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ABSTRACT 

 

In this thesis, a genetic fuzzy image filtering based on rank-ordered absolute 

differences (ROAD) and median of the absolute deviations from the median (MAD) is 

proposed. The proposed method consists of three components, including fuzzy noise 

detection system, fuzzy switching scheme filtering, and fuzzy parameters 

optimization using genetic algorithms (GA) to perform efficient and effective noise 

removal. Our idea is to utilize MAD and ROAD as measures of noise probability of a 

pixel. Fuzzy inference system is used to justify the degree of which a pixel can be 

categorized as noisy. Based on the fuzzy inference result, the fuzzy switching scheme 

that adopts median filter as the main estimator is applied to the filtering. The GA 

training aims to find the best parameters for the fuzzy sets in the fuzzy noise 

detection.  

From the experimental results, the proposed method has successfully removed 

mixed impulse noise in low to medium probabilities, while keeping the uncorrupted 

pixels less affected by the median filtering. It also surpasses the other methods, either 

classical or soft computing-based approaches to impulse noise removal, in MAE and 

PSNR evaluations. It can also remove salt-and-pepper and uniform impulse noise 

well.  
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ABSTRAK 

 

Tesis ini mengkaji dan mencadangkan tapisan imej genetik fuzzy berdasarkan 

rank-ordered absolute differences (ROAD) dan median penyimpangan mutlak 

daripada median asal (MAD). Kaedah yang dicadangkan dalam tesis ini terdiri 

daripada tiga komponen utama, iaitu sistem pengesan gangguan fuzzy, skim penapis 

suis fuzzy, dan pengoptimuman parameter fuzzy menggunakan algoritma genetik 

(GA). MAD dan ROAD dimanfaatkan sebagai pengukur kebarangkalian gangguan 

daripada suatu piksel. Sistem kesimpulan fuzzy diambil pakai untuk mengesahkan 

darjah sesuatu piksel boleh dikategorikan sebagai gangguan. Skim penapisan suis 

fuzzy yang mengadaptasikan kaedah penapisan median sebagai penilai utama 

menapis piksel-piksel dalam imej mengikut keputusan sistem kesimpulan fuzzy. 

Pelatihan algoritma genetik diguna pakai untuk mencari parameter terbaik yang akan 

digunakan oleh set-set fuzzy di dalam sistem pengesan gangguan fuzzy. 

Berdasarkan keputusan eksperimen, kaedah yang dicadangkan telah berjaya 

menghapuskan gangguan impuls campuran dalam kebarangkalian yang rendah sampai 

menengah, sambil memastikan piksel yang normal tidak terkesan dengan kaedah 

penapisan median. Prestasi keseluruhan yang ditunjukkan oleh kaedah ini adalah lebih 

baik berbanding kaedah-kaedah lain, samada ianya kaedah klasik ataupun kaedah 

berdasarkan pendekatan soft computing, dalam evaluasi MAE dan PSNR. Ianya juga 

boleh menghapuskan gangguan ‘salt-and-pepper’ dan gangguan impuls sekata dengan 

baik. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Overview 

Images are required as sources of information for interpretation and analysis by many 

applications. Noise can contaminate images in many cases, especially when they are 

transferred or converted from one form to another [1]. The most commonly found 

noises in images are impulse noise and additive noise. The main characteristic of 

impulse noise is that only parts of pixels are corrupted while the others remain free 

from noise. Salt-and-pepper noise is the most popular model of impulse noise, while 

Gaussian noise is an additive noise that has a Gaussian amplitude distribution. 

The quality of input images plays a key role in image-based measurement. Many 

image enhancement techniques exist due to the needs of noiseless and highly defined 

images for better interpretation and analysis. The goal of image enhancement is to 

improve the image quality so that the processed image is better than the original 

image for a specific application or a set of objectives such as analysis, detection, 

segmentation, and recognition. Applications of digital image processing are mainly 

rooted from two principal areas: improvement of pictorial information for human 

interpretation, and processing of scene data for autonomous machine perception [1]. 

Enhancing image quality can be done by removing noise, amplifying image contrast 

and amplifying the level of a detail [2].  

Various methods in image enhancement can be categorized into two broad 

categories: spatial domain methods and frequency domain methods [1]. Approaches 

in the spatial domain methods are based on manipulation of pixels in an image. 
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Frequency domain methods are based on modification to the Fourier transform of an 

image. Both approaches have their strengths and weaknesses. 

Classical spatial filters, such as averaging or low-pass spatial filter and median 

filter, have been used to filter images for years. They provide a reasonable amount of 

noise removal performance by removing thin lines, distorting edges and blurring 

image details even at low densities [3]. Edges are features that define the shape of an 

object. Shape provides important information that triggers identification that is 

extremely important in visual recognition of objects [4].  

Soft computing has become a new computing paradigm which is very relevant for 

pattern recognition and image analysis because of its tolerance to imprecision, 

uncertainty, approximate reasoning, and partial truth. Although soft computing is 

mostly applied in classification and recognition tasks, it can also be applied in image 

enhancement tasks [5]. Some soft computing methods that have been implemented in 

image enhancement are neural network, cellular neural network, pulse coupled neural 

network, rough set, fuzzy filter, genetic algorithms (GA), and the hybrids of those 

methods, such as fuzzy-GA and fuzzy network [6].  

Salt-and-pepper noise is the most popular impulse noise model where corrupted 

pixels are replaced with maximum or minimum intensity values [1]. Abreu et al. [7] 

introduce random-valued impulse noise of which noise intensities randomly range 

from the minimum to the maximum intensity values, that is 0 to 255 for 8-bit 

grayscale images. A new model of impulse noise proposed by Petrović [8] 

incorporates both aforementioned impulse noise models. Half of the corrupted pixels 

follow the salt-and-pepper noise model, and the other half are contaminated by noise 

in random amplitudes, while the rest are free from noise. Let xij be an image 

containing mixed impulse noise, 

 

pyprobabilit
yprobabilit
yprobabilit
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where [ ]maxmin,LLnunif
ij ∈  and { }maxmin,LLnsnp

ij ∈ . minL and maxL are the minimum and 

maximum intensity values allowed in an image. Also, fij denotes a noise-free image 
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pixel at the location ),( ji . This type of noise model is claimed to be more realistic 

because the impulse noise occurs as a result of disturbances induced by noise signals 

with random amplitudes. The amplitudes of the impulse noise could fall into the 

dynamic range allowed as well as out of the range. The noise will be saturated to the 

maximum or minimum value if it is out of the range. Otherwise, it will appear as 

uniform impulse noise if it is within the dynamic range. Therefore, this noise model is 

more suitable for evaluating the performance of impulse noise filters. 

1.2 Problem Statement 

Image filter design mainly focuses on removing one type of noise only, e.g. salt-and-

pepper, the most popular one [9-17]. Most the existing methods can remove salt-and-

pepper well, but they fail to remove mixed impulse noise [8], which is a more natural 

model for impulsive noise. It is of less usefulness if our filter has outstanding 

simulation performance in removing salt-and-pepper noise, but it fails completely 

when implemented in the real world application. Therefore, it is a great challenge to 

develop algorithms that can remove mixed impulse noise, a more natural model of 

impulsive noise, from an image while preserving the details in the image and keeping 

the computational cost as low as possible. 

1.3 Objectives 

The objectives of this research are: 

1. To analyze current noise removal methods based on soft computing. 

2. To develop an image filter based on median of the absolute deviations from the 

median (MAD) [18] and rank-order absolute differences (ROAD) [19] that 

applies the concept of fuzzy filtering to remove mixed impulse noise. 

3. To conduct experiments for assessing the performance of the proposed filter in 

removing mixed impulse, salt-and-pepper, and uniform impulse noise in images. 
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1.4 Scope of Study 

Some scope definitions are set to keep the research works focused and done within the 

time specified.  

1. The proposed filter and all filtering methods discussed in this thesis are 

concentrated to the filters that work on spatial domain only. 

2. It focuses on removing impulsive type of noise in grayscale images. Impulse 

noise is one of the most commonly found noises in images. 

3. Experiments conducted to assess the filter’s performance include performance 

comparison with the following filters: 

a. Classical spatial filters: median and average filters 

b. Evolutionary image enhancement (EIE) [9] 

c. Weighted fuzzy mean filter (WFM) [11, 12] 

d. Genetic-fuzzy image filter (GFIF) [13] 

e. Fuzzy random impulse noise reduction (FRINR) [20] 

1.5 Thesis Organization 

The thesis is organized as follows. Chapter 2 discusses some works related to the field 

of discussion. It contains critical evaluation of other related researches. It discusses 

what other researchers have done in the field and also the issues and challenges faced.  

Chapter 3 presents theoretical backgrounds to support the proposal of the new 

method. It covers information about digital image representation, impulsive noise 

models, ROAD and MAD image statistical properties, fuzzy filters, and genetic 

algorithms.  
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The methodology is proposed in chapter 4, including fuzzy noise detection 

system, fuzzy switching scheme filtering, and fuzzy parameters optimization using 

genetic algorithms, to picture the complete system.  

Experiment results over various cases and the analysis are discussed in chapter 5. 

It is explained how to obtain the parameter used for the filtering. The filter is tested on 

noise-free image to know the performance in detail preservation. It is also tested on 

three types of impulse noise to assess its performance in removing those types of 

noise.  

Finally, the conclusions and the future works are drawn in chapter 6. This chapter 

also highlights the contributions made in this thesis. 

1.6 List of Publications 

Several publications have been resulted while the research was conducted. There 

were one journal submitted and three conferences attended. The details of the 

publications can be seen in Appendix A.  
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CHAPTER 2  

RELATED WORKS 

 

2.1 Median Filter and Its Modifications 

The interest in the development of nonlinear techniques for image processing 

continues to increase in recent years. In spite of the existence of linear filters with 

their simplicity, nonlinear filters are demanded because they offer benefits that most 

linear filters cannot gain. The human visual system naturally involves nonlinear 

effects that must be considered to get better visual results. Generally, images are 

signals that do not satisfy the hypotheses of Gaussianity and stationarity that are 

usually assumed to validate linear models and filtering techniques. Moreover, the 

advances of computers and digital signal processors, in terms of speed, size, and cost, 

make the implementation of more sophisticated algorithms possible. The list of 

classes in nonlinear image filtering includes homomorphic filters, nonlinear mean 

filters, morphological filters, order-statistics filters, polynomial filters, fuzzy filters, 

and nonlinear operators modeled in terms of nonlinear partial differential equations 

[21]. Most of our discussion in this thesis covers rank-order statistics filters, fuzzy 

filters, and other filters based on soft computing techniques.  

Order-statistics filters are nonlinear spatial filters of which response is based on 

ranking the pixels in the filtering window, and then replacing the value of the center 

pixel with the value determined by the ranking result. The most widely used filter in 

this class is the median filter [1]. To compute the output of the median filter, an odd 

number of sample pixels from a filtering window are sorted, and the median value is 

used as the filter output. Median filter is successfully used in noise removal 

application for years despite of its simplicity. Two intrinsic properties that contribute 

to the success of median filter are edge preservation and efficient noise attenuation 
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with robustness against impulsive noise types. Edge preservation is very important in 

image processing due to the nature of human visual perception [4, 14].  

