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CHAPTER SIX 
 
 
 
HIERARCHICAL MULTI-CRITERIA UPDATES ORDERING MECHANISM 
 

6.0 Overview 

The purpose of updates ordering in our strategy is to provide each host with a unified 

set of ordered updates for each replicated object. This ordering provides a level of 

consistency that the research called consistency with ordering guarantee level. In this 

level, each replica should have identical and ordered values in same manner as its 

counter part in the master server. This is in contrast to the level of the consistency that 

is previously discussed, which implies that each replica should be up to date as 

compared with the replica that is stored in the master server. This level can be 

achieved only through updates propagation without needing to enforce a unified 

ordering as in the former level. Accordingly, the research called the latter level 

consistency without ordering guarantee level. It is clear that the latter imposes low 

overhead (storage and communication) as compared with the former. The research 

provides the two levels in order to meet the requirements of different applications. 

6.1 Significance of Updates Ordering 

The significance of updates ordering in our replication system originates from the 

existing of large number hosts that replicate and generate large number of updates 

concurrently on the same replicated data items. These hosts need to agree on a unified 

ordering for all updates that occurred in their shared data items. This unified ordering 

ensures the correct semantics of the replicated service system in case of considering 

the consistency with ordering guarantee level. For example, consider a data item X 

that is replicated on n replicas in both fixed and mobile hosts and different numbers of 

update operations are performed on the set of replicas {R1, R3, R6, R8}, which  

contains four replicas out of the n replicas. Those updates are issued on each replica 

according to the following order (u11, u12, u13, u14, u15), (u31, u32, u33), (u61, u62, u63, 

u64), and (u81, u82), respectively. This scenario is depicted in Figure 6.1.1.  
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FIGURE 6.1.1 A Scenario of the Local Ordering of the Updates in the Set of 
Four Replicas {R1, R3, R6, R8}  

 
 

Figure 6.1.1 shows the order of updates that occurred in each replica during a 

specific time period. Each replica of X needs to receive the set of updates that 

occurred in those four replicas in a unified order. To ensure this unified order, a 

reasonable total order of those update operations should be defined and enforced over 

all replicas of X. 

Accordingly, our main question in this chapter is: How and in what sequence 

should the updates be ordered to preserve the data consistency through a unified order 

if these updates are carried out by a large number of distinct fixed and mobile hosts?. 

As a response to this question, an ordering mechanism is presented that provides each 

host on different rims with a set of unified ordered updates. This unified order is 

produced as a result of participating of all center points in the ordering process 

through enforcing a hierarchical multi-criteria ordering on updates, which are 

collected on each center point from underlying hosts in its area. The ordering criteria 

include timestamp attributes that characterize the events of updates generation and 

updates propagation.  The propagation event can be divided into two sub events, 

which are: send and receive. The timestamp attributes are associated with the 

individual updates as well as the messages that propagate these updates to the 

responsible center points in order to facilitate the ordering process in the higher levels. 

The proposed ordering mechanism is based on the causal ordering. However, 

the constraint of causal ordering is not always necessary to be hold in large scale 

mobile distributed database systems as proved by the following assertion. 

R3 R6 R8 



 139

Assertion 6.1.1 Casual ordering constraint that requires the order of receiving two 

messages should be same as the order of their sending does not hold always in 

LMDDBSs.  

Proof. Consider two updates u1 and u2 are sent from MHi and MHj, respectively, to 

the same destination D, such that u1 → u2 (u1 is sent before u2). If sending of u1 

experienced more delay than sending of u2 on the communication link due to 

variability and limitation of the available bandwidth, network delays and the distances 

between both MHi and MHj and D, this increases the probability of receiving u2 

before u1 at D (although u1 was sent before u2). Thus, the constraint of causal ordering, 

which requires that the order of receiving u1 and u2  should follow the order of sending 

them may not be hold in this case. 

 
Accordingly, the proposed ordering mechanism provides new constraints for 

enforcing causal ordering in LMDDBSs by eliminating the dependency between the 

orders that are produced by considering both receiving and sending events, as well as 

updates generation event. Based on these constraints, the ordering is performed 

through multiple checks by comparing updates based on the occurrences of the three 

events according to the sequence: generation, sending, and receiving. In this multiple 

check, updates are compared based on the occurrence of the next event if and only if 

comparing them using the occurrence of current event has produced the same order. 

The new constraints are provided in the following section, which are based on the 

type of event and the location where the event has taken place.  

In the proposed mechanism, updates that occurred on the lower levels ore 

ordered on the higher level when Bottom-Up propagation takes place. On the other 

hand, the messages that ship the totally ordered updates from the higher level are sent 

to the lower level in same order. This order follows the order of these messages as 

were sent by the main center point when top-down propagation takes place. 

6.2 Updates ordering in Case of Bottom-Up Propagation  

To maintain the level of consistency with ordering guarantee, updates that are 

generated on the different levels should be totally ordered and then propagated to 

other replicas. In Bottom-Up propagation, updates that occurred in the underlying 

levels are totally ordered in the higher levels (i.e. next inner rims) till reaching a 

unified total order in the highest level (i.e. the main center point) for all updates. 
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Then, the main center point propagates ordered updates to underlying levels using 

Top-Down propagation. The ordering is performed in case of Bottom-up propagation 

on the level of the updates (i.e. updates are compared instead of messages). The 

ordering mechanism here is based on the casual order relation, which is specified as in 

the following subsection. Note that the statement totally ordered in this section does 

not mean the total order relation as in the Top-Down propagation, but it states that 

total ordering is performed on a set of updates that are collected from all underlying 

level hosts using causal order relation. This is because the total order relation has a 

different definition than for the causal order relation. 

