
 137

CHAPTER SIX

HIERARCHICAL MULTI-CRITERIA UPDATES ORDERING MECHANISM

6.0 Overview

The purpose of updates ordering in our strategy is to provide each host with a unified

set of ordered updates for each replicated object. This ordering provides a level of

consistency that the research called consistency with ordering guarantee level. In this

level, each replica should have identical and ordered values in same manner as its

counter part in the master server. This is in contrast to the level of the consistency that

is previously discussed, which implies that each replica should be up to date as

compared with the replica that is stored in the master server. This level can be

achieved only through updates propagation without needing to enforce a unified

ordering as in the former level. Accordingly, the research called the latter level

consistency without ordering guarantee level. It is clear that the latter imposes low

overhead (storage and communication) as compared with the former. The research

provides the two levels in order to meet the requirements of different applications.

6.1 Significance of Updates Ordering

The significance of updates ordering in our replication system originates from the

existing of large number hosts that replicate and generate large number of updates

concurrently on the same replicated data items. These hosts need to agree on a unified

ordering for all updates that occurred in their shared data items. This unified ordering

ensures the correct semantics of the replicated service system in case of considering

the consistency with ordering guarantee level. For example, consider a data item X

that is replicated on n replicas in both fixed and mobile hosts and different numbers of

update operations are performed on the set of replicas {R1, R3, R6, R8}, which

contains four replicas out of the n replicas. Those updates are issued on each replica

according to the following order (u11, u12, u13, u14, u15), (u31, u32, u33), (u61, u62, u63,

u64), and (u81, u82), respectively. This scenario is depicted in Figure 6.1.1.

 138

FIGURE 6.1.1 A Scenario of the Local Ordering of the Updates in the Set of
Four Replicas {R1, R3, R6, R8}

Figure 6.1.1 shows the order of updates that occurred in each replica during a

specific time period. Each replica of X needs to receive the set of updates that

occurred in those four replicas in a unified order. To ensure this unified order, a

reasonable total order of those update operations should be defined and enforced over

all replicas of X.

Accordingly, our main question in this chapter is: How and in what sequence

should the updates be ordered to preserve the data consistency through a unified order

if these updates are carried out by a large number of distinct fixed and mobile hosts?.

As a response to this question, an ordering mechanism is presented that provides each

host on different rims with a set of unified ordered updates. This unified order is

produced as a result of participating of all center points in the ordering process

through enforcing a hierarchical multi-criteria ordering on updates, which are

collected on each center point from underlying hosts in its area. The ordering criteria

include timestamp attributes that characterize the events of updates generation and

updates propagation. The propagation event can be divided into two sub events,

which are: send and receive. The timestamp attributes are associated with the

individual updates as well as the messages that propagate these updates to the

responsible center points in order to facilitate the ordering process in the higher levels.

The proposed ordering mechanism is based on the causal ordering. However,

the constraint of causal ordering is not always necessary to be hold in large scale

mobile distributed database systems as proved by the following assertion.

R3 R6 R8

 139

Assertion 6.1.1 Casual ordering constraint that requires the order of receiving two

messages should be same as the order of their sending does not hold always in

LMDDBSs.

Proof. Consider two updates u1 and u2 are sent from MHi and MHj, respectively, to

the same destination D, such that u1 → u2 (u1 is sent before u2). If sending of u1

experienced more delay than sending of u2 on the communication link due to

variability and limitation of the available bandwidth, network delays and the distances

between both MHi and MHj and D, this increases the probability of receiving u2

before u1 at D (although u1 was sent before u2). Thus, the constraint of causal ordering,

which requires that the order of receiving u1 and u2 should follow the order of sending

them may not be hold in this case.

Accordingly, the proposed ordering mechanism provides new constraints for

enforcing causal ordering in LMDDBSs by eliminating the dependency between the

orders that are produced by considering both receiving and sending events, as well as

updates generation event. Based on these constraints, the ordering is performed

through multiple checks by comparing updates based on the occurrences of the three

events according to the sequence: generation, sending, and receiving. In this multiple

check, updates are compared based on the occurrence of the next event if and only if

comparing them using the occurrence of current event has produced the same order.

The new constraints are provided in the following section, which are based on the

type of event and the location where the event has taken place.

In the proposed mechanism, updates that occurred on the lower levels ore

ordered on the higher level when Bottom-Up propagation takes place. On the other

hand, the messages that ship the totally ordered updates from the higher level are sent

to the lower level in same order. This order follows the order of these messages as

were sent by the main center point when top-down propagation takes place.

6.2 Updates ordering in Case of Bottom-Up Propagation

To maintain the level of consistency with ordering guarantee, updates that are

generated on the different levels should be totally ordered and then propagated to

other replicas. In Bottom-Up propagation, updates that occurred in the underlying

levels are totally ordered in the higher levels (i.e. next inner rims) till reaching a

unified total order in the highest level (i.e. the main center point) for all updates.

 140

Then, the main center point propagates ordered updates to underlying levels using

Top-Down propagation. The ordering is performed in case of Bottom-up propagation

on the level of the updates (i.e. updates are compared instead of messages). The

ordering mechanism here is based on the casual order relation, which is specified as in

the following subsection. Note that the statement totally ordered in this section does

not mean the total order relation as in the Top-Down propagation, but it states that

total ordering is performed on a set of updates that are collected from all underlying

level hosts using causal order relation. This is because the total order relation has a

different definition than for the causal order relation.