However, median filter application can cause edge jitter, streaking problem and 

loss of small details from the images. The reason for this is that the median filter uses 

only the rank-order information from the input data, and discards the original spatial-

order information data. In the median filter, each pixel inside the filter window has the 

same influence on the output. One approach to overcome the problems is to give more 

emphasis to pixels in specific window position, e.g. to the center of the filter window. 

This idea has led to the development of the weighted median filters [14, 15, 22] in 

which each pixel in a filter window has a specific weight that determines the effect of 

the current pixel to the filter output. It can satisfy user’s predefined set of feature 

types to remove or retain by modifying the weights of the filter. The weights can be 

integer or real valued weights [1, 14].  

Center-weighted median filter is a special case of weighted median filters. It gives 

more weight only to the central value of a filtering window, and thus it is easier to 

design and implement than the general weighted median filters [10]. The effect of the 

filtering can be adjusted by setting the filtering window size and the weight of the 

central pixel.  

Although these filters can preserve more details than the median filter, they are 

still implemented uniformly across the image without considering whether the current 

pixel is noise-free or not. They have been proven as powerful methods to remove 

impulse noise, but at the same time they remove edges and other details in 

uncorrupted pixels. To overcome this limitation, noise removal methods with noise 

detectors are proposed. The main idea is to treat pixels differently based on the 

existence of noise in the pixels. Noise removal process is done in two steps: detection 

of impulses, and replacement of detected impulses with estimates, where the median 

is commonly used as the estimator [23].  

Noise adaptive soft-switching median filter is a switching-based median filter 

with incorporation of fuzzy set concept aiming robustness in combating noise density 

variations. It consists of two stages: the detection scheme and the filtering scheme. 

The detection scheme categorizes each pixel to be uncorrupted pixels, isolated 
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impulse noise, nonisolated impulse noise, or edge pixel. Three types of filtering, i.e. 

identity filter, standard median filter, and fuzzy weighted median filter, are applied 

according to the results of the noise-detection scheme [24]. This approach can 

minimize edge and detail loss after filtering because the filter only replaces the value 

of pixels detected as noisy while the rest are kept at their original value. It is of great 

potential for future design of image filter that aims at removing noise and at the same 

time preserving more image features. 

2.2 Soft Computing in Image Enhancement 

Soft computing has become a new computing paradigm, which is very relevant for 

pattern recognition and image analysis because of its tolerance to imprecision, 

uncertainty, approximate reasoning, and partial truth. Although soft computing is 

mostly applied in classification and recognition tasks, it can also be applied in image 

enhancement [5]. Some soft computing methods that have been implemented in image 

enhancement are neural network, cellular neural network, pulse coupled neural 

network, rough set, fuzzy filter, genetic algorithms, and the hybrids of those methods: 

fuzzy-GA, fuzzy network [6].  

2.2.1 Neural Network 

More than 200 applications of neural networks in image processing have been 

reviewed by M. Egmont-Petersen et al. [5]. Since the earliest neural network, 

McCulloh-Pitts neuron, was invented in 1943 neural networks continue to grow and 

be implemented in many fields. Improved computational capabilities and hardware 

implementations on VLSI and optical media are some reasons why neural networks 

continue growing although there was a quiet period of neural networks development 

in 1970s. Neural networks are being used in signal processing, control, pattern 

recognition, medicine, speech production, speech recognition, business, etc. 

Satyanarayana et al. [25] implemented neural network for video color 

enhancement to hardware. This intelligent system can automatically adjust the color 

saturation on a field-by-field basis. Implementations of artificial neural networks in 
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image enhancement are actively developed. New generations of neural networks, such 

as cellular neural network and pulse coupled neural network, are proposed to yield 

better result while keeping the computational complexity as low as possible [5, 26, 

27]. 

Russo has employed fuzzy network that combines sharpening and noise reduction 

for images [6]. He proposed a multiple-output system consists of three fuzzy 

networks. Each fuzzy network operates on 3x3 window. The filtering is done 

recursively over all pixels in the image. Instead of complicated parameters needed by 

fuzzy systems, this method only needs one parameter for its execution, that is α. This 

parameter determines the level of noise cancellation. 

2.2.2 Genetic Algorithms 

Genetic algorithms have been applied to image enhancement by several authors. 

Various tasks in image processing solved by genetic algorithms range from basic 

image contrast and level of detail enhancement, to complex filters and deformable 

models parameters. Genetic algorithms are used to construct new filters, to optimize 

parameters of existing filters, and to look for optimal sequence of existing filters. The 

approach of genetic algorithm for each problem is unique, with different information 

encoding types, reproduction and selection schemes  [2].  

In his paper, Cho  [9] employed evolutionary image enhancement (EIE) to 

optimize a set of proper filters for noise reduction in images. The output of the GA 

training is a set of optimum combination of five filters. There are 70 filters made 

available to be combined, which consists of histogram-based filters, mask 

morphology filters, and identity filter. For each generation, the fitness of the 

population is evaluated using fitness function derived from mean absolute error 

(MAE). This method outperformed applications of single spatial filter to images.  

Petrović et al. [8] implemented genetic programming in universal impulse noise 

filter to detect mixed impulse noise in an image. Universal impulse noise filter is 

mixed impulse noise filter based on the switching scheme with two cascaded detectors 

and two corresponding estimators. The detectors are built using genetic programming 
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based on the robust estimators of location and scale: median and MAD. The 

estimators are the center weighted median (CWM) and the recursive variant of an α-

trimmed mean estimate. Because it is designed to be able to remove mixed impulse 

noise, its performance in removing all types of impulse noise is good. Choosing a 

suitable noise model is important in the process of designing image filters. 

Choosing a suitable set of filter is crucial yet difficult task in image filtering. 

There are no explicit rules defining the relationship between filtering methods and the 

type of noise. In this case, GA is very applicable to find the optimal filter set without 

prior knowledge on the rules. 

GA approaches need extensive cost, in terms of time and computational resource, 

to obtain the training results. Therefore, it is common practice to separate the GA 

training process apart from the main filtering function. There is no need to perform 

GA training each time the filtering is performed. The training results usually can be 

stored and used for several filtering task. 

2.2.3 Fuzzy Filters 

Fuzzy filters are also an active research area of soft computing in image enhancement. 

Fuzzy filters in general are able to represent human’s knowledge in a more 

comprehensive way than classical spatial filters, and they have the ability to combine 

edge preservation and smoothing [28]. A fuzzy system is a nonlinear system formed 

by a set of fuzzy rules (rule base) and an appropriate inference mechanism [21]. 

Fuzzy rules are implemented in fuzzy random impulse noise reduction (FRINR) 

method [29]. The method consists of two separated phases: two-step fuzzy detection 

mechanism and a fuzzy filtering. The first detection operates in local neighborhoods, 

while the second gathers more information from extended neighborhoods. Several 

fuzzy rules are fired simultaneously for each filtered pixel. The fuzzy filter only 

processes the pixels detected by both detector. This method is intended to remove 

random-valued impulse noise from corrupted images. It can detect and filter most 

noisy pixels quite well, but it still leaves some visible noisy pixels in the image. It 



11 
 

needs more than an iteration to gain optimum noise removal. Using the same concept, 

new methods are derived to remove impulsive noise in color images [30-32]. 

Kang and Wang proposed a directional median filter based on fuzzy reasoning to 

remove uniform impulse noise [33, 34]. It inspects differences between the current 

pixel and the neighbors in four directions. Applying fuzzy reasoning techniques, the 

filter categorizes pixels as impulse noise pixels, detailed pixels, or noise-free pixels. 

The filter work better on smooth images than on complicated images with small 

details.  

Another filter based on directional weighted median and fuzzy logic was proposed 

by Hussain et al [35]. It consists of two stage noise detection and fuzzy filtering 

processes to detect and remove uniform impulse noise. The noise detection process 

includes fuzzy based noise detection and direction based noise detection that consider 

four edge directions in windows of size 5×5. Fuzzy filtering processes are applied to 

each detected noisy pixel: calculation of direction based weighted median, 

construction of fuzzy set homogeneous, and noise removal. Both detection and 

filtering processes are repeated several times until the noise become negligible. 

Therefore, this filter requires high computational cost. It can remove impulse noise 

well, especially in low noise condition and smooth images.  

In [11], Sugeno fuzzy inference system is applied in Weighted Fuzzy Mean 

(WFM) filter to remove heavy salt-and-pepper noise in grayscale images. The fuzzy 

sets DARK, MEDIUM, and BRIGHT are derived from the histogram of a reference 

image, and saved as the knowledge base for the filtering process. The output pixels 

are the mean value of the corrupted pixels weighted by a membership grade of an 

associated fuzzy set. This method is designed to simplify the implementation of the 

algorithm in either software or hardware. In the condition when noise probability 

higher than 0.3, WFM can remove most of the noisy pixels. Despite its performance 

in heavy noise environment, WFM filtered image loses many details in intensity 

gradient and edges. By simple visual observation, the output images look unnatural.  

Lee enhanced the WFM method becomes Adaptive Weighted Fuzzy Mean Filter 

(AWFM) to do better in lower noise probability [12, 16]. While the three fuzzy sets 

are maintained, a dynamic selector is added to the system to decide whether a pixel is 
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corrupted or undecided. Thus, the AWFM has the advantage of WFM in removing 

heavy impulse noise and can do better in low noise environment. Compared to WFM, 

the details are more preserved and the output image looks slightly more natural. As 

the effect of the addition of dynamic selector in the system, the high computational 

requirement of WFM raises even higher in AWFM.  

Further improvement of AWFM can be found in Genetic-based Fuzzy Image 

Filtering (GFIF) [13] where the number of fuzzy sets involved become five sets. 

Another significant improvement is the fuzzy sets parameter optimization using 

genetic algorithm. Specific parameter encoding and genetic learning are defined to 

solve the optimization problem. These changes bring significant improvement in the 

filtering results. It can work very well in removing salt-and-pepper noise, ranging 

from low to high noise probability. The filtered images look natural, because it can 

preserve most of the details in the images. These advantages come with a drawback: 

the computational cost that is undoubtedly high when filtering a corrupted image and 

even more in genetic optimization. 

The advanced feature in GFIF is implemented in an intelligent agent to handle 

impulse noise in color images [17]. A color image can be defined as three layers of 

intensity value in red, green, and blue color. Each layer is filtered individually as if it 

is a grayscale image. The filtered color image is the aggregation of the partial results 

of filtering in every color layer. Having advanced features inherited from GFIF, this 

intelligent image agent can remove salt-and-pepper noise in color images from light to 

heavy noise condition. This system needs very high computational requirements to 

work.  

Fuzzy system is suitable to model the uncertainty that occurs when both noise 

removal and detail preservation are required. A rulebase structure is designed to 

define the probability of a pixel become noisy based on its relationship with the 

neighborhood. But when the images are highly corrupted, discovering the rulebase 

structure become quite difficult. To overcome this problem, many techniques based 

on neuro-fuzzy system are proposed that make use of the neural networks ability to 

learn from examples [36, 37]. Another alternative is implementing GA in the fuzzy 

filters [13]. GA may help in defining rulebase structure or finding the optimal 

parameter setting of a fuzzy filter. Because of its high computational cost, the GA 
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training is set offline to the main fuzzy filter operation. It means that the training is 

executed apart from the filtering. The results are then stored and retrieved whenever 

the process of filtering is done. 

