007) is a replication strategy focuses on

preserving eventual consistency with acceptable performance under conditions of

weak connectivity. Cedar uses a simple Client/Server design in which a central server

holds the master copy of the database. Cedar’s organizing principle is that even a stale

client replica can be used to reduce data transmission volume. The volume reduction

is greatest when the client replica and the master copy are identical. At infrequent

intervals when a client has excellent connectivity to the server (which may occur

hours or days apart), its replica is refreshed from the master copy. The using of a

central server to hold the master copy in this schema, limits the implementation of this

 28

schema in environments that are characterized by large number of updatable replicas

and highly mobile users.

2.5.2 Read-any/Write-any Scheme

A multi-master scheme is used in Monteiro, Brayner, and Lifschitz (2007),

that is, read-any/write-any. To reach an eventual consistency in which the servers

converge to an identical copy, an adaptation in the primary commit scheme is used. In

this adaptation, a server chosen as a primary has the responsibility to synchronize and

commit the updates. The committed updates are propagated to the other servers. This

strategy inherits the drawbacks of primary-copy approach, since it relies on a selected

server that is responsible for synchronizing all updates between the different replicas.

2.5.3 Hybrid replication Strategy

To cope with the limitations of mobile environments, a hybrid replication strategy is

presented in Abawajy, Deris, and Omer (2006) that has different ways of replicating

and managing data on fixed and mobile networks. This strategy is based on a

combination of pessimistic and optimistic replication. It replicates data pessimistically

on the fixed network in a manner of logical three dimensional grid structure while

data is optimistically replicated on mobile network based on commonly visited sites

for each user, which defined as the most frequent site that request the same data at the

fixed network.

This strategy does not provide the required mechanism for exchanging large

number of recent updates among the hosts in both fixed and mobile networks. Also, it

hinders the scalability requirement for LMDDBSs. This is because it replicates data

pessimistically on the fixed network, and this is does not valid when the fixed

network is to be scaled to a wide area fixed networks.

2.5.4 Transaction-Level Result-Set Propagation (TLRSP)

A mobile database replication strategy called Transaction-Level Result-Set

Propagation is proposed in Zhiming, Xiaofeng, and Shan (2002). Each fixed and

mobile nodes store a replica of the data. The mobile node is allowed to update its

local replica. However, updates locally committed at the mobile nodes need to be

verified at the fixed node before they can be globally committed. A mobile node can

go through three different states:

 29

� Consistent State. When the data in both mobile and fixed nodes are

consistent, a mobile node is said to be operating in consistent state. The

mobile node enters this state at the instant of time when a synchronization

process with the fixed node is over and all differences between the fixed

node and the mobile node have been reconciled.

� Accumulating State. The mobile node enters into this state when it begins

to update the local replica of the database.

� Resolving State. When the mobile node is reconnected with the fixed node

and starts a synchronization process, it enters into resolving state. In this

state, the mobile node sends the locally committed updates to the fixed node

for conflict detection. The fixed host updates those transactions that passed

the validation test and the recently updated copies of the objects are

forwarded to the mobile host to refresh its local copies.

To maintain the consistency of replicated data on fixed nodes, ROWA is used

to perform the write operation on all fixed hosts as one logical entity. Accordingly,

this strategy inherits the drawbacks of ROWA, which restricts the availability of write

operations, since they cannot be executed at the failure of any replica. Moreover, this

strategy suffers from the overhead that is involved in the resolving process for large

number of updates.

2.5.5 Three Modules Based Replication System

Beloued et al. (2005) proposed a replication system that contains three principal

modules: a replica planner, a localization manager and a consistency manager. The

replica planner is responsible for the creation and placement of replicas on nodes.

Next, the localization manager locates replicas for read/write operations and then

performs these operations. Finally, the consistency manager ensures replica

consistency by exchanging update messages after each write operation and resolving

update conflicts.

In this system, exchanging update messages after each write operation and

resolving update conflicts represents an overhead when the number of updates is

increased. Also, there is an overhead results from that the system changes some

replica locations in order to avoid the use of weak bandwidth links. These overheads

hinder the replication system to scaling well in case of there are large number of

nodes that are involved in the replication process.

 30

2.5.6. Bengal

Bengal (Ekenstam et al., 2001) represents a Peer-to-Peer optimistic database

replication system that allows disconnected operation by mobile peers on a distributed

database. It is claimed that Client/Server replication does not match the requirements

of mainly disconnected users and thus Bengal uses a Peer-to-Peer relationship.

