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CHAPTER TWO 
 
 
 

LITERATURE REVIEW 
 
 
 

 
2.1 Introduction 
 
Database replication has been an area of research for more than thirty years. The first 

publications on the subject appeared in the later seventies (Thomas, 1979; Gifford, 

1979; Stonebraker, 1979). Since then, database replication has been an object of 

research. An important issue is that while the techniques that were proposed are 

correct, they have been shown to perform badly if the number of sites increases (Gray 

et al., 1996). The main reason for this is that those replication strategies were 

designed to impose minimal changes in the database system environment. Another 

important issue is how to build an efficient, consistent replicated database is still an 

open research question (Wiesmann, 2002; Wiesmann et al., 2000; Abawajy, Deris, 

and Omer, 2006; Tolia, Satyanarayanan, and Wolbach, 2007). To deal with these 

issues in mobile environments, replication has become an area of interest in the past 

few years. Accordingly, many replication solutions are proposed to handle these 

issues in mobile environments. In this chapter, we review some of the previously 

proposed strategies and we focus more on the solutions that devoted to mobile 

environments and large-scale systems. 

 
2.2 Interaction between Replicas 
 
A replicated database system is composed of many replicas of databases distributed 

across different sites. A replica can accept client's requests and interact with other 

replicas to work cooperatively as a global database system to provide database 

changes to clients at all sites. Some replicas can act as read-only replicas in that they 

satisfy only read requests from their clients, while other replicas can satisfy both read 

and write requests. There are two types of interaction between replicas: Master/Slave 

and Multi-master (Gray et al., 1996; Pacitt, Minet, and Simon, 2001; Martins, Pacitti, 

and Valduriez, 2006). Based on these interactions, two types of replications are 

described in the following subsections.  
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2.2.1 Master/Slave Replication 
 
This type designates one replica as a master replica and the other replicas are slaves. 

The master replica accepts update operations, while a slave replica accepts only read 

operations. In this case, every update is first applied on the master replica and then it 

is propagated towards the slave replicas.  

The centralization of updates at a single replica introduces a potential 

bottleneck and a single point of failure. Therefore, a failure in the master replica 

blocks update operations and thus limits data availability, especially when the system 

experiences frequent updates.  Figure 2.2.1.1 shows an example of Master/Slave type 

with three slaves. 

 

 
 

Figure 2.2.1.1 An Example of Master/Slave Replication with Three Slaves 
 

The Master/Slave replication can be implemented using Client/Server 

architecture (Ekenstam et al., 2001) in which replica updates can be performed only at 

the server after receiving update requests from the clients. The server node is typically 

a large, well-connected, fixed (non-nomadic) node, while some or all of the clients are 

less well-connected mobile nodes. Clients store a read-only copy of the data. For the 

client to update any data it must connect to the server and submit a request.  

A single server can only handle a finite number of clients before performance 

is adversely affected. If the server is down or the connectivity between the client and 

the server is lost, then the client cannot perform any updates on the database. This 

solution clearly poses problems for mobile users. 
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2.2.2 Multi-master Replication  
 
In the Multi-master approach, multiple sites hold master replicas of the data. All these 

replicas can be concurrently updated and later the exchanging of updates can occur 

between them.  Distributing updates avoids bottlenecks and single points of failures, 

thereby improving data availability. However, in order to ensure data consistency, the 

concurrent updates to different copies must be coordinated or a reconciliation 

algorithm must be applied to solve replica divergences. Coordinating distributed 

updates can lead to expensive communication, and on the other hand reconciliation 

solutions can be complex (Saito and Shapiro, 2005; Martins, Pacitti, and Valduriez, 

2006). Figure 2.2.2.1 shows an example of Multi-master replication with four master 

replicas. 

 

 

 
 

Figure 2.2.2.1 An Example of Multi-master Replication with Four Replicas 
 

 

Table 2.2.2.1 summarizes the differences between Master/Slave replication 

and Multi-master replication. 
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Table 2.2.2.1 Master/Slave Replication vs. Multi-master Replication 
 
Characteristic Master/Slave Multi-master 
Distinguishing feature One master replica Multiple master replicas 
Update approach centralized Distributed 
Update blocking Master site down All master sites down 
Up-to-date values at master replica unknown replica 
Possible bottleneck Yes No 
 
 

The Multi-master replication can be implemented as a Client/Server 

replication or Peer-to-Peer replication (Reiher et al., 1996; Ekenstam et al., 2001). 

These types are described in the following subsections. 

 
2.2.2.1 Client/Server Replication  
 
In the Client/Server replication, both client and server store a replica of the database 

and issue updates operations locally on this replica. This represents a distinction from 

the Client/Server replication in the case of Master/slave replication, where update 

requests are sent to the server. The clients can only exchange updates with the server, 

since they can only communicate with one of the servers. Accordingly, updates are 

required to be sent to the server from where the other clients can then obtain these 

updates. This type is implemented in replication systems such as Coda 

(Satyanarayanan, 2002). 

The Client/Server replication tremendously simplifies the design of a 

replicated system, at the cost of limiting its flexibility. This is because all updates 

must go through the server, since the server acts as a physical synchronization point. 

This mode of synchronization (i.e. through the server) becomes a problem in mobile 

environments when the mobile clients are both in a location far from the location of 

the server. Accordingly, if the two mobile clients are adjacent to each other, requiring 

them to send their data over large distance to the server is unreasonable. 

 
2.2.2.2 Peer-to-Peer Replication 
 
In this type (Reiher et al., 1996), all nodes holding replicas can synchronize with each 

other without needing to send their updates to the servers. It is used to avoid the 

inflexibilities of Client/Server architecture. This type allows mobile peers to 

synchronize their updates via pairwise synchronization when connectivity is available. 
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It is implemented in systems such as Ficus (Richard et al., 1990), Bayou 

(Petersen et al., 1997), Rumor (Richard et al., 1998), and Roam (Ratner, Reiher, and 

Popek, 2004). 

This type, however, has poor scalability because each node must store all 

replicas information, since every replica is forced to learn about other replica’s 

existence (Ratner et al., 2001). Such an approach consumes a large amount of space at 

each node and additional communication costs are needed to synchronize all replicas 

information. 