2.3 Summary 

Despite of its simplicity, the robustness of median filter is proven by its continuous 

implementation and improvement. Two intrinsic properties that contribute to the 

success of median filter are edge preservation and efficient noise attenuation with 

robustness against impulsive noise types. Meanwhile, soft computing techniques are 

also applied in image enhancement tasks. The most widely applied is fuzzy filters that 

is able to model human’s cognition into a rulebase structure to detect the appearance 

of noise in images. In most cases, the rulebase is harder to define as the noise 

corruption rate is higher. To solve this problem, collaboration of fuzzy filters with 

other techniques in soft computing, such as neural network and genetic algorithms, is 

inducted. Unlike embedded neural network in fuzzy filter that increases filtering time 

significantly, genetic-fuzzy filter can have more or less the same filtering time as 

ordinary fuzzy filter do. It is because the GA training process is separated from the 

main filtering function.  



14 
 

CHAPTER 3  

THEORETICAL BACKGROUNDS 

 

3.1 Fuzzy Systems  

Unlike two-valued classical Boolean logic, fuzzy logic is multi-valued. It can handle 

the concept of partial truth that enables the modeling of uncertainties in natural 

language. Furthermore, it can express the vagueness in natural language by linguistic 

terms used to describe objects or situations. It enables the computing systems to 

understand vague terms, and to reason with the terms [38, 39].  

3.1.1 Fuzzy sets 

Classical (crisp) set theory imposes a sharp boundary on the set and gives each 

member distinct status of the membership. Let X be a classical set and x an element. 

The element x either belongs to X (x ∈ X) or does not belong to X (x ∉ X). Crisp set A 

of X is defined as function fA(x), that is the characteristic function of A. 

 1,0:)( →Xxf A  ( 3.1) 
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Unlike classical set, elements of a fuzzy set have membership degree to that set. 

The membership degree of a fuzzy set indicates the certainty (or uncertainty) we have 

that the element belongs to the set. Fuzzy set A of universe X is defined by function 

μA(x) called the membership function of set A 

 ]1,0[:)( →XxAμ  ( 3.2)

where 

μA(x) = 1 if x is totally in A; 

μA(x) = 0 if x is not in A; 

0 < μA(x) < 1 if x is partly in A. 

Fuzzy sets can be defined for finite or infinite domains. For a finite domain X, the 

fuzzy set can be expressed in the form of an n-dimensional vector. If 

},,,{ 21 nxxxX L= , then fuzzy set A is denoted as 

 },,1,|)/)({( niXxxxA iiiA L=∈= μ  ( 3.3)

where the separating symbol / is used to indicate that A is a set of ordered pairs of the 

membership degrees and their respective elements of the domain [38, 39]. 

3.1.2 Membership functions 

A membership function or characteristic function of the fuzzy set defines the fuzzy 

set. The function associates a membership degree of each element in the domain to 

the corresponding fuzzy set. Membership functions for fuzzy sets can be any shape or 

type determined by experts in the domain over which the sets are defined. 

Nevertheless, the membership functions must satisfy the following constraints: 

• The range of a membership function must be the range [0,1]. 

• For each )(, xXx Aμ∈ must be unique. It means that the same element cannot 

map to different degrees of membership for the same fuzzy set [38].  
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There are several types of membership functions. It ranges from the simplest one, 

triangular membership function, to the ones that include more complex mathematical 

operation such as Gaussian and sigmoid membership functions. The choice of suitable 

membership function depends on the nature of the problem that is being solved. The 

most widely used function is trapezoidal membership function because of its ability to 

represent human’s perception in spite of its simple formulas and computational 

efficiency [40].  

Figure  3.1 shows a trapezoidal membership function, which has four parameters 

{ }dcba ,,, . The membership function μA(x) can be expressed as follows: 
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cd
xd

ab
axxA −

−
−
−

=μ  ( 3.4) 

 

It can also be expressed as 

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤
≤≤
≤≤

≥≤

=

−
−

−
−

dxc
cxb
bxa

dxorax

x

cd
xd

ab
ax

A

,
,1

,
,0

)(μ  ( 3.5) 

 
Figure  3.1 Trapezoidal membership function 
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3.1.3 Fuzzy operators 

Relations and operators are defined for fuzzy logic. They enables reasoning about 

vague information. Let X be the domain or universe, and A and B are sets defined over 

the domain X. The relations and operations of fuzzy logic are defined as follows [38]. 

 

• Equality of fuzzy sets 

For fuzzy sets, equality can be concluded if the two sets have the same elements 

and the membership degree of the sets are equal. That is, the membership 

functions of the two sets must be the same. Two fuzzy sets A and B are equal 

)( BA=  if and only if the sets have the same domain, and )()(A xx Bμμ = for all 

Xx∈ . 

• Containment of fuzzy sets 

Fuzzy set A is a subset of fuzzy set B ( BA ⊂ ) if and only if )()(A xx Bμμ ≤ for all 

Xx∈ . 

• Complement of a fuzzy set (NOT) 

The complement of the set A consists of all the elements of set A, but the 

membership degree differ. Let A  denote the complement of set A. For all ,Xx ∈  

 )(1)( xx AA
μμ −=  ( 3.6)

• Intersection of fuzzy sets (AND) 

The intersection of two fuzzy sets (A AND B) is the set of all elements in the two 

fuzzy sets, but with membership degree of the new set determined by one of the 

following operators. 

 { } Xxxxx BABA ∈∀=∩ ,)(),(min)( μμμ  ( 3.7)

or 
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 Xxxxx BABA ∈∀=∩ ),(*)()( μμμ  ( 3.8) 

• Union of fuzzy sets (OR) 

The union of two fuzzy sets (A OR B) is the set of all elements in the two fuzzy 

sets, but with membership degree of the new set determined by one of the 

following operators. 

 { } Xxxxx BABA ∈∀=∪ ,)(),(max)( μμμ  ( 3.9) 

or 

 Xxxxxxx BABABA ∈∀−+=∪ ),(*)()()()( μμμμμ  ( 3.10) 

3.1.4 Fuzzy rules 

The dynamic behavior of fuzzy systems is characterized by a set of linguistic fuzzy 

rules. The rules are based on the knowledge and experience of human experts within 

the domain. A fuzzy rule can be defined as a conditional statement in the form: 

IF  x is A 

THEN  y is B 

Where x and y are linguistic variables, and A and B are linguistic values determined 

by fuzzy sets on the universe of discourses X and Y, respectively. 

Fuzzy reasoning consists of two distinct parts: evaluating the rule antecedent, and 

implication or applying the result to the consequent. If the antecedent is true to some 

degree of membership, then the consequent is also true to the same degree.  

A fuzzy rule can have multiple antecedents. All parts of the antecedents are 

calculated simultaneously and resolved in a single number, using fuzzy operations 

mentioned in the previous section. A fuzzy rule can also has multiple parts of 

consequent. All parts of the consequent are affected equally by the antecedent [39]. 
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3.1.5 Fuzzy inference systems 

Usually a fuzzy system incorporates several rules that describe expert’s knowledge 

and play off one another. The output of each rule is a fuzzy set, but usually we need to 

obtain a single number representing the fuzzy system output. To obtain the solution, 

all outputs of the fuzzy sets are aggregated into a single fuzzy set output, and then the 

result of the aggregation is defuzzified into a single number.  

The Mamdani method is the most commonly used fuzzy inference technique [39]. 

It is performed in four steps: fuzzification of the input variables, rule evaluation, 

aggregation of the rule outputs, and defuzzification.   

3.1.5.1  Fuzzification 

The fuzzification process applies membership functions associated with each fuzzy 

set. This process is concerned with finding a fuzzy representation of non-fuzzy input 

values. Input values from the universe of discourse are assigned membership values to 

fuzzy sets [38].  

3.1.5.2  Rule evaluation 

In rule evaluation process, the fuzzified inputs are mapped to the rule base to produce 

a fuzzified output for each rule. The membership degrees of the output sets are 

determined based on the membership degrees of the input sets and the relationships 

between them. Fuzzy operators are used to define the relationship between sets [38].  

3.1.5.3  Aggregation 

Aggregation is the process of unification of the outputs of all rules. We take the 

membership functions of all rule consequent previously evaluated and combine them 

into a single fuzzy set [39]. 
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3.1.5.4  Defuzzification 

Defuzzification is the last step in fuzzy inference process. The most popular 

defuzzification method is the centroid technique that finds the point where a vertical 

line would slice the aggregate set into two equal masses [39]. This center of gravity 

(COG) is denoted as follows: 

 

∫
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where X is the universe of discourse. For a discrete domain of a finite number of 

values, n, the output of the fuzzification process can be denoted as follows. 
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3.2 Genetic Algorithms 

The concept of genetic algorithms (GA) was introduced in the early 1970s by John 

Holland. GA models genetic evolution. The GA can be represented by a sequence of 

procedural steps for moving from one population of artificial chromosomes to a new 

population. It includes nature-inspired operations: selection, crossover, and mutation. 

Each chromosome consists of a number of genes, and each gene is represented by 0 or 

1 [39].  

Genetic algorithms, along with evolution strategies and genetic programming, are 

optimization methods in the field of evolutionary computing. They simulate natural 

evolution by creating a population of individuals, evaluating their fitness, generating a 

new population through genetic operations, and repeating this process a number of 

times.  The main components of evolutionary algorithms are: 

• encoding scheme to map solution candidates to chromosomes, 
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• fitness function to evaluate the survival strength of individuals, 

• initialization of the initial population, 

• selection operators, and 

• reproduction operators. 

GA utilizes a population of individuals, where each individual represents a 

candidate solution to the problem. The characteristics of an individual are represented 

by a chromosome. Each chromosome represents a point in search space. It consists of 

a number of genes, where each gene represents one characteristic of the individual. A 

gene represents one parameter of the optimization problem [38]. 

The mechanism of GA follows the following pseudocode [41].  

 
Figure  3.2 The pseudocode of GA process 

3.2.1 Chromosome representation 

Finding an appropriate chromosome representation is a very important step in GA. It 

affects the efficiency and complexity of the search algorithm. It involves defining the 

genotypes and the mapping from genotype to phenotype [38, 41]. 

Binary representation 

Classically, the representation scheme for GA is binary vectors of fixed length. 

Although binary vector is frequently used, it has Hamming cliffs disadvantage. A 

Hamming cliff happens when two numerically adjacent values have bit 

BEGIN 
   INITIALIZE population with random candidate solution; 
   EVALUATE each candidate; 
   REPEAT UNTIL (TERMINATION CONDITION is satisfied) { 
      1 SELECT parents; 
      2 RECOMBINE pair of parents; 
      3 MUTATE the resulting offspring; 
      4 EVALUATE new candidate; 
      5 SELECT individuals for the next generation; 
   } 
END 
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representations that are far apart. Gray coding is an alternative bit representation, 

where the Hamming distance between the representations of successive numerical 

values is one.  

Integer representation 

If the problem more naturally maps onto a representation where different genes can 

take one of a set of values, the binary representations might not be suitable. An 

example of this is the problem of finding the optimal values for a set of variables that 

all take integer values.  

Real-valued or floating-point representation 

This representation is chosen when the values that we want to represent in genes come 

from a continuous rather a discrete distribution. Each gene is represented by a 

floating-point value. 

