

101

CHAPTER FIVE

IMPLEMENTATION OF UPDATES PROPAGATION PROTOCOL USING
IIRA-BASED PROPAGATION SYSTEM

5.0 Overview

This chapter provides a description of IIRA-based propagation system. The purpose of

this system is to implement the proposed propagation protocol through automating the

propagation of updates between the components of the replication architecture in a

manner that ensures bounding unavailability of recent updates and inconsistency of

replicated data, and propagating only recent updates among the large number of replicas.

The chapter presents the components of this propagation system and the interaction

mechanisms between them. Also, it presents the operations that are carried out by IIRA

with respect to the different types of updates propagation.

To model and analyze the stochastic behavior of the proposed propagation system

with regard to reaching a mobile database state in which availability and consistency are

satisfied, the research developed Stochastic Petri Net (SPN) model. The Continuous Time

Markov Chain (CTMC) is derived from the developed SPN and the Markov chain theory

is used to obtain the steady state probabilities of occurrences of the different states of the

replication system.

5.1 IIRA-Based Propagation System

The IIRA-Based propagation system (see Figure 5.1.1) is composed of the four types of

IIRA. Each type interacts with the other types through a synchronization process in which

two types exchange their recent updates via their created instances of IIRA. In this

system, each type can exchange updates directly with the same type or a different type in

the server of the level where it inhabits or in a server from underlying level. For example,

MHR-IIRA can exchange updates directly with CSR-IIRA or another MHR-IIRA, while

MHR-IIRA cannot directly interact with either ZSR-IIRA or MSR-IRRA.

102

When the connection takes place between any two IIRA types, an instance of

IIRA type that inhabits the lower level will propagate a set of recent updates called

Updates-Result (UR), which is produced by an application, in addition to updates that

may have been collected from the underlying level to the database of IIRA type that

inhabits the higher level. Then, an instance of the type that inhabits the higher level

propagates a set of updates called Recent-Resolved-Updates (ReRU) that is received

from the higher level to the replicated database in the lower level. Accordingly, IIRA has

different responsibilities for updates propagation with respect to implementing the three

basic mechanisms of updates propagation (Bottom-Up Propagation, Top-Down

Propagation, and Peer-to-Peer Propagation). These responsibilities are identified in

section 5.1.2.

Figure 5.1.1 IIRA-Based Propagation System

103

5.1.1 Waiting Period for Connection

The exchanging of updates between two types occurs only during the connection

period between their home hosts. The time period that a mobile host waits for the

connection with a cell server in the fixed network is not deterministic and it depends on

its own conditions, such as connection availability, battery, etc. On the other hand, the

research assumes that the time period that a server in the fixed network must wait to

connect with the server in the higher level is deterministic and its value depends on the

availability and consistency requirements of the replication system. To decide this value,

the research views the connection timing system for connecting servers in the fixed

network should mimics the shifting behavior, where the shift time is exploited in

collecting recent updates from underlying level (e.g. the cell server should connect to

the zone server every one hour to propagate the collected updates from underlying mobile

hosts during the last past hour).

5.1.2 IIRA Responsibilities for Updates Propagation

The responsibilities of IIRA can be identified according to the mechanism of the

propagation as follows.

Bottom-Up Propagation: In this type, each MHR-IIRA propagates the set of recent

updates (MH-UR) that occurred in its host to the database of the type that inhabits a cell

server. Also, each server’s IIRA collects the received recent updates from underlying

level in addition to its server’s updates-result in a set called Set of Updates Result (SUR),

and resolves updates conflict through ordering updates in this set, and then propagates

this set to the database of IIRA in the higher level.

As previously mentioned, the time period that the server in the current level

should wait for receiving recent updates (i.e. updates collection) from underlying level is

deterministic. The value of this period in a server in the higher level is greater than its

value in a server in the lower level (e.g. waiting period for the zone server > waiting

period for the cell server). This is because the number of hosts, where updates occurred

increases as we move to the higher levels. After elapsing of this deterministic period, the

IIRA carries out the required operations for this type of propagation.

104

The typical operations that are involved in this propagation, which are performed

by IIRA are:

• Resolving updates conflict through ordering the collected updates, which are stored

in Collection-VLDS on the database of the IIRA type that inhabits the host in the

current level.

• Assigning the value of the update timestamp data item (in case of the update is

generated on the same host).

• Creating the instance and filling the RU-Propagation-VLDS with the ordered

updates that are retrieved from Collection-VLDS.

• Migration of the instance to the host that exists in the higher level.

• Assigning the value of the send timestamp data item to each update before the

migration start and after migration request is accepted, and assigning the value of

receive timestamp when the instance arrives at the destination.

• Execution of the instance in the destination host through insertion of recent updates

in its IIRA type’s database.

Thus, this propagation takes place in the servers that exist in the fixed network

when IIRA orders the collected updates in Collection-VLDS. Then, the ordered updates

are shipped via RU-Propagation-VLDS to the host in the higher level. This means that

updates are pushed from a level to the higher level in a unicasting manner where each

host pushes RU to a single host in the higher level. Updates occurred on mobile hosts are

pushed to cell servers when the connection occurs.

Top-Down Propagation: In this type, each server’s IIRA propagates the set of recent

resolved updates (ReRU) that is received from the higher level to the lower level. For

example, each ZSR-IIRA propagates the ReRU that is received from the master server to

underlying cell servers and in turn each cell server propagates a subset of this set called

Interested-Recent Resolved-Updates (IReRU) to underlying mobile hosts. IReRU

represents the set of updates that are performed on the data items that are replicated on

mobile hosts.

105

The typical operations that are performed by IIRA for carrying out this

propagation are:

• Creating the instance and storing the set of recent resolved updates on it.

• Migration of the instance to the host that exists in the lower level.

• Execution of the instance on the destination host.

Thus, for a given set of updates, this propagation takes place when these updates

are totally ordered (i.e. resolved) by MSR-IIRA in MS-Collection-VLDS (see section

5.1.3.2). The ordered updates (i.e. ReRU) are then inserted into ReRU-Propagation-

VLDS in order to be propagated through the instance to the underlying level. The MS

pushes ReRU to all available zone servers through sending same instance to each zone

server. Similarly, the zone server does same pushing to its underlying available cell

servers. However, the cell servers push ReRU only to connected MHs, while

disconnected MHs pull ReRU when they connect to the cell servers. According to this

pushing mechanism, this mechanism of propagation can be called Multi-cast Propagation.