2.3 Abstract Replication Strategy 
 
The complexity of keeping replicas consistent at the presence of update operations is 

the topic of replication strategies (Ozsu and Valduriez, 1999). A replication strategy 

can be described abstractly using five generic phases (see figure 2.3.1) (Wiesmann et 

al., 2000; Barreto, 2003). These phases run on a system that is assumed to be 

composed of a set of replicas over which operations must be performed. Each node 

stores a replica is called replica server. The operations are issued by clients. The 

operation is assumed to be either a single read or write operation. The client can be 

any node or an application using the database. Communication between different 

system components (clients and replicas) takes place by exchanging messages.  

The five phases are generally involved when an operation request is sent from 

a client to a replica server. The actual actions that performed on each phase are 

specific to each particular replication solution (strategy). Moreover, some solutions 

may skip some phases, order them in a different manner or iterate over some of them. 

Thus, the protocols can be compared by the way they implement each one of the 

phases and how they combine the different phases. The five phases are as follows. 

Request. The client submits an operation to one (or possibly more) replicas. 

Coordination. The replica servers coordinate with each other in order to perform the 

operation request consistently. Typically, a decision is made to ensure that the replicas 

agree on the place of the operation in a common execution order that preserves any 

ordering requirements of the operations.  

Execution. The replica servers execute the request upon their replicas. This phase is a 

good indicator of how each strategy treats and distributes the operations. This phase 

only represents the actual execution of the operation. The applying of the update is 

typically done in the Agreement Phase. Thus, in this phase, the effect of the operation 
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is not applied to the local replica (i.e. updating it in a permanent manner) until a 

consensus upon this effect is reached in the agreement phase. 

Agreement. The replica servers reach a consensus upon the effect of the requested 

operation. 

Response. The outcome of the operation is transmitted back to the client by the node 

that received the original request or another designated node. 

 

 
 

Figure 2.3.1 Phases involved in a replica operation request 
(Wiesmann et al., 2000) 

 
 
2.3.1 Classification of Replication Strategies  
 
Replication strategies can be classified into pessimistic and optimistic strategies 

according to a dimension that concerns the trade-off between consistency and 

availability (Davidson, Molina, and Skeen, 1985; Barreto, 2003; Saito and Shapiro, 

2005). A fundamental difference between these types can be seen by considering the 

order of the five phases described above and the actions that are performed on each 

phase (Wiesmann et al., 2000). Typically, pessimistic replication follows the five 

phases in the same order and with same actions as described above.  As a 

consequence, after issuing an operation request, a client has to wait for all the 

remaining phases to complete before obtaining a response. If a network partition or a 

failure of some replica server prevents the coordination or agreement phases from 

performing their distributed algorithms, then the request response will as well be 

disrupted. As a consequence, the replication system’s availability is reduced. 

In contrast, to provide a higher availability in comparison to pessimistic 

replication, the optimistic replication orders the execution and response phases before 

the coordination and agreement phases (Barreto, 2003). In the execution phase, the 

operation is executed only at the replica server that received the client's request. After 
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executing the request, the replica server responds immediately to the client in the 

response phase. This way, the client issuing the request does not have to wait for the 

replica server to contact the other, possibly inaccessible, peers in order to complete 

the coordination and agreement steps. Since, from a client’s viewpoint, an operation 

request is served as soon as the client has received the response from the replica 

manager, a high availability is accomplished. 

A consequence of anticipating the execution and response phases is that 

inconsistencies may occur if different replicas are updated concurrently. Accordingly, 

optimistic strategies typically offer weak consistency guarantees. 

To restore replica consistency, replica servers must detect update conflicts 

and, if necessary, resolve them. Hence, the coordination and agreement phases are 

combined into one phase that is be responsible for dealing with detection and 

resolution of potential conflicts that may have occurred. 

Optimistic replication protocols are beneficial in mobile environments. This is 

because unreliable and intermittent connectivity between nodes affect the execution of 

both coordination and the agreement phases. This leads to delay coordination and 

agreement of client updates until the client reconnects. 

 
2.4 Pessimistic Strategies 
 
Pessimistic strategies prevent inconsistencies by limiting availability. They operate 

under a pessimistic assumption that if an inconsistency can occur, it will occur 

(Davidson, Molina, and Skeen, 1985). Therefore, these strategies restrict updates to a 

single replica or a group of replicas by locking access to these replicas during the 

processing of update requests. Then, updates are applied to all other replicas (Saito 

and Shapiro, 2005). Accordingly, the pessimistic strategies provide the strong 

consistency guarantee that is called one-copy equivalence (Ozsu and Valduriez, 

1999). This consistency guarantee requires that all replicas be mutually consistent (i.e. 

have identical values for all shared data items) at the end of each update operation. 

According to Bernstein, Hadzilacos, and  Goodman (1987), A replicated 

database system is one-copy serializable, if it ensures both one-copy equivalence and 

the serializable execution of transactions (i.e. accesses to the database). One-copy-

serializability is considered as the correctness criterion of the replicated database 

system. It requires that an execution of a set of accesses (read and write) on a 

replicated database is equivalent to a serial execution of these accesses on a non-
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replicated database. A simple protocol for ensuring one-copy serializability is ROWA 

(see section 2.4.1), which requires a transaction to execute every write operation by 

writing all copies of the object and a read operation to read any copy. 

This section provides a description for four well-known pessimistic replication 

strategies that are proposed to guarantee strong consistency for applications. 

2.4.1 Read One Write All (ROWA)   
 
In this strategy (Bernstein, Hadzilacos, and Goodman, 1987; Helal, Heddaya, and 

Bhargava, 1996), an update operation is applied to all the replicas. Reads, on the other 

hand, can be performed on any single replica. This achieved by converting a read 

operation on any a data item to one read operation on any a single replica, and a write 

operation to n writes, one at each replica. Thus, when the write operation commits, all 

of the replicas have the same value. 

The obvious advantages of this approach are its simplicity and its ability to 

process reads despite site or communication failures, so long as at least one site 

remains up and reachable. But, in the event of even one replica being down or 

unreachable, the protocol would have to block all write operations until the failure is 

repaired, which means that the update operation cannot be terminated. Accordingly, 

ROWA fails in meeting one of the fundamental goals of replication, namely providing 

higher availability (Ozsu and Valduriez, 1999). 

 
2.4.2  Primary-copy Approach 
 
In this approach, a specific copy of a data item is designated as the primary copy 

(Stonebraker, 1979; Breitbart and Korth, 1997). The remaining copies are called 

backups. A write operation is carried out at the primary copy and all operational 

backups while a read operation is executed only at the primary copy (this represents a 

difference between this strategy and ROWA). An update that writes the replicated 

item is allowed to commit only after the primary and all operational backups have 

successfully recorded the write operation.  

The advantage of this replication strategy is that at least one replica of each 

data item (i.e. the primary) exists, which has all updates. Moreover, ordering of 

updates is easy to achieve, since all updates are directed to the primary. However, the 

primary replica might become overloaded. While a crash of backup replica does not 
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require specific actions by the replication protocol, a crash of the primary replica 

requires reconfiguration since a new primary needs to be promoted. 

 
2.4.3 Tokens Approach 
 
This approach is very similar to the primary-copy approach except that the primary 

copy of an item can change for reasons other than site failure (Minoura and 

Wiederhold, 1982). In this approach, each data item has an associated token, which 

allows the replica holding it to access the item's replicated data. Whenever a replica 

needs to access specific data item to perform a write operation, it locates and obtains 

the token from the replica that is currently holding it. When a network partition takes 

place, only the partition which includes the token holder will thus be able to access 

the corresponding data item. One disadvantage of this approach lies in the fact that the 

token can be lost as a result of a communication or replica server failure. 

 
2.4.4 Voting 
 
This strategy generalizes ROWA scheme by trading off read and write availability 

(Gifford, 1979). The fundamental idea is to synchronize a quorum of servers to 

perform an operation prior to performing it and this done by requesting servers to vote 

for or against performing a certain operation. Quorums are formed such that 

conflicting operations require overlapping quorums (i.e. quorum intersection 

property), ensuring that no two conflicting operations can be executed concurrently. 

The benefit of this approach is that it enables higher availability and fault-tolerance 

than ROWA approach. A drawback of this approach is that multiple sites need be 

contacted even for a read operation. 

 

According to the description of the aforementioned strategies, it can generally 

be said that these strategies rely on two factors as follows. The first factor is a reliable 

and constant communication between replicas. The second factor is the coordination 

between the replica servers that are involved in the performing of operations, which 

may require the blocking of access to these servers during performing the operations. 

However, these factors are not feasible in mobile environments where frequent 

disconnections is common, which makes these pessimistic strategies are not suitable 

for  maintaining consistency of replicated data in such environments, especially when 

some (or all) mobile nodes act as replica servers (i.e. they hold an updatable replica). 
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2.5 Optimistic strategies 
 
In contrast with pessimistic strategies, optimistic strategies do not limit availability. 

Operations (read and write) may be executed on any replica. These strategies operate 

under the optimistic assumption that inconsistencies, even if possible, rarely occur 

(Saito and Shapiro, 2005). At reconnection time, the system must first detect 

inconsistencies and then resolve them. Accordingly, optimistic replication allows 

replicas to access and update data independent from one another by delaying 

consistency checks. Then, replicas exchange updates with one another in a process 

called reconciliation which occurred periodically (Parker and Ramos, 1982; Ekenstam 

et al., 2001; Ratner, Reiher, and Popek, 2004). During the reconciliation process, two 

replicas exchange all updates that occurred since the last reconciliation and employ 

mechanisms for update conflicts detection and resolution. Optimistic replication 

(Ekenstam et al., 2001) can use a Client/Server model or a Peer-to-Peer model, which 

are described above.  

Optimistic replication is often used to increase database availability in systems 

where communication is unreliable or nodes require access to data while disconnected 

from the network (e.g. mobile environments) (Barreto, 2003). However, optimistic 

replication strategies face the challenge of keeping replicas consistent. This challenge 

is complicated, because these strategies let updates to be issued at multiple replicas at 

the same time. Accordingly, optimistic replication strategies cannot guarantee strong 

consistency through achieving one-copy equivalence (and thus one-copy 

serializability). Instead of that, they provide a weak type of replica consistency 

guarantee called eventual consistency (Yu and Vahdat, 2000; Saito and Shapiro, 

2005).  

Eventual consistency guarantees that the contents of all the replicas become 

identical eventually. Eventual consistency is important because it is the minimal 

requisite of a replication strategy; without this guarantee, the replica contents may 

remain corrupted forever, making the system practically useless. To achieve eventual 

consistency, optimistic replication algorithms should provide mechanisms for quick 

propagation (dissemination) of updates among replicas in order to minimize the 

divergence between them.  

Update propagation (which occurs during the reconciliation process) involves 

a site accumulating changes while being isolated from others, detecting when it can  
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communicate with another, computing the set of changes to be transferred to the other 

site to make the two replicas consistent with each other, and transferring the changes 

quickly. This propagation ensures that replicas are up to date by minimizing the 

divergence between them. However, updates propagation does not ensure that all 

replicas sort and apply the received updates in a well-defined order. Accordingly, a 

total ordering for updates can be implemented to achieve eventual consistency in a 

manner that forces all replicas to apply updates in same order (see section 2.7, which 

contains updates ordering in optimistic replication).  

Yu and Vahdat (2000) consider eventual consistency (i.e. provided by 

optimistic replication) and strong consistency (i.e. provided by pessimistic 

replication) to clarify the relationship between consistency, availability, and 

performance, which is depicted in Figure 2.5.1. In moving from strong consistency to 

eventual consistency, application performance and availability increase. This benefit 

comes at the expense of an increasing probability that individual accesses will return 

inconsistent results, e.g., stale/dirty reads. Accordingly, to achieve increased 

performance, applications must tolerate a corresponding increase in inconsistent 

accesses. 

 

 
 

Figure 2.5.1 The Spectrum between Strong and Eventual Consistency as 
measured by a bound on the Probability of Inconsistent Access [adapted from 

Yu and Vahdat (2000)] 
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Based on the descriptions of both pessimistic and optimistic replication 

strategies, the main differences between them are summarized in Table 2.5.1 by 

considering some characteristics of both of them. 

 
Table 2.5.1 Optimistic Replication vs. Pessimistic Replication 

 
Characteristics Pessimistic replication Optimistic replication 
Distinguishing feature Updates occur in certain 

replica (or replicas), then 
immediate synchronization 
with other replicas. 
 

Updates occur in any 
replica and then are 
propagated to other 
replicas. 
 

Consistency guarantee Strong consistency Eventual consistency 
Availability Weak Strong 
Local reads Return up to date values No guarantees 
Scalability A few tens or hundreds of 

sites 
Larger number of sites 

Size of applications Small or medium Large scale 
Environment Local Area Network 

(LAN) 
Anywhere 

 
Source: Martins, Pacitti, and Valduriez (2006)  

 
 

Optimistic replication is used in several solutions for handling data replication 

issues in mobile environments. This is because it meets the goal of providing higher 

availability. In the following subsections, a brief description of some representative 

optimistic strategies is provided. 