Updates are reconciled between replicas when connectivity is available.

Version vectors (see section 2.7.2) are used to compare and exchange update

information. If two replicas have completely identical version vectors, then each

replica has seen all updates that the other replica has seen. Accordingly, there are no

updates need to be propagated. If one replica’s version vector contains one or more

elements that are larger than the matching elements in the other replica’s, the replica

with the larger version vector elements has seen more updates, and its data should be

propagated to the other replica. If, however, each version vector has at least one

element larger than the matching element in the other version vector, then each replica

has seen at least one update unknown to the other replica. In this strategy, maintaining

version vectors and using it in the reconciliation process represents an overhead when

the number of hosts is increased in both fixed and mobile networks.

2.5.7 Two-Tier Replication

Gray et al. (1996) proposed a two-tier replication strategy that allows mobile

(disconnected) applications to propose tentative updates while they are disconnected.

Upon reconnection with the fixed network, the produced tentative updates are applied

to the primary copies of data objects (called object masters), which reside at certain

sites. In this strategy, the first tier consists of mobile nodes, which are frequently

disconnected from the fixed network. The second tier consists of base nodes, which

are stably connected to each other through the fixed network.

Two types of update transactions are supported: base and tentative

transactions. Base transactions access master objects whereas tentative transactions

access local copies of data objects and they run on the first tier. When the connection

is established, tentative transactions are sent to the base nodes to be re-processed as

base transactions to reach global consistency.

 31

Two-Tier Replication ensures convergence of the replicas, but it does not

allow reconciliation between mobile replicas. It can suffer from heavy re-processing

overhead for tentative transactions when the number of these transactions is increased.

2.5.8. Epidemic Update Propagation Protocols

Optimistic replication can be implemented using epidemic update propagation

protocols. In these protocols (Demers et al., 1987), any site communicates with any

other and transfers both its own updates and those received from other sites (i.e. any

site can send updates to any other site). Firstly, update operations are executed locally

at any single site. Later, sites communicate to exchange up-to-date information. In

this way, updates pass through the system like an infectious disease, since they spread

through random, pair-wise exchanges, hence the name epidemic. Thus, users perform

updates on a single site without waiting for communication and the system can

schedule communication at a later convenient time. These algorithms rely on the

application-specific update operations being commutative and maintain the causal

ordering that exists between operations. Examples of such protocols include

Rabinovich, Gehani, and Kononov (1996), Agrawal, El Abbadi, and Steinke (1997),

and Holliday et al., (2003). Anti-entropy propagation mechanism (Golding, 1992;

Petersen et al., 1997) is an example for implementing epidemic protocols. In this

mechanism, each site periodically reconciles with a randomly chosen site.

2.5.9 Deno

Deno (Keleher, 1999; Keleher and Cetintemel, 2000; Cetintemel et al., 2003) is a

replicated database strategy that is targeted for weakly connected environments. Deno

adopts an optimistic strategy that allows updates to be received at any replica in order

to provide a highly available service. To achieve eventual consistency, Deno relies on

a voting approach that is implemented through pairwise epidemic information flow.

In the voting approach, when a tentative update is issued at a given replica it is

placed in a queue of candidate updates waiting to be voted. To commit these tentative

updates, Deno regards update commitment as a series of elections. Each election

decides, amongst a collection of concurrent tentative updates, which one of them

should be committed while the remaining updates are aborted. Each replica acts as a

voter in such elections. Similarly, each tentative update acts as a candidate for one

 32

election. Once an election is over, one candidate wins the election and such winner is

the same at every replica. Then a new election is started.

The performance and network usage overheads imposed by the voting scheme

are its main disadvantages. Moreover, the number of aborted updates may increase in

case of the presence of a higher rate of updates generation.

2.5.10 Bayou

Bayou (Terry et al., 1995; Petersen et al., 1996; Petersen et al., 1997) is a mobile

database system that is proposed to meet the requirements of mobile computing

applications. This system is concerned on ensuring high data availability with weak

data consistency guarantees. Bayou used read any/write any replication strategy that

allows a user to access the data from any node.

