List of Figures

Figure-1: Schematic diagram of the reactor for the photo oxidation of sulfide
Figure-2: Schematic diagram of a multi compartment device for UV light photo oxidation of
sulfide
Figure-3: Schematic diagram of the set up for catalytic oxidation of sulfide
Figure-4: Schematic diagram of the set up for precipitation of sulfide36
Figure.5: Schematic diagram of the aeration in the presence of ultrasonic vibration37
Figure-6: Relationship between sulfide concentration and time in photo oxidation38
Figure-7: Relationship between time and sulfate formed during photo oxidation of sulfide39
Figure-8: Relationship between time, pH and dissolved oxygen during the photo aeration40
Figure-9: Relationship between time and concentration during oxidation at different air flow
rates
Figure-10: Relationship between time and sulfate formed during oxidation at different air flow
rates
Figure-11: Relationship between time and sulfide at different oxygen partial pressures42
Figure-12: Relationship between time and sulfate formed at different oxygen partial pressures.43
Figure-13: Relationship between time and sulfide during oxidation at different UV light
intensities43
Figure-14: Relationship between time and sulfate formed at different UV light intensities44
Figure-15: Relationship between time and sulfide of industrial sample during oxidation44
Figure-16: Linear plot of ln [d(S-2)/dt] against ln[S ⁻²]44
Figure-17: Linear plot of ln [d(S-2)/dt] against ln [Oxygen]45
Figure-18: Linear plot of $\ln [d(S-2)/dt]$ against $\ln[S-2]^2[O2]^{1.4}$ 45
Figure-19: Linear plot of $\ln [d(S^{-2})/dt]$ against $\ln [O2]$ 46
Figure-20: Linear plot of ln[(SO4)-2/dt] against ln[S'']46
Figure-21: Linear plot of $\ln [(SO_4)^{-2}/dt]$ against $\ln[S'']^{0.92}[O2]^{1.2}$ 47
Figure 22.: FT-IR Spectrum of Ferric oxide
Figure-23: XRD spectrum of Ferric Oxide catalyst
Figure-24: SEM picture of the ferric oxide catalyst at 20X49

Figure-25: Relationship between time and sulfide during oxidation at different intial sulfide
concentrations
Figure-26: Relationship between time and sulfide during oxidation process at different catalyst
loading
Figure-27: Relationship between time and sulfide during oxidation process at different
temperatures
Figure-28: Relationship between time and sulfide at different hydrogen peroxide addition52
Figure-29: Relationship between time and sulfate formed at different initial sulfide
concentrations
Figure-30: Relationship between time and sulfate formed at different catalyst loading54
Figure-31: Relationship between time and sulphide at different temperatures
Figure-32: Linear plot between product of sulfide, catalyst and hydrogen peroxide and rate of
sulfide oxidation
Figure- 33: Arrhenius plot of reaction rate for sulfide oxidation
Figure-34: Linear plot between sulfide and rate of sulfide oxidation on logarithmic scale56
Figure-35: linear Plot for the determination of rate constant of sulfate formation
Figure-36: Time-concentration plots of sulfide removal
Figure-37: Time -concentration reduction plots of sulfide by iron salts at different initial sulfide
concentrations
Figure-38: Time-concentration plots of sulfide reduction at different temperatures
Figure-39: Time-concentration plots of sulfide removal from industrial wastewater at different
Fe ⁺² /Fe ⁺³ ratios60
Figure-40: Time-concentration plots of sulfide removal for industrial wastewater60
Figure -41: Relationship between time and sulfide at different air flow rates
Figure-42: Linear fit of $\ln[d(S^{-2})/dt \text{ Vs } \ln[S^{-2}]$ at $Fe^{+2}/Fe^{+3} = 0.561$
Figure-43: Linear fit of $\ln[d(S^{-2})/dt \text{ Vs } \ln[S^{-2}]$ at $Fe^{+2}/Fe^{+3} = 0.362$
Figure-44: Linear fit of $\ln[d(S^{-2})/dt \text{ Vs } \ln[S^{-2}]$ at $Fe^{+2}/Fe^{+3} = 0.862$
Figure-45: Arrhenius plot for precipitation of sulfide at $Fe+2/Fe+3 = 0.5$ 63
Figure-46: SEM picture of the iron sulfide precipitate at 20X63
Figure-47: XRD spectrum of the iron sulfide precipitate
Figure-48: FT-IR spectrum of the iron sulfide precipitate