Permutation representations 

An ordinary GA string allows numbers to occur more than once. Thus, it will not 

represent valid permutations. For problems that naturally take the form of deciding on 

the order in which a sequence of events should occur, the most natural representation 

is as a permutation of a set of integers. As a consequence, we need a new variation 

operators to preserve the permutation validity, so that each possible allele value 

occurs exactly once in the solution. 

3.2.2 Fitness function 

Fitness function represents the task to solve in the evolutionary context. It is a 

function or procedure for assigning a quality measure to the genotypes. The fitness 

function should include all criteria to be optimized. It can also reflect the constraints 

of the problem through penalization of those individuals that violate constraints [38, 

41].  
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3.2.3 Population 

Population is a multiset of genotypes. It holds the representation of possible solutions. 

A population is defined by setting the population size μ, which defines the number of  

individuals in a population. The diversity of a population is a measure of the number 

of different solutions present. The first population is started by generating random 

individuals.  

There are two different GA models: the generational model and the steady-state 

model. In the generational model, a mating pool of parents is selected from a 

population. The new offspring are created from the selected parents by applying 

crossover and mutation operations. They are evaluated by a fitness function. After 

each generation, the whole population is replaced by the new offspring. In the steady 

state model, only a part of the population is changed at once. The percentage of the 

population that is replaced is called the generational gap [41]. 

3.2.4 Parent selection 

Ideally, the mating pool of parents taking part in recombination would have exactly 

the same proportions as the selection probability distribution. In practice, this is not 

possible because of the finite set of the population. The mating pool of parents is 

sampled from the selection probability distribution, but will not accurately reflect it.  

Roulette wheel algorithm is one of the ways to implement this sampling. The 

probability distribution can be associated with a roulette wheel, where each slice has a 

width corresponding to the selection probability of an individual. Selection can be 

visualized as the spinning of the wheel and testing which slice ends up at the top. The 

outline of the algorithm is represented in the pseudocode shown in Figure  3.3 [41]. 
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Figure  3.3 The pseudocode of roulette wheel algorithm 

3.2.5 Crossover 

Crossover, or recombination, is considered as one of the most important features in 

GA. It is a GA operator that uses information from two (or more) parents to create a 

new individual (child). Crossover operators are usually applied probabilistically 

according to a crossover rate pc, which is usually in the range [0.5,1.0]. The crossover 

probability determines the chance that a chosen pair of parents undergoes the 

crossover operation. Two parents are selected and then a random variable is drawn 

from [0,1). If the value is lower than pc, two offspring are created via recombination 

of two parents; otherwise they are created asexually by copying the parents [41].  

For integer representations, it is normal to use the same set of operators as for 

binary representations although each gene in integer representations has a higher 

number of possible allele values than binary representations. Three operators in binary 

representations are applicable in integer representations. Generally two parents are 

chosen and then two children are created. However, the operators have been extended 

to the more general case where a number of parents may be used.  

One-point crossover 

This is the most basic crossover operator for binary representations. It works by 

choosing a random number in the range [0, l-1], with l is the length of the encoding, 

and then splitting both parents at this point and creating two children by exchanging 

the tails. 

BEGIN 
   set current_member = 1; 

   WHILE ( current_member ≤ μ ) { 
      Pick a random value r uniformly from [0,1]; 
      set i = 1; 
      WHILE ( ai < r ){ 
         set i = i + 1; 
      } 
      set mating-pool[current_member] = parents[i]; 
      set current_member = current_member + 1; 
   } 
END 



25 
 

N-point crossover 

N-point crossover is a generalization of one-point crossover. It works by breaking the 

genes into more than two segments of contiguous genes, and then creating offspring 

by taking alternative segments from the two parents.  

Uniform crossover 

Unlike the previous two operators, uniform crossover works by treating each gene 

independently and making a random choice as to which parent it should be inherited 

from. In the implementation, a string of l random variables from a uniform 

distribution over [0,1] is generated. For each position, if the value is below a 

parameter pc, the gene is inherited from the first parent; otherwise from the second. 

The second offspring is the inverse mapping of the first offspring. 

3.2.6 Mutation 

Mutation is a GA operator that uses only one parent and creates one child by applying 

some kind of randomized change to the genotype. The form of mutation operation 

depends on the choice in chromosome representation and a parameter called mutation 

rate. Different forms of operations based on the representations are described as 

follows [41].  

There are two forms of mutation operators used for integer representations. They 

can mutate each gene independently with user-defined probability pm. It is possible to 

use both forms of operator consecutively for integer-based problems. 

Random resetting 

This method is analogous to bit-flipping for binary encodings. With probability of pm 

a new value is chosen at random from the set of permissible values in each position. It 

is suitable for encoding of cardinal attributes. 
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Creep mutation 

This operator works by adding a small (positive or negative) value to each gene with 

probability pm. It is best applied on ordinal attributes.  

3.2.7 Stopping criteria 

The formation of new generation is stopped after some criteria are met [41]. 

Commonly used criteria to stop a GA process are: 

• The maximally allowed CPU time elapses. 

• The total number of fitness evaluation reaches a given limit. 

• The fitness improvement remains under a threshold value for a given period.  

• The population diversity drops under a given threshold. 

3.2.8 Constraint handling 

We need constraint handling because many practical problems are constrained. 

Naturally, GA operator work without considering the constraints of the candidate 

solutions. It is possible that the offspring generated by GA operators do not satisfy the 

constraints for the problem addressed. We can distinguish two types of constrained 

problems: constrained optimization problems and constraint satisfaction problems. 

The following are common options in constraint handling [41]. 

• The use of penalty functions that reduce the fitness of infeasible solutions, so that 

the fitness is reduced proportionate to the number of the constraints violated, or 

to the distance from the feasible region. 

• The use of repair functions that take infeasible solutions and generate feasible 

solutions based on them.  
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• Restricting search to the feasible region by the use of specific problem 

representations, suitable initialization, recombination, and mutation operators 

that. The feasibility of the solutions is ensured and the mapping from genotype to 

phenotype is not ambiguous.  

• The use of decoder functions that manage the mapping from genotype to 

phenotype so that solutions (phenotypes) are guaranteed to be feasible. Typically, 

a number of different genotypes may be mapped onto the same phenotype. 

3.3 Genetic-fuzzy systems 

The combinations of genetic algorithms (GA) and fuzzy systems have come in two 

ways. The use of fuzzy logic to improve the performance of a GA is known as fuzzy-

genetic algorithms, whereas the use of GA to improve the performance of a fuzzy 

system is called genetic-fuzzy system. 

The performance of a fuzzy system depends on its knowledge base that consists of 

data base and rule base. GA improves the performance of fuzzy systems by tuning 

their knowledge base. The tuning can be done in one of the following actions: tuning 

the data base only, tuning the rule base only, or tuning both the data base as well as 

the rule base. Since optimization process based on GA is computationally expensive, 

the GA-based tuning is generally carried out off-line, separated from the main process 

of the fuzzy system. The general structure of a genetic-fuzzy system can be seen in 

Figure  3.4, which is taken from [42]. 

The main goal of genetic algorithms integration with fuzzy systems is improving 

the design process and the performance of the fuzzy systems. Improved fuzzy 

systems’ performance implies higher accuracy and efficiency. If manual selection of 

fuzzy membership function parameters becomes difficult or takes too much time to 

attain, GA can be used to find the optimal ones as long as an appropriate fitness 

function that serves an adequate representative of the optimization process can be 

defined [43]. 
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Figure  3.4 Schematic diagram of a genetic-fuzzy system 

3.4 Digital Image Representation 

An image can be represented in a two dimensional function, ),( jif , where i and j are 

spatial (plane) coordinates, and the value of f at any pair of coordinates ),( ji is the 

intensity or gray level of the image at that point. An image is called a digital image 

when the i, j and the amplitude values of f are all in discrete quantities. A digital 

image consists of finite elements that have a particular location and value as the 

results of sampling and quantization of sensed data. They are called picture elements, 

image elements, pels, or pixels [1]. In the other words, an image can be represented 

by a two dimensional array of picture elements (pixels), which contain information 

about locations and intensity values.  

A digital image in M x N size can be written in the following matrix form: 
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or in the other matrix notation: 
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Equation ( 3.13) and ( 3.14) are identical matrices, so ),( jif and jia ,  both equally 

denote a pixel element of the image. 

3.5 Impulsive Noise Models 

Digital images are often corrupted by impulse noise due to transmission errors, 

malfunctioning pixel elements in the camera sensors, faulty memory locations, or 

timing errors in analog-to-digital conversion [1]. Impulse noise in an image has two 

major properties: only a certain percentage of image pixels are contaminated, and the 

intensity value of image corrupted pixel is significantly different from other pixels in 

its neighborhood. An image corrupted by impulse noise can be described as follows: 
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where ijx denotes a pixel in a noisy image and ijf  denotes a noise free image pixel at 

the location ),( ji . Also, ],[ maxmin LLnij ∈  is a noisy impulse at the location ),( ji , 

where minL and maxL  denote the lowest and the highest pixel luminance values within 

the dynamic range, respectively.  

Salt-and-pepper noise is the simplest and the most frequently used impulse noise 

model, where noisy pixels take either minimal or maximal value, that is 

},{ maxmin LLnij ∈ [1]. Abreu et al. [7] introduce random-valued impulse noise of which 

noise intensities randomly range from the minimum to the maximum intensity values, 
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that is 0 to 255 for 8-bit grayscale images, that is ],[ maxmin LLnij ∈ . A new model of 

impulse noise proposed by Petrović [8] incorporates both aforementioned impulse 

noise models. The corrupted image is contaminated by salt-and-pepper and uniform 

impulse noise in the same probabilities. Let xij be an image containing mixed impulse 

noise, 
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where [ ]maxmin , LLnunif
ij ∈  and { }maxmin , LLnsnp

ij ∈ . Also, fij denotes a noise-free image 

pixel at the location ),( ji . This type of noise model is claimed to be more realistic 

because the impulse noise occurs as a result of disturbances induced by noise signals 

with random amplitudes. The amplitudes of the impulse noise could fall into the 

dynamic range allowed as well as out of the range. The noise will be saturated to the 

maximum or minimum value if it is out of the range. Otherwise, it will appear as 

uniform impulse noise if it is within the dynamic range. Therefore, this noise model is 

more suitable to evaluate the performance of impulse noise filters. 

3.6 Median of the Absolute Deviations (MAD) 

Median of the absolute deviations from the median (MAD), a robust estimator of the 

variance, was used to separate noisy pixels from image details [23, 44]. MAD has 

been successfully used for the estimation of local image variance in the presence of 

impulse noise [18]. Let xij denote pixels with coordinates ),( ji  in noisy image, and Xij 

denote the set of pixels in (2K+1)×(2K+1) neighborhood window W centered at xij. 

 { }KjKiijKjKiij xxxX ++−−= ,, ,,,, KK  ( 3.17) 

 

The median of the image is defined as 



31 
 

 )( ijij Xmedianm =  ( 3.18)

 

The deviation image is the absolute difference between the noisy and its median 

image. It is defined by 

 
ijijij mxd −=  ( 3.19)

 

MAD presents the median of absolute deviations from the median. It is defined by 

 ( ))( ijijij XmedianXmedianMAD −=  ( 3.20)

Figure  3.5 and Figure  3.6 show the deviation image (d) and the median of the 

absolute deviations (MAD) from 256×256 Lena image corrupted by 20% mixed 

impulse noise. Sharp dots visible in Figure  3.5 depict the noise removed by median 

filter, while the softer dots indicate fine details lost because of the median filtering. As 

can be seen from Figure  3.6, despite the impulse noise in the image, MAD can retain 

the details information of the image very well. We can exploit MAD to distinguish 

noisy and noise-free pixels in an image. 