6.2.1 Causal Ordering Model

This section first provides formal definitions for three types of the causal ordering

relation among updates by considering the following sequence of the operations:

generation, sending, and receiving. These definitions are produced based on the

happened-before relation (see section 2.7), and the characteristics of the proposed

updates propagation protocol (i.e. updates are propagated through certain paths

between the hosts in the different rims). This means that the definition of happened-

before relation is exploited in defining the three types of causal ordering relation in

order to act in accord with the ordering requirements in LMDDBSs. Second, the

concepts of the concurrent messages and concurrent updates are provided. Lastly, the

definition of Conditioned causal ordering relation is given.

Definition 6.2.1.1 causal ordering relation for generation operation “→u”

Given two updates u and v, generated at site i and j, respectively, then u →u v, iff (1) i

= j and the generation of u happened before the generation of v, or (2) i # j and the

generation of u at site i happened before the generation of v, or (3) there exists an

update w, such that u →u w and w →u v.

Definition 6.2.1.2 causal ordering relation for send operation “→s”

Given two messages m1 and m2, sent by site i and j, respectively, to the higher level

(either to same center point or different center points), then m1 →s m2, iff (1) i = j and

the sending of m1 happened before the sending of m2, or (2) i # j and the sending of m1

from site i happened before the sending of m2, or (3) there exists a message m3, such

that m1 →s m3 and m3 →s m2.

 141

Definition 6.2.1.3 causal ordering relation for receive operation “→r”

Given two messages m1 and m2, received by either same center point or different

center points from site i and j, respectively, then m1 →r m2, iff (1) i = j and the

receiving of m1 happened before the receiving of m2, or (2) i # j and the receiving of

m1 from site i happened before the receiving of m2 by any responsible point, or (3)

there exists a message m3, such that m1 →r m3 and m3→r m2.

 According to the definitions 6.2.1.2 and 6.2.1.3, the casual relation is defined

between messages instead of individual updates. This is because updates information

are sent in a form of message. Accordingly, updates that are shipped with these

messages inherit both send and receive time attributes of their messages. In definition

6.2.1.3, the causal ordering relation is specified for the receive operation because the

second optional condition of lamport’s happened-before relation cannot be

implemented in this case. This is follows assertion 6.1.1 in that the order of sending

two messages does not imply that they will be received in the same order as they were

sent.

Definition 6.2.1.4 Concurrent sent messages “m1||s m2”

Two distinct sent messages to the higher level (either to same the center point or

different center point) m1 and m2 are "concurrent" if ¬ (m1→s m2) and ¬ (m2→s m1).

Definition 6.2.1.5 Concurrent received messages “m1||r m2”

Two distinct messages received by the higher level (by two different center points) m1

and m2 are "concurrent" if ¬ (m1→r m2) and ¬ (m2→r m1).

This definition does not state that the two messages are received by same

center point. This is because we do not expect that two messages satisfy the condition

¬ (m1→r m2) and ¬ (m2→r m1) exactly if they are received by same center point from

underlying hosts.

Definition 6.2.1.6 Concurrent updates “u || v”

Two distinct updates u and v that are shipped to the higher level via messages m1 and

m2, respectively, are "concurrent" iff:

(i) ¬ (u →u v) and ¬ (v →u u) or

(ii) (¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→s m2) and ¬ (m2→s m1)) or

(iii)(¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ (m1→r

m2) and ¬ (m2→r m1))

 142

Definition 6.2.1.7 Conditioned causal ordering relation “→cu”

Given two updates u and v, generated at site i and j, respectively, and sent via

messages m1 and m2, respectively, to the responsible center point C, then u →cu v, iff

(i) (¬ (u →u v) and ¬ (v →u u)) and m1 →s m2 or

(ii) (¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→s m2) and ¬ (m2→s m1)) and m1 →r m2

or

(iii) (¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ (m1→r

m2) and ¬ (m2→r m1)) and m3 →s m4 in case of u and v are sent to their responsible

center points C1 and C2 via m1 and m2 and then those updates are sent from C1 and C2

to their responsible center point Z via m3 and m4.

According to the first condition, the Conditioned causal ordering relation

implies ordering of u and v based on the sent event of their messages to C in case of u

and v are concurrent according to the generation event. Similarly, based on the second

condition, this relation implies ordering of u and v based on the receive event of their

messages by C in case of u and v are concurrent according to both generation and

send events. The third condition implies ordering of u and v in the higher level based

on the send event in case of that those updates are concurrent according to the three

operations generation, send, and receive, which are performed in the lower levels.

Thus, based on the above description, Conditioned causal ordering relation

acts as a method for resolution of concurrent updates (i.e. assigning them different

orders).

6.2.2 Implementing Causal Ordering

The causal ordering in the higher level is carried out based on comparing updates

according to a relation called Treated-before relation. This relation represents a direct

implementation of the Conditioned causal ordering relation for performing the

multiple checking that is involved in the ordering process. This relation relies on

timestamp attributes for both updates and messages that ship these updates to the

higher levels. Accordingly, these attributes can be classified as follows:

• The timestamps of the updates generation operations.

• The timestamps of both send and receive operations for the messages.

The timestamps are assigned locally on each host based on the value of a

variable called Real-Like Clock. Updates information is shipped to the higher level

 143

via a message called RU-Message. The contains of each received RU-Message are

placed on a queue in the higher level. This queue represents a set of collected updates

from underlying level during the updates collection period. Updates on this queue are

compared using the Treated-before relation.

The following subsections provide the specifications of Real-Like Clock, RU-

Message, Treated-before relation, and the ordering queue.