 
2.5.1 Cedar 
 
Cedar (Tolia, Satyanarayanan, and Wolbach, 2007) is a replication strategy focuses on 

preserving eventual consistency with acceptable performance under conditions of 

weak connectivity. Cedar uses a simple Client/Server design in which a central server 

holds the master copy of the database. Cedar’s organizing principle is that even a stale 

client replica can be used to reduce data transmission volume. The volume reduction 

is greatest when the client replica and the master copy are identical. At infrequent 

intervals when a client has excellent connectivity to the server (which may occur 

hours or days apart), its replica is refreshed from the master copy. The using of a 

central server to hold the master copy in this schema, limits the implementation of this 
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schema in environments that are characterized by large number of updatable replicas 

and highly mobile users. 

 
2.5.2 Read-any/Write-any Scheme 

 
A multi-master scheme is used in Monteiro,  Brayner, and Lifschitz (2007), 

that is, read-any/write-any. To reach an eventual consistency in which the servers 

converge to an identical copy, an adaptation in the primary commit scheme is used. In 

this adaptation, a server chosen as a primary has the responsibility to synchronize and 

commit the updates. The committed updates are propagated to the other servers. This 

strategy inherits the drawbacks of primary-copy approach, since it relies on a selected 

server that is responsible for synchronizing all updates between the different replicas.  

 
2.5.3 Hybrid replication Strategy 
 
To cope with the limitations of mobile environments, a hybrid replication strategy is 

presented in Abawajy, Deris, and Omer (2006) that has different ways of replicating 

and managing data on fixed and mobile networks. This strategy is based on a 

combination of pessimistic and optimistic replication. It replicates data pessimistically 

on the fixed network in a manner of logical three dimensional grid structure while 

data is optimistically replicated on mobile network based on commonly visited sites 

for each user, which defined as the most frequent site that request the same data at the 

fixed network. 

This strategy does not provide the required mechanism for exchanging large 

number of recent updates among the hosts in both fixed and mobile networks. Also, it 

hinders the scalability requirement for LMDDBSs. This is because it replicates data 

pessimistically on the fixed network, and this is does not valid when the fixed 

network is to be scaled to a wide area fixed networks.  

 
2.5.4 Transaction-Level Result-Set Propagation (TLRSP) 
 

A mobile database replication strategy called Transaction-Level Result-Set 

Propagation  is proposed in Zhiming, Xiaofeng, and Shan (2002). Each fixed and 

mobile nodes store a replica of the data. The mobile node is allowed to update its 

local replica. However, updates locally committed at the mobile nodes need to be 

verified at the fixed node before they can be globally committed. A mobile node can 

go through three different states: 
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� Consistent State. When the data in both mobile and fixed nodes are 

consistent, a mobile node is said to be operating in consistent state. The 

mobile node enters this state at the instant of time when a synchronization 

process with the fixed node is over and all differences between the fixed 

node and the mobile node have been reconciled.  

� Accumulating State. The mobile node enters into this state when it begins 

to update the local replica of the database.  

� Resolving State. When the mobile node is reconnected with the fixed node 

and starts a synchronization process, it enters into resolving state. In this 

state, the mobile node sends the locally committed updates to the fixed node 

for conflict detection. The fixed host updates those transactions that passed 

the validation test and the recently updated copies of the objects are 

forwarded to the mobile host to refresh its local copies. 

To maintain the consistency of replicated data on fixed nodes, ROWA is used 

to perform the write operation on all fixed hosts as one logical entity. Accordingly, 

this strategy inherits the drawbacks of ROWA, which restricts the availability of write 

operations, since they cannot be executed at the failure of any replica. Moreover, this 

strategy suffers from the overhead that is involved in the resolving process for large 

number of updates. 

 
2.5.5 Three Modules Based Replication System 
 
Beloued et al. (2005) proposed a replication system that contains three principal 

modules: a replica planner, a localization manager and a consistency manager. The 

replica planner is responsible for the creation and placement of replicas on nodes. 

Next, the localization manager locates replicas for read/write operations and then 

performs these operations. Finally, the consistency manager ensures replica 

consistency by exchanging update messages after each write operation and resolving 

update conflicts. 

In this system, exchanging update messages after each write operation and 

resolving update conflicts represents an overhead when the number of updates is 

increased. Also, there is an overhead results from that the system changes some 

replica locations in order to avoid the use of weak bandwidth links. These overheads 

hinder the replication system to scaling well in case of there are large number of 

nodes that are involved in the replication process. 
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2.5.6. Bengal  
 
Bengal (Ekenstam et al., 2001) represents a Peer-to-Peer optimistic database 

replication system that allows disconnected operation by mobile peers on a distributed 

database. It is claimed that Client/Server replication does not match the requirements 

of mainly disconnected users and thus Bengal uses a Peer-to-Peer relationship.  

Updates are reconciled between replicas when connectivity is available. 

Version vectors (see section 2.7.2) are used to compare and exchange update 

information. If two replicas have completely identical version vectors, then each 

replica has seen all updates that the other replica has seen. Accordingly, there are no 

updates need to be propagated. If one replica’s version vector contains one or more 

elements that are larger than the matching elements in the other replica’s, the replica 

with the larger version vector elements has seen more updates, and its data should be 

propagated to the other replica. If, however, each version vector has at least one 

element larger than the matching element in the other version vector, then each replica 

has seen at least one update unknown to the other replica. In this strategy, maintaining 

version vectors and using it in the reconciliation process represents an overhead when 

the number of hosts is increased in both fixed and mobile networks.   

 
2.5.7 Two-Tier Replication 
 
Gray et al. (1996) proposed a two-tier replication strategy that allows mobile 

(disconnected) applications to propose tentative updates while they are disconnected. 

Upon reconnection with the fixed network, the produced tentative updates are applied 

to the primary copies of data objects (called object masters), which reside at certain 

sites. In this strategy, the first tier consists of mobile nodes, which are frequently 

disconnected from the fixed network. The second tier consists of base nodes, which 

are stably connected to each other through the fixed network.  