If some of underlying hosts do not obtained all ReRUs that are propagated previously

from the higher level due to some failures, these updates are considered as missed

updates. The missed updates are obtained when these hosts connect to the higher level

and then pulling such updates from it. This means that the contains of the instance, which

will be sent to this host is different from other hosts according to its missed updates.

To determine which ReRUs are missed from a host in the underlying level, the

IIRA in the higher level relies on the value of specific data item called MS-Instance-

ReRU-ID in the Hosts-Obj (see appendix One). This data item stores the number of the

last instance that has transferred the last ReRU to underlying level. Thus, when the host

in the underlying level becomes available, the IIRA in the higher level checks the value

of MS-Instance-ReRU-ID for that host and fills ReRU-Propagation-VLDS with ReRUs

that are missed from it. This filling is performed by retrieving ReRUs from data objects

according to their associated MS-Instance-ReRU-ID in the ReRU-Received-Instances-Obj

object (see appendix One).

106

Peer-to-Peer Propagation: In this type, two IIRA of the same type may exchange their

updates. The typical operations that are performed by IIRA in this type are same as in

Bottom-Up propagation with a distinction that both hosts, which are involved in the

synchronization process inhabit the same level and have same type.

5.1.3 Implementing Bottom-Up Propagation

In this section, the required data structures and algorithm for implementing Bottom-Up

Propagation are provided as follows.

5.1.3.1 RU-Propagation-VLDS

The purpose of this type is to store the set of ordered updates that to be propagated from a

host in the current level to another host in the higher level. The IIRA fills this type when

the collection period for updates is elapsed and the connection takes place with the higher

level, while its stored updates are removed when an acknowledgment message is received

from the higher level indicating that the updates shipped by this type are received

successfully.

The number of data items in the updates tracking part of this type varies according

to the type of the host. For example, RU-Propagation-VLDS for the cell server (i.e. CS-

RU-Propagation-VLDS) has less data items than RU-Propagation-VLDS for the zone

server (i.e. ZS-RU-Propagation-VLDS). Thus, this type has different names and data

items based on its host type as follows.

(i) MH-RU-Propagation-VLDS

This subtype is stored in MHR-IIRA database. It is used to hold recent updates that

occurred in a mobile host to a cell server. The structure of this subtype is as shown in the

Figure 5.1.3.1.1.

107

Figure 5.1.3.1.1 The Description of MH-RU-Propagation-VLDS

The notations that are used in Figure 5.1.3.1.1 are described in Table 5.1.3.1.1.

Table 5.1.3.1.1 Notations in Figure 5.1.3.1.1 and Their Meanings

Notation Description
o The number of objects where updates occurred
Host-ID The number assigned to the source of updates (i.e. Instance’s

owner) in the Hosts object
Instance-ID An incremental number assigned to the instance by IIRA
Send-TS The value of the timestamp when the instance is migrated to the

host in the higher level
Host-Dest-ID The number of the host in the higher level, which the instance

will migrate to it
Update-ID An incremental number assigned to each update on each object
Update-TS The value of the timestamp when the update occurred

108

Some constraints are defined on this type of VLDSs, which are:

1. The value of Host-ID should be the number of the sending host in the Hosts-Obj

object.

2. The value of the Host-Dest-ID should be either the number of a cell server or the

number of another mobile host (in case of Peer-to-Peer propagation of RU).

3. The Instance-ID has distinct values. These values are assigned serially based on the

following naming schema:

Host-ID - Serial No

For example, for the instance that migrated from the mobile host that is assigned number

15 in cell number 5, the Instance-ID is MH15-C5-942.

4. Update-ID is assigned for each new update occurs in an object based on the previous

value of the last update occurred in this object.

5. Send-TS is the value of RC (see section 6.1.2.1) when the instance migrated to the

other host.

Two Important notes here are:

• The purpose of the Update-ID is as follows. If an update is propagated and then it is

modified, this requires that propagating it again. Accordingly, the new update will

replace the old one and this depends on the value of this data item.

• The details of the outgoing instances are stored in the Outgoing-Instances-Obj

object (see appendix One), which represents an archive object that is used to decide

the value of the next Instance-ID based on the last one.

(ii) CS-RU-Propagation-VLDS

This subtype is stored in CSR-IIRA database. It is used to hold an ordered set of both

recent updates that occurred in the cell server and collected updates in it from underlying

hosts to the zone server. It has the same header as in MH-RU-Propagation-VLDS, but the

updates tracking part is different. Figure 5.1.3.1.2 describes the structure of the body in

this subtype.

109

Figure 5.1.3.1.2 The Structure of the Body Part in CS-RU-Propagation-VLDS

In Figure 5.1.3.1.2, most notations have same description as in Table 5.1.3.1.1.

Additional notations are Send-To-Cs-TS and Receive-By-CS-TS. The notation Send-To-

CS-TS is an alias for Send_TS, which represents the value of the timestamp when the

instance migrated to the cell server. Receive-By-CS-TS represents the value of the

timestamp when the instance is received by the cell server. The Host-ID in the header

refers to the sending host (i.e. the cell server), while the Host-ID in the body refers to the

number of the host that represents the source of the update.

In the header of this type, the value of the Host-Dest-ID should be either the

number of zone server or a number of another cell server.

(iii) ZS-RU-Propagation-VLDS

This subtype is stored in ZSR-IIRA database. It is used to hold an ordered set of both

recent updates occurred in the zone server and collected updates in it to the master server.

Also, it has different updates tracking part as compared to MH-RU-Propagation-VLDS

and CS-RU-Propagation-VLDS. The updates tracking part contains additional two data

items than its counterpart in CS-RU-Propagation-VLDS. These data items are Send-To-

ZS-TS and Receive-By-ZS-TS. Send-To-ZS-TS is the value of the timestamp when the

instance is sent to the zone server. Receive-By-ZS-TS is the value of the timestamp when

the instance is received by the zone server.

110

In the header of this type, the value of the Host-Dest-ID should be either the

number of the master server or the number of another zone server.