6.2.2.1 Real-Like clock

Each host maintains a local variable, called Real-Like clock (RC). It is used for

timestamping the three events (generate, send, and receive) that originated on the

host. At any time, the current value of this clock should be same as its counter part in

the main center point. For achieving this, every center point is responsible also for

maintaining the value of RC in its underlying hosts. The RC's value is maintained

periodically in each underlying host through a periodical checking algorithm. The

method of advancing the value of this variable is assumed to be same as the

advancing method of the physical clock. Accordingly, the value of RC is considered

as a complex value of certain atomic values that are arranged into two main parts. The

first part represents the time and the second part represents the date. The reason

behind advancing the value of RC in same manner as the physical clock is to ensure a

unified advancing method at all hosts other than advancing its value according to the

time of the next event as performed in the logical clock and vector clock (see section

2.7). This follows that the updates occurred in a certain host will be compared with

the updates that originated from other hosts. Thus, if we advance the RC’s value

according to the time of the next event, we find that during the time period between

two events there are many updates may occur in the other hosts. Therefore, to provide

a fair unified ordering, our ordering mechanism relies on advancing the value of RC

in all hosts in the same manner as the physical clock and considering the value of the

RC at the time when each event occurred.

The rules for advancing RC’s value and timestamping events are as follows.

1. Initially, Val(RC) := Val(RC) at the main center point.

2. When a tick occurs ⇒ Val(RC) is advanced in same manner as the physical

clock.

3. Whenever an event occurs ⇒ TS(event) := Val(RC) when event happened.

 144

In these rules, Val(RC) is the value of the local RC at a specific host. Initially,

the value of RC at each host is identical to the value of RC at the main center point.

This value is advanced locally according to the frequencies of ticks as in the physical

clock. Each event is timestamped (denoted by TS(event)) using the current value of

the local RC when the event takes place.

Assertion 6.2.2.1.1 The RC based timestamping scheme as compared to the logical

clock based timestamping scheme posses the following property: given two events e

and e-
 occurred on different hosts H1 and H2, respectively, if TS(e) < TS(e-) then e→

e-, where TS(e) is the timestamp of e, and TS(e-) is the timestamp of e-.

Proof. First, we implement the logical clock (LC) timestamping as follows. Consider

an initial event e0 occurred on both H1 and H2 and is assigned same timestamp value

on them. If there are many events that occurred in H1 after e0 and before an event e,

then LC timestamps e with the value: TS(e) = TS(e0) + E +1, where E is the number

of events that occurred between e0 and e. In contrast, if there are no events occurred in

H2 between e0 and e-, then the value of the timestamp that is assigned to e- is TS(e-)

= TS(e0) +1. This implies that TS(e-) < TS(e), but this statement is not satisfied in the

case of the time period between the occurrence of e- and e0 in H2 is greater than the

time period between the occurrence of e and e0 in H1. Accordingly, using LC does not

insures that if TS(e) < TS(e-), e →e-. On the other hand, RC timestamping ensures

that each event is timestamped with the current value of RC. Moreover, all RCs in the

replication system are always advanced in a unified manner independently of the

occurrence of events. This implies that if two events e and e- occurred on different

hosts and TS(e) on H1 < TS(e-) on H2 then e→ e-.

6.2.2.2 Maintaining the Value of RC

In order to ensure a unified timing system through enforcing the RC’s value of the

main center point on all underlying hosts, two methods are proposed for correcting

mismatched RC values and incorrect timestamps that are assigned to events.

(i) Periodical checking

It represents a Top-Down mechanism for checking and amendment the RC’s value

and timestamps assigned to events in the lower level hosts. In this method, each

responsible center point sends a message called Timing-Value-Message (TVM) that

ships the current value of RC to underlying level. TVM migrates periodically (e.g.

 145

every prefixed period or at the beginning of the next collection period for updates

from the lower level) to the hosts in the lower level in order to inform the receiver the

current value of RC.

Upon arriving at the destination, the shipped value with TVM (i.e. denoted by S)

is compared with the local value of RC (i.e. denoted by L). In case of a mismatch

occurred, the following steps are performed.

• Computing the difference between L and S:

D= S -L (1)

• Adjusting the value of L to S:

L= S ± D (2)

• Calculating the difference between send and receive timestamps for TVM:

D-- = TS(Receive)– TS(Send) (3)

• Adding the difference to L:

L=L + D--+C (4)

• Revising the timestamp assigned to each update event (that is not propagated
to the higher level).

In these steps, C is the time period that is consumed on calculating

aforementioned equations. Equation 4 represents the new value of the system’s time

on the host in the lower level. The revision of timestamp of each update (T) that is not

propagated previously is performed using the above four equations by substituting L

with T.

This mechanism is not suitable to check the time value on the mobile hosts

due to their inherited frequent disconnections, which hinder the periodical checking

process. Therefore, it can be used for the servers in the fixed network, since they have

stable and continuous connectivity.

(ii) On-Receiving checking

In this method, the host in the lower level sends TVM to the higher level when the

connection is realized. Upon receiving at the higher level, the following steps are

carried out.

Step 1 (Determining the exact value of the system time in the host in the lower level

(T))

 146

1.1 Computing the time period that the migration of TVM has taken (i.e.

TS(send)-TS(receive)).

1.2 Adding the value of the computed period to the shipped value of RC in the

same manner as in the abovementioned equations (1 to 4).

Step 2 (Comparing the value of T with the current value of local RC on the host in the

higher level (T-))

2.1 If the values of T and T- are not identical, the higher level host will send

the current RC’s value (T-) to the host in the lower level, which will be

responsible for correcting the timing values using above equations.