6.2.1 Causal Ordering Model 

This section first provides formal definitions for three types of the causal ordering 

relation among updates by considering the following sequence of the operations: 

generation, sending, and receiving. These definitions are produced based on the 

happened-before relation (see section 2.7), and the characteristics of the proposed 

updates propagation protocol (i.e. updates are propagated through certain paths 

between the hosts in the different rims). This means that the definition of happened-

before relation is exploited in defining the three types of causal ordering relation in 

order to act in accord with the ordering requirements in LMDDBSs. Second, the 

concepts of the concurrent messages and concurrent updates are provided. Lastly, the 

definition of Conditioned causal ordering relation is given.  

Definition 6.2.1.1 causal ordering relation for generation operation “→u”  

Given two updates u and v, generated at site i and j, respectively, then u →u v, iff (1) i 

= j and the generation of u happened before the generation of v, or (2) i # j and the 

generation of u at site i happened before the generation of v, or (3) there exists an 

update w, such that u →u w and w →u v. 

Definition 6.2.1.2 causal ordering relation for send operation “→s”  

Given two messages m1 and m2, sent by site i and j, respectively, to the higher level 

(either to same center point or different center points), then m1 →s m2, iff (1) i = j and 

the sending of m1 happened before the sending of m2, or (2) i # j and the sending of m1 

from site i happened before the sending of m2, or (3) there exists a message m3, such 

that m1 →s m3 and m3 →s m2. 
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Definition 6.2.1.3 causal ordering relation for receive operation “→r”  

Given two messages m1 and m2, received by either same center point or different 

center points from site i and j, respectively, then m1 →r m2, iff (1) i = j and the 

receiving of m1 happened before the receiving of m2, or (2) i # j and the receiving of 

m1 from site i happened before the receiving of m2 by any responsible point, or (3) 

there exists a message m3, such that m1 →r m3 and m3→r m2. 

  According to the definitions 6.2.1.2 and 6.2.1.3, the casual relation is defined 

between messages instead of individual updates. This is because updates information 

are sent in a form of message. Accordingly, updates that are shipped with these 

messages inherit both send and receive time attributes of their messages. In definition 

6.2.1.3, the causal ordering relation is specified for the receive operation because the 

second optional condition of lamport’s happened-before relation cannot be 

implemented in this case. This is follows assertion 6.1.1 in that the order of sending 

two messages does not imply that they will be received in the same order as they were 

sent. 

Definition 6.2.1.4 Concurrent sent messages “m1||s m2” 

Two distinct sent messages to the higher level (either to same the center point or 

different center point) m1 and m2 are "concurrent" if ¬ (m1→s m2) and ¬ (m2→s m1). 

Definition 6.2.1.5 Concurrent received messages “m1||r m2” 

Two distinct messages received by the higher level (by two different center points) m1 

and m2 are "concurrent" if ¬ (m1→r m2) and ¬ (m2→r m1). 

This definition does not state that the two messages are received by same 

center point. This is because we do not expect that two messages satisfy the condition 

¬ (m1→r m2) and ¬ (m2→r m1) exactly if they are received by same center point from 

underlying hosts.  

Definition 6.2.1.6 Concurrent updates “u || v” 

Two distinct updates u and v that are shipped to the higher level via messages m1 and 

m2, respectively, are "concurrent" iff: 

(i) ¬ (u →u v) and ¬ (v →u u) or 

(ii) (¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→s m2) and ¬ (m2→s m1)) or  

(iii)(¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ (m1→r 

m2) and ¬ (m2→r m1)) 
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Definition 6.2.1.7 Conditioned causal ordering relation “→cu”  

Given two updates u and v, generated at site i and j, respectively, and sent via 

messages m1 and m2, respectively, to the responsible center point C, then u →cu v, iff  

(i) (¬ (u →u v) and ¬ (v →u u)) and m1 →s m2 or 

(ii) (¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→s m2) and ¬ (m2→s m1)) and m1 →r m2 

or 

(iii) (¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ (m1→r 

m2) and ¬ (m2→r m1)) and m3 →s m4 in case of u and v are sent to their responsible 

center points C1 and C2 via m1 and m2 and then those updates are sent from C1 and C2 

to their responsible center point Z via m3 and m4.  

According to the first condition, the Conditioned causal ordering relation 

implies ordering of u and v based on the sent event of their messages to C in case of u 

and v are concurrent according to the generation event. Similarly, based on the second 

condition, this relation implies ordering of u and v based on the receive event of their 

messages by C in case of u and v are concurrent according to both generation and 

send events. The third condition implies ordering of u and v in the higher level based 

on the send event in case of that those updates are concurrent according to the three 

operations generation, send, and receive, which are performed in the lower levels.  

Thus, based on the above description, Conditioned causal ordering relation 

acts as a method for resolution of concurrent updates (i.e. assigning them different 

orders). 

6.2.2 Implementing Causal Ordering  

The causal ordering in the higher level is carried out based on comparing updates 

according to a relation called Treated-before relation. This relation represents a direct 

implementation of the Conditioned causal ordering relation for performing the 

multiple checking that is involved in the ordering process. This relation relies on 

timestamp attributes for both updates and messages that ship these updates to the 

higher levels. Accordingly, these attributes can be classified as follows: 

• The timestamps of the updates generation operations. 

• The timestamps of both send and receive operations for the messages. 

The timestamps are assigned locally on each host based on the value of a 

variable called Real-Like Clock. Updates information is shipped to the higher level 
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via a message called RU-Message. The contains of each received RU-Message are 

placed on a queue in the higher level.  This queue represents a set of collected updates 

from underlying level during the updates collection period. Updates on this queue are 

compared using the Treated-before relation.  

The following subsections provide the specifications of Real-Like Clock, RU-

Message, Treated-before relation, and the ordering queue. 