The system satisfies eventual consistency, which only guarantees that all

replicas eventually receive all updates. Update propagation only relies on occasional

pairwise communications between servers, which called anti-entropy sessions. Pair-

wise communication supports the reconciliation of any two replicas independently of

which other replicas may be available and of how the network connection between the

servers is established. A replica can choose its anti-entropy partner at random or based

on other knowledge, like network characteristics.

Bayou requires applications to provide conflict detection and resolution

instructions along with each data update they make. These instructions are designated

as dependency checks and merge procedures, specified by the application which

issued the update. A replica executes an update’s dependency check before applying

it. If the dependency check detects a conflict, the update’s merge procedure is called.

Bayou’s performance is significantly constrained by the overhead resulting

from the application of dependency checks and merge procedures for conflicts

detection and resolution. The system does not provide replication transparency, since

the application explicitly participates in conflict detection and resolution.

2.5.11 Coda System

Coda (Satyanarayanan, 2002) is a Client/Server based replication system in which an

optimistic consistency strategy is used to enable the disconnected client to read and

update the data in its cache. A client can be in one of three distinct states throughout

its execution: hoarding, emulation and reintegration. The client is normally in the

 33

hoarding state, when it is connected to the server infrastructure and relies on its

replication services. Upon disconnection, it enters the emulation phase, during which

update operations to the cached objects are logged. When a connection is again

available, the reintegration occurs, in which the update log is synchronized with the

objects stored in the servers’ disks. The hoarding state is then entered. However,

disconnected operation of clients depends strongly on the server infrastructure, since

the updates made during disconnection will only be available to other clients after

reconciliation with the server. This makes Coda’s disconnected operation model is

inadequate for applications that impose exchanging of updates among mobile hosts.

2.5.12 Client-Oriented Approach

Gollmick (2003) described a client-oriented service for replication in mobile database

environments based on the requirements of application developers and also

administrators. The client interface allows mobile applications to (re)define the data

and functionality, which they want to be available offline, on demand.

The proposed replication service provides a descriptive interface (SQLlike

command set for replication definition/control and conflict management) to mobile

applications and administrators. Using the interface, applications can select data from

the server database for replication into a local database on demand.

This replication approach requires the administrator only to define things that

cannot be defined at the application level (e.g. certain conflict resolution options).

Therefore the replication definition is divided into two steps: replication schema

definition and replica definition. The replication schema is created by the

administrator and describes the subset of the source database schema, which is visible

to all mobile clients for later replica definition.

2.5.13 Configured Replication Approach

Lubinski and Heuer (2001) described an approach to tailor a suitable replication

strategy corresponding to the mobile environment. This approach is based on a verity

of syntactic and semantic knowledge about the mobile environment including its

technical and infrastructural conditions as well as its user-forced regulations.

This approach allows for configured replication based on various

environmental and data characteristics. Three steps lead to the configured replication

are outlined as follows.

 34

1. Set the importance of the three aims consistency, availability, and minimal

costs, perhaps with the help of a scale

2. Evaluate the available information about the network, device, application, data,

and user

3. Model strategies depending on the available knowledge for all possible states

(site and Connection states).

In the first step, the application is placed into the triangle of the three

replication objectives. The importance of one aim establishes a smaller importance of

the other aims. The aim's importance determines the applicable strategy. In the second

step, all of the available data are collected or acquired, respectively. The more data

are available the better the replication mechanisms can be tailored. In the third step,

requirements meet available conditions. The following decisions can be made. The

replication strategy (optimistic, pessimistic, hybrid) is selected based on the selected

objective (consistency, availability, minimal costs, or scalability). The strategy,

application, and data characteristics decide placing of data and metadata (like

replication schema).

However, tailoring approach requires more management overhead. Moreover,

the framework emphases softening the replication transparency for applications and

users in order to inform them about possible inconsistencies, waiting periods or

necessary communications.

2.6 Implementing Optimistic Replication in Large Scale Environments

A few optimistic replication strategies have been introduced in the literature to handle

data replication issues in systems that consist of large numbers of hosts. The common

approach taken by these strategies is relaxing consistency, in trade for higher

performance and availability. Some of these strategies are presented in the following

subsections.

2.6.1 Roam

Roam (Ratner, 1998; Ratner, Reiher, and Popek, 2004) is an optimistic replication

system that is proposed for providing a scalable replication solution for mobile

environments. ROAM allows any replica to serve operation requests, without the need

of accessing a centralized server. ROAM is based on the Ward Model (Ratner et al.,

2001). Ward model incorporates elements of both Client/Server and peer-to-peer

 35

solutions to handle replica management and update distribution. Replicas are grouped

into wards (wide area replication domains) (see figure 2.6.1.1). A ward is a collection

of nearby nodes. All ward members are peers, allowing any pair of ward members to

directly synchronize and communicate.