5.1.3.2 Collection-VLDS

This type acts as a pool that encompasses all incoming updates information that is

shipped by RU-Propagation-VLDS from underlying level. It stores all received updates

during the specified collection period. At the end of the collection period, the collected

updates are ordered together with the updates occurred in the same host in the same

collection period. Then, the set of ordered updates are propagated through RU-

Propagation-VLDS to the higher level.

This type is filled by both incoming instances and the resident IIRA (i.e. It fills

this type with the updates occurred in the same host). The header and the body parts of

the incoming RU-Propagation-VLDSs are inserted in their counterparts in this type. IIRA

empties this type when the collection period is elapsed and its contains are stored in the

RU-Propagation-VLDS to be propagated to the higher level.

The IIRA retrieves the local recent updates into this type at the end of the

collection period in order to be ordered along with the collected updates from underlying

level. For inserting those local updates in this type, IIRA inserts their information by

associating them with a virtual instance. In the header of this instance, both the ID of the

source of the instance (Host-ID) and the ID of the destination (Host-Dest-ID) will be the

ID of the current host. Also, the values of both Send-TS and Receive-TS will be same,

which take the value of the time instant when the collecting period is elapsed.

The number of data items in the updates tracking part in this type varies according

to the type of the host. Thus, this type will has different names and data items based on its

host type as follows.

(i) CS-Collection-VLDS

It is stored in CSR-IIRA database and is used to store collected updates from underlying

mobile hosts and fixed hosts. The structure of this subtype is depicted in the following

figure.

111

Figure 5.1.3.2.1 The Description of CS-Collection-VLDS

In Figure 5.1.3.2.1, each Instance-ID in the header has many associated tuples in

the body because each instance has many updates. Therefore, the Instance-ID is added to

the body. Send-To-CS-TS is an alias for the Send-TS of the instance that is received from

the lower level. Receive-By-CS-TS is the timestamp when the instance is received by CS.

The default value of the Host_Dest_ID is the ID of the cell server where updates are

collected.

(ii) ZS-Collection-VLDS

It is stored in ZSR-IIRA database. It stores collected updates from underlying cell servers

and fixed hosts. It has the same header as in CS-Collection-VLDS with assigned aliases

for Send-TS and Receive-TS, which are Send-To-ZS-TS and Receive-By-ZS-TS,

respectively. The updates tracking part in the body has additional number of data items.

The structure of the body in this subtype is depicted in the following figure.

112

Figure 5.1.3.2.2 The Structure of the Body Part in ZS-Collection-VLDS

In Figure 5.1.3.2.2, The Host-ID is the ID of the host where update is generated,

while the Host-ID in the header (see the description of CS-Collection-VLDS) is the ID of

the host that has sent the instance.

(iii) MS-Collection-VLDS

This subtype is stored in MSR-IIRA database. It stores all collected updates that are

received from underlying zone servers and fixed hosts. Also, it has the same header as in

the previous subtypes with assigned aliases for Send-TS and Receive-TS, which are Send-

To-MS-TS and Receive-By-MS-TS, respectively. The updates tracking part contains

additional two data items than its counterpart in ZS-Collection-VLDS. These data items

are Send-To-ZS-TS and Receive-By-ZS-TS.

(iv) MH-Collection-VLDS

This subtype can be stored in MHR-IIRA database in the case of MH acts as a broker for

many other MHs to propagate their updates to the higher level. This happens when the

other MHs cannot synchronize directly with the higher level (e.g. they are in locations far

from the location of the server in the higher level). This type has the same structure as

CS-Collect-VLDS.

113

5.1.3.3 Propagating RU Algorithm

The steps that are carried out in both hosts in the higher and lower levels for propagating
RU are as follows.

Step 0 (Verification of elapsing of Updates collection period)

If host-type= ‘CS Server’ or ‘Zone Server’ then
If collection-period elapsed (the time of sending last instance to the higher
level + collection-period) ≥ collection-period) then

Next Step
Else

Collect updates
Else

Next step

Step 1 (Checking the connection status with the host in the higher level)
If the connection is established then

1.1 The IIRA retrieves the ordered set of recent updates (RU) from Collection-
VLDS into RU-Propagation-VLDS
1.2 The IIRA removes the contains of Collection-VLDS

 Else
1.3 Wait for connection

Step 2 (Creating and populating the instance with the required coda and data)
2.1 Creating an instance that contains only RU-Propagation-VLDS and the code
that is required for insertion RU in the higher level and removing itself.
2.2 Assigning the value of the Send-TS to the instance.
2.3 Storing the details of the instance in Outgoing- Instances-Obj object.

Step 3 Migrating of the instance to the host in the higher level.

Step 5 (Execution of the instance on the higher level)

5.1 Inserting the instance and updates details that are shipped in RU-
Propagation-VLDS in Collection-VLDS of the IIRA in the higher level.
5.2 Inserting the details of the instance in Incoming-Instances-Obj.

Step 6 (Finalizing the propagation task)
6.1 The instance sends an acknowledgement message to its parent IIRA in the
sender indicates that the transferred RU through VLDS is applied successfully.
6.2 The instance removes itself.

Step 7 The IIRA in the lower level removes the contains of the RU-Propagation-VLDS
once the ACK message is received.

114

5.1.3.4 Updates Ordering

The ordering process depends on the values of timestamps on both body and header

sections on Collection-VLDS as follows.

• In the cell level, if two or more updates have same values for Update-TS data item

(i.e. conflicts occurred) in the body section, then the conflicts are resolved based

on the value of Send-To-CS-TS in the header section. And if they have same

values for Send-To-CS-TS, then the value of Receive-By-CS-TS is used to

resolve conflicts.

• In the zone level as well as the master level, when conflicted updates have same

values for timestamps in the body section, the conflicts are resolved in the same

manner as in the cell level based on the values of Send- TS and Receive- TS in

the header section.

 After MSR-IIRA performs the total ordering on MS-Collection-VLDS, it assigns Global

ID for each update based on the order of that update. The value of this ID represents the

order of the update on the level of the whole system. Once the Global IDs are assigned,

the MSR-IIRA will store the contains of MS-Collection-VLDS in the replicated database

in the master server. Then instances are created to transfer the ordered updates (ReRU)

that are stored on this type to the zone servers.

The MHR-IIRA will reorder collected updates from other MHs (in case of they cannot

access the higher level) according to the values of the Update-TS, Send-TS, and Receive-

TS. Then the result of ordering is sent to the CS using MH-RU-Propagation-VLDS as

usual.