 

Figure  3.5 Deviation image between noisy image xij and its median image (in 
inverted color) 
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Figure  3.6 MAD image of the noisy Lena image for 5G5 window size (in inverted 

color) 

3.7 Rank-Ordered Absolute Differences (ROAD) 

Rank-ordered absolute differences (ROAD) is an image statistic for detecting random-

valued impulse noise [19]. Let 0
ijX denote the set ijX with ijx excluded. Define ijD as 

the absolute difference between the gray-level values in Xij and xij. 

 
ijij xXD

ij
−= 0  ( 3.21) 

 

Sort ijD values in increasing order, and let k
ijr be the kth smallest value in ijD . 

Then, ROAD can be defined by 
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where 2)12(2 2 −+≤≤ Km . If the noise ratio is higher than 25%, it is suggested 

that we use the 5-by-5 windows and m = 12. Otherwise, use 3-by-3 windows and m = 

4 [45]. 



33 
 

ROAD can identify most of the noisy pixels in the images corrupted by random-

valued impulse noise. In [45], ROAD is incorporated into a filter to remove Gaussian 

and impulse noise. It performs well in removing Gaussian and also impulse noise, but 

when the noise level is high, it blurs images seriously. In [19], it is combined with an 

edge-preserving regularization to build a two-stage method for denoising random-

valued impulse noise up to 60% probability. An experiment done by Gangadhar [46] 

shows the effectiveness of ROAD in detecting impulse noise. Combined with simple 

filtering methods, such as median filter, weighted median filter, and center weighted 

median filter, the nonlinear filtering techniques are found to be effective in 

eliminating the impulse noise besides preserving the image features quite 

satisfactorily.  

A local statistic, rank-ordered logarithmic differences (ROLD) is derived from the 

ROAD method. It amplifies the difference between noisy and noise-free pixels so that 

the noisy pixels can be detected, even when the noisy pixels have close value to the 

noise-free ones [19]. Because ROAD and ROLD are not accurate at image edges 

although they perform well in detecting most impulse noise, Yu [47] proposed a rank-

ordered relative differences, an impulse noise detector that is more accurate than 

ROAD and ROLD even at image edges. The local statistic  is calculated from the 

difference between a noisy image and a reference image. The main weakness of this 

method is its need of a reference image, which is the noise-free version of the filtered 

image. Therefore, this method might not be useful in the real case. 

3.8 Switching scheme filtering 

Median filter is one of the most popular approaches for impulse noise removal where 

every pixel in an image is replaced by its median of certain window size [1]. In 

median filter, all pixels are treated in the same way, whether they are noisy or not. It 

has been proven as a powerful method to remove impulse noise, but at the same time 

it removes edges and other details in uncorrupted pixels [22]. Adaptive median filter, 

weighted median filter, center weighted median filter, etc. are some modifications to 

median filter to minimize the detail loss caused by the filtering.  
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One of the strategies to preserve edges and details is the switching scheme. Let xij 

and yij denote the pixels with coordinates ),( ji  in a noisy and a filtered image, 

respectively. The switching filter concept is defined by 

 ijijijijij xMxMy ⋅−+⋅= )1()(ξ  ( 3.23) 

where )( ijxξ is the estimated value of the corrupted pixel xij, and Mij is the binary 

noise map, with 1’s indicating noisy pixels on respected coordinates. The filter 

removes noise in two steps: detecting impulse noise in an image and replacing the 

detected pixels with estimated values. The noise-free pixels are kept unfiltered. 

Therefore, excessive filtering that removes edges and details can be avoided. 

Generally, the detection employs some local statistics of the neighborhoods around 

the processed pixels, such as median, weighted median, rank-order thresholding, 

normalized mean, fuzzy reasoning, or neural networks [23].   
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CHAPTER 4  

METHODOLOGY 

 

We propose a fuzzy switching scheme filtering method based on MAD and 

ROAD statistical properties. Fuzzy inference system is incorporated to detect the 

noise level of each pixel in an image. The parameters included in the fuzzy inference 

system are optimized using genetic algorithm (GA). Since GA training is a resource-

intensive process, we arrange it separated from the main process of filtering. After the 

training is completed, the results are then stored in a knowledge base. The filtering 

process obtains the training results, i.e. the fuzzy parameters, from the knowledge 

base without redoing the training process each time we want to filter.  

This filter is designed to remove mixed impulse noise, which means that it can 

also be used to remove salt-and-pepper and uniform impulse noise. We define three 

main processes in the method: fuzzy inference system, fuzzy switching scheme 

filtering, and fuzzy parameters optimization. Figure  4.1 depicts the overall process of 

the proposed method. 

4.1 Fuzzy Noise Detection System 

In order to avoid excessive filtering that can cause detail loss in images, noisy and 

noise-free pixels should be treated differently. If a pixel is detected as noisy, its value 

will be replaced by an estimate. Otherwise, it will be left as is. We use fuzzy inference 

system to determine whether a pixel can be categorized as noisy. The detection 

system yields the pixels’ degree to be categorized as noisy, which ranges in [0,1].  
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Figure  4.1  The diagram of the system 

4.1.1  MAD and ROAD Application 

The first step in detecting the noise is extracting the value of MAD and ROAD from a 

noisy image. We will also use the deviation image d in this process. To obtain d, 

MAD, and ROAD values from an image, we use the formulas in equation ( 3.19), 

( 3.20), and ( 3.22), respectively. The window size for calculating d, MAD, and ROAD 

depends on the noise level of the input. Generally, for low to medium noise 

probability, we can use 3×3 or 5×5 windows. They are the size in which median 

filters can remove noise in low to medium probability without losing too many details 

in the filtered image.  
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4.1.2  Fuzzy Inference System 

Fuzzification process maps MAD into LOW, d into HIGH, and ROAD into LARGE 

fuzzy sets. In this process, the trapezoidal membership function is chosen to define 

the fuzzy sets. As can be seen in equation ( 3.4) and ( 3.5), each fuzzy set has four 

parameters { }dcba ,,, that determine the mapping to fuzzy membership functions.  

Figure  4.2, Figure  4.3 and Figure  4.4 indicate the histogram comparison between 

d, MAD, and ROAD values of noise-free and noisy pixels from Lena images 

corrupted by mixed impulse noise in 0.2 probability. To obtain these histograms, first, 

we generated 0.2 mixed impulse noise in a 256×256 grayscale Lena image. The 

calculation of d, MAD, and ROAD are then applied to the image. Since we have the 

original version of 256×256 grayscale Lena image, we can locate the noisy pixels out 

of the noise-free ones. The histogram analysis is done separately for the noisy pixels 

as well as the noise-free pixels.  

 
Figure  4.2 Histogram comparison of d values of noisy and noise-free pixels from 

Lena image corrupted by mixed impulse noise 0.2 
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Figure  4.3 Histogram comparison of MAD values of noisy and noise-free pixels 

from Lena image corrupted by mixed impulse noise 0.2 

 
Figure  4.4 Histogram comparison of ROAD values of noisy and noise-free pixels 

from Lena image corrupted by mixed impulse noise 0.2 
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Normally for noise free pixels, the values of d mostly fall in the range 0-50. 

Otherwise, noisy pixels has higher values of d. Lower value on d mostly came from 

the image details loss caused by median filtering. The higher ones come from the 

relatively high difference between noisy image and its median filtered image.  

MAD value is highly related to the details in an image. The MAD values of noisy 

pixels are not much different from the noise-free ones. MAD can retain details and 

edges information from an image although the image becomes noisy until a certain 

degree. Its value is relatively low regardless of the noise conditions. MAD and d are 

incorporated to detect the noise and leave the details of an image [23]. If a pixel has 

high d value, it is most probably a noisy pixel. However, if a pixel has low MAD 

value, it can be considered as an image details that we do not want to filter. 

Figure  4.4 shows the comparison of ROAD values of noise-free and noisy pixels 

from Lena image corrupted by mixed impulse noise in 0.2 probability. It has quite 

similar features with Figure  4.2, the histogram of d values. Noise free pixels tend to 

have lower ROAD value, while the corrupted ones have higher ROAD value.  

Based on the above rationale, we can map the value of d, MAD, and ROAD to the 

suitable fuzzy sets shown in Figure  4.5. Let xij be a pixel of an input image located in 

),( ji , dij, MADij, and ROADij are the values of d, MAD and ROAD of xij, then we can 

translate the above information into the following fuzzy rule.  

IF ((dij is HIGH) AND (MADij is LOW)) OR (ROADij is LARGE) THEN xij is 

NOISY 

The new fuzzy set )( ijNOISY xμ  resulted from the above inference is the noise 

detector. Its membership value ranges in [0,1]. Higher value of )( ijNOISY xμ indicates 

higher probability of xij become noisy pixel. The degree of this noise probability 

determines the effects of median filtering applied to the respective pixel.  
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(a) 

 

(b) 

 

(c) 

Figure  4.5 Fuzzy sets HIGH, LOW, and LARGE for d, MAD, and ROAD, 
respectively 

Normally, a fuzzy filter needs to have several rules fired on each pixel and its 

neighboring pixels. By employing d, MAD, and ROAD we only need one rule to be 

fired because those image statistical properties can resume useful pixel information in 

the neighborhood.  
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4.2 Fuzzy Switching Scheme Filtering  

Switching scheme filtering treats noisy and noise-free pixels differently [18]. The 

switching scheme filtering combined with the output of fuzzy noise detection result in 

a fuzzy switching scheme filtering. Originally, as can be seen in equation ( 3.23), the 

value of noise detection )( ijxξ  is either 1 or 0, i.e. representations of noisy and noise-

free conditions. If a pixel detected as noisy, its value will be replaced by an estimate 

value. In fuzzy noise detection system, the results of detection is in fuzzy membership 

function that have values in [0,1]. Therefore, the filtered pixels are switched softly 

based on the detection values. The filtered pixel yij is defined as follows 

 ijijNOISYijijNOISYij xxmxy ⋅−+⋅= ))(1()( μμ  ( 4.1)

A pixel xij will be fully replaced with its median ijm  if it is detected as 

noisy )1)(( =ijNOISY xμ . Otherwise, it will be kept at its original value. The pixels are 

filtered proportional to the value of )( ijNOISY xμ . 

4.3 Fuzzy Parameter Optimization using Genetic Algorithms 

In this section, we apply the genetic algorithms to find the best parameter for 

fuzzification process as explained in the previous section. Defining a fixed threshold 

of d, MAD, and ROAD to differentiate noisy pixels from the noise-free ones is not 

trivial. For noise in low amplitudes, the value of d, MAD, and ROAD are relatively 

similar to their values for noise-free pixels in edges or small details. GA is used to 

approach the optimal parameter set for the fuzzification process.  

4.3.1 Gene Encoding 

The genes represent 12 parameters of trapezoidal membership functions in fuzzy sets 

HIGH, LOW, and LARGE. Figure  4.6 depicts the gene encoding in a chromosome. 