Although all members of the ward are equal peers, the ward has a designated

ward master, similar to a server in a Client/Server model but with several differences

that include:

� Any two ward members can directly synchronize with one another. Typical

Client/Server solutions do not allow client-to-client synchronization.

� Since all ward members are peers, any ward member can serve as the ward

master. Automatic re-election and ward-master reconfiguration can occur

should the ward master fail or become unavailable.

The ward master is the ward’s only link with other wards; that is, only the

ward master is aware of other replicas outside the ward. This is one manner in which

the ward model achieves good scaling by limiting the amount of knowledge stored at

individual replicas, since replicas are only knowledgeable about the other replicas

within their own ward.

All ward masters belong to a higher-level ward, forming a two-level

hierarchical model. Ward masters act on their ward’s behalf by bringing new updates

into the ward, exporting others out of the ward, and gossiping about all known

updates. Consistency is maintained across all replicas by having ward masters

communicate directly with each other and allowing information to propagate

independently within each ward.

Updates are exchanged within each ward (i.e. between ward members) and

among wards (i.e. between ward masters) using ring topology. Such ring topology

imposes that each ward member reconciles only with the next ring member. The ring

is adaptive, in the sense that it reconfigures itself in response to changes in the ward

composition. The authors call their replica synchronization process reconciliation.

Reconciliation never directly involves more than two replicas. Reconciliation is pull-

only process, new information is propagated in one direction.

 36

Figure 2.6.1.1 The Basic Ward Architecture
(Ratner et al., 2001)

ROAM uses version vectors to track updates and compare data versions. Each

replica is assigned a version vector. Periodically, each replica reconciles its data

versions with another replica, according to the reconciliation topology imposed by the

ward model.

Accordingly, Roam employs optimistic replica control mechanism that

ensures an eventual convergence for replica updates to maintain the consistency

within each ward and among wards. ROAM tries to provide high scalability without

discussing a mechanism of ensuring fast propagation of large numbers of updates that

can be performed in replicas that are distributed over wide geographic areas.

A significant drawback is the consistency guarantees that ROAM provides.

Since consistency relies on an epidemic propagation of updates between replicas,

every read request that a client may issue will only return tentative data. This aspect

restricts ROAM’s applicability to applications whose correctness criteria are

sufficiently relaxed to tolerate dealing with tentative data. In our case, each update is

considered as stable update (i.e. it is applied permanently in the replica) and just it

takes a global order on the level of the system. This means that the application always

 37

reach a part of the stable data that is only stored on the host where application runs.

These stored data may represent all stable updates that are received from other hosts.

ROAM tries to provide high scalability without discussing in details the

mechanisms of handling high update rates (i.e. large number of updates that can be

performed on each replica) and supporting large number of fixed and mobile replicas

that distributed among wide geographic areas.

2.6.2 HARP

The hierarchical asynchronous replication protocol (HARP) (Adly, Nagi, and Bacon,

1993; Adly and Kumar, 1994; Adly, 1995) uses an optimistic update propagation

scheme based on organizing the replicas into a logical, multilevel hierarchy. In this

hierarchy, nodes are grouped into clusters, and clusters are organized into a tree, such

that each cluster is assigned a father node in its parent cluster. Nodes in the same

cluster should have efficient communication between them as well as with their

father. A node i, originating a message, sends it to its neighbors, father and sons, and

then waits for their acknowledgments. Each receiving node j sends an

acknowledgment to the sender, then it passes the message to the next level as follows:

if the message is coming from a neighbor or from the father, then j sends the message

to its sons; else, if it is coming from a son then j sends it to its neighbors, its father and

to its sons of clusters other than the one the message is coming from. This works

recursively and a message originating at any site will eventually propagate

everywhere.

In HARP, The Fast_read and Fast_write operations support relaxed

consistency, while the Slow_read and Slow_write operations support strong

consistency. The Fast_read and Fast_write can be performed on any replica. In the

case of new updates occurred as a result of performing Fast_write, the propagation

protocol relies on the abovementioned hierarchical structure for sending messages to

other replicas. The Slow_read and Slow_write operations can be initiated at any

replica, but they require assembling quorums from replicas of the top cluster of the

hierarchy. Accordingly, the Slow_read and Slow_write operations need reliable

connectivity between the replicas that participates in the quorum.