5.1.4 Implementing Top-Down Propagation

In this section, the required data structures and algorithm for implementing Top-Down

Propagation are provided as follows.

5.1.4.1 ReRU-Propagation-VLDS

The purpose of this type is to ship ReRU from a level to underlying level until it reaches

the lowest level (i.e. the MHs). Accordingly, each server in the fixed network has this

type as a part of IIRA’s data section. MHs store this type only when they need to

115

exchange ReRU in a peer-to-peer manner. The structure of this type in each server can be

envisioned as shown in Figure 5.1.4.1.1. The header of this type contains the data items

that are required for storing the instance information. The body is grouped according to

two levels.

Figure 5.1.4.1.1 The Description of ReRU-Propagation-VLDS

116

The first grouping level is by the Instance-ID that migrated from the MS to

underlying zone servers, which is called here MS-Instance-ReRU-ID. The value of MS-

Instance-ReRU-ID is used to check last updates that are received from the higher level.

The reason of grouping using this data item is that the host in the underlying level may

not receive all the instances issued from the host in the higher level as previously

mentioned. These instances are called missed instances. The second grouping level is by

Object-ID.

In Figure 5.1.4.1.1, i is the number of the first missed instance out of k missed

instances. In case of propagating ReRU from MS to ZS, the value of Instance-ID in the

header of this type will be same as the ID of the last value of MS-Instance-ReRU-ID in

the body, which here is K. The reason is that the number of instances that ZS missed will

be up to K, which represents the number of last instance issued from MS. If the missed

instance is the only the last instance, then the grouping in the body section will be only by

the ID of the last instance. In case of propagating ReRU from ZS to CS or from CS to

MH, the value of Instance-ID is serially assigned according to the value of Instance-ID in

Outgoing-Instances-Obj (see appendix One) that is stored on the database of IIRA in the

higher level. Similarly, as in propagating ReRU from MS to ZS, the values of MS-

Instance-ReRU-IDs in the body will be according to the missed values of MS-Instance-

ReRU-ID in the hosts in the lower level. The Host-ID in the header represents the ID of

the instance’s sender while the Host-ID in the body represents the ID of the host where

update occurred.

5.1.4.2 Propagating ReRU Algorithm

The steps that are carried out in both hosts in the higher and lower levels for propagating

ReRU are as follows. In these steps, the last instance that has been sent to the host in the

lower level is denoted by L-Sent, while the last instance that should be propagated to the

hosts in the lower level is denoted by L-Last.

117

Step 1 (Checking the connection status with the host in the lower level)
If the connection is established then

If Host-Type = ‘MH’ then
1.1 MHR-IIRA sends a message to the CSR-IIRA includes
the ID of the last instance received (MS-Instance-ReRU-ID
in ReRU-Received-Instances-Obj).
Go to Step 3

 Else
Go to Step 2

Else
If Host-Type = ‘MH’ then

1.2 Wait for connection with the fixed network.
Else

1.3 Check the connection status with another host in the
lower level.

Step 2 The IIRA of the host in the higher level compares the ID of L-Sent (MS-Instance-
ReRU-ID in Hosts object) with the value of the ID of L-Last (MS-Instance-ReRU-ID in
ReRU-Received-Instances-Obj).
Step 3 (Checking the difference between ID of L-Sent and ID of L-Last)

If Difference = 1 then
 3.1 Selecting only the L-Last for propagation to the lower level.

3.2 Filling ReRU-Propagation-VLDS by selecting updates according to
the ID of L-Last from each data object through linking each object with
ReRU-Received-Instances-Obj object to fetch only those updates
associated with that instance.

 Else (the difference >1)

3.3 Filling ReRU-Propagation-VLDS by selecting updates according to
the IDs of the missed instances.
3.4 Grouping updates in the body according to these IDs.

Step 4 After filling ReRU-Propagation-VLDS, the instance migrates to the host in the
lower level.
 4.1 Storing the details of the instance in Outgoing- Instances-Obj object.
Step 5 (Execution of the instance on the lower level)

5.1 Inserting the updates that are shipped in ReRU-Propagation-VLDS in
corresponding objects in the replicated database
5.2 Inserting the details of the instance in the ReRU-Received-Instances-Obj.

Step 6 (Finalizing the propagation task)
6.1 The instance sends an acknowledgment message to its parent IIRA in the
sender indicates that the transferred updates are applied successfully.
6.2 The instance removes itself.

Step 7 The IIRA in the higher level removes the contains of the ReRU-Propagation-VLDS
once the acknowledgment message is received.

These steps are repeated by IIRA for each underlying host in order to ensure that

the last ReRU is propagated to all available underlying hosts. In case of the host type is

118

master server, the object ReRU-Received-Instances-Obj is called ReRU-Sent-Instances-

Obj.

In case of the host type is mobile host, the MHR-IIRA sends a message to the

CSR-IIRA at the beginning of the connection period includes the ID of the last instance.

This is because storing the ID of the last instance that is received by a mobile host in the

hosts object in the same manner as in the case of zone and cell servers is not beneficial

here, since the mobile host does not belong to specific cell or zone.

In step 7, The IIRA in the higher level removes the contains of the ReRU-

Propagation-VLDS once the acknowledgment message is received from its all instances

that migrated to the underlying hosts in case of propagating to multiple hosts (i.e. Mutli-

cast propagation).

5.1.5 Implementing Peer-to-Peer Propagation

The two IIRAs can exchange either ReRU or RU as follows.

(i) Exchanging ReRU

In this case, a message from each peer is sent to the other that includes the last value of

MS-Instance-ReRU-ID, which is received by each of them. Depending on this value, each

peer retrieves the updates that are associated with the instances, which the other peer

missed and stores these updates in ReRU-Propagation-VLDS. Then, an instance from

each peer holding ReRU-Propagation-VLDS will migrate to the other.

Exchanging ReRU is useful in case of two nearby MHs desire to get last ReRU

and they cannot connect to the fixed network through any cell server (e.g. they may be far

from the location of any cell server or unavailability of the nearby cell server). It is useful

for cell servers and zone servers only in case of unavailability of the server in the higher

level.