Two types of update transactions are supported: base and tentative 

transactions. Base transactions access master objects whereas tentative transactions 

access local copies of data objects and they run on the first tier. When the connection 

is established, tentative transactions are sent to the base nodes to be re-processed as 

base transactions to reach global consistency.  
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Two-Tier Replication ensures convergence of the replicas, but it does not 

allow reconciliation between mobile replicas. It can suffer from heavy re-processing 

overhead for tentative transactions when the number of these transactions is increased.  

 
2.5.8. Epidemic Update Propagation Protocols 
 
Optimistic replication can be implemented using epidemic update propagation 

protocols. In these protocols (Demers et al., 1987), any site communicates with any 

other and transfers both its own updates and those received from other sites (i.e. any 

site can send updates to any other site).  Firstly, update operations are executed locally 

at any single site. Later, sites communicate to exchange up-to-date information. In 

this way, updates pass through the system like an infectious disease, since they spread 

through random, pair-wise exchanges, hence the name epidemic.  Thus, users perform 

updates on a single site without waiting for communication and the system can 

schedule communication at a later convenient time. These algorithms rely on the 

application-specific update operations being commutative and maintain the causal 

ordering that exists between operations. Examples of such protocols include 

Rabinovich, Gehani, and Kononov (1996), Agrawal, El Abbadi, and Steinke (1997), 

and Holliday et al., (2003).  Anti-entropy propagation mechanism (Golding, 1992; 

Petersen et al., 1997) is an example for implementing epidemic protocols. In this 

mechanism, each site periodically reconciles with a randomly chosen site. 

 
2.5.9 Deno 

 
Deno (Keleher, 1999; Keleher and Cetintemel, 2000; Cetintemel et al., 2003) is a 

replicated database strategy that is targeted for weakly connected environments. Deno 

adopts an optimistic strategy that allows updates to be received at any replica in order 

to provide a highly available service. To achieve eventual consistency, Deno relies on 

a voting approach that is implemented through pairwise epidemic information flow.  

In the voting approach, when a tentative update is issued at a given replica it is 

placed in a queue of candidate updates waiting to be voted. To commit these tentative 

updates, Deno regards update commitment as a series of elections. Each election 

decides, amongst a collection of concurrent tentative updates, which one of them 

should be committed while the remaining updates are aborted. Each replica acts as a 

voter in such elections. Similarly, each tentative update acts as a candidate for one 
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election. Once an election is over, one candidate wins the election and such winner is 

the same at every replica. Then a new election is started. 

The performance and network usage overheads imposed by the voting scheme 

are its main disadvantages. Moreover, the number of aborted updates may increase in 

case of the presence of a higher rate of updates generation. 

 
2.5.10 Bayou 
 
Bayou (Terry et al., 1995; Petersen et al., 1996; Petersen et al., 1997) is a mobile 

database system that is proposed to meet the requirements of mobile computing 

applications. This system is concerned on ensuring high data availability with weak 

data consistency guarantees. Bayou used read any/write any replication strategy that 

allows a user to access the data from any node.  

The system satisfies eventual consistency, which only guarantees that all 

replicas eventually receive all updates. Update propagation only relies on occasional 

pairwise communications between servers, which called anti-entropy sessions. Pair-

wise communication supports the reconciliation of any two replicas independently of 

which other replicas may be available and of how the network connection between the 

servers is established. A replica can choose its anti-entropy partner at random or based 

on other knowledge, like network characteristics.  

Bayou requires applications to provide conflict detection and resolution 

instructions along with each data update they make. These instructions are designated 

as dependency checks and merge procedures, specified by the application which 

issued the update. A replica executes an update’s dependency check before applying 

it. If the dependency check detects a conflict, the update’s merge procedure is called.  

Bayou’s performance is significantly constrained by the overhead resulting 

from the application of dependency checks and merge procedures for conflicts 

detection and resolution. The system does not provide replication transparency, since 

the application explicitly participates in conflict detection and resolution.  

 
2.5.11 Coda System 
 
Coda (Satyanarayanan, 2002) is a Client/Server based replication system in which an 

optimistic consistency strategy is used to enable the disconnected client to read and 

update the data in its cache. A client can be in one of three distinct states throughout 

its execution: hoarding, emulation and reintegration. The client is normally in the 
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hoarding state, when it is connected to the server infrastructure and relies on its 

replication services. Upon disconnection, it enters the emulation phase, during which 

update operations to the cached objects are logged. When a connection is again 

available, the reintegration occurs, in which the update log is synchronized with the 

objects stored in the servers’ disks. The hoarding state is then entered. However, 

disconnected operation of clients depends strongly on the server infrastructure, since 

the updates made during disconnection will only be available to other clients after 

reconciliation with the server. This makes Coda’s disconnected operation model is 

inadequate for applications that impose exchanging of updates among mobile hosts. 
 
2.5.12 Client-Oriented Approach 
 
Gollmick (2003) described a client-oriented service for replication in mobile database 

environments based on the requirements of application developers and also 

administrators. The client interface allows mobile applications to (re)define the data 

and functionality, which they want to be available offline, on demand. 

The proposed replication service provides a descriptive interface (SQLlike 

command set for replication definition/control and conflict management) to mobile 

applications and administrators. Using the interface, applications can select data from 

the server database for replication into a local database on demand. 

This replication approach requires the administrator only to define things that 

cannot be defined at the application level (e.g. certain conflict resolution options). 

Therefore the replication definition is divided into two steps: replication schema 

definition and replica definition. The replication schema is created by the 

administrator and describes the subset of the source database schema, which is visible 

to all mobile clients for later replica definition. 

 
2.5.13 Configured Replication Approach 
 
Lubinski and Heuer (2001) described an approach to tailor a suitable replication 

strategy corresponding to the mobile environment. This approach is based on a verity 

of syntactic and semantic knowledge about the mobile environment including its 

technical and infrastructural conditions as well as its user-forced regulations.  

This approach allows for configured replication based on various 

environmental and data characteristics. Three steps lead to the configured replication 

are outlined as follows. 
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1. Set the importance of the three aims consistency, availability, and minimal 

costs,   perhaps with the help of a scale 

2. Evaluate the available information about the network, device, application, data, 

and user 

3. Model strategies depending on the available knowledge for all possible states 

(site and Connection states). 

In the first step, the application is placed into the triangle of the three 

replication objectives. The importance of one aim establishes a smaller importance of 

the other aims. The aim's importance determines the applicable strategy. In the second 

step, all of the available data are collected or acquired, respectively. The more data 

are available the better the replication mechanisms can be tailored. In the third step, 

requirements meet available conditions. The following decisions can be made. The 

replication strategy (optimistic, pessimistic, hybrid) is selected based on the selected 

objective (consistency, availability, minimal costs, or scalability). The strategy, 

application, and data characteristics decide placing of data and metadata (like 

replication schema). 