Figure-49: Relationship between time and sulfide oxidized during oxidation at different initial
sulfide concentrations
Figure-50: Relationship between time and sulfide during oxidation at different air flow rate67
Figure-51.Relationship between time and sulfide oxidized during oxidation at different ultrasonic
vibrations67
Figure-52.Linear plot of ln[d(S 2)/dt] against ln[S-2] on logarithmic scale
Figure-53.Linear plot of ln[d(S 2)/dt against ln[Air] on logarithmic scale69
Figure-54.Linear plot of ln[(Air flow rate)0.36 (S ⁻²)1.9] on logarithmic scale69

List of Tables

Table-1: Photo oxidation of 700ppm of sulfide at 4 watts and 4liter/min of air flow rate86
Table-2: Photo oxidation of 500ppm of sulfide at 4 watts and 4liter/min of air flow rate86
Table-3: Photo oxidation of 1030ppm of sulfide at 4 watts and 4liter/min of air flow rate88
Table-4 Photo oxidation of 1300ppm of sulfide at 4 watts and 4 liter/min of air flow rate88
Table-5 Photo oxidation of1700ppm of sulfide at 4 watts and 6 liter/min of air flow rate89
Table-6 Photo oxidation of1700ppm of sulfide at 4 watts and 8 liter/min of air flow rate89
Table-7 Photo oxidation of 1700ppm of sulfide at 4 watts and 2 liter/min of air flow rate90
Table-8 Photo oxidation of1700ppm of sulfide at 4 watts and 1liter/min of air flow rate90
Table-9: Photo oxidation of1700ppm of sulfide at 4 watts and 4liter/min of air flow rate
having oxygen concentration of 30%91
Table-10 Photo oxidation of 1700ppm of sulfide at 4 watts and 4liter/min of air flow rate
having 40% oxygen concentration91
Table-11 Photo oxidation of 1700ppm of sulfide at 4 watts and 4liter/min of air flow rate
having oxygen concentration of 50%92
Table-12 Photo oxidation of 1700ppm of sulfide at 4 watts and 4liter/min of air flow rate
having oxygen concentration of 10%92
Table-13: Photo oxidation of 1700ppm of sulfide at 8 watts and 6liter/min of air flow rate
having oxygen concentration of 21%
Table-14: Photo oxidation of1700ppm of sulfide at 12watts and 6liter/min of air flow rate
having oxygen concentration of 21%93
Table-15: Catalytic oxidation at 400 ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =2.6 ml and Catalyst =1.00g)94
Table-16: Catalytic oxidation at 600 ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =2.6 ml and Catalyst =1.00g)94
Table-17: Catalytic oxidation at 800 ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =2.6 ml and Catalyst =1.00g)95
Table-18: Catalytic oxidation at 1000ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =2.6 ml and Catalyst =1.00g)95
Table-19: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at room temperature
$(H_2O_2 = 2.6 \text{ ml and Catalyst} = 1.5g)96$