(ii) Exchanging RU

In this case, peers exchange their recent updates based on the value of the Max-TS data

item, which is stored in the Hosts-Replicated-Objects-Obj object (see appendix One). The

purpose of this data item is to store the maximum value of the Update-TS for updates in

each object that are propagated previously to the other peer. Accordingly, the updates that

119

will be propagated in the next synchronization to that peer will have Update-TS values

greater than the value of the Max-TS according to each object. For example, when MHa

desires to synchronize with MHb, each one of them propagates the updates that have

Update-TSs greater than the value that is registered for the other peer in Hosts-

Replicated-Objects-Obj for each object. Thus, there is no need for exchanging messages

to avoid duplication in sending updates as in the first case.

5.2 Behavior Modeling

The research models the dynamic behavior of the proposed IIRA-based propagation

system with respect to the synchronization process between its components by using

SPNs. The purposes are to trace how the mobile database will reach the CA state and to

calculate the steady-state probabilities.

The reason of using SPNs is that the research views the synchronization process

between the different levels of the replication architecture as a discrete-event stochastic

system that encompasses states and events. Each state captures either a snapshot of a set

of recent updates or a snapshot of a set of tuples currently is stored in the database. Each

event represents either execution of IIRA instance on another level or retrieving of a

subset of tuples. The system is stochastic due to its stochastic state transitions, since it is

evolving over continuous time and making state transitions when events associated with

states occur.

The behavior modeling approach using SPN follows a systematic approach that is

described in Balbo (2001) and Balbo (2007), which incorporates the following steps.

• Modeling of the behavior of the IIRA-Based propagation system using a stochastic

Petri Net.

• Transforming the developed SPN into its equivalent Markov chain for calculation

of the steady state probabilities of marking occurrences. This step requires

generating the reachability graph. The Markov chain is obtained by assigning each

arc with the rate of the corresponding transition.

• Analyze the Markov chain to obtain steady state probabilities.

120

The research interests in a state in which the mobile database in the mobile host

receives a set of recent updates that occurred in the other hosts in both fixed and mobile

networks.

5.2.1 SynchSPN

The following definition will formally define the developed SPN that is used to model the

behavior.

Definition 5.2.1.1 SynchSPN is a six-tuple <P, T, A, W, m0 , Λ> where:

1. P = {p1, p2, …, p11} is a finite set of places, each place represents either a

synchronization state for IIRA database (IIRA-Synch-State) or a synchronization state for

the replicated database (DB-Synch-State) in each level. The former contains the set of

recent updates, while the latter contains the set of tuples currently stored in the database.

2. T= {t1, t2, …, t14} is a finite set of transitions. Each transition represents an operation

carried out by the IIRA in different levels. These operations are:

i. Retrieving the set of recent updates.

ii. Execution of the IIRA instance on the other level to transfer the recent updates.

3. A⊆ (P×T) ∪ (T×P) is a finite set of arcs that represents the number of updates, which

have to be transferred after the execution process or the number of updates that have to be

retrieved after the retrieving process.

4. W: A→ {1, 2,…} is the weight function attached to the arcs. This function maps each

arc to the number of updates that are to be propagated in each synchronization process

between the different levels.

5. m0: P → {0, 0, 0, 0, |MH-DBS|i, |CS-DBS|j, |ZS-DBS|k, |MS-DBS|, 0, 0, 0 } is the

initial marking, which represents the number of recent updates at the synchronization

state for each IIRA (p1, p2, p3, p4, p9, p10, p11) and the number of tuples that are currently

stored in each database (p5, p6, p7 , p8). (In the context of discrete-event systems, the

marking of the PN corresponds to the state of the system).

6. Λ = {λ1, λ2, ..., λ14} is the set of firing rates associated with the SPN transitions.

121

SynchSPN is developed based on the following assertion.

Assertion 5.2.1.1 The synchronization process has Markov property.

Proof. Let U(t) denotes the number of recent updates that should be propagated by IIRA

instance from a host to another during their synchronization at time instant t, where t

varies over a parameter set T. The value of U(t) is not deterministic because it depends on

the number of generated updates, which means U(t) is a random variable. Accordingly,

the synchronization process can be defined as a family of random variables {U(t)|t∈T},

where the values of U(t) represent the states of the synchronization process. Thus, the

synchronization process represents a stochastic process. By introducing a flag data item

to mark the updates that are propagated at the current synchronization instant n, we find

that the number of the recent updates that should be propagated on the next instant n+1

equals to the number of unmarked updates at n, which represent the recent updates that

occur after n. Therefore, the value of U(n+1) depends only the value of U(n) and not on

any past states.

By using SPN to model the synchronization system (see Figure 5.2.1.1 and tables

5.2.1.1-5.2.1.3), the system is composed of eleven places and fourteen transitions.

Table 5.2.1.1 Description of Places

Place Description
p1 IIRA-Synch-State in MHi for execution in CSj
p2 IIRA-Synch-State in CSj for execution in ZSk
p3 IIRA-Synch-State in ZSk for execution in MS
p4 IIRA-Synch-State in MS for execution in MS
p5 DB-Synch-State in MHi
p6 DB-Synch-State in CSj
p7 DB-Synch-State in ZSk
p8 DB-Synch-State in MS
p9 IIRA-Synch-State in CSj for execution in MHi
p10 IIRA-Synch-State in ZSk for execution in CSj
p11 IIRA-Synch-State in MS for execution in ZSk

122

Figure 5.2.1.1 SynchSPN

5.2.1.1 Places

They are called synchronization states. The research looks abstractly at the

synchronization state as a state/place that contains a set of updates. There are three types

of places:

• IIRA-Synch-State for execution on the higher level: It contains the set of recent

updates that occurred in its host in addition to the set of collected updates from

underlying level. For example, the synchronization state p2 represents the set of all

recent updates that are performed on cell server j in addition to the set of all updates

123

that are transferred from mobile hosts, which are synchronized with this server in the

last synchronization period. This type includes p1, p2, p3, and p4. Note that the set of

all recent updates that occurred in the servers that exist in the fixed network are

assumed that they include also the recent updates that are received from the fixed

hosts in the level of those severs.

• IIRA-Synch-State for execution on the lower level: It contains the set of all recent

resolved updates that are received from the higher level. For example, the

synchronization state p10 of zone server k represents the set of all recent resolved

updates that are received from the master server. This type includes p9, p10, and p11.

• DB-Synch-State: This type stores the set of all tuples that are currently stored in the

replicated database. It includes p5, p6, p7, and p8.