 
6.2.2.1 Real-Like clock  
 
Each host maintains a local variable, called Real-Like clock (RC). It is used for 

timestamping the three events (generate, send, and receive) that originated on the 

host. At any time, the current value of this clock should be same as its counter part in 

the main center point. For achieving this, every center point is responsible also for 

maintaining the value of RC in its underlying hosts. The RC's value is maintained 

periodically in each underlying host through a periodical checking algorithm. The 

method of advancing the value of this variable is assumed to be same as the 

advancing method of the physical clock. Accordingly, the value of RC is considered 

as a complex value of certain atomic values that are arranged into two main parts. The 

first part represents the time and the second part represents the date. The reason 

behind advancing the value of RC in same manner as the physical clock is to ensure a 

unified advancing method at all hosts other than advancing its value according to the 

time of the next event as performed in the logical clock and vector clock (see section 

2.7). This follows that the updates occurred in a certain host will be compared with 

the updates that originated from other hosts. Thus, if we advance the RC’s value 

according to the time of the next event, we find that during the time period between 

two events there are many updates may occur in the other hosts. Therefore, to provide 

a fair unified ordering, our ordering mechanism relies on advancing the value of RC 

in all hosts in the same manner as the physical clock and considering the value of the 

RC at the time when each event occurred.  

The rules for advancing RC’s value and timestamping events are as follows. 
 

1. Initially, Val(RC) := Val(RC) at the main center point. 

2. When a tick occurs ⇒ Val(RC) is advanced in same manner as the physical 

clock. 

3. Whenever an event occurs ⇒ TS(event) := Val(RC) when event happened. 
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In these rules, Val(RC) is the value of the local RC at a specific host. Initially, 

the value of RC at each host is identical to the value of RC at the main center point. 

This value is advanced locally according to the frequencies of ticks as in the physical 

clock.  Each event is timestamped (denoted by TS(event)) using the current value of 

the local RC when the event takes place.  

Assertion 6.2.2.1.1 The RC based timestamping scheme as compared to the logical 

clock based timestamping scheme posses the following property: given two events e 

and e-
 occurred on different hosts H1 and H2, respectively, if TS(e) < TS(e-) then e→ 

e-, where TS(e) is the timestamp of e, and TS(e-) is the timestamp of e-. 

Proof. First, we implement the logical clock (LC)  timestamping as follows. Consider 

an initial event e0 occurred on both H1 and H2 and is assigned same timestamp value 

on them. If there are many events that occurred in H1 after e0 and before an event e, 

then LC timestamps e with the value: TS(e) = TS(e0) + E +1, where E is the number 

of events that occurred between e0 and e. In contrast, if there are no events occurred in 

H2 between e0 and e-, then the value of the timestamp that is assigned to e- is  TS(e-) 

= TS(e0) +1. This implies that TS(e-) < TS(e), but this statement is not satisfied in the 

case of the time period between the occurrence of e- and e0 in H2 is greater than the 

time period between the occurrence of e and e0 in H1. Accordingly, using LC does not 

insures that if TS(e) < TS(e-), e →e-. On the other hand, RC timestamping ensures 

that each event is timestamped with the current value of RC. Moreover, all RCs in the 

replication system are always advanced in a unified manner independently of the 

occurrence of events. This implies that if two events e and e- occurred on different 

hosts and TS(e) on H1 < TS(e-) on H2 then e→ e-. 

6.2.2.2 Maintaining the Value of RC  

In order to ensure a unified timing system through enforcing the RC’s value of the 

main center point on all underlying hosts, two methods are proposed for correcting 

mismatched RC values and incorrect timestamps that are assigned to events. 

(i) Periodical checking 

It represents a Top-Down mechanism for checking and amendment the RC’s value 

and timestamps assigned to events in the lower level hosts. In this method, each 

responsible center point sends a message called Timing-Value-Message (TVM) that 

ships the current value of RC to underlying level. TVM migrates periodically (e.g. 
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every prefixed period or at the beginning of the next collection period for updates 

from the lower level) to the hosts in the lower level in order to inform the receiver the 

current value of RC.  

Upon arriving at the destination, the shipped value with TVM (i.e. denoted by S) 

is compared with the local value of RC (i.e. denoted by L). In case of a mismatch 

occurred, the following steps are performed.  

• Computing the difference between L and S: 

D= S -L                                        (1) 

 
• Adjusting the value of L to S: 

L= S ± D                                       (2) 
 

• Calculating the difference between send and receive timestamps for TVM: 

D-- = TS(Receive)– TS(Send)       (3) 
 

• Adding the difference to L: 

L=L + D--+C                                (4) 

• Revising the timestamp assigned to each update event (that is not propagated 
to the higher level).  

 
In these steps, C is the time period that is consumed on calculating 

aforementioned equations. Equation 4 represents the new value of the system’s time 

on the host in the lower level. The revision of timestamp of each update (T) that is not 

propagated previously is performed using the above four equations by substituting L 

with T.  

This mechanism is not suitable to check the time value on the mobile hosts 

due to their inherited frequent disconnections, which hinder the periodical checking 

process. Therefore, it can be used for the servers in the fixed network, since they have 

stable and continuous connectivity.  

(ii) On-Receiving checking 

In this method, the host in the lower level sends TVM to the higher level when the 

connection is realized. Upon receiving at the higher level, the following steps are 

carried out. 
 

Step 1 (Determining the exact value of the system time in the host in the lower level 

(T)) 
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1.1 Computing the time period that the migration of TVM has taken (i.e. 

TS(send)-TS(receive)).  

1.2 Adding the value of the computed period to the shipped value of RC in the 

same manner as in the abovementioned equations (1 to 4). 

Step 2 (Comparing the value of T with the current value of local RC on the host in the 

higher level (T-))  

2.1 If the values of T and T- are not identical, the higher level host will send 

the current RC’s value (T-) to the host in the lower level, which will be 

responsible for correcting the timing values using above equations.  