2.2 The host in the higher level will correct the value of the timestamp of each

update received recently from underlying host in addition to the send

timestamp for the messages that shipped those updates. This correction is done

by adding/removing the difference between T and T- to/from the received

value for each update timestamp and send timestamp.

This mechanism is suitable for checking the time on the mobile hosts because

it exploits the connection of the mobile host with the fixed network in order to correct

its timing values. Also, the load of the correction is shared among the two hosts

because the host in the higher level will correct the received timing values, while the

host in the lower level will correct its stored values.

6.2.2.3 RU-Message

It is the message that carries the recent updates information from a host to its

responsible center point in the higher level. It is defined as a tuple of <Msg-ID, Host-

ID, Send-TS, RU-Update-Vec, Receive-TS >, where Msg-ID represents a serial

number for messages that send from a specific host, Host-ID is the sender, Send-TS is

the value of sender’s local RC at the moment when the message is sent, RU-Update-

Vec is a vector that contains the information of recent updates that occurred on the

sender, and Receive-TS is the value of receiver’s local RC at the moment when the

message is received. Both Msg-ID and RU-Update-Vec represent the exact contains of

RU-Message, while the other items represent the sending information.

 RU-Update-Vec can be expressed as RU-Update-Vec = (<u1, Obj-ID, Update-

TS>, …, <un, Obj-ID, Update-TS>), where ui (i=1,…,n) is an update generation event

that occurred in the sender and Obj-ID is the object where the update generation

 147

occurred. The items on RU-Update-Vec increase as we move from a level to a higher

level. For example, when RU-Message is sent from CS to ZS, additional items are

added to RU-Update-Vec, which are send and receive timestamps for each RU-

Message that CS received from underlying hosts. This is because each update inherits

the attributes of the RU-Message that shipped it to the higher level. Accordingly, RU-

Update-Vec on RU-Message that is sent from CS to ZS can be expressed as RU-

Update-Vec = (<u1, Obj-ID, Update-TS, Send-To-CS-TS, Receive-By-CS-TS >, …, <

un, Obj-ID, Update-TS, Send-To-CS-TS, Receive-By-CS-TS >).

6.2.2.4 Treated-Before Relation

In order to implement the causal ordering, our ordering mechanism is based on a new

ordering relation that is called Treated-Before relation. This relation acts as an

ordering constraint for ordering all updates that occurred in the replication system.

To define Treated-Before relation denoted by <TB between two updates in

each level, two relations must first be defined as follows.

1. Generated-Before relation (<GB)

This relation can be defined as follows:

Ux <GB Uy iff Ω update-TS (Ux) < Ω update-TS (Uy)

Where Ω is the selection operator for the selection operation of specific

values of attributes that related to the updates Ux and Uy. The ordering is based on

these values by comparing corresponding values for both updates. < is the less than

relation. Update-TS is the value of RC when an update U occurred in the system.

This relation is used as a basis for ordering updates that are generated on either

same level or different levels.

2. Transferred-Before relation (<TRB)

This relation can be defined as follows:

Ux <TRB Uy iff

 Ω Underlyinglevel-Send-TS, Currentlevel-Receive- TS (Ux) <

Ω Underlyinglevel-Send-TS, Currentlevel-Receive- TS (Uy)

Where Underlyinglevel-Send-TS is the value of RC at the sender when the

message that ships the information of an update U is sent to the higher level.

 148

Currentlevel-Receive-TS is the value of RC when the message is received at the higher

level.

This relation is used to compare updates that are received from underlying

hosts. The comparing is based on the values of both attributes Underlyinglevel -

Send-TS and Currentlevel-Receive-TS.

Note that Ω specifies only the set of attributes that can be used to compare the

two updates. Then, the comparison is performed on this set of attributes in a

sequential manner, which means that if the comparison that is based on the first

attribute in the set has resulted in that updates are not concurrent (i.e. different values

of this attribute for both updates), then there is no need to continue the comparison

using the other attributes in the set.

Thus, the Treated-Before relation can be defined as a union of <GB and <TRB

relations on the servers that exist in the higher levels (CS, ZS, and MS). In the MH

level or FH level can be defined as <GB relation only, since there is no need for send

and receive operations. Accordingly, based on these relations, the Treated-Before

relation is defined as follows.

Definition 6.2.2.4.1 Treated-Before relation (<TB) is a relation that equivalent to:

I. Ux <GB Uy iff Ux and Uy are generated on either same host or different hosts

and Ux and Uy are not concurrent.

II. (Ux <GB Uy) ∪ (Ux <TRB Uy) iff Ux and Uy are generated on different hosts

and Ux and Uy are concurrent.

According to this definition, concurrent updates can be defined based on

Treated-Before relation as follows.

Definition 6.2.2.4.2 Two updates Ux and Uy are concurrent if neither Ux <TB Uy nor

Uy <TB Ux.

This definition can be extended to define Treated-Before relation between

updates in each level as follows:

1. MH (or FH) level

Ux <TB Uy iff Ω update-TS (Ux) < Ω update-TS (Uy)

 149

2. CS level

Ux <TB Uy iff

Ω update-TS, Host- Send-TS, CS-Receive- TS (Ux) <

Ω update-TS, Host- Send-TS, CS- Receive- TS (Uy), For each Ux and Uy that are generated on the

underlying level.

Where Host-Send-TS is the value of RC when the RU-Message is sent from

either underlying MH or FH. CS- Receive- TS is the value of RC at CS when RU-

Message is received from underlying level.