Table 5.2.1.2 Description of Transitions

Transition Description
t1 Retrieving recent updates from the replicated database in MHi
t2 Execution of MHR-IIRA instance on CSj
t3 Execution of CSR-IIRA instance on ZSk
t4 Execution of ZSR-IIRA instance on MS
t5 Execution of MSR-IIRA instance on MS
t6 Retrieving recent updates from the replicated database in MS
t7 Retrieving recent resolved updates from the replicated database in MS
t8 Execution of MSR-IIRA instance on ZSk
t9 Retrieving recent updates from the replicated database in ZSk
t10 Retrieving recent resolved updates from the replicated database in ZSk
t11 Execution of ZSR-IIRA instance on CSj
t12 Retrieving recent updates from the replicated database in CSj
t13 Retrieving recent resolved updates from the replicated database in CSj
t14 Execution of CSR-IIRA instance on MHi

5.2.1.2 Transitions

Also, the research looks abstractly at the transition as an event that leads to either

retrieving or propagating the set of recent updates. There are three types of transitions:

execution of the IIRA instance on the higher level, execution of the IIRA instance on the

lower level, and retrieving of recent updates.

124

Execution of the IIRA instance on the higher level. This type inserts the contents of

synchronization state for IIRA for execution on the higher level in the database of the

IIRA type that inhabits the higher level. Some conditions must be satisfied in order to fire

this type of transitions. These conditions are:

1. Enabling condition. It is composed of two conditions as follows.

i. There is at least one recent update in the input place of the execution

transition.

ii. The connection with the other host should happen.

Table 5.2.1.3 Notations and Their Meanings in SynchSPN

Symbol Meaning
MH, FH, CS,
ZS, and MS

Mobile Host, Fixed Host, Cell Server, Zone Server, and Master
Server, respectively

T Total number of database objects
d Total number of database objects that are replicated in MHi (d<T)

| X | The number of updates in the set X
MH-R, CS-R,

ZS-R, and MS-R
Set of recent updates for object O in MHi, CSj, ZSk, and MS,

respectively
MH-UR, FH-

UR
Set of recent updates for all replicated objects in MHi and FHl,

respectively
CS-RUR, ZS-
RUR, and MS-

RUR

Set of resolved recent updates at CSj, ZSk, and MS, respectively

MS-ReRU, ZS-
ReRU, and CS-

ReRU

Set of recent resolved updates that are propagated to underlying level
from MS, ZSk, and CSj, respectively

MS-DBS, ZS-
DBS, CS-DBS,
and MH-DBS

Replicated database state in MS, ZSk, CSj, and MHi, respectively

I Total number of mobile hosts that have synchronized with CSj before
the synchronization of MHi during the CSj updates collection period

N Total number of cell servers that have synchronized with ZSk before
synchronization of CSj during the ZSk updates collection period

M Total number of zone servers that have synchronized with MS before
synchronization of ZSk during the MS updates collection period

E, F, G Total number of fixed hosts that have synchronized with CSj, ZSk, and
MS, respectively, during their updates collection period

H Set of recent updates that are propagated from MHi to CSj in the last
synchronization period

125

The waiting time for the occurrence of the connection is not considered in the period

that is required for firing transitions. This is because as previously mentioned, the

waiting process for the connection is not considered as a required IIRA’s operation for

updates propagation. Moreover, the waiting time has a random value for mobile hosts

and a deterministic value for the servers in the fixed network. Therefore, the research

interests in the occurrence of the connection as a required condition for firing.

2. Completion of the updates conflicts resolution through ordering process for the

collected updates.

3. Migration of the IIRA instance to the other host for execution of its parent

synchronization state on that host.

4. Getting the permission for execution on the other host.

Each transition from this type can fire in a time instant equals to T+ that is reached

after elapsing of a time period of length Tup. The value of Tup consists of the time period

that is required for ordering the collected updates (Ot+), the time period that is required

for IIRA instance to migrate to the higher level host (Mt+), and the time period that IIRA

instance takes for waiting to get the permission for execution in the higher level host

(Wt+). Since, each one of these values is not deterministic; this means that Tup is a random

variable. Here, the time that is required for creating the instance is omitted, since it is

performed locally.

Execution of the IIRA instance on the lower level. This type inserts the contents of

synchronization state for IIRA for execution on the lower level into the replicated

database of the host that inhabits the lower level. For firing this type, the same conditions

that should be satisfied for the first type are applied here, excluding the completion of the

updates ordering process.

Each transition from this type can fire in a time instant equals to T- that is

reached after elapsing of a time period of length Tdown. The value of Tdown consists of the

time period that is required for IIRA instance to migrate to the lower level host (Mt-) and

the value of the period that IIRA instance takes for waiting to get the permission for

126

execution in the lower level host (Wt-). Also, the time that is required for creating the

instance is omitted, since it is performed locally in the same host.

Retrieving recent updates. This type involves either retrieving recent updates for

synchronization with the higher level (propagating it to the higher level) or retrieving

recent resolved updates for synchronization with the lower level. For firing this type, the

enabling condition of the first type should be satisfied.

Each transition from this type can fire in a time instant equals to Tr that is

reached after elapsing of a time period of length Tret. The value of Tret represents the time

period that is required for IIRA to retrieve either recent updates or recent resolved

updates from the replica. This value depends on the number of updates that should be

retrieved in each synchronization process. Therefore, Tret is a random variable. The

periods Tup, Tdown, and Tret represent random variables because their values are obtained

depending on non deterministic values.

Note that instead of adding a transition for representing the migration and its

associated input place for representing the migrated state, they are incorporated into the

execution transition and in the synchronization state. This is because the migrated state

represents the synchronization state itself and the execution of the migration transition

encompasses the synchronization state that already migrated to the other host. Thus,

incorporation is performed to prevent the complexity of SynchSPN.

Firing rates. Each transition in SynchSPN is associated with a firing rate (i.e. the

parameter λ). This is because the periods Tup, Tdown, and Tret that represent the firing

delays after correspondence transitions are enabled are random variables and are assumed

exponentially distributed.