2.2 The host in the higher level will correct the value of the timestamp of each 

update received recently from underlying host in addition to the send 

timestamp for the messages that shipped those updates. This correction is done 

by adding/removing the difference between T and T-  to/from the received 

value for each  update timestamp and send timestamp. 
 

This mechanism is suitable for checking the time on the mobile hosts because 

it exploits the connection of the mobile host with the fixed network in order to correct 

its timing values. Also, the load of the correction is shared among the two hosts 

because the host in the higher level will correct the received timing values, while the 

host in the lower level will correct its stored values. 

6.2.2.3 RU-Message 

It is the message that carries the recent updates information from a host to its 

responsible center point in the higher level. It is defined as a tuple of <Msg-ID, Host-

ID, Send-TS, RU-Update-Vec, Receive-TS >, where Msg-ID represents a serial 

number for messages that send from a specific host, Host-ID is the sender, Send-TS is 

the value of sender’s local RC at the moment when the message is sent, RU-Update-

Vec is a vector that contains the information of recent updates that occurred on the 

sender, and Receive-TS is the value of receiver’s local RC at the moment when the 

message is received. Both Msg-ID and RU-Update-Vec represent the exact contains of 

RU-Message, while the other items represent the sending information.  

 RU-Update-Vec can be expressed as RU-Update-Vec = (<u1, Obj-ID, Update-

TS>, …, <un, Obj-ID, Update-TS>), where ui (i=1,…,n) is an update generation event 

that occurred in the sender and Obj-ID is the object where the update generation 
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occurred. The items on RU-Update-Vec increase as we move from a level to a higher 

level. For example, when RU-Message is sent from CS to ZS, additional items are 

added to RU-Update-Vec, which are send and receive timestamps for each RU-

Message that CS  received from underlying hosts. This is because each update inherits 

the attributes of the RU-Message that shipped it to the higher level. Accordingly, RU-

Update-Vec on RU-Message that is sent from CS to ZS can be expressed as RU-

Update-Vec = (<u1, Obj-ID, Update-TS, Send-To-CS-TS, Receive-By-CS-TS >, …, < 

un, Obj-ID, Update-TS, Send-To-CS-TS, Receive-By-CS-TS >).   

6.2.2.4 Treated-Before Relation 

In order to implement the causal ordering, our ordering mechanism is based on a new 

ordering relation that is called Treated-Before relation. This relation acts as an 

ordering constraint for ordering all updates that occurred in the replication system.  

To define Treated-Before relation denoted by <TB   between two updates in 

each level, two relations must first be defined as follows. 

1. Generated-Before relation (<GB) 

This relation can be defined as follows: 

Ux  <GB   Uy     iff    Ω update-TS  (Ux)  <   Ω update-TS  (Uy)   

 
Where Ω  is the selection operator for the selection operation of specific 

values of attributes that related to the updates Ux and Uy. The ordering is based on 

these values by comparing corresponding values for both updates. < is the less than 

relation. Update-TS is the value of RC when an update U occurred in the system. 

This relation is used as a basis for ordering updates that are generated on either 

same level or different levels. 

2. Transferred-Before relation (<TRB) 

This relation can be defined as follows: 

Ux  <TRB   Uy     iff    

 Ω Underlyinglevel-Send-TS, Currentlevel-Receive- TS (Ux) <    

Ω Underlyinglevel-Send-TS, Currentlevel-Receive- TS (Uy)  

 
Where Underlyinglevel-Send-TS is the value of RC at the sender when the 

message that ships the information of an update U is sent to the higher level. 
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Currentlevel-Receive-TS is the value of RC when the message is received at the higher 

level. 

This relation is used to compare updates that are received from underlying 

hosts. The comparing is based on the values of both attributes Underlyinglevel -

Send-TS and Currentlevel-Receive-TS. 

Note that Ω specifies only the set of attributes that can be used to compare the 

two updates. Then, the comparison is performed on this set of attributes in a 

sequential manner, which means that if the comparison that is based on the first 

attribute in the set has resulted in that updates are not concurrent (i.e. different values 

of this attribute for both updates), then there is no need to continue the comparison 

using the other attributes in the set. 

Thus, the Treated-Before relation can be defined as a union of <GB   and <TRB 

relations on the servers that exist in the higher levels (CS, ZS, and MS). In the MH 

level or FH level can be defined as <GB   relation only, since there is no need for send 

and receive operations.   Accordingly, based on these relations, the Treated-Before 

relation is defined as follows. 

Definition 6.2.2.4.1 Treated-Before relation (<TB) is a relation that equivalent to: 

I. Ux  <GB   Uy     iff  Ux and Uy are generated on either same host or different hosts 

and  Ux and Uy are not concurrent.  

II. (Ux  <GB   Uy) ∪ (Ux  <TRB   Uy) iff Ux and Uy are generated on different hosts 

and Ux and Uy are concurrent. 

 
According to this definition, concurrent updates can be defined based on 

Treated-Before relation as follows. 

Definition 6.2.2.4.2 Two updates Ux and Uy are concurrent if neither Ux  <TB   Uy  nor 

Uy  <TB   Ux. 

This definition can be extended to define Treated-Before relation between 

updates in each level as follows: 

1. MH (or FH) level 

Ux  <TB   Uy     iff    Ω update-TS  (Ux)  <   Ω update-TS  (Uy)   
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2. CS level 

Ux  <TB   Uy     iff     

Ω update-TS, Host- Send-TS, CS-Receive- TS (Ux) <    

Ω update-TS, Host- Send-TS, CS- Receive- TS (Uy), For each Ux and Uy that are generated on the 

underlying level. 

Where Host-Send-TS is the value of RC when the RU-Message is sent from 

either underlying MH or FH. CS- Receive- TS is the value of RC at CS when RU-

Message is received from underlying level. 