3. ZS level

Ux <TB Uy iff

Ω update-TS, Host-Send-TS, CS-Receive-TS, CS-Send- TS, ZS-Receive- TS (Ux) <

Ω update-TS, Host-Send-TS, CS-Receive-TS, CS-Send- TS, ZS-Receive- TS (Uy), For each Ux and Uy that are

generated on the underlying level.

4. MS level

Ux <TB Uy iff

Ω update-TS, Host-Send-TS, CS- Receive- TS, CS-Send- TS, ZS-Receive- TS, ZS-Send- TS, MS-Receive-TS (Ux) <

Ω update-TS, Host-Send-TS, CS- Receive- TS, CS-Send-TS, ZS-Receive-TS, ZS-Send-TS, MS-Receive-TS (Uy), For each

Ux and Uy that are generated on the underlying level.

Assertion 6.2.2.4.1 <TB is a partial order on a set Q of updates.

Proof. For two updates Ux and Uy that belong to Q, <TB is antisymmetric because if

both Ux <TB Uy and Uy <TB Ux hold, then necessarily either Ux = Uy or Ux and Uy are

concurrent. Furthermore, <TB is reflexive since every update is treated before itself

previously in the underlying level (i.e. it is sent to the current higher level before

sending it to the next higher level). <TB is transitive, since if Ux is treated before Uy

and Uy is treated before Uz then Ux is treated before Uz.

 150

6.2.2.5 Ordering Queue

An ordering queue in the proposed ordering mechanism is defined as follows.

Definition 6.2.2.5.1 An ordering queue (q) is a tuple <U, <TB >, where U is a set of

updates that have joined q and <TB is the Treated-Before relation for comparing

updates in q.

When running the relation <TB on q, it will result in a total ordering for all

updates within q. This total ordering is different from one level to another. For

example, in CS level, it represents a total ordering for all updates that are propagated

to specific CS, while in the ZS level it acts as a total ordering for all updates received

by specific ZS.

The proposed ordering mechanism relies on a set of N ordering queues

denoted Q. Each queue is located and maintained by a responsible center point in

order to encompass all received updates from underlying hosts during the updates

collection period. Accordingly, these queues can be classified into different sets as

follows.

1. The set of queues in cell servers (QCSQ)

QCSQ = {QCSk : 1≤ k ≤M, M≡ the total number of CSs in the replication system}

2. The set of queues in zone servers (QZSQ)

QZSQ = {QZSl: 1≤ l ≤L, L≡ the total number of ZSs in the replication system}

3. The queue in the master server (QMSQ)

QMSQ = {QMS}

Thus, the set Q and the total number of queues (i.e. its elements) denoted N

can be written as:

Q = QCSQ ∪ QZSQ ∪ QMSQ

N= M+ L+ 1

Each q ∈ Q is populated during the collection period with the received updates

from the underlying level and is emptied after propagating the previously ordered

updates to the higher level (after the elapsing of the collection period).

The previously ordered updates in each q are propagated to the ordering queue

in the higher level in a unidirectional manner for further ordering in the higher level.

This further ordering involves comparing all collected ordered updates from all

 151

queues in the underlying level. Therefore, we can describe our queuing system as a

tandem queuing system.

According to the aforementioned description, the structure of the queuing

system can be viewed as a directed tree-like structure (see Figure 6.2.2.5.1) in which

vertices represent the hosts and the edges represent the links. Each server is seen as a

queue in which an update is ordered on its level and then sent to the next higher level

for further ordering.

The MS represents the root node for this tree, because it acts as the main

collection point for all updates that have been ordered in the lower levels and need

further ordering. Each server in underlying levels (i.e. CS and ZS) acts as a

representative for the MS in its level in performing updates ordering. Thus, each

server acts as a root node for its level. This results in multiple sub trees that their

number equals to the number of both cell servers and zone servers. The queues in the

cell level are not fixed since the mobile hosts can move from one cell to another. But

the queues in the both the zone server and the master server are fixed.

The state of each queue q at any point is defined to be the sequence of updates

existing in that queue and are waiting for ordering. The elements of each queue may

experience a finite delay in their processing by the higher level until collecting all

updates from underlying levels, but this delay is limited by elapsing of the collecting

period, which is specified according to the consistency and availability requirements

of the application.

Note that this tree can be converted to bidirectional graph by considering the

opposite flow of updates to the lower level (in a form of ReRU-Message as shown in

section 6.3) after they are ordered by MS.

An update in each queue is represented by a data structure called Update

Descriptor (UD). The UD contains the required information for comparing of updates

using Treated-before relation. The UD is an incremental data structure since its

information increases in the higher levels. Figure 6.2.2.5.2 represents the structure of

UD in each level.

 152

Figure 6.2.2.5.1 The Directed Tree for the Ordering System

Figure 6.2.2.5.2 The Contains of UD in (a) CS (b) ZS (c) MS

 153

In this figure, Update-ID is an incremental number assigned to each update on

each object. Object-ID is the number of object where update occurred. The other

attributes are as mentioned above.

6.2.2.6 Casual Ordering Algorithm

In this algorithm, each server in the higher level uses the Treated-Before relation for

comparing between updates that are currently placed in its local queue. The

comparing between two updates is performed first based on the Update-TS attribute of

both updates, and in case of concurrent updates are detected, the resolution (i.e.

reordering) will be performed based on the Send-TS and Receive-TS attributes of

messages that shipped updates information to the higher level.