5.2.1.3 The Initial Marking

In this marking (i.e. m0), the replicated databases that are stored on the servers in the

fixed network (i.e. CSj, ZSk, and MS) are assumed identical. Also, the mobile database

that is stored in the MHi is assumed that it has received a set of last updates. This received

set may represent either all or a subset of the last updates, which occurred or propagated

to the fixed network in the period that precedes the time of the last synchronization of

MHi with the fixed network (i.e. during the disconnection time before the time of the last

127

synchronization), which equals to MHi-SynchTn-1 - MHi-SynchTn-2, where MHi-SynchTn-1

is the time of the last synchronization of MHi with the fixed network and MHi-SynchTn-2 is

the time of the synchronization that precedes the last synchronization. Thus, according to

the time of the last synchronization (i.e. MHi-SynchTn-1), the mobile database in MHi is

assumed to be in CA state in the marking m0 if it contains all recent resolved updates.

And if for each marking m- reachable from m0, the mobile database contains a set of

recent updates, this means that m- is equivalent to m0.

5.2.2 System Behavior

The system behavior (i.e. evolution in time or dynamic changing of markings) is

simulated by firing of transitions. The mechanism of firing in SynchSPN is based on the

type of transition as follows.

� If t represents the execution of IIRA instance on the higher level, then t will remove

the updates that exist in the input place and add them to the previously accumulated

recent updates on the synchronization state of the IIRA in the higher level. The

accumulated updates represent the updates received from other underlying hosts

before the execution of IIRA instance on the higher level in the same time period for

updates collection.

� If t represents the execution of IIRA instance on the lower level, then t will remove

the recent resolved updates that exist in the input place and add them to the

synchronization state of the replicated database of the host in the lower level and this

happens after removing the set of updates that are propagated from the host in the

lower level and are included in the set of the recent resolved updates. This is to avoid

storing same updates once again.

� If t represents the retrieving of recent updates, then t will take a snapshot of the recent

updates from the input place and add them to the synchronization state for IIRA for

execution in either the lower or higher level. This transition does not remove the

recent updates from the input source, which represent the synchronization state of the

replicated database according to the fact that the retrieving process does not change

the state of the database.

128

Note that when the connection takes place between any two hosts, the firing of the

transition that represents the retrieving of recent updates always occurs before the firing

of the other two types. This is because updates should be retrieved first before

propagating them to the other host.

Based on the initial marking and the firing mechanism, the changing of the

markings of SynchSPN is tracked starting from the time of the current synchronization of

MHi with the fixed network, which is denoted by MHi-SynchTn and ending with the time

of the next synchronization, which is denoted by MHi-SynchTn+1. For obtaining a set of

last updates, MHi-SynchTn+1 should occur in this tracking after firing of all transitions.

The tracking of marking changing is also depends on the fact that the MHi will obtain the

last updates that are performed on both fixed and mobile networks only after propagating

these updates from their sources to the higher levels , where these updates are resolved.

Therefore, bottom-up propagation is considered first then the top-down propagation.

Thus, the firing sequence of the transitions is divided into two sequences as shown in

Table 5.2.2.1.

Table 5.2.2.1 The Firing Sequence of the Transitions

Propagation type Firing sequence
Bottom-Up t1→ t2→ t12→ t3→ t9→ t4→ t6→ t5
Top-Down t7→ t8→ t10→ t11→ t13→ t14

According to the specified firing sequence, the set of all reachable markings from

m0 are shown in Table 5.2.2.2. This set represents the evolution of the system in the

period MHi-SynchTn+1 - MHi-SynchTn. The marking that reachable from firing of t14

represents the marking in which the replicated database in MHi should obtain a set of

recent updates that occurred or propagated to the fixed network during that period. This

means that this marking is equivalent to m0.

129

Table 5.2.2.2 The Marking Table

In the marking table, the marking m7 is equivalent to m0 because the former

represents the state in which the mobile database in MHi receives a set of recent updates

that occurred or propagated to the fixed network during the period: MH-SynchTn+1 - MH-

SynchTn

The marking table includes the following Equations:

TMH-CS = ∑
≠=

−
I

ix1x
URMH x

,
|| + |MH-UR|i (1)

Where TMH-CS is the total number of updates that will be propagated to CSj during its

updates collection period from I mobile hosts.

|CS-RUR|j = TMH-CS + |CS-UR|j (2)

This equation represents the total number of resolved updates that will be propagated

from CSj to ZSk.

130

TCS-ZS = ∑
≠=

−
N

jy1y
RURCS y

,
|| + |CS-RUR|j (3)

Where TCS-ZS is the total number of updates, which will be propagated to ZSk during its

updates collection period from N cell servers.

 |ZS-RUR|k = TCS-ZS + |ZS-UR|k (4)

This equation represents the total number of resolved updates that will be propagated

from ZSk to MS.

 TZS-MS = ∑
≠=

−
M

jz1z
RURZS z

,
|| + |ZS-RUR|k (5)

Where TZS-MS is the total number of updates that will be propagated to MS during its

updates collection period from M zone servers.

|MS-RUR| = TZS-MS + |MS-UR| (6)

This equation represents the total number of resolved updates that will be stored in the

database that exists in MS.

TMS-ZS = |MS-ReRU| -|ZS-RUR|k (7)

Where TMS-ZS is the total number of resolved updates that will be propagated to ZSk

database from MS excluding updates that previously propagated from ZSk.

TZS-CS = |ZS-ReRU|k - |CS-RUR|j (8)

Where TZS-CS is the total number of resolved updates that will be propagated to CSj

database from ZSk excluding updates that previously propagated from CSj.

TCS-MH= |CS-ReRU|k -|MH-UR|j (9)

Where TCS-MH is the total number of resolved updates that will be propagated to MHi

database from CSj excluding updates that previously propagated from MHi.

Reachability graph. This graph is described in Figure 5.2.2.1. The markings mi

- , where

i=0,1,…,6 that reachable from firing of retrieve transitions are not included in the

reachability graph because this type of transitions affects only the local synchronization

state for IIRA database. However, these transitions are included, since their firing

131

precedes the firing of the execution transitions that leads to the markings mj, where j=1,

2,…, 7.

Figure 5.2.2.1 Reachability Graph

Equivalent Markov chain. In the derived CTMS (see Figure 5.2.2.2), the firing rates of

the retrieve transitions are not considered because as mentioned previously, the retrieve

operation is performed locally from the replicated database on a given host.