HARP only addresses single read/write operations. It propagates each update

individually by relying on reliable communication. However, this reliable

communication is not available in mobile environments.

 38

2.6.3 N-ary Tree Based Updates Propagation

This strategy (Hara et al., 2005; Watanabe et al., 2007; Watanabe et al., 2008)

assumed an environment where update information is immediately sent to all peers

holding replicas when an update occurs. The proposed strategy creates an N-ary tree,

whose root is the owner of the original data while the other nodes are peers holding its

replicas, and propagates the update information according to the tree. Each peer in the

tree records its parent and children, and by using this information, the location of a

newly participating peer in the tree is autonomously determined.

However, in this strategy, the updated data must be propagated to all replica

holders and this causes heavy traffic for update propagation. Accordingly, this

strategy is not suitable for propagating updates to replicas that are stored on mobile

hosts, since these hosts frequently change their location and disconnect from the

network. Also, there is an overhead originated from the need of each mobile host to

manage information about the parent and children peers.

2.6.4 Timestamp Anti-Entropy Protocol

Golding (1992) proposed a weak consistency replication strategy called timestamp

anti-entropy protocol (TSAE). The TSAE protocol allows updates to be processed by

a single replica, then propagated through messages from one replica to another in the

background, causing replicas to temporarily diverge.

When a replica wishes to send a message, it stamps the message with the

current time and the identity of the replica, then writes the message to a log. From

time to time, a replica will select another replica (either randomly or deterministic),

and the two will exchange the contents of their message logs in an anti-entropy

session. At the end of the session, both replicas have received the same set of

messages.

Each replica maintains a summary timestamp vector, indexed by replica

identifier, containing the greatest timestamp it has received from other replicas. An

anti-entropy session begins with two replicas exchanging their summary vectors. Each

replica can determine what messages its partner has not yet received by comparing its

summary vector to that of its partner. Once both replicas have received their

messages, they can update their summary vector.

 39

This protocol cannot scale to a large number of replicas, since it is assumed

that any replica can communicate with any other replica. Further, it imposes a space

overhead for maintaining logs and timestamp vectors.

2.7 Updates Ordering in Optimistic Replication

Updates ordering enables optimistic replication strategies to be employed (Barreto,

2003; Saito and Shapiro, 2005) by providing a relaxed consistency guarantee. This

guarantee does not require that operations are executed according to a canonical

order. Instead of that, replicas are allowed to execute operations in different orders as

long as the relaxed consistency guarantee is maintained.

The update ordering data consistency model requires placing ordering

constraints on update operations so that updates occurred at different replicas are

ordered (Birman, 1993; Zhou, Wang, and Jia, 2004). Ordering constraints can be

categorized into three types: FIFO, causal, and total (Jia and Zho, 2005) to reflect

semantical requirements of both group of replicas and individual hosts. Generally,

from the replica group point of view, as long as updates are handled (e.g. ordered or

delivered) at all replicas in the same order, the data consistency is guaranteed among

replicas. On the other hand, from the client point of view, it may require updates sent

from the same client to be handled in the generation or sending order at all replicas.

FIFO constraint is defined between one sender and a set of receivers. It

requires that any two updates that are originated and sent from the same replica Ri are

handled by any receiver in the same order as they were generated in Ri.

Casual constraint is a generalization of the FIFO constraint (Schiper, Eggli,

and Sandoz, 1989; Agrawal, El Abbadi, and Steinke, 1997) by considering different

senders. It is based on the happened-before relation (denoted→) that is introduced by

Lamport (1978). This constraint requires that if two messages m1 and m2 sent from

two different hosts be related such that sending of m1 happened before sending of m2,

then m2 cannot be received before m1 by any receiver.

Total constraint requires that for all messages m1 and m2 and all replica Ri and

Rj, if m1 is received at Ri before m2, then m2 is not received before m1 at Rj (Vijay,

2002). Accordingly, the total ordering implies m1 and m2 to be received either in the

order of (m1, m2) or (m2, m1), as long as the ordering is consistent at all replicas.