However, tailoring approach requires more management overhead. Moreover, 

the framework emphases softening the replication transparency for applications and 

users in order to inform them about possible inconsistencies, waiting periods or 

necessary communications. 

 
2.6 Implementing Optimistic Replication in Large Scale Environments  
 
A few optimistic replication strategies have been introduced in the literature to handle 

data replication issues in systems that consist of large numbers of hosts. The common 

approach taken by these strategies is relaxing consistency, in trade for higher 

performance and availability. Some of these strategies are presented in the following 

subsections. 

 
2.6.1 Roam 

 
Roam (Ratner, 1998; Ratner, Reiher, and Popek, 2004) is an optimistic replication 

system that is proposed for providing a scalable replication solution for mobile 

environments. ROAM allows any replica to serve operation requests, without the need 

of accessing a centralized server. ROAM is based on the Ward Model (Ratner et al., 

2001). Ward model incorporates elements of both Client/Server and peer-to-peer 
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solutions to handle replica management and update distribution. Replicas are grouped 

into wards (wide area replication domains) (see figure 2.6.1.1). A ward is a collection 

of nearby nodes. All ward members are peers, allowing any pair of ward members to 

directly synchronize and communicate.  

Although all members of the ward are equal peers, the ward has a designated 

ward master, similar to a server in a Client/Server model but with several differences 

that include: 

� Any two ward members can directly synchronize with one another. Typical 

Client/Server solutions do not allow client-to-client synchronization. 

� Since all ward members are peers, any ward member can serve as the ward 

master. Automatic re-election and ward-master reconfiguration can occur 

should the ward master fail or become unavailable. 

 

The ward master is the ward’s only link with other wards; that is, only the 

ward master is aware of other replicas outside the ward. This is one manner in which 

the ward model achieves good scaling by limiting the amount of knowledge stored at 

individual replicas, since replicas are only knowledgeable about the other replicas 

within their own ward. 

All ward masters belong to a higher-level ward, forming a two-level 

hierarchical model. Ward masters act on their ward’s behalf by bringing new updates 

into the ward, exporting others out of the ward, and gossiping about all known 

updates. Consistency is maintained across all replicas by having ward masters 

communicate directly with each other and allowing information to propagate 

independently within each ward.  

Updates are exchanged within each ward (i.e. between ward members) and 

among wards (i.e. between ward masters) using ring topology. Such ring topology 

imposes that each ward member reconciles only with the next ring member. The ring 

is adaptive, in the sense that it reconfigures itself in response to changes in the ward 

composition. The authors call their replica synchronization process reconciliation. 

Reconciliation never directly involves more than two replicas. Reconciliation is pull-

only process, new information is propagated in one direction.  
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Figure 2.6.1.1 The Basic Ward Architecture 
(Ratner et al., 2001) 

 

ROAM uses version vectors to track updates and compare data versions. Each 

replica is assigned a version vector.  Periodically, each replica reconciles its data 

versions with another replica, according to the reconciliation topology imposed by the 

ward model. 

Accordingly, Roam employs optimistic replica control mechanism that 

ensures an eventual convergence for replica updates to maintain the consistency 

within each ward and among wards. ROAM tries to provide high scalability without 

discussing a mechanism of ensuring fast propagation of large numbers of updates that 

can be performed in replicas that are distributed over wide geographic areas. 

A significant drawback is the consistency guarantees that ROAM provides. 

Since consistency relies on an epidemic propagation of updates between replicas, 

every read request that a client may issue will only return tentative data. This aspect 

restricts ROAM’s applicability to applications whose correctness criteria are 

sufficiently relaxed to tolerate dealing with tentative data. In our case, each update is 

considered as stable update (i.e. it is applied permanently in the replica) and just it 

takes a global order on the level of the system. This means that the application always 
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reach a part of the stable data that is only stored on the host where application runs. 

These stored data may represent all stable updates that are received from other hosts. 

ROAM tries to provide high scalability without discussing in details the 

mechanisms of handling high update rates (i.e. large number of updates that can be 

performed on each replica) and supporting large number of fixed and mobile replicas 

that distributed among wide geographic areas. 

 
2.6.2 HARP 
 
The hierarchical asynchronous replication protocol (HARP) (Adly, Nagi, and Bacon, 

1993; Adly and Kumar, 1994; Adly, 1995) uses an optimistic update propagation 

scheme based on organizing the replicas into a logical, multilevel hierarchy. In this 

hierarchy, nodes are grouped into clusters, and clusters are organized into a tree, such 

that each cluster is assigned a father node in its parent cluster. Nodes in the same 

cluster should have efficient communication between them as well as with their 

father. A node i, originating a message, sends it to its neighbors, father and sons, and 

then waits for their acknowledgments. Each receiving node j sends an 

acknowledgment to the sender, then it passes the message to the next level as follows: 

if the message is coming from a neighbor or from the father, then j sends the message 

to its sons; else, if it is coming from a son then j sends it to its neighbors, its father and 

to its sons of clusters other than the one the message is coming from. This works 

recursively and a message originating at any site will eventually propagate 

everywhere.  

In HARP, The Fast_read and Fast_write operations support relaxed 

consistency, while the Slow_read and Slow_write operations support strong 

consistency. The Fast_read and Fast_write can be performed on any replica. In the 

case of new updates occurred as a result of performing Fast_write, the propagation 

protocol relies on the abovementioned hierarchical structure for sending messages to 

other replicas. The Slow_read and Slow_write operations can be initiated at any 

replica, but they require assembling quorums from replicas of the top cluster of the 

hierarchy. Accordingly, the Slow_read and Slow_write operations need reliable 

connectivity between the replicas that participates in the quorum. 

HARP only addresses single read/write operations. It propagates each update 

individually by relying on reliable communication. However, this reliable 

communication is not available in mobile environments. 



 38

 
2.6.3 N-ary Tree Based Updates Propagation 
 
This strategy (Hara et al., 2005; Watanabe et al., 2007; Watanabe et al., 2008) 

assumed an environment where update information is immediately sent to all peers 

holding replicas when an update occurs. The proposed strategy creates an N-ary tree, 

whose root is the owner of the original data while the other nodes are peers holding its 

replicas, and propagates the update information according to the tree. Each peer in the 

tree records its parent and children, and by using this information, the location of a 

newly participating peer in the tree is autonomously determined. 