Figure 5.2.2.2 Derived Markov Chain

132

Analysis of the Markov chain. The steady-state probabilities, denoted by ∏ = (π0, π1, π2,

…, π6) are obtained by solving the following equations:

 ∏ A = 0 (10)

 ∑
=

6

0i
iπ = 1 (11)

Where A is the transition rate matrix. πi is the steady-state probability of marking that is

equivalent to mi.

The obtained matrix for the derived Markov chain is shown in Figure 5.2.2.3.

Figure 5.2.2.3 Transition Rate Matrix

By solving equation (10) and equation (11), the obtained steady-state probabilities

as follows:

133

Where:

 ω0 = 1/ λ3+1/ λ4+1/ λ5+1/ λ8+1/ λ11+1/ λ14

 ω1 = ω0 –(1/ λ3+1/ λ2)

 ω2 = ω0 –(1/ λ4+1/ λ2)

 ω3 = ω0 –(1/ λ5+1/ λ2)

 ω4 = ω0 –(1/ λ8+1/ λ2)

 ω5 = ω0 –(1/ λ11+1/ λ2)

 ω6 = ω0 –(1/ λ14+1/ λ2)

As previously mentioned, the research interests in the state in which the mobile

database in the mobile host contains a set of recent updates. Therefore, the value of π0

represents the probability of the marking that is equivalent to m0.

Assertion 5.2.2.1 There is only a subset C ⊆ R (m0), such that the mobile database in

specific mobile host in CA State for each m ∈ C.

Proof. Let tj (j=1,…,m) denotes the transition that represents the execution state of the

CSR-IIRA in MHi, and ti (i=1,…,n) denotes the transition that represents the execution

state of the MHR-IIRA in the fixed network. We show that firing of tj will result in CA

State for R that is hosted in MHi ⇔ each ti is fired during the time period that precedes

the current synchronization time of MHi. Since the latter condition is not realized at all

synchronization times for MHi due to existing of many MHs are not connected before the

synchronization of MHi with the cell server. Therefore, the firing of tj leads to CA State

⇔ all updates that are performed in the mobile network are propagated to the fixed

network before the synchronization of MHi. This means that if the latter condition is

realized, the firing of tj will results in a marking that represents an element of C.

134

Assertion 5.2.2.2 The probability that the mobile database in CA state is:

 P(CA) = nπ0 (12)

Where n is the number of synchronization times for MHi with the fixed network that led

to the CA state.

Proof. Let C be the subset of R(m0) satisfying the condition that the place p5 has received

all recent updates that occurred and resolved before the synchronization time of MHi with

the fixed network, which led to each marking in C. Then the probability of this condition

is: P(C) = ∑
∈ Ci

iπ , Since the probability that MHi receives a set of recent updates is π0.

Then πi=π0 for each marking mi ∈ C. This means that P(C) = ∑
=

n

1i
iπ = nπ0 , where n is

the number of markings in C. This number is equivalent to the number of the

synchronization times with the fixed network that led to storing all recent updates in p5.

Assertion 5.2.2.3 The marking m0, where p5 receives a set of recent resolved updates is

recurrent after a time period equals to: MHi-SynchTn+1 - MHi-SynchTn

, where MHi-SynchTn+1 - MHi-SynchTn > λ5 + λ8 + λ11 , MHi-SynchTn is the time instant

of the current synchronization with the fixed network, MHi-SynchTn+1 is the time instant

of the next synchronization with the fixed network.

Proof. m0 is recurrent if the following equation is satisfied.

∑
+

=

 1SynchTn-MHi

 SynchTn-MHii
P

i
mm 00

 = 1 (13)

Where Pi
m0m0

 is the probability that the system returns to state m0 starting from m0.

Suppose that the markings that are reachable from m0 occur at the following time

instants:

MHi-SynchTn, T1, T2, …, Tn, MHi-SynchTn+1, where MHi-SynchTn < T1 < T2 < …< Tn <

MHi-SynchTn+1 . Obviously, the MHi can obtain the last updates that occurred or are

propagated to the fixed network during the period: MHi-SynchTn+1 - MHi-SynchTn after a

time instant > = MHi-SynchTn+1, which means that:

P MHi-SynchTn
 m0m0 = 0, P MHi-SynchTn+1

 m0m0 = 1, P T1
m0m0 = 0, P T2

m0m0 = 0, …, P T0
m0m0 = 0

135

To obtain the latest updates, the following condition should hold:

MHi-SynchTn+1 - MHi-SynchTn > λ3 + (λ4 - λ3) + (λ5 – λ4) + λ8 + λ11 = λ5 + λ8 + λ11

Where λ3 < λ4 < λ5. This is because the server in the master level receives updates

from all underlying levels, while the servers in the zone and cell levels receive updates

from the hosts that are located in their areas.

Assertion 5.2.2.4 The SynchSPN is deadlock free.

Proof. We prove that ∀ m ∈ R (m0), ∃ m- ∈ R (m) such that ∃ t is enabled for m-, where

R (m0) is the set of markings reachable from m0 by firing a sequence of transitions. Recall

that our assumptions regarding that tens of updates per each data item are expected at any

period of time and the connection is reliable and fixed between the servers of the fixed

network, this means that the following conditions are true:

1. At any period of time, ∃ DB ∈ RDB such that DB is updated recently (has UR) where

RDB is the set of the replicated databases in either fixed or mobile hosts. This condition

ensures enabling of selection transactions.

2. There is at least one host (either fixed or mobile) is synchronized with other host

(e.g. MH with a cell server or other MH, FH with a server, CS with ZS…etc). This

condition ensures that there is at least one of the execution transitions is enabled after

satisfying condition one.

5.3 Summary

This chapter described IIRA-based propagation system that is proposed for implementing

automated updates propagation between the components of the replication system. The

proposed propagation system consists of the four types of IIRA. Updates are exchanged

between these types via their created instances when the connection occurs (in the case of

mobile hosts) or when the updates collection period elapses (in the case of the servers).

SPN is developed to model and analyze the dynamic behavior of the replication

system in regard to reaching the Consistent-Available state for the replicated database at

the mobile host. The analysis proved that the Consistent-Available state for mobile

database is a recurrent state with a probability that depends on the number of the

synchronizations of a mobile host with the fixed network. Accordingly, bounding of

136

unavailability of recent updates and inconsistency of stored data depends on the number

of connections with the fixed network. Also, analysis explored that IIRA-based

propagation system achieves load balance in both updates propagation and ordering

processes.