The first four genes are parameters of HIGH fuzzy set. The second and the last four 

genes are parameters of LOW and LARGE fuzzy sets, respectively.  
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aHIGH bHIGH cHIGH dHIGH aLOW bLOW cLOW dLOW aLARGE bLARGE cLARGE dLARGE 

Figure  4.6 The gene encoding 

 

GA operators applied over the genes may cause the gene values to fall outside the 

allowed value of fuzzy membership function parameters. For each trapezoidal 

membership function, there are four parameters { }dcba ,,, . The membership function 

is meaningful only if a, b, c and d are in ascendant order. Thus, to maintain 

meaningful fuzzy membership functions, the following restrictions on the parameters 

are applied. 
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 ( 4.2) 

We use special representations and operators to maintain feasible solutions in the 

GA [48]. The genes are coded using integer codification because all the possible 

values of d, MAD, and ROAD are integers and it is easier to implement the 

restrictions mentioned by equation ( 4.2) in integer gene representation.  

4.3.2 Genetic Learning Scheme 

Figure  4.7 shows the genetic learning process to obtain the optimal set of fuzzy 

membership function parameters. We adopted the genetic training in Evolutionary 

Imge Enhancement (EIE) by Cho [9]. Initial population is formed by generating 

random numbers within the range of possible values of d, MAD, and ROAD. Since 

the first four genes are parameters of HIGH fuzzy set for d, they must be in the range 

of [0,255]. The second four ones are parameters of LOW fuzzy set for MAD. So, their 

values are in the range of [0,127]. The last four genes represents the parameters of 

LARGE fuzzy set for ROAD, of which maximum values are m*255, where m is the 

number of highest absolute difference taken into calculation of ROAD in equation 

( 3.22). 
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Figure  4.7 The genetic learning process 

 

The fitness of the chromosomes are tested by applying them into the fuzzy sets in 

the proposed filtering system to filter a noisy image. The output of the filtering is then 

compared to the original version of the noisy image. The mean absolute error (MAE) 

is adopted as the fitness function to evaluate the difference between the filtered image 

and the original image. The training process aims at minimizing the value of the 

fitness function, because smaller MAE means smaller difference between two images. 

Equation ( 4.3) shows the MAE adopted in the fitness function for each gene. 

 )()( xMAExf =  ( 4.3)

where MAE of two images can be defined as: 

 
∑∑
= =

−=
m

i

n

j
jiji xy

mn
MAE

1 1
,,

1  ( 4.4)

 



44 
 

The image used in the training process may be different from the one that will be 

actually filtered. Once the training results obtained, they can be used many times for 

filtering by saving them in a knowledge base.  

Parents that are selected to produce new offsprings are chosen using the roulette 

wheel method. We also apply the elitist strategy, in which some of the best 

chromosomes are reserved to be used in the next generation. The crossover operator is 

single-point crossover, which means a crossover site is randomly chosen within the 

gene length. The mutation is done by adding or subtracting the gene values with small 

numbers [42]. 

Applying GA operators may cause the genes to produce unfeasible solutions. To 

maintain feasible solutions, we apply repair algorithm that make changes to unfeasible 

individuals so that the gene values are kept in the allowed values [48]. After operators 

applied, for each fuzzy set, genes representing its parameters are sorted ascending 

from a to d. If values after operations fall out of the allowed range, the values are 

saturated to the maximum or minimum allowed values.   
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CHAPTER 5  

RESULTS AND ANALYSIS 

 

To evaluate the performance, the method has been tested in MATLAB R2007a 

that runs under Windows XP SP3 operating system. There were three MATLAB 

toolboxes involved: fuzzy logic toolbox, genetic algorithm and direct search toolbox, 

and image processing toolbox. GA training to obtain the optimal parameter set was 

implemented using genetic algorithm and direct search toolbox. Image processing 

toolbox was utilized to handle some basic image operations. Because only simple 

fuzzy inference involved, the fuzzy logic toolbox was not used in the implementation 

of the proposed method. Hard-coded fuzzy inference system was used in 

implementation of the proposed filter.  

We also considered some outstanding filters based on soft computing as well as 

median and average filters as samples of classical filtering techniques to evaluate the 

proposed filter’s performance. The filters involved in the tests were median filters, 

average filters, evolutionary image enhancement (EIE) [9], weighted fuzzy mean filter 

(WFM) [11, 12], genetic-fuzzy image filter (GFIF) [13], and fuzzy random impulse 

noise reduction (FRINR) [20]. Fuzzy logic toolbox was used to apply other filters 

based on Sugeno fuzzy inference system, such as WFM and GFIF.  

Median and average filters were involved in the test to know the performance of 

the proposed method compared to the classical methods of filtering, i.e. median and 

average filters. The filtering windows size chosen were 3×3 and 5×5 for each median 

and average. Those are the most common window size to filter low to medium noise 

corruptions.  

Evolutionary image enhancement (EIE) [9] is a filtering method based on genetic 

algorithms. The GA chooses the best combination of five spatial filters from 70 
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spatial filters available. GA training is done for every noise probability. Therefore, if 

there are five different noise probabilities to be filtered, five different trainings must 

be done for each noise probability. The image used as the training image is the 

cameraman image in 256×256 8-bit grayscale. The GA training parameters were as 

follows: 500 generations, 30 populations, 5 gene length, 0.7 crossover rate, and 0.05 

mutation rate. 

Lee’s weighted fuzzy mean filter (WFM) [11, 12] is a filtering method based on 

Sugeno fuzzy inference system. Pixels in image are categorized into fuzzy sets based 

on their intensity, such as dark, medium, and bright. It needs one Sugeno inference 

system for each fuzzy set and one more for fuzzy estimator. In WFM, there is no 

training needed. It only generates parameters from a sample image to be kept in image 

knowledge base. These parameters are retrieved from the image knowledge base 

during the filtering process. For this experiment, a cameraman image in 256×256 8-bit 

grayscale has been used to generate the WFM parameters. 

Genetic-based fuzzy image filtering (GFIF) is a further improvement of AWFM 

and WFM [13] where the number of fuzzy sets involved become five sets. Another 

significant improvement is the fuzzy sets parameter optimization using genetic 

algorithm. Specific parameter encoding and genetic learning are defined to solve the 

optimization problem. The training image used for this experiment is a 256×256 8-bit 

grayscale cameraman image. The GA training parameters were 100 generations, 20 

population size, 2 elite counts, 0.8 crossover fractions, and 0.01 mutation 

probabilities. 

Fuzzy rules are implemented in fuzzy random impulse noise reduction (FRINR) 

method [29]. The method consists of two separated phases: two-step fuzzy detection 

mechanism and a fuzzy filtering. The first detection operates in local neighborhoods, 

while the second gathers more information from extended neighborhoods.  The fuzzy 

filter only processes the pixels detected by both detector. This method is intended to 

remove random-valued impulse noise from corrupted images. There is no need to 

define any parameters nor trainings to make the filter work.  

The filter performance is evaluated in terms of noise attenuation, overall visual 

quality, detail and edge preservation. We evaluate the filtering results based on 
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observed visual quality as well as quantitative error measurements Mean Absolute 

Error (MAE) and Peak Signal-to-Noise Ratio (PSNR).  

For an output image y and an input image x, both of them have m×n size, the 

value of MAE and PSNR can be defined as follows [44].  
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Images included in the tests are standard test images, such as Lena, cameraman, 

and other images depicted in Figure  5.1. 

These standard test images are widely available in the Internet. One of the source 

is the homepage of fuzzy image processing, University of Waterloo [49]. The page 

contains 12 standard test images shown above. It was last accessed on November 2nd, 

2009. 

 

 

(a) walkbridge (b) cameraman (c) livingroom 
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(d) jetplane (e) lake (f) house 

  

(g) Lena (h) mandrill (i) woman blonde 

  

(j) pirate (k) woman dark hair  (l) peppers 

Figure  5.1 Standard test images 

5.1 Obtaining the optimal parameter set 

Fuzzy set parameters were trained using 256×256 8-bit grayscale cameraman image. 

The GA training parameters were 100 generations, 20 population size, 2 elite counts, 

0.8 crossover fractions, and 0.01 mutation probabilities. The training results are the 

parameters of the fuzzy sets HIGH, LOW and LARGE.  

Figure  5.2 shows the evolution of the best and average fitness values over 

generations for 0.2 noise probability. With the current GA settings, the best solution’s 
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fitness starts to converge after the 50th generation. It means that there is no significant 

change in the best fitness value from 50th generation onwards. We can conclude that 

the maximum number of generation set in 100 is sufficient for GA training to reach its 

convergence, i.e. to find the optimal solutions.  

 
Figure  5.2 The fitness evolution in the GA training 

 

GA training was done for each noise level. For each noise level, the training was 

repeated three times to make sure the results obtained are the best ones. Table  5.1 

shows the training results for each noise level. The best results for each noise level 

can already be used for filtering. It is user preference to use different parameter sets 

for different noise levels or to use the same parameter set for all noise probabilities. 

Adjusting parameter set for handling different noise condition may lead to better 

filtering results, but sometimes it is not practical to change the parameters over time, 

especially in the real case when we do not know exactly the value of the noise 

probability. 

The simpler and more practical way is to choose one parameter set to be used in 

all noise probabilities. The best results for each noise level are tested to asses their 

performance in removing noise from 0.1 to 0.5 probabilities. Table  5.2 shows the 

testing results. The shaded cells are the best results for each noise level. Set #4 got the 

most shaded cells that means it can handle most noise probabilities. Therefore, it has 



50 
 

been chosen as the parameter set to filter all noise probabilities. The final training 

results are shown in Table  5.3.  

Table  5.1 GA training results 
Noise 
prob. 

Trai-
ning 

Fuzzy set parameters Fitne
ss 

Re-
mark MAD d ROAD 

0.1 1st  0 0 186 188 140 212 255 255 103 155 846 864 1.26  
2nd 0 0 78 125 101 162 236 236 121 157 777 832 1.24 Set#1 
3rd 0 0 185 206 131 149 156 225 116 151 959 971 1.24  

0.2 1st  0 0 55 255 67 110 225 255 96 140 459 748 2.43  
2nd 0 0 99 133 104 104 255 255 106 137 707 1006 2.42 Set#2 
3rd 144 224 249 255 5 52 185 201 91 142 933 936 2.48  

0.3 1st  0 0 187 255 64 135 208 255 98 134 730 923 3.83  
2nd 0 0 49 147 76 87 215 255 113 117 833 865 3.78 Set#3 
3rd 0 0 182 213 23 127 255 255 89 103 593 662 3.88  

0.4 1st  0 0 134 255 44 69 255 255 65 130 314 713 5.27  
2nd 0 0 123 255 23 105 254 255 85 99 638 1020 5.31  
3rd 0 0 94 255 43 69 228 255 67 127 628 817 5.27 Set#4 

0.5 1st  0 0 123 178 26 46 244 255 92 130 168 178 7.19 Set#5 
2nd 0 0 142 235 43 67 201 225 75 100 872 951 7.31  
3rd 0 0 141 219 15 69 255 255 73 147 547 1020 7.32  

Table  5.2 Test to find the optimal parameter for general cases 

Set 
Noise probability 

0.1 0.2 0.3 0.4 0.5 
MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR 

#1 1.24 31.78 2.51 28.75 4.16 26.12 6.41 23.65 9.84 21.14 
#2 1.27 31.60 2.42 29.12 3.84 26.88 5.66 24.73 8.31 22.56 
#3 1.33 31.07 2.43 29.08 3.78 27.01 5.43 25.18 7.89 23.15 
#4 1.64 30.12 2.65 28.89 3.86 27.31 5.27 25.88 7.30 24.12 
#5 2.02 28.81 2.97 27.75 4.08 26.60 5.33 25.41 7.19 24.04 

 

GA as a stochastic process could generate different solutions for different runs. In 

the GA training, we use one sample image that has more or less similar features with 

the test images. The training is done independently for each noise level. The best 

solutions for each level of noise are then assessed to get the best parameter set that 

works on all noise probability.  