However, in this strategy, the updated data must be propagated to all replica 

holders and this causes heavy traffic for update propagation. Accordingly, this 

strategy is not suitable for propagating updates to replicas that are stored on mobile 

hosts, since these hosts frequently change their location and disconnect from the 

network. Also, there is an overhead originated from the need of each mobile host to 

manage information about the parent and children peers. 

 
2.6.4 Timestamp Anti-Entropy Protocol  
 
Golding (1992) proposed a weak consistency replication strategy called timestamp 

anti-entropy protocol (TSAE). The TSAE protocol allows updates to be processed by 

a single replica, then propagated through messages from one replica to another in the 

background, causing replicas to temporarily diverge. 

When a replica wishes to send a message, it stamps the message with the 

current time and the identity of the replica, then writes the message to a log. From 

time to time, a replica will select another replica (either randomly or deterministic), 

and the two will exchange the contents of their message logs in an anti-entropy 

session. At the end of the session, both replicas have received the same set of 

messages.  

Each replica maintains a summary timestamp vector, indexed by replica 

identifier, containing the greatest timestamp it has received from other replicas. An 

anti-entropy session begins with two replicas exchanging their summary vectors. Each 

replica can determine what messages its partner has not yet received by comparing its 

summary vector to that of its partner. Once both replicas have received their 

messages, they can update their summary vector. 
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This protocol cannot scale to a large number of replicas, since it is assumed 

that any replica can communicate with any other replica.  Further, it imposes a space 

overhead for maintaining logs and timestamp vectors. 

 
2.7 Updates Ordering in Optimistic Replication 
 
Updates ordering enables optimistic replication strategies to be employed (Barreto, 

2003; Saito and Shapiro, 2005) by providing a relaxed consistency guarantee. This 

guarantee does not require that operations are executed according to a canonical 

order. Instead of that, replicas are allowed to execute operations in different orders as 

long as the relaxed consistency guarantee is maintained. 

The update ordering data consistency model requires placing ordering 

constraints on update operations so that updates occurred at different replicas are 

ordered (Birman, 1993; Zhou, Wang, and Jia, 2004). Ordering constraints can be 

categorized into three types: FIFO, causal, and total (Jia and Zho, 2005) to reflect 

semantical requirements of both group of replicas and individual hosts. Generally, 

from the replica group point of view, as long as updates are handled (e.g. ordered or 

delivered) at all replicas in the same order, the data consistency is guaranteed among 

replicas. On the other hand, from the client point of view, it may require updates sent 

from the same client to be handled in the generation or sending order at all replicas.  

FIFO constraint is defined between one sender and a set of receivers. It 

requires that any two updates that are originated and sent from the same replica Ri are 

handled by any receiver in the same order as they were generated in Ri. 

Casual constraint is a generalization of the FIFO constraint (Schiper, Eggli,  

and Sandoz, 1989; Agrawal,  El Abbadi, and Steinke, 1997) by considering different 

senders. It is based on the happened-before relation (denoted→) that is introduced by 

Lamport (1978).  This constraint requires that if two messages m1 and m2 sent from 

two different hosts be related such that sending of m1 happened before sending of m2, 

then m2 cannot be received before m1 by any receiver. 

Total constraint requires that for all messages m1 and m2 and all replica Ri and 

Rj, if m1 is received at Ri before m2, then m2 is not received before m1 at Rj (Vijay, 

2002). Accordingly, the total ordering implies m1 and m2 to be received either in the 

order of (m1, m2) or (m2, m1), as long as the ordering is consistent at all replicas.  
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As compared with the other constraints, causal ordering is beneficial for 

maintaining consistency in many distributed applications. These applications include 

news systems, weather forecasting networks, stock trading, monitoring a distributed 

system, etc. (Raynal,  Schiper,  and Toueg, 1991; Adelstein and Singhal, 1995; Adly 

and Nagi, 1995 ; Alagar and Venkatesan, 1997 ). 

The mechanisms for implementing causal ordering include logical clocks and 

version vectors (Barreto, 2003; Ghosh, 2006). The purpose of these mechanisms is to 

timestamp events that occurred on each replica in order to determine the casual order 

for each event, detect conflicts, and determine the set of updates to be exchanged 

between replicas. These mechanisms are as follows.  

 
2.7.1 Logical clocks (Lamport clocks) 
 
Lamport (1978) suggested that each process in a distributed environment implements 

a logical clock that is used to assign logical timestamps to local events. 

According to Lamport’s point of view, a clock is just a way of assigning a 

number to an event, where the number is thought of as the time at which the event 

occurred. More precisely, a clock Ci for each process Pi is defined to be a function 

which assigns a number Ci(a) to any event a in that process. The entire system of 

clocks is represented by the function C which assigns to any event b the number C(b), 

where C(b) = Cj(b) if b is an event in process Pj.  There is no assumption is made 

about the relation of the numbers Ci(a) to the physical time, so  the clocks Ci can be 

thought as logical rather than physical clocks. They may be implemented by counters 

with no actual timing mechanism. 

A clock Ci in process Pi is initially set to 0 and advanced according to the 

following rules: 

(1) Each time a local event takes place in Pi, Ci := Ci + 1 

(2) When sending a message, append the value of Ci to the message 

(3) When receiving a message, Ci := 1 + max (Ci, Cm) 

Where Ci is the local value, and Cm is the value appended with the incoming 

message from another process Pj. 

Based on the value of the logical clock Ci, the logical timestamp L(e) of an 

event e occurring in process Pi is the reading of clock Ci when e occurs. A logical 

clock is correct if it holds for any two events ei and ej that L(ei) < L(ej) if ei → ej . 

However, the opposite does not hold; L(ei) < L(ej) does not necessarily imply that ei 
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→ ej . This means that the timestamp values of two events cannot reveal if they are 

causally related. Therefore, timestamps provided by the logical clock is consistent 

with causality, but does not characterize causality and can not be used to prove that 

events are not causally related. This represents a weakness of logical clocks. 

Sun and Maheshwari (1996) used logical clocks in their ordering mechanism. 

 
2.7.2 Version Vectors  
 
A version vector (Mattern, 1989; Fidge, 1991; Ghosh, 2006) (also known as a vector 

clock) is a vector of counters, one for each replica in the system. Version vectors 

overcome the weakness of logical clocks. Their goal is to detect causality. They 

define a mapping V from events to integer arrays, and an order < such that for any 

pair of events a, b: a happened before b is equivalent to V[a] < V[b].  