After updates are totally ordered in the highest level (i.e. master level), MS

assigns Global ID for each update based on the order of that update. The value of this

ID represents the order of the update on the level of the whole system and it is

assigned in a sequential manner.

In this algorithm, Host-ID is the ID assigned to the sender. i is the sequence

number of RU-Message at the sender . Dest is a variable that represents the ID of the

responsible server in the higher level. k represents the ordering key, which is a set of

attributes that is used to compare updates. Max is a variable that specifies the

maximum value for the period of collecting updates from underlying hosts.

The causal ordering algorithm is as follows.

(i) At each host generates and sends updates:
∀ generated update: Update-TS = RC’s value when update takes place
Assign Send-TS to RU-Message: Send-TS = RC’s value when send takes place
Send (Host-ID, i, RU-Message, Dest, Send-TS)

(ii) At each host receives updates:
Assign Receive-TS to each received message: Receive-TS = RC’s value
Place the received Message at the end of the local ordering queue
Set Max = T
While Collecting-Period < T
∀ updates in the queue
 Compare updates using timestamp attributes in RU-Update-Vec
 If Host-type = ‘CS’ then
 k = {Update-TS}/* Use the set {Update-TS} as ordering key
 If ¬ (u →u v) and ¬ (v →u u) then /* if conflict occurs or concurrent updates u

|| v */
 /* Compare updates using send timestamp attribute of RU-Message */
 k = {Send-To-CS-TS}

 154

 If ¬ (m1→s m2) and ¬ (m2→s m1) then
 /* Compare updates using receive timestamp attribute of RU-Message

*/
 k = {Receive-By-CS-TS}
 Else If Host-type = ‘ZS’ then
 /* Compare updates using received timestamp information from underlying CSs
*/
 k = {Update-TS, Send-To-CS-TS, Receive-By-CS-TS}
 If ((¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→r m2) and ¬ (m2→r m1)) and

(¬ (m1→r m2) and ¬ (m2→r m1))) then
 /* Compare updates using send timestamp attribute of RU-Message to ZS

*/.
 k = {Send-To-ZS-TS}
 If u || v then
 /* Compare updates using receive timestamp attribute of RU-Message

by ZS */.
 k = {Receive-By-ZS-TS}
 Else If Host-type = ‘MS’ then
 k = {Update-TS, Send-To-CS-TS, Receive-By-CS-TS, Send-To-ZS-TS,

Receive-By-ZS-TS}
 If u || v then
 k = {Send-To-MS-TS}
 If u || v then
 k = {Receive-By-MS-TS}
 Else

 Order u before v
 Assign Global ID for both u and v

 End {While}

6.2.2.7 Correctness Proof for the Casual Ordering Algorithm

To prove that the proposed causal ordering algorithm is a correct solution to the

problem of ordering updates in LMDDBSs, there is a need to show that it has both

safety and liveness properties.

The original and general purpose of liveness is to guarantee that every

message is eventually delivered to its destination (s). For our case, we prove that

every RU-Message that is sent from underlying level, its contains (i.e. updates) will be

ordered (delivered) in the current level and then will be sent to the next higher level.

 155

Assertion 6.2.2.7.1 (Liveness)

The causal ordering algorithm ensures that all received updates from underlying level

will be ordered and sent to the higher level.

Proof.

Let S be the ordering process in each higher level host. S can be viewed as a transition

system that has three states: {C: Collecting, O: Ordering, SE: Sending} and two

transitions: {t1: elapsing of current collecting period and running of causal ordering,

t2: completion of ordering process} as shown in the following figure that describes

ordering process as a state machine.

Figure 6.2.2.7.1 A state Machine for the Description of the Ordering Process

S always receives updates from underlying hosts through RU-Message. Let Q

be the set of contains of all RU-Message that are received from underlying level

during the current C state. When S enters O state (i.e. elapsing of collecting period),

this implies servicing current updates in Q and storing all the contains of the messages

that come during the period of O state in a waiting queue (W). When the S enters SE,

this implies emptying Q and S transits to the C state by filling Q with the contains of

each message belongs to W and all new arrived messages. Accordingly, ∀ m ∉ Q (i.e.

m is a new arrived message), m will be serviced (through placing its contains in Q and

then ordering them) when S transits from SE to C and then from C to O once again.

Thus, there is no deadlock or blocked updates.

Assertion 6.2.2.7.2 (Safety)

The causal ordering is never violated at any higher level.

Proof.

Assume that two updates u and v are generated on hosts h1 and h2, respectively. If u is

generated before v, this implies that Update-TS(u) < Update-TS(v) based on the values

that are assigned by RC on h1 and h2. Accordingly, Treated-Before Relation ensures

that if h1 and h2 in same cell, same zone, or different zones, then each receiving server

in the higher level will order u before v. In case of u and v are concurrent based on

the generation event, the Treated-Before Relation implies that comparing u and v

 156

using Send-TS value. Accordingly, if u is sent before v to the higher level ⇒ Send-

TS(u) < Send-TS(v). Thus, each server in the higher level will order u before v. Same

discussion is hold to prove maintaining of causal ordering in case of u and v are

concurrent based on both generation and sending events.

6.2.2.8 Priority-Based Causal Ordering

Instead of using timestamp information to provide the unified ordering as described

above, a priority based ordering can be employed. This involves specifying priority

rules to assign priorities to different updates according to their types and relationships.

These priority rules can be specified by the application designer according to the

semantic of the data that is handled by a given application. This semantic determines

the relationships between updates.