 

Table  5.3 The final GA training results 

aHIGH bHIGH cHIGH dHIGH aLOW bLOW cLOW dLOW aLARGE bLARGE cLARGE dLARGE 

0 0 94 255 43 69 228 255 67 127 628 817 
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5.2 Filter performance in preserving image details 

When a filter is applied to an image, it is not only removing noise but also 

removing some informative details from an image. We apply the proposed filter to a 

noise-free image to know the filter’s ‘destructive’ effects when it is applied to 

original, noise-free image. An 8-bit 256×256 Lena image is chosen to be the test 

image. The result is compared to the one filtered by median filter in 5×5 windows. 

The median filter in 5×5 windows is the estimator for our proposed filter. It means 

that originally the image is filtered by the median filter. Our filter has a detector that 

is able to measure the probability that a pixel can be categorized as noisy. This 

detector determines how much the estimator, that is the median filter, affects the 

output value. So, by comparing the results of our proposed filter and the median filter, 

we can observe the details and edges preserved by the proposed filter. 

The filtered images and the difference images in Figure  5.3 shows how much 

details are lost after the filter operation. Figure  5.3a is an original, noise-free 8-bit 

Lena image in 256×256 pixels. Without adding any noise, it is filtered by the 

proposed filter in Figure  5.3b and median filter in Figure  5.3c. The difference between 

the filtered images and their original images are shown in Figure  5.3d and Figure 

 5.3e. The image filtered by the proposed filter shows more detail preservation and 

higher image visual quality than the median filtered image. The MAE and PSNR 

values in Table  5.4 also affirm this result. The proposed filter can reach MAE value of 

0.73 while median filter can only reach 5.58. The PSNR value of the proposed filter is 

19.29% higher than median filter that means more detail preservation gained by the 

proposed method compared to median filter. 
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(a) Original 256x256 8-bit grayscale Lena image 

 
(b) original image filtered by the proposed 

filter 
(c) original image filtered by median in 5×5 

windows 

 
(d) difference between (a) and (b) in inverted 

and enhanced color 
(e) difference between (a) and (c) in inverted 

and enhanced color 

Figure  5.3 The application of the proposed filter and median filter to a noise-free 
Lena image 
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Table  5.4 MAE and PSNR values of noise-free Lena image  

 MAE PSNR 

Proposed 0.73 32.04 

Median 5×5 5.58 26.86 

Figure  5.4 shows the comparison among the original image, noisy image, median 

5×5 filtered noisy image, and the noisy image filtered by the proposed method. The 

effect of median filter in 5×5 windows is obvious. The noise is removed, but the 

image also lost many of its details. We can see that our detection can selectively 

replace noisy pixels with its median, while keeping the rest less affected by the 

median filter. The detection scheme in the proposed filter significantly reduces detail 

loss caused by the median filters.  

 

 

(a) (b) 

 

(c) (d) 

Figure  5.4 (a) 128×128 8-bit grayscale Lena image, (b) image corrupted by 0.1 
mixed impulse noise, (c) noisy image (b) filtered by median filter in 5×5 windows, 

and (d) noisy image (b) filtered by the proposed method. 
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Figure  5.5 MAE graph comparison among Lena image corrupted by 0.1 mixed 
impulse noise, filtered by 5x5 median filter, filtered by the proposed filter and its 

original image. 

 

Figure  5.5 confirms the ability of the proposed filter to remove noise and retain 

more detail information of the image rather than the median filter. MAE value of two 

similar images is zero. Greater MAE value means greater difference between two 

images. The MAE value of Lena image corrupted by mixed impulse noise in 0.1 

probability compared to the original Lena image is 9.99. The median filter in 5×5 can 

restore the image to the MAE value of 6.02. The proposed filter restored even more 

image information to the MAE value of 1.64, very close to 0, that indicates better 

performance in image restoration. 

5.3 Filter performance in impulsive noise removal 

5.3.1 Filter performance in removing mixed impulse noise 

We tested the performance of the proposed filter to 8-bit Lena image in 256×256 

pixels. Mixed impulse noise was generated on the image in 0.1 to 0.5 probabilities, 

with 0.1 increments. The proposed filter and the other filters mentioned in the 

previous section filtered the noisy images. The optimal parameter set from the GA 
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training section was used in this test. We analyze the results by observing the image 

visual quality and evaluating the MAE and PSNR error measurements. 

 

Table  5.5 MAE values of Lena images corrupted by mixed impulse noise 

Filter Name Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Proposed 1.64 2.65 3.86 5.27 7.30 
Median 3x3 4.40 5.23 6.56 8.99 13.02 
Median 5x5 6.02 6.44 7.02 7.74 8.99 
Average 3x3 11.43 16.46 20.86 25.22 28.82 
Average 5x5 11.34 14.84 18.31 22.09 25.04 
GFIF 2.04 4.30 7.13 10.33 14.76 
WFM 7.13 8.83 11.06 13.66 17.18 
FRINR 2.32 2.82 4.67 9.33 18.79 
EIE 3.32 4.49 5.74 7.92 8.96 

 

The proposed method outranked the other methods in MAE and PSNR evaluation. 

The graphs of MAE and PSNR values of the method are shown in Figure  5.6 and 

Figure  5.7. Lower MAE value and higher PSNR value indicate higher performance of 

a filter. It gained the lowest MAE and the highest PSNR for every noise probability 

tested. The complete comparison of filtering results among the methods can be seen in 

Figure  5.8. 

 

Table  5.6 PSNR values of Lena images corrupted by mixed impulse noise 

Filter Name Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Proposed 30.12 28.89 27.31 25.88 24.12 
Median 3x3 28.53 27.32 24.89 21.90 19.10 
Median 5x5 26.40 25.98 25.29 24.51 23.73 
Average 3x3 23.43 20.85 18.98 17.49 16.39 
Average 5x5 23.49 21.78 20.19 18.76 17.73 
GFIF 29.60 24.69 24.79 23.79 21.44 
WFM 25.17 23.44 21.66 20.21 18.49 
FRINR 29.45 28.13 24.20 19.49 15.46 
EIE 30.06 26.39 26.47 23.59 22.90 
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Figure  5.6 MAE curves of Lena images corrupted by mixed impulse noise 

 

Figure  5.7 PSNR curves of Lena images corrupted by mixed impulse noise 

 

It can be seen from Figure  5.8 that the proposed filter can remove mixed impulse 

noise while preserving more details than median filters do. The average filters are not 

suitable to remove this kind of noise. They can barely reduce the noise appearance. 

There are still may noises left in images filtered by WFM and GFIF. Both methods 

are originally designed to remove salt-and-pepper impulse noise. They detect the 

appearance of noise in extreme minimum and maximum values, but failed to detect 

noise values between them. EIE is a flexible filter that can be trained for any type of 

noise, including mixed impulse noise, while FRINR is designed to remove uniform 
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impulse noise. EIE and FRINR seem to be able to preserve the image features, but 

they still leave some noticed noise.  

Another set of tests was also done to other standard test images. Mixed impulse 

noise in 0.1 to 0.5 probabilities were added to the images. Then, all the images were 

filtered by the proposed filter. Images in Figure  5.9 depict standard test images 

corrupted by mixed impulse noise in 0.2 probability. They have been filtered by the 

proposed filter. The noise is successfully removed with minimum edge and detail loss.  

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure  5.8 Noisy 256x256 8-bit grayscale Lena image corrupted by 0.2 mixed 
impulse noise filtered by: (a) the proposed filter, (b) 3x3 average filter, (c) 5x5 

average filter, (d) 3x3 median filter, (e) 5x5 median filter, (f) EIE, (g) WFM, (h) 
GFIF, and (i) FRINR. 
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(a) (b) (c) 

  

(d) (e) (f) 

  

(g) (h) (i) 

 

 

(j) (k)  
Figure  5.9 Noisy standard test images corrupted by 0.2 mixed impulse noise 

filtered by the proposed filter 
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There are differences in MAE and PSNR values for each picture in Figure  5.9. It 

is observed that higher MAE comes from image that has small details as thin as one 

pixel, such as mandrill’s feather in mandrill image and small branches in walkbridge 

image. It implies that the proposed filter can remove noise and retain image details 

better in less complicated images. Despite the various MAE and PSNR values, the 

filter produces more or less similar visual quality for wide variety of images.  

 

Table  5.7 MAE values of the standard test images corrupted by mixed impulse 
noise 

Image name Noise probability 
0.1 0.2 0.3 0.4 0.5 

walkbridge 4.77 6.54 8.68 10.86 13.75 
livingroom 3.10 4.56 6.05 7.75 9.90 
jetplane 2.78 3.78 5.08 6.80 9.05 
lake 3.79 5.12 6.74 8.59 11.20 
house 0.82 1.59 2.73 3.82 5.56 
lena 1.64 2.65 3.86 5.27 7.30 
mandril 5.77 7.56 9.56 11.73 14.06 
woman_blonde 2.23 3.16 4.19 5.51 7.15 
pirate 2.12 3.32 4.71 6.38 8.63 
woman_darkhair 0.66 1.32 2.16 3.14 5.00 
peppers 1.39 2.34 3.53 5.03 7.07 

 

Table  5.8 PSNR values of the standard test images corrupted by mixed impulse 
noise 

Image name Noise probability 
0.1 0.2 0.3 0.4 0.5 

walkbridge 24.85 23.87 22.75 21.81 20.68 
livingroom 26.68 25.43 24.53 23.51 22.41 
jetplane 26.28 25.63 24.59 23.38 22.05 
lake 25.33 24.45 23.51 22.47 21.25 
house 35.10 32.28 29.32 27.75 25.49 
lena 30.12 28.89 27.31 25.88 24.12 
mandril 23.21 22.32 21.78 21.20 20.89 
woman_blonde 27.03 26.39 25.70 24.80 23.79 
pirate 28.52 27.19 26.16 24.95 23.39 
woman_darkhair 35.01 32.45 30.99 29.42 26.47 
peppers 30.93 29.09 27.67 25.86 24.03 
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5.3.2 Filter performance in removing salt-and-pepper noise 

Mixed impulse noise is a mix of salt-and-pepper and uniform impulse noise. We also 

wanted to know the filter’s performance in removing salt-and-pepper noise as well as 

uniform impulse noise. This section and the next section discuss the experiment 

results and analysis of the filter’s performance to remove two aforementioned types of 

noise. 

From 0.1 to 0.5 salt-and-pepper noise were added to 8-bit grayscale Lena image. 