In a replication system containing N replicas 0, 1, 2, ..., N-1, for every replica 

i, the version vector V is an integer vector of length N that consists of a set of 

timestamps, one for each replica. Like the logical clock, the version vector is also 

event-driven. Each element of V is a logical clock that is updated by the events local 

to that replica only. 

The version vector Vi of a replica Ri is maintained according to the following 

rules: 

(1) Initially, Vi [k]:=0, for k=1,…, N replicas. 

(2) On each internal event e, replica  Ri increments Vi as follows: Vi [i] := Vi [i]+1. 

(3) On sending message m, Ri updates Vi as in (2), and attaches the new vector to 

m. 

(4) On receiving a message m with attached version vector V(m), Ri  increments Vi 

as in (2). Next Ri updates its current Vi as follows: Vi:=max{ Vi, V(m)}. 

 

Two version vectors can be compared to assert if there exists a happened-

before relationship between them. Given two version vectors, V1 and V2, V1 causally 

precedes V2, meaning that a happened-before relationship links V1 to V2, if and only if, 

the value of each entry in V2 is greater or equal than the corresponding entry in V1. If 

this condition is verified, V2 is said to dominate V1. If neither V1 dominates V2, nor V2 

dominates V1, V1 and V2 are conflicting versions. 

The size occupied by version vectors is linearly dependent on the number of 

replicas in the system. This is a significant scalability obstacle when concerning 
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systems with a high number of replicas. This is because all messages of a distributed 

computation have to be tagged with a timestamp of size equals to the number of 

replicas in order to maintain the version vectors on other replicas. 

There are many strategies used version vectors for implementing causal 

ordering including Ladin et al. (1992), Singhal and Kshemkalyani (1992), Adly and 

Nagi (1995), Prakash et al. (1996), Prakash et al. (1997), Satyanarayanan (2002), and 

Ratner, Reiher, and Popek (2004). However, these algorithms do not act accord with 

the characteristics of LMDDBSs (host mobility, large no of replicas, large number of 

updates, etc.). Their implementation in such systems implies both communication and 

storage overheads. This is because each message in these algorithms carries large 

amount of information to implement causal ordering.  

On the other hand, in our proposed ordering mechanism, causal ordering is 

implemented by assigning timestamps for local events using a variable called Real-

Like clock. This variable ensures a unified assignment for timestamps according to 

the exact time when the event occurred in each replica. The size of this variable is not 

affected by the number of replicas. This leads to ensuring sufficient unified ordering 

of updates without needing for each node to keep track for the time information in all 

other nodes as in the version vector method.  

 
2.8 SPN Background 
 
Stochastic Petri Nets (SPNs) are used in this research to model and analyze the 

stochastic behavior of the replication system using the proposed strategy. SPNs are 

derived from standard Petri nets (PNs). PNs are an important graphical and 

mathematical tool used to study the behavior of many systems. They are very well-

suited for describing and studying systems that are characterized as being concurrent, 

asynchronous, distributed, and stochastic (Ajmone, Balbo, and Conte, 1986; Murata, 

1989). A PN is a directed bipartite graph that consists of two types of nodes called 

places (represented by circles) and transitions (represented by bars). Directed arcs 

connect places to transitions and transitions to places. Places may contain tokens 

(represented by dots).  

The state of a PN is defined by the number of tokens contained in each place 

and is denoted by a vector M, whose ith component represents the number of tokens in 

the ith place. The PN state is usually called the PN marking. The definition of a PN 

requires the specification of the initial marking M'. A place is an input to a transition 
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if an arc exists from the place to the transition. A place is an output from a transition 

if an arc exists from the transition to the place. A transition is said to be enabled at a 

marking M when all of its input places contain at least one token. A transition may 

fire if it is enabled. The firing of a transition t at marking M removes one token from 

each input place and placing one token in each output place. Each firing of a transition 

modifies the distribution of tokens on places and thus produces a new marking for the 

PN. 

In a PN with a given initial marking M', the reachability set (RS) is defined as 

the set of all markings that can be "reached" from M' by means of a sequence of 

transition firings. The RS does not contain information about the transition sequences 

fired to reach each marking. This information is contained in the reachability graph, 

where each node represents a reachable state, and there is an arc from M1 to M2 if the 

marking M2 is directly reachable from M1. If the firing of t led to changing M1  to M2, 

the arc is labeled with t. Note that more than one arc can connect two nodes (it is 

indeed possible for two transitions to be enabled in the same marking and to produce 

the same state change), so that the reachability graph is actually a multigraph. 

SPNs are derived from standard Petri nets by associating with each transition 

in a PN an exponentially distributed firing time (Ajmone et al., 1995; Bause and 

Kritzinger, 2002). These nets are isomorphic to continuous-time Markov chains 

(CTMCs) due to the memoryless property of exponential distributions. This property 

allows for the analysis of SPNs and the derivation of useful performance measures. 

The states of the CTMC are the markings of the reachability graph, and the state 

transition rates are the exponential firing rates of the transitions in the SPN. The 

steady-state solution of the equivalent finite CTMC can be obtained by solving a set 

of algebraic equations. 

 
2.9 Summary 
 
This chapter described a background material for this thesis and outlined 

representative replication strategies that are devoted for both distributed and mobile 

environments.  Section 2.2 focused on the relationship between replicas and the role 

that each replica plays in the replication system regarding update operations. Section 

2.3 discussed the abstract replication strategy and classification of replication 

strategies into pessimistic and optimistic strategies. Section 2.4 provided a brief 

description for four pessimistic strategies. Sections 2.5 and 2.6 outlined representative 
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optimistic replication strategies that are devoted to mobile computing environments 

and large scale systems. Section 2.7 discussed the mechanisms that are used by 

optimistic replication strategies for implementing updates ordering. 

   In summary, we argue that existing replication strategies are not coping well 

with the characteristics of large-scale mobile systems containing large number of 

geographically distant replicas that experience large number of updates. Accordingly, 

such systems demand new solutions for addressing data consistency through ensuring 

fast propagation of recent updates among replicas as well as supporting scalability for 

encompassing new replicas when the replication system covers new geographic areas. 

Moreover, these solutions should provide mechanisms for updates ordering that 

impose low communication and storage overheads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