 

3. ZS level 

Ux  <TB   Uy     iff     

Ω update-TS, Host-Send-TS, CS-Receive-TS, CS-Send- TS, ZS-Receive- TS (Ux) <    

Ω update-TS, Host-Send-TS, CS-Receive-TS, CS-Send- TS, ZS-Receive- TS (Uy), For each Ux and Uy that are 

generated on the underlying level. 

 

4. MS level 

Ux  <TB   Uy     iff     

Ω update-TS, Host-Send-TS, CS- Receive- TS, CS-Send- TS, ZS-Receive- TS, ZS-Send- TS, MS-Receive-TS (Ux) <    

Ω update-TS, Host-Send-TS, CS- Receive- TS, CS-Send-TS, ZS-Receive-TS, ZS-Send-TS, MS-Receive-TS (Uy), For each 

Ux and Uy that are generated on the underlying level. 

 
Assertion 6.2.2.4.1 <TB  is a partial order on a set Q of updates. 

Proof. For two updates Ux and Uy that belong to Q, <TB is antisymmetric because if 

both Ux <TB Uy and Uy <TB Ux hold, then necessarily either Ux = Uy or Ux and Uy are 

concurrent. Furthermore, <TB is reflexive since every update is treated before itself 

previously in the underlying level (i.e. it is sent to the current higher level before 

sending it to the next higher level). <TB is transitive, since if Ux is treated before Uy 

and Uy  is treated before Uz  then Ux is treated before Uz. 
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6.2.2.5 Ordering Queue 

An ordering queue in the proposed ordering mechanism is defined as follows. 

Definition 6.2.2.5.1 An ordering queue (q) is a tuple <U, <TB >, where U is a set of 

updates that have joined q and <TB is the Treated-Before relation for comparing 

updates in q.  

When running the relation <TB on q, it will result in a total ordering for all 

updates within q. This total ordering is different from one level to another. For 

example, in CS level, it represents a total ordering for all updates that are propagated 

to specific CS, while in the ZS level it acts as a total ordering for all updates received 

by specific ZS. 

The proposed ordering mechanism relies on a set of N ordering queues 

denoted Q. Each queue is located and maintained by a responsible center point in 

order to encompass all received updates from underlying hosts during the updates 

collection period. Accordingly, these queues can be classified into different sets as 

follows.  

1. The set of queues in cell servers (QCSQ) 

QCSQ = {QCSk : 1≤ k ≤M, M≡ the total number of CSs in the replication system} 

2. The set of queues in zone servers (QZSQ) 

QZSQ = {QZSl: 1≤ l ≤L, L≡ the total number of ZSs in the replication system} 

3. The queue in the master server (QMSQ) 

QMSQ = {QMS} 

Thus, the set Q and the total number of queues (i.e. its elements) denoted N 

can be written as:  

Q = QCSQ ∪ QZSQ ∪ QMSQ 

N= M+ L+ 1 

 
Each q ∈ Q is populated during the collection period with the received updates 

from the underlying level and is emptied after propagating the previously ordered 

updates to the higher level (after the elapsing of the collection period).  

The previously ordered updates in each q are propagated to the ordering queue 

in the higher level in a unidirectional manner for further ordering in the higher level. 

This further ordering involves comparing all collected ordered updates from all 
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queues in the underlying level. Therefore, we can describe our queuing system as a 

tandem queuing system.  

According to the aforementioned description, the structure of the queuing 

system can be viewed as a directed tree-like structure (see Figure 6.2.2.5.1) in which 

vertices represent the hosts and the edges represent the links. Each server is seen as a 

queue in which an update is ordered on its level and then sent to the next higher level 

for further ordering. 

The MS represents the root node for this tree, because it acts as the main 

collection point for all updates that have been ordered in the lower levels and need 

further ordering.  Each server in underlying levels (i.e. CS and ZS) acts as a 

representative for the MS in its level in performing updates ordering. Thus, each 

server acts as a root node for its level. This results in multiple sub trees that their 

number equals to the number of both cell servers and zone servers. The queues in the 

cell level are not fixed since the mobile hosts can move from one cell to another. But 

the queues in the both the zone server and the master server are fixed.  

The state of each queue q at any point is defined to be the sequence of updates 

existing in that queue and are waiting for ordering. The elements of each queue may 

experience a finite delay in their processing by the higher level until collecting all 

updates from underlying levels, but this delay is limited by elapsing of the collecting 

period, which is specified according to the consistency and availability requirements 

of the application.  

Note that this tree can be converted to bidirectional graph by considering the 

opposite flow of updates to the lower level (in a form of ReRU-Message as shown in 

section 6.3) after they are ordered by MS.  

An update in each queue is represented by a data structure called Update 

Descriptor (UD). The UD contains the required information for comparing of updates 

using Treated-before relation. The UD is an incremental data structure since its 

information increases in the higher levels. Figure  6.2.2.5.2 represents the structure of 

UD in each level. 
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Figure  6.2.2.5.1 The Directed Tree for the Ordering System 
 

 
 

 
 

Figure 6.2.2.5.2 The Contains of UD in (a) CS   (b) ZS   (c) MS 
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In this figure, Update-ID is an incremental number assigned to each update on 

each object. Object-ID is the number of object where update occurred. The other 

attributes are as mentioned above. 

6.2.2.6 Casual Ordering Algorithm 

In this algorithm, each server in the higher level uses the Treated-Before relation for 

comparing between updates that are currently placed in its local queue. The 

comparing between two updates is performed first based on the Update-TS attribute of 

both updates, and in case of concurrent updates are detected, the resolution (i.e. 

reordering) will be performed based on the Send-TS and Receive-TS attributes of 

messages that shipped updates information to the higher level.  

After updates are totally ordered in the highest level (i.e. master level), MS 

assigns Global ID for each update based on the order of that update. The value of this 

ID represents the order of the update on the level of the whole system and it is 

assigned in a sequential manner.  

In this algorithm, Host-ID is the ID assigned to the sender. i is the sequence 

number of RU-Message at the sender . Dest is a variable that represents the ID of the 

responsible server in the higher level. k represents the ordering key, which is a set of 

attributes that is used to compare updates. Max is a variable that specifies the 

maximum value for the period of collecting updates from underlying hosts.  

The causal ordering algorithm is as follows. 
 
(i) At each host generates and sends updates: 
∀  generated update: Update-TS = RC’s value when update takes place 
Assign Send-TS to RU-Message:  Send-TS =  RC’s value when send takes place 
Send (Host-ID, i, RU-Message, Dest, Send-TS)  
 
(ii) At each host receives updates: 
Assign Receive-TS to each received message: Receive-TS = RC’s value  
Place the received Message at the end of the local ordering queue 
Set Max = T 
While Collecting-Period < T 
∀  updates in the queue  
 Compare updates using timestamp attributes in RU-Update-Vec 
  If Host-type = ‘CS’ then 
        k = {Update-TS}/* Use the set {Update-TS} as ordering key 
         If ¬ (u →u v) and ¬ (v →u u) then /* if conflict occurs or concurrent updates u 

|| v */ 
             /* Compare updates using send timestamp attribute of RU-Message */ 
              k = {Send-To-CS-TS}  
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                    If ¬ (m1→s m2) and ¬ (m2→s m1) then 
                         /* Compare updates using receive timestamp attribute of RU-Message 

*/ 
                        k = {Receive-By-CS-TS}  
      Else If Host-type = ‘ZS’ then 
          /* Compare updates using received timestamp information from underlying CSs 
*/ 
        k = {Update-TS, Send-To-CS-TS, Receive-By-CS-TS}  
             If ((¬ (u →u v) and ¬ (v →u u)) and (¬ (m1→r m2) and ¬ (m2→r m1)) and 

(¬ (m1→r m2) and ¬ (m2→r m1))) then  
                   /* Compare updates using send timestamp attribute of RU-Message to ZS 

*/. 
                   k = {Send-To-ZS-TS}  
                     If u || v then 
                       /* Compare updates using receive timestamp attribute of RU-Message 

by ZS */. 
                       k = {Receive-By-ZS-TS}  
        Else If Host-type = ‘MS’ then 
        k = {Update-TS, Send-To-CS-TS, Receive-By-CS-TS, Send-To-ZS-TS,       

Receive-By-ZS-TS}  
             If u || v then 
                   k = {Send-To-MS-TS}  
                       If u || v then 
                           k = {Receive-By-MS-TS}  
                      Else 

                  Order u before v 
                  Assign Global ID for both u and v 

      End {While} 
 
 
6.2.2.7 Correctness Proof for the Casual Ordering Algorithm 
 
To prove that the proposed causal ordering algorithm is a correct solution to the 

problem of ordering updates in LMDDBSs, there is a need to show that it has both 

safety and liveness properties.  

The original and general purpose of liveness is to guarantee that every 

message is eventually delivered to its destination (s). For our case, we prove that 

every RU-Message that is sent from underlying level, its contains (i.e. updates) will be 

ordered (delivered) in the current level and then will be sent to the next higher level.  
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Assertion 6.2.2.7.1 (Liveness)  

The causal ordering algorithm ensures that all received updates from underlying level 

will be ordered and sent to the higher level. 

Proof. 

Let S be the ordering process in each higher level host. S can be viewed as a transition 

system that has three states: {C: Collecting, O: Ordering, SE: Sending} and two 

transitions: {t1: elapsing of current collecting period and running of causal ordering, 

t2: completion of ordering process} as shown in the following figure that describes 

ordering process as a state machine. 

 
 

Figure 6.2.2.7.1 A state Machine for the Description of the Ordering Process  
 
S always receives updates from underlying hosts through RU-Message. Let Q 

be the set of contains of all RU-Message that are received from underlying level 

during the current C state. When S enters O state (i.e. elapsing of collecting period), 

this implies servicing current updates in Q and storing all the contains of the messages 

that come during the period of O state in a waiting queue (W). When the S enters SE, 

this implies emptying Q and S transits to the C state by filling Q with the contains of 

each message belongs to W and all new arrived messages. Accordingly, ∀ m ∉ Q (i.e. 

m is a new arrived message), m will be serviced (through placing its contains in Q and 

then ordering them) when S transits from SE to C and then from C to O once again. 

Thus, there is no deadlock or blocked updates. 

Assertion 6.2.2.7.2 (Safety) 

The causal ordering is never violated at any higher level. 

Proof.  

Assume that two updates u and v are generated on hosts h1 and h2, respectively. If u is 

generated before v, this implies that Update-TS(u) < Update-TS(v) based on the values 

that are assigned by RC on h1 and h2. Accordingly, Treated-Before Relation ensures 

that if h1 and h2 in same cell, same zone, or different zones, then each receiving server 

in the higher level will order u before v. In case of   u and v are concurrent based on 

the generation event, the Treated-Before Relation implies that comparing u and v 
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using Send-TS value. Accordingly, if u is sent before v to the higher level ⇒ Send-

TS(u) < Send-TS(v). Thus, each server in the higher level will order u before v. Same 

discussion is hold to prove maintaining of causal ordering in case of u and v are 

concurrent based on both generation and sending events. 

6.2.2.8 Priority-Based Causal Ordering 

Instead of using timestamp information to provide the unified ordering as described 

above, a priority based ordering can be employed. This involves specifying priority 

rules to assign priorities to different updates according to their types and relationships. 

These priority rules can be specified by the application designer according to the 

semantic of the data that is handled by a given application. This semantic determines 

the relationships between updates.  