These images were filtered by the proposed filter as well as the other filters. The 

results were evaluated in terms of subjective evaluation on image visual quality, MAE 

and PSNR error measurements.  

Based on MAE and PSNR values in Table  5.9 and, it is shown that GFIF 

outranked the proposed filter and the others. GFIF, a genetic-fuzzy filter that 

originally designed to remove salt-and-pepper noise, has done very well in removing 

noise in maximum and minimum possible pixel values. In the highest noise 

probability, WFM, as the core process of GFIF, also outranked the proposed filter. 

Nonetheless, the proposed filter still outranked the other methods and had a stable 

performance over various noise probabilities tested.  

 

Table  5.9 MAE values of Lena images corrupted by salt-and-pepper noise 

Filter Name Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Proposed 1.54 2.59 3.99 5.87 8.88
Median 3x3 4.38 5.21 7.17 11.39 18.78
Median 5x5 5.94 6.30 6.78 7.52 9.10
Average 3x3 12.99 18.64 23.24 27.88 31.87
Average 5x5 12.11 15.82 19.16 23.05 26.22
GFIF 0.93 1.69 2.57 3.41 4.42
WFM 5.91 5.98 6.18 6.36 6.68
FRINR 2.13 2.76 6.62 15.74 30.57
EIE 3.37 4.94 5.61 8.81 10.32
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Table  5.10 PSNR values of Lena images corrupted by salt-and-pepper noise 

Filter Name Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Proposed 30.68 28.73 26.76 24.66 21.77 
Median 3x3 28.98 26.77 22.57 18.43 15.14 
Median 5x5 26.51 25.99 25.75 24.59 22.17 
Average 3x3 22.55 19.89 18.14 16.91 15.74 
Average 5x5 23.10 21.27 19.83 18.38 17.34 
GFIF 32.83 30.85 29.04 29.78 26.64 
WFM 26.50 26.40 26.02 25.78 25.30 
FRINR 30.08 27.17 20.58 15.76 12.45 
EIE 29.42 24.23 26.68 21.30 19.76 

 

 
(a) (b) (c) 

 

 
(d) (e) (f) 

 

 
(g) (h) (i) 

Figure  5.10 Noisy 256x256 8-bit grayscale Lena image corrupted by 0.2 salt-and-
pepper noise filtered by: (a) the proposed filter, (b) 3x3 average filter, (c) 5x5 average 
filter, (d) 3x3 median filter, (e) 5x5 median filter, (f) EIE, (g) WFM, (h) GFIF, and (i) 

FRINR. 
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Figure  5.11 MAE curves of Lena images corrupted by salt-and-pepper noise 

 

 

Figure  5.12 PSNR curves of Lena images corrupted by salt-and-pepper noise 

5.3.3 Filter performance in removing uniform impulse noise 

Unlike salt-and-pepper that has extreme value of noise, uniform impulse noise 

corrupts images with random values of noise. Uniform impulse noise from 0.1 to 0.5 

noise probabilities were added to 8-bit Lena image. The filtering results of the 

proposed filter as well as the other filters were analyzed. The MAE and PSNR values 

of the filtering results can be seen in the Table  5.11 and Figure  5.14. They are 
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visualized in the graphs in Figure  5.14 and Figure  5.15. The filtering results in 0.2 

uniform noise probability is shown in Figure  5.13.  

 

Table  5.11 MAE values of Lena images corrupted by uniform impulse noise 

Filter Name Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Proposed 1.68 2.83 4.09 5.68 8.24 
Median 3x3 4.43 5.28 6.65 8.81 12.44 
Median 5x5 6.06 6.60 7.35 8.44 10.48 
Average 3x3 9.92 13.76 17.78 21.56 25.42 
Average 5x5 10.65 13.64 16.99 20.34 23.77 
GFIF 3.17 6.90 11.40 16.27 21.80 
WFM 8.22 11.15 14.60 18.55 22.91 
FRINR 2.43 3.02 4.46 7.41 13.01 
EIE 3.35 4.42 6.01 8.19 10.07 

 

Table  5.12 PSNR values of Lena images corrupted by uniform impulse noise 

Filter Name Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Proposed 30.14 28.29 26.90 25.31 23.37 
Median 3x3 28.61 27.08 25.04 22.78 20.12 
Median 5x5 26.45 25.90 25.14 24.19 22.52 
Average 3x3 24.53 22.17 20.29 18.79 17.45 
Average 5x5 23.82 22.31 20.82 19.44 18.15 
GFIF 25.61 24.62 22.63 22.43 20.33 
WFM 24.12 21.72 19.70 18.07 16.68 
FRINR 28.94 27.63 25.43 22.19 18.72 
EIE 29.82 26.95 26.34 23.68 22.28 

 

In removing uniform impulse noise, the proposed filter outranked the other 

methods, including the FRINR that is specially designed to remove uniform impulse 

noise. FRINR can remove most of the noise, but the visual quality is not satisfactory. 

It still left some noticeable noise after filtering. The proposed  filter also surpassed the 

GFIF and WFM that completely failed to remove this type of noise. Its detection 

scheme can detect impulse noise in random values. Average filters are not suitable to 

remove any types of impulse noises, while median filters and EIE are able to remove 

uniform impulse noise with noticeable detail loss.  
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure  5.13 Noisy 256x256 8-bit grayscale Lena image corrupted by 0.2 uniform 
impulse noise filtered by: (a) the proposed filter, (b) 3x3 average filter, (c) 5x5 

average filter, (d) 3x3 median filter, (e) 5x5 median filter, (f) EIE, (g) WFM, (h) 
GFIF, and (i) FRINR. 



65 
 

 

Figure  5.14 MAE curves of Lena images corrupted by uniform impulse noise 

 

Figure  5.15 PSNR curves of Lena images corrupted by uniform impulse noise 

 

The proposed filter is originally intended to remove mixed impulse noise. Its 

performance in removing other types of impulse noise, such as salt-and-pepper and 

uniform impulse noise, is as good as in removing mixed impulse noise. The 

comparison of filter’s performance in removing three types of impulse noise can be 

seen in Table  5.13 and that contain the MAE and PSNR values, and visualized in 

graph in Figure  5.16 and Figure  5.17. The performance is stable regardless the type of 

impulse noise.  
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Figure  5.16 MAE curves comparison of filtered Lena images corrupted by mixed 
impulse, salt-and-pepper, and uniform impulse noise 

 

Figure  5.17  PSNR curves comparison of filtered Lena images corrupted by mixed 
impulse, salt-and-pepper, and uniform impulse noise 

 

Table  5.13 MAE values comparison of filtered Lena images corrupted by mixed 
impulse, salt-and-pepper, and uniform impulse noise 

Noise type Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Mixed impulse noise 1.64 2.65 3.86 5.27 7.30 
Salt-and-pepper noise 1.54 2.59 3.99 5.87 8.88 
Uniform impulse noise 1.68 2.83 4.09 5.68 8.24 
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Table  5.14 PSNR values comparison of filtered Lena images corrupted by mixed 
impulse, salt-and-pepper, and uniform impulse noise 

Noise type Noise Probability 
0.1 0.2 0.3 0.4 0.5 

Mixed impulse noise 30.12 28.89 27.31 25.88 24.12 
Salt-and-pepper noise 30.68 28.73 26.76 24.66 21.77 
Uniform impulse noise 30.14 28.29 26.90 25.31 23.37 

 

Several tests has been done to expose the proposed filter’s characteristics. The 

proposed filter is able to remove mixed impulse noise in low to medium noise 

condition successfully. The detection scheme in the filter is able to differentiate noisy 

pixels out of the noise-free ones. Therefore, it saves more details than median filters 

do. Its performances in removing salt-and-pepper and uniform impulse noise are as 

good as its performance in removing mixed impulse noise.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 

6.1 Accomplishing the Goal of This Research 

In this thesis, a fuzzy image filtering based on ROAD and MAD to remove mixed 

impulse noise has been presented. The proposed method consists of three 

components, including fuzzy noise detection system, fuzzy switching scheme 

filtering, and fuzzy parameters optimization using GA to perform efficient and 

effective noise removal. The noise are detected by the fuzzy noise detection system, 

and then filtered using fuzzy switching scheme filtering to minimize degrading effect 

of median filtering on noise-free pixels. The GA training aims to find the best 

parameters for the fuzzy sets in fuzzy noise detection. 

From the experimental results, we observe that the proposed filter can preserve 

more detail than median filter in 5×5, its estimator. When it was applied to noise free 

Lena image, it gained PSNR value 19.29% higher than median filter did. Based on the 

experiments in section 5.3, PSNR and MAE value of the proposed method achieve the 

best results compared to the other approaches, including median filters, average 

filters, EIE, WFM, GFIF, and FRINR, when removing impulse noise in 0.1 to 0.5 

noise probability. Subjective evaluation on visual quality of the filtering results also 

shows its superior performance on removing mixed impulse noise in low to medium 

noise probabilities of mixed impulse noise. The performance of the filter to remove 

other types of impulse noise, such as salt-and-pepper and uniform impulse noise, is as 

good as its performance in removing mixed impulse noise.  
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6.2 Research Contributions 

The contributions of this research lie on the design of the new filter. They are: 

1. The integration of ROAD and MAD image statistical properties into a simple 

fuzzy inference system to detect mixed impulse noise in corrupted images. It 

includes the fuzzy sets and fuzzy rule design and development as parts of the 

fuzzy inference system. It results in less complicated design of fuzzy filter that 

is able to outperform several existing methods. 

2. The collaboration of fuzzy set concept with switching scheme filtering results 

in a soft-switching scheme filtering. Instead of treating each pixel as pure 

noisy or noise-free, it treats each pixel uniquely based on the value of noise 

detection that ranges in [0,1].  

3. Genetic learning scheme is specially designed to complete the fuzzy set 

design. It provides the system with the optimal parameter of fuzzy sets. The 

genes are encoded in integer codification instead of the common binary or 

float codification. This encoding scheme requires an operator set that 

conforms to the encoding scheme. These operators are derived from those for 

binary encoding. Mean absolute error (MAE) is adopted as the fitness function 

to evaluate the fitness values over generations. The nature of the variables 

encoded as the genes also demands a set of restrictions and repair algorithms 

to maintain the fuzzy membership functions.  

4. This filter is purposely designed to remove mixed impulse noise. There are not 

many filtering methods built based on this noise type yet. As a new model of 

impulse noise that is more realistic, designing filter to remove this noise type 

could also lead to good performances in removing other impulse noise types, 

such as salt-and-pepper and uniform impulse noise.  
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6.3 Future Works 

The median filter as the filtering estimator is a classical yet quite powerful filtering 

method for impulse noise. Nowadays, many modified median filters have more 

advanced features than their ancestor has. Finding a better estimator other than 

median filter surely could improve the filtering results. 

Fuzzy logic is now extended to a higher order, i.e. fuzzy type-2, which can handle 

uncertainties in fuzzy membership functions. Combined with Human Evolutionary 

Model as an optimization method, a powerful hybrid system can be built [40]. It is of 

high potential to the improvement of the genetic-fuzzy filter system.  

Since most of the images that people deal with today mostly come in color, it is a 

good idea to modify the method to remove impulse noise in color images. The 

filtering processes in color images take the same concept as filtering in grayscale 

images, but in color images, there are multiple layers as well as different color modes. 

Some modifications on the method are needed to remove impulse noise in color 

images. 
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