 40

As compared with the other constraints, causal ordering is beneficial for

maintaining consistency in many distributed applications. These applications include

news systems, weather forecasting networks, stock trading, monitoring a distributed

system, etc. (Raynal, Schiper, and Toueg, 1991; Adelstein and Singhal, 1995; Adly

and Nagi, 1995 ; Alagar and Venkatesan, 1997).

The mechanisms for implementing causal ordering include logical clocks and

version vectors (Barreto, 2003; Ghosh, 2006). The purpose of these mechanisms is to

timestamp events that occurred on each replica in order to determine the casual order

for each event, detect conflicts, and determine the set of updates to be exchanged

between replicas. These mechanisms are as follows.

2.7.1 Logical clocks (Lamport clocks)

Lamport (1978) suggested that each process in a distributed environment implements

a logical clock that is used to assign logical timestamps to local events.

According to Lamport’s point of view, a clock is just a way of assigning a

number to an event, where the number is thought of as the time at which the event

occurred. More precisely, a clock Ci for each process Pi is defined to be a function

which assigns a number Ci(a) to any event a in that process. The entire system of

clocks is represented by the function C which assigns to any event b the number C(b),

where C(b) = Cj(b) if b is an event in process Pj. There is no assumption is made

about the relation of the numbers Ci(a) to the physical time, so the clocks Ci can be

thought as logical rather than physical clocks. They may be implemented by counters

with no actual timing mechanism.

A clock Ci in process Pi is initially set to 0 and advanced according to the

following rules:

(1) Each time a local event takes place in Pi, Ci := Ci + 1

(2) When sending a message, append the value of Ci to the message

(3) When receiving a message, Ci := 1 + max (Ci, Cm)

Where Ci is the local value, and Cm is the value appended with the incoming

message from another process Pj.

Based on the value of the logical clock Ci, the logical timestamp L(e) of an

event e occurring in process Pi is the reading of clock Ci when e occurs. A logical

clock is correct if it holds for any two events ei and ej that L(ei) < L(ej) if ei → ej .

However, the opposite does not hold; L(ei) < L(ej) does not necessarily imply that ei

 41

→ ej . This means that the timestamp values of two events cannot reveal if they are

causally related. Therefore, timestamps provided by the logical clock is consistent

with causality, but does not characterize causality and can not be used to prove that

events are not causally related. This represents a weakness of logical clocks.

Sun and Maheshwari (1996) used logical clocks in their ordering mechanism.

2.7.2 Version Vectors

A version vector (Mattern, 1989; Fidge, 1991; Ghosh, 2006) (also known as a vector

clock) is a vector of counters, one for each replica in the system. Version vectors

overcome the weakness of logical clocks. Their goal is to detect causality. They

define a mapping V from events to integer arrays, and an order < such that for any

pair of events a, b: a happened before b is equivalent to V[a] < V[b].

In a replication system containing N replicas 0, 1, 2, ..., N-1, for every replica

i, the version vector V is an integer vector of length N that consists of a set of

timestamps, one for each replica. Like the logical clock, the version vector is also

event-driven. Each element of V is a logical clock that is updated by the events local

to that replica only.

The version vector Vi of a replica Ri is maintained according to the following

rules:

(1) Initially, Vi [k]:=0, for k=1,…, N replicas.

(2) On each internal event e, replica Ri increments Vi as follows: Vi [i] := Vi [i]+1.

(3) On sending message m, Ri updates Vi as in (2), and attaches the new vector to

m.

(4) On receiving a message m with attached version vector V(m), Ri increments Vi

as in (2). Next Ri updates its current Vi as follows: Vi:=max{ Vi, V(m)}.

Two version vectors can be compared to assert if there exists a happened-

before relationship between them. Given two version vectors, V1 and V2, V1 causally

precedes V2, meaning that a happened-before relationship links V1 to V2, if and only if,

the value of each entry in V2 is greater or equal than the corresponding entry in V1. If

this condition is verified, V2 is said to dominate V1. If neither V1 dominates V2, nor V2

dominates V1, V1 and V2 are conflicting versions.

The size occupied by version vectors is linearly dependent on the number of

replicas in the system. This is a significant scalability obstacle when concerning

 42

systems with a high number of replicas. This is because all messages of a distributed

computation have to be tagged with a timestamp of size equals to the number of

replicas in order to maintain the version vectors on other replicas.