This means that the semantic of the data can be used to determine which

operations on each object should be given the priority to be ordered before other

operations on that object and this can be specified on the database design stage. For

example, in the products object, the priority rule can be specified as: Add quantity

operation should be given a priority to be ordered before withdraw quantity operation.

Based on the priority, the definition of concurrent updates can be as follows

Definition 6.2.2.8.1 Priority-based Concurrent updates “u ||p v”

Two distinct updates u and v that are shipped to the higher level via messages m1 and

m2, respectively, are" Priority-based Concurrent" iff:

(i) u and v have same priority or

(ii) u and v have same priority and (¬ (m1→s m2) and ¬ (m2→s m1)) or

(iii) u and v have same priority and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬

(m1→r m2) and ¬ (m2→r m1))

Accordingly, Conditioned causal ordering relation “→cu” can be modified to

encompass Priority-based concurrent updates as follows.

Definition 6.2.2.8.2 Priority-based conditioned causal ordering relation “→pcu”

Given two updates u and v, generated at site i and j, respectively, and sent via

messages m1 and m2, respectively, to the responsible center point C, then u →pcu v, iff

(i) (u ||p v) and m1 →s m2 or

(ii) (u ||p v) and (¬ (m1→s m2) and ¬ (m2→s m1)) and m1 →r m2 or

 157

(iii) (u ||p v) and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ (m1→r m2) and ¬ (m2→r

m1)) and m3 →s m4 in case of u and v are sent to their responsible center points

C1 and C2 via m1 and m2 and then those updates are sent from C1 and C2 to

their responsible center point Z via m3 and m4.

Thus, the priority of updates is incorporated as one of the conditions for the

conditioned causal ordering relation between u and v. This incorporation is valid only

in the case of both u and v have same priorities, Which means that if two updates are

concurrent with regard to they have same priority, then we can rely on the sending

and receiving times of their messages.

By considering the priority of updates instead of the timestamp information of

their generation, the only change that is needed in the proposed causal algorithm is

that each receiver performs reordering of priority-based concurrent updates based on

the definition of Priority-based conditioned causal ordering relation.

To implement this type, there is a need to determine the type of each update

(e.g. Add or withdraw) and its relationship with other updates in order to assign its

priority. This requires both storing the update priority as a data item in the object and

shipping it with the update information to the higher level.

6.2.2.9 Performance Issues

This section presents performance issues that related to implementing the proposed

mechanism and previous version vectors based mechanisms in LMDDBs.

1. The size of timestamp information

The casual ordering algorithm presented here cuts down the size of the timestamp

information appended to each message to be smaller than the size that is imposed by

version vectors based algorithms (see section 2.7.2). These algorithms append a

timestamp information of size O(n), where n is the number of replicas. As a

consequence, they impose a high communication overhead, especially for a large

number of replicas. The size of timestamp information that is imposed by the

proposed algorithm is provided by the following assertion.

 158

Assertion 6.2.2.9.1 The size of timestamp information appended to each RU-message

is:

1. O(k+1), if it is sent from a server to a server in the higher level, where k is the

number of underlying hosts that propagate their updates during the last collection

period.

Or:

2. O(1), if it is sent from a host (MH or FH) to its responsible server.

Proof. For the first case, since for each message received from underlying level, the

receiver server in the higher level will assign Receive-TS. This means that there are K

Receive-TSs. Accordingly, when these messages are incorporated in one message to

be sent to the server in the higher level, the receiver will add send-TS to the

incorporated message. Thus, the size of the timestamp information that will be

appended to RU-Message represents the size of the timestamps that are added by the

servers, which is Receive-TS for each message + Send-TS for the incorporated

message. For the second case (from a host to its responsible server), the size is O(1)

because the host appends only Send-TS to each RU-Message.

2. The size of the clock

The size of the information that related to the clock’s time is O(1) for the RC, since

the host only keeps track of its own time. This is in contrast to the vector clock, which

its time information imposes a size of O(n), where n is number of replicas. This

implies that vector clock occupies storage space that is proportional to the total

number of replicas in the replication system.

3. Storage, computation, and communication overheads

The proposed ordering mechanism does not impose any overhead on mobile hosts as

well as fixed hosts, since there is no need for collecting or ordering of updates that

come from other hosts. Thus, the proposed ordering mechanism placed the overhead

of both storage and computation on the servers that exist in the higher levels, since

these servers are assumed that they have more storage and processing capabilities than

both fixed and mobile hosts. Moreover, it does not impose large (i.e. significant)

overheads on those servers according to the following reasons.

1. Not all hosts in the underlying level are expected to propagate their updates

during each updates collection period from underlying hosts. This is according

to the fact that not all mobile hosts stay connected to the fixed network at all

 159

times. Moreover, each server receives only the recent generated updates from

its underlying hosts.

2. The ordering process occurs only when the collection period elapsed. This

means that the CPU does not service ordering process at all times.

3. The small size of RC, since each host needs only to keep track of its time

rather than the times of all other hosts as compared with version vectors.

4. Only the information that is needed to implement the causal ordering is sent

with each message to the higher level as follows. Each host (MH or FH) ships

only with RU-Message the attributes Update-TS and Send-TS. The CS adds

only small amount of information, which are Receive-TS and Send-TS to the

messages that are received from underlying hosts. Also, both ZS and MS add

small amount of information in same manner.

On the other hand, the mechanisms that are based on version vectors suffer

from both storage and communication overheads that originated from the size of

version vectors, which increases as the number of sites increase and the large amount

of information that should be sent and stored for carrying out causal ordering.