Table-20: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =2.6 ml and Catalyst =0.5g)96
Table-21: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at room temperature
$(H_2O_2 = 2.6 \text{ ml and Catalyst} = 0.25g)97$
Table-22: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at room temperature
$(H_2O_2 = 3.2 \text{ ml and Catalyst} = 1.00g)97$
Table-23: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =3.0 ml and Catalyst =1.00g)98
Table-24: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at room temperature
(H ₂ O ₂ =1.8 ml and Catalyst =1.00g)98
Table-25: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at temperature= $45^{\circ}C$
(H ₂ O ₂ =2.6 ml and Catalyst =1.00g)99
Table-26: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at temperature=35 ^o C
$(H_2O_2 = 2.6 \text{ ml and Catalyst} = 1.00g)99$
Table-27: Catalytic oxidation at 600ppm of sulfide by hydrogen peroxide at temperature= $30^{\circ}C$
$(H_2O_2 = 2.6 \text{ ml and Catalyst} = 1.00g)100$
Table-28: Precipitation of sulfide at 2400 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at room temperature
(Industrial sample)
Table-29: Precipitation of sulfide at 2400 ppm at Fe^{+2}/Fe^{+3} ratio of 0.3 at room temperature
(Industrialsample)101
Table-30: Precipitation of sulfide at 2400 ppm at Fe^{+2}/Fe^{+3} ratio of 0.8 at room temperature
(Industrial sample)101
Table-31: Precipitation of sulfide at 4800 ppm at Fe^{+2}/Fe^{+3} ratio of 0.8 at room temperature
(Industrialsample)101
Table-32: Aeration of sulfide at 600 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at room temperature at air
flow rate of Aliter/min (Industrial source)
now rate of 4mer/min (industrial sample)102
Table-33: Aeration of sulfide at 750 ppm at Fe^{+2}/Fe^{+3} ratio of 0.3 at room temperature at air
Table-33: Aeration of sulfide at 750 ppm at Fe^{+2}/Fe^{+3} ratio of 0.3 at room temperature at air flow rate of 4liter/min (Industrial sample)
Table-33: Aeration of sulfide at 750 ppm at Fe^{+2}/Fe^{+3} ratio of 0.3 at room temperature at air flow rate of 4liter/min (Industrial sample)

Table-35: Aeration of sulfide at 600 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at room temperature at air
flow rate of 2 liter/min (Industrial sample)103
Table-36: Aeration of sulfide at 600 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at room temperature at air
flow rate of 8 liter/min (Industrial sample)104
Table-37: Aeration of sulfide at 1328 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at room temperature at air
flow rate of 4 liter/min (Industrial sample)104
Table-38: Precipitation of sulfide at 2400 ppm at $\text{Fe}^{+2}/\text{Fe}^{+3}$ ratio of 0.5 at temperature of 50 ^o C
(Industrial sample)105
Table-39: Precipitation of sulfide at 2400 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at temperature of $50^{0}C$
(Industrial sample)105
Table-40: Precipitation of sulfide at 500 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at temperature of $40^{\circ}C$
(Synthetic sample)106
Table-41: Precipitation of sulfide at 500 ppm at Fe^{+2}/Fe^{+3} ratio of 0.5 at temperature of $65^{0}C$
(Synthetic sample)106
Table-42: Aeration of sulfide at 1000 ppm in the presence of ultrasonic vibration at 100%
ultrasonic frequency and at 4 liter/min of air flow rate107
Table-43: Aeration of sulfide at 800 ppm in the presence of ultrasonic vibration at 100%
ultrasonic frequency and at 4 liter/min of air flow rate107
Table-44: Aeration of sulfide at 600 ppm in the presence of ultrasonic vibration at 100%
ultrasonic frequency and at 4 liter/min of air flow rate108
Table45: DO and temperature change for respective initial sulfide concentrations
Table-46: Aeration of sulfide at 800 ppm in the presence of ultrasonic vibration at 60%
ultrasonic frequency and at 4 liter/min of air flow rate109
Table-47: Aeration of sulfide at 800 ppm in the presence of ultrasonic vibration at 20%
ultrasonic frequency and at 4 liter/min of air flow rate109
Table-48: DO and temperature change for respective different ultrasonic vibration
frequencies110
Table-49: Aeration of sulfide at 800 ppm in the presence of ultrasonic vibration at 100%
ultrasonic frequency and at 6 liter/min of air flow rate110