This means that the semantic of the data can be used to determine which 

operations on each object should be given the priority to be ordered before other 

operations on that object and this can be specified on the database design stage. For 

example, in the products object, the priority rule can be specified as: Add quantity 

operation should be given a priority to be ordered before withdraw quantity operation.  

Based on the priority, the definition of concurrent updates can be as follows 

Definition 6.2.2.8.1 Priority-based Concurrent updates “u ||p v”  

Two distinct updates u and v that are shipped to the higher level via messages m1 and 

m2, respectively, are" Priority-based Concurrent" iff: 

(i) u and v have same priority or 

(ii) u and v have same priority and (¬ (m1→s m2) and ¬ (m2→s m1)) or  

(iii) u and v have same priority and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ 

(m1→r m2) and ¬ (m2→r m1)) 

 
Accordingly, Conditioned causal ordering relation “→cu” can be modified to 

encompass Priority-based concurrent updates as follows. 
 
Definition 6.2.2.8.2 Priority-based conditioned causal ordering relation “→pcu”  

Given two updates u and v, generated at site i and j, respectively, and sent via 

messages m1 and m2, respectively, to the responsible center point C, then u →pcu v, iff  

(i) (u ||p v) and m1 →s m2 or 

(ii) (u ||p v) and (¬ (m1→s m2) and ¬ (m2→s m1)) and m1 →r m2 or 
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(iii) (u ||p v) and (¬ (m1→r m2) and ¬ (m2→r m1)) and (¬ (m1→r m2) and ¬ (m2→r 

m1)) and m3 →s m4 in case of u and v are sent to their responsible center points 

C1 and C2 via m1 and m2 and then those updates are sent from C1 and C2 to 

their responsible center point Z via m3 and m4.  

 
Thus, the priority of updates is incorporated as one of the conditions for the 

conditioned causal ordering relation between u and v. This incorporation is valid only 

in the case of both u and v have same priorities, Which means that if two updates are 

concurrent with regard to they have same priority, then we can rely on the sending 

and receiving times of their messages.  

By considering the priority of updates instead of the timestamp information of 

their generation, the only change that is needed in the proposed causal algorithm is 

that each receiver performs reordering of priority-based concurrent updates based on 

the definition of Priority-based conditioned causal ordering relation. 

To implement this type, there is a need to determine the type of each update 

(e.g. Add or withdraw) and its relationship with other updates in order to assign its 

priority. This requires both storing the update priority as a data item in the object and 

shipping it with the update information to the higher level.  

6.2.2.9 Performance Issues 

This section presents performance issues that related to implementing the proposed 

mechanism and previous version vectors based mechanisms in LMDDBs.   

1. The size of timestamp information 

The casual ordering algorithm presented here cuts down the size of the timestamp 

information appended to each message to be smaller than the size that is imposed by 

version vectors based algorithms (see section 2.7.2). These algorithms append a 

timestamp information of size O(n), where n is the number of replicas. As a 

consequence, they impose a high communication overhead, especially for a large 

number of replicas. The size of timestamp information that is imposed by the 

proposed algorithm is provided by the following assertion. 
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Assertion 6.2.2.9.1 The size of timestamp information appended to each RU-message 

is: 

1. O(k+1),  if it is sent from a server to a server in the higher level, where k is the 

number of underlying hosts that propagate their updates during the last collection 

period. 

Or: 

2. O(1), if it is sent from a host (MH or FH) to its responsible server.  

Proof. For the first case, since for each message received from underlying level, the 

receiver server in the higher level will assign Receive-TS. This means that there are K 

Receive-TSs. Accordingly, when these messages are incorporated in one message to 

be sent to the server in the higher level, the receiver will add send-TS to the 

incorporated message. Thus, the size of the timestamp information that will be 

appended to RU-Message represents the size of the timestamps that are added by the 

servers, which is Receive-TS for each message + Send-TS for the incorporated 

message. For the second case (from a host to its responsible server), the size is O(1) 

because the host appends only Send-TS to each RU-Message.  

2. The size of the clock 

The size of the information that related to the clock’s time is O(1) for the RC, since 

the host only keeps track of its own time. This is in contrast to the vector clock, which 

its time information imposes a size of O(n), where n is number of replicas. This 

implies that vector clock occupies storage space that is proportional to the total 

number of replicas in the replication system. 

3. Storage, computation, and communication overheads 

The proposed ordering mechanism does not impose any overhead on mobile hosts as 

well as fixed hosts, since there is no need for collecting or ordering of updates that 

come from other hosts. Thus, the proposed ordering mechanism placed the overhead 

of both storage and computation on the servers that exist in the higher levels, since 

these servers are assumed that they have more storage and processing capabilities than 

both fixed and mobile hosts. Moreover, it does not impose large (i.e. significant) 

overheads on those servers according to the following reasons. 

1. Not all hosts in the underlying level are expected to propagate their updates 

during each updates collection period from underlying hosts. This is according 

to the fact that not all mobile hosts stay connected to the fixed network at all 
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times. Moreover, each server receives only the recent generated updates from 

its underlying hosts. 

2. The ordering process occurs only when the collection period elapsed. This 

means that the CPU does not service ordering process at all times. 

3. The small size of RC, since each host needs only to keep track of its time 

rather than the times of all other hosts as compared with version vectors. 

4. Only the information that is needed to implement the causal ordering is sent 

with each message to the higher level as follows. Each host (MH or FH) ships 

only with RU-Message the attributes Update-TS and Send-TS. The CS adds 

only small amount of information, which are Receive-TS and Send-TS to the 

messages that are received from underlying hosts. Also, both ZS and MS add 

small amount of information in same manner. 

 

On the other hand, the mechanisms that are based on version vectors suffer 

from both storage and communication overheads that originated from the size of 

version vectors, which increases as the number of sites increase and the large amount 

of information that should be sent and stored for carrying out causal ordering. 