Accordingly, these mechanisms are not suitable for LMDDBSs, since those overheads

hinder the scalability. Thus, the proposed mechanism is more suitable to be

implemented in LMDDBSs, since the size of RC is not affected by the number of

replicas. Also, as mentioned, only the needed information for implementing causal

ordering in the higher level is shipped via RU-Message. Furthermore, according to the

proposed updates propagation protocol, each host propagates and receives updates

from a few hosts only. This leads to a low space overhead on the timestamp

information associated with each message.

Moreover, the proposed mechanism supports the characteristics of LMDDBs

through exploiting the updates collection periods to perform the unified hierarchical

ordering for recent updates. These collection periods provide mobile hosts with a

reasonable time periods (i.e. can be determined according to the requirements of the

application) for propagating their updates to the higher levels in order to be ordered

with other updates that come from fixed hosts. This support both mobility and

disconnections of mobile hosts, since the mobile hosts can disconnect or move to

another cell during the same collection period at the higher level.

 160

4. Overhead of time divergence amendment

The communication and computation overheads that are resulted from sending MVT

and amendment process are not sensitive according to the following reasons:

1. The TVM ships only the current value of RC to the other host. This means that

the size of this message is small.

2. The steps that are required for amendment process involve only simple

calculations that do not need large computation overhead.

6.3 Messages Ordering in the Case of Top-Down Propagation

In the Top-Down propagation, the messages that carry ReRU (which are totally

ordered by the master server) are sent to multiple underlying hosts from their

responsible center point. Accordingly, it is desirable that all messages are delivered to

all underlying hosts in same order as they generated on the master server. Thus, in

Top-Down propagation mechanism, the ordering type can be specified as a hybrid of

both casual order and total order as presented in the following subsection.

6.3.1 Ordering Model

The different concepts that are involved in the ordering of messages in Top-Down

Propagation are as follows.

Defintion 6.3.1.1 (ReRU-Message). It is the message that carries the recent resolved

updates information from a server to underlying hosts and is defined as a tuple of

<Msg-ID, ReRU-Update-Vec>, where Msg-ID is the ID assigned serially by the

master server, and ReRU-Update-Vec contains the details of the recently ordered

updates and can be expressed as Update-Vec =(<u1, Generated-Host, Global-ID >,

…, <un, Generated-Host, Global-ID >)

Definition 6.3.1.2 (Casual ordering). Given two ReRU-Message x and y, if x is

generated at the master server before y, then each underlying center point should:

1. receive x before y

2. send x before y.

Definition 6.3.1.3 (Total Order) For all messages ReRU-m1 and ReRU-m2 that are

sent by center point C and all underlying hosts H1 and H2, if ReRU-m1 is received at

C before ReRU-m2 from its responsible center point, then ReRU-m2 is not received

before ReRU-m1 at both H1 and H2.

 161

Accordingly, the hybrid of both causal ordering and total ordering is defined
as follows.

Definition 6.3.1.4 (Hybrid Casual-Total Ordering ⌂) Given two ReRU-Message x

and y, then x ⌂ y iff:

a. x is generated at the master server before y

b. each underlying host receive x before y from its responsible center point

c. Each underlying host send x before y to its underlying hosts.

According to this definition, every lower level host should receive and send

the messages that are received from the higher level in the same order as they

produced by the highest level host (e.g. MS). For example, if ZS has received m12

from MS and then received m16, it will not deliver those messages to the lower level

unless it gets m13, m14, and m15. Moreover, if ZS has received m20 and the message

that is received before it is m17, it will not send it to underlying cell servers unless it

gets the messages m18 and m19. Same discussion is hold for sending ReRU-Message

from each CS to underlying fixed and mobile hosts.

6.3.2 Hybrid Casual-Total Ordering Algorithm

The ordering of messages is based on the ID of the ReRU-Message that is assigned by

the master server. Each server has a data structure called ReRU-Messages-Tracking to

store the IDs of all ReRU-Message that are received previously from the higher level.

L is used to denote last Received ReRU-Message from the higher level and N to

denote New Received ReRU-Message.

At the master server
Attach ordered updates to ReRU-Message
ID(ReRU-Message) = ID(Last ReRU-Message) + 1

At each server in underlying level
When receiving ReRU-Message from higher level Do
Store ID(N) on ReRU-Messages-Tracking
Retrieve ID(L) from ReRU-Messages-Tracking
If ID (N) = ID (L) +1 then
Deliver N to all underlying hosts.
/* this ensures that if a message x is delivered before y to the lower level by the
master server, then y will not be received before x at any lower level host*/
Else
Send ID (L) to the higher level /* this is to send right messages*/

 162

6.4 Summary

This chapter has presented the updates ordering mechanism that provides a unified

order for all generated updates on the different levels of the replication architecture. In

this mechanism, each update is timestamped with the information that is only needed

to implement the causal ordering on the higher levels. This reduces the

communication overhead, which is imposed by the size of the messages that ship

updates information to the higher levels.

The ordering mechanism exploits the proposed updates propagation protocol

in that each host sends and receives messages from a few hosts only. This leads to a

low space and computation overheads that are imposed by the timestamp information

that is associated with each message.

The overall order operation for recent updates is committed at the master

server. This committing is finalized by assigning each update the Global ID that

represents a sequence number assigned by the master server. This ID is incremented

with each update.

In this chapter, the research interested only in the ordering of the messages

that carry updates information to the higher levels as well as the messages that carry

ReRU from the higher levels to the lower levels. Accordingly, the ordering of the

other messages such as acknowledgement messages or TVM is not considered.