There are many strategies used version vectors for implementing causal

ordering including Ladin et al. (1992), Singhal and Kshemkalyani (1992), Adly and

Nagi (1995), Prakash et al. (1996), Prakash et al. (1997), Satyanarayanan (2002), and

Ratner, Reiher, and Popek (2004). However, these algorithms do not act accord with

the characteristics of LMDDBSs (host mobility, large no of replicas, large number of

updates, etc.). Their implementation in such systems implies both communication and

storage overheads. This is because each message in these algorithms carries large

amount of information to implement causal ordering.

On the other hand, in our proposed ordering mechanism, causal ordering is

implemented by assigning timestamps for local events using a variable called Real-

Like clock. This variable ensures a unified assignment for timestamps according to

the exact time when the event occurred in each replica. The size of this variable is not

affected by the number of replicas. This leads to ensuring sufficient unified ordering

of updates without needing for each node to keep track for the time information in all

other nodes as in the version vector method.

2.8 SPN Background

Stochastic Petri Nets (SPNs) are used in this research to model and analyze the

stochastic behavior of the replication system using the proposed strategy. SPNs are

derived from standard Petri nets (PNs). PNs are an important graphical and

mathematical tool used to study the behavior of many systems. They are very well-

suited for describing and studying systems that are characterized as being concurrent,

asynchronous, distributed, and stochastic (Ajmone, Balbo, and Conte, 1986; Murata,

1989). A PN is a directed bipartite graph that consists of two types of nodes called

places (represented by circles) and transitions (represented by bars). Directed arcs

connect places to transitions and transitions to places. Places may contain tokens

(represented by dots).

The state of a PN is defined by the number of tokens contained in each place

and is denoted by a vector M, whose ith component represents the number of tokens in

the ith place. The PN state is usually called the PN marking. The definition of a PN

requires the specification of the initial marking M'. A place is an input to a transition

 43

if an arc exists from the place to the transition. A place is an output from a transition

if an arc exists from the transition to the place. A transition is said to be enabled at a

marking M when all of its input places contain at least one token. A transition may

fire if it is enabled. The firing of a transition t at marking M removes one token from

each input place and placing one token in each output place. Each firing of a transition

modifies the distribution of tokens on places and thus produces a new marking for the

PN.

In a PN with a given initial marking M', the reachability set (RS) is defined as

the set of all markings that can be "reached" from M' by means of a sequence of

transition firings. The RS does not contain information about the transition sequences

fired to reach each marking. This information is contained in the reachability graph,

where each node represents a reachable state, and there is an arc from M1 to M2 if the

marking M2 is directly reachable from M1. If the firing of t led to changing M1 to M2,

the arc is labeled with t. Note that more than one arc can connect two nodes (it is

indeed possible for two transitions to be enabled in the same marking and to produce

the same state change), so that the reachability graph is actually a multigraph.

SPNs are derived from standard Petri nets by associating with each transition

in a PN an exponentially distributed firing time (Ajmone et al., 1995; Bause and

Kritzinger, 2002). These nets are isomorphic to continuous-time Markov chains

(CTMCs) due to the memoryless property of exponential distributions. This property

allows for the analysis of SPNs and the derivation of useful performance measures.

The states of the CTMC are the markings of the reachability graph, and the state

transition rates are the exponential firing rates of the transitions in the SPN. The

steady-state solution of the equivalent finite CTMC can be obtained by solving a set

of algebraic equations.

2.9 Summary

This chapter described a background material for this thesis and outlined

representative replication strategies that are devoted for both distributed and mobile

environments. Section 2.2 focused on the relationship between replicas and the role

that each replica plays in the replication system regarding update operations. Section

2.3 discussed the abstract replication strategy and classification of replication

strategies into pessimistic and optimistic strategies. Section 2.4 provided a brief

description for four pessimistic strategies. Sections 2.5 and 2.6 outlined representative

 44

optimistic replication strategies that are devoted to mobile computing environments

and large scale systems. Section 2.7 discussed the mechanisms that are used by

optimistic replication strategies for implementing updates ordering.

 In summary, we argue that existing replication strategies are not coping well

with the characteristics of large-scale mobile systems containing large number of

geographically distant replicas that experience large number of updates. Accordingly,

such systems demand new solutions for addressing data consistency through ensuring

fast propagation of recent updates among replicas as well as supporting scalability for

encompassing new replicas when the replication system covers new geographic areas.

Moreover, these solutions should provide mechanisms for updates ordering that

impose low communication and storage overheads.