Accordingly, these mechanisms are not suitable for LMDDBSs, since those overheads 

hinder the scalability. Thus, the proposed mechanism is more suitable to be 

implemented in LMDDBSs, since the size of RC is not affected by the number of 

replicas. Also, as mentioned, only the needed information for implementing causal 

ordering in the higher level is shipped via RU-Message. Furthermore, according to the 

proposed updates propagation protocol, each host propagates and receives updates 

from a few hosts only. This leads to a low space overhead on the timestamp 

information associated with each message. 

Moreover, the proposed mechanism supports the characteristics of LMDDBs 

through exploiting the updates collection periods to perform the unified hierarchical 

ordering for recent updates. These collection periods provide mobile hosts with a 

reasonable time periods (i.e. can be determined according to the requirements of the 

application) for propagating their updates to the higher levels in order to be ordered 

with other updates that come from fixed hosts. This support both mobility and 

disconnections of mobile hosts, since the mobile hosts can disconnect or move to 

another cell during the same collection period at the higher level. 
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4. Overhead of time divergence amendment  

The communication and computation overheads that are resulted from sending MVT 

and amendment process are not sensitive according to the following reasons: 

1. The TVM ships only the current value of RC to the other host. This means that 

the size of this message is small. 

2. The steps that are required for amendment process involve only simple 

calculations that do not need large computation overhead. 

 
6.3 Messages Ordering in the Case of Top-Down Propagation 
 
In the Top-Down propagation, the messages that carry ReRU (which are totally 

ordered by the master server) are sent to multiple underlying hosts from their 

responsible center point. Accordingly, it is desirable that all messages are delivered to 

all underlying hosts in same order as they generated on the master server. Thus, in 

Top-Down propagation mechanism, the ordering type can be specified as a hybrid of 

both casual order and total order as presented in the following subsection. 

6.3.1 Ordering Model 

The different concepts that are involved in the ordering of messages in Top-Down 

Propagation are as follows. 

Defintion 6.3.1.1 (ReRU-Message). It is the message that carries the recent resolved 

updates information from a server to underlying hosts and is defined as a tuple of 

<Msg-ID, ReRU-Update-Vec>, where Msg-ID is the ID assigned serially by the 

master server, and ReRU-Update-Vec contains the details of the recently ordered 

updates and can be expressed as Update-Vec =( <u1, Generated-Host, Global-ID >, 

…, <un, Generated-Host, Global-ID >) 

Definition 6.3.1.2 (Casual ordering). Given two ReRU-Message x and y, if x is 

generated at the master server before y, then each underlying center point should: 

1. receive x before y 

2. send  x before y. 

Definition 6.3.1.3  (Total Order) For all messages ReRU-m1 and ReRU-m2 that are 

sent by center point C and all underlying hosts H1 and H2, if  ReRU-m1 is received at 

C before ReRU-m2 from its responsible center point, then ReRU-m2 is not received 

before ReRU-m1 at both H1 and H2. 
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Accordingly, the hybrid of both causal ordering and total ordering is defined 
as follows. 
 
Definition 6.3.1.4 (Hybrid Casual-Total Ordering  ⌂) Given two ReRU-Message x 

and y, then x  ⌂ y iff: 

a. x is generated at the master server before y 

b. each underlying host receive x before y from its responsible center point 

c. Each underlying host send x before y to its underlying hosts. 

 
According to this definition, every lower level host should receive and send 

the messages that are received from the higher level in the same order as they 

produced by the highest level host (e.g. MS). For example, if ZS has received m12 

from MS and then received m16, it will not deliver those messages to the lower level 

unless it gets m13, m14, and m15. Moreover, if ZS has received m20 and the message 

that is received before it is m17, it will not send it to underlying cell servers unless it 

gets the messages m18 and m19. Same discussion is hold for sending ReRU-Message 

from each CS to underlying fixed and mobile hosts.  

6.3.2 Hybrid Casual-Total Ordering Algorithm 

The ordering of messages is based on the ID of the ReRU-Message that is assigned by 

the master server. Each server has a data structure called ReRU-Messages-Tracking to 

store the IDs of all ReRU-Message that are received previously from the higher level. 

L is used to denote last Received ReRU-Message from the higher level and N to 

denote New Received ReRU-Message. 

 
At the master server 
Attach ordered updates to ReRU-Message 
ID(ReRU-Message) = ID(Last ReRU-Message) + 1 
 
At each server in underlying level 
When receiving ReRU-Message from higher level Do 
Store ID(N) on ReRU-Messages-Tracking 
Retrieve ID(L) from ReRU-Messages-Tracking 
If ID (N) = ID (L) +1 then 
Deliver N to all underlying hosts. 
/* this ensures that if a message x is delivered before y to the lower level by the 
master server, then y will not be received before x at any lower level host*/ 
Else 
Send ID (L) to the higher level /* this is to send right messages*/ 
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6.4 Summary 

This chapter has presented the updates ordering mechanism that provides a unified 

order for all generated updates on the different levels of the replication architecture. In 

this mechanism, each update is timestamped with the information that is only needed 

to implement the causal ordering on the higher levels. This reduces the 

communication overhead, which is imposed by the size of the messages that ship 

updates information to the higher levels. 

The ordering mechanism exploits the proposed updates propagation protocol 

in that each host sends and receives messages from a few hosts only. This leads to a 

low space and computation overheads that are imposed by the timestamp information 

that is associated with each message. 

The overall order operation for recent updates is committed at the master 

server. This committing is finalized by assigning each update the Global ID that 

represents a sequence number assigned by the master server. This ID is incremented 

with each update. 

In this chapter, the research interested only in the ordering of the messages 

that carry updates information to the higher levels as well as the messages that carry 

ReRU from the higher levels to the lower levels. Accordingly, the ordering of the 

other messages such as acknowledgement messages or TVM is not considered. 

 
 
 
 
 
 
 
 
 


