Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Modeling and Control of a Spherical Underwater Robot Vehicle by Using a Variable Ballast Mechanism

Sumantri, Bambang Sumantri (2008) Modeling and Control of a Spherical Underwater Robot Vehicle by Using a Variable Ballast Mechanism. Masters thesis, UNIVERSITI TEKNOLOGI PETRONAS.

Download (3057Kb) | Preview


A mechanism of variable ballast system which manipulates volume of water in the ballast tank is designed and modeled in this thesis. The mechanism is designed to make water always fulfill space in the variable ballast tank with varying volume. Therefore the internal dynamic that is caused by the movement of water in the tank can be avoided. The variable ballast is utilized for vertical motion actuator of a spherical URV by controlling the difference between buoyant force and gravitational force. In this thesis, the VBS can change the weight of URV body, ΔW, in range ± 9.96N in order to make URV in positive buoyancy, neutral buoyancy or negative buoyancy. The buoyancy of URV is considered as a constant value. By using this mechanism, then the URV can move in vertical plane in the range of velocity ±1.019ms−1 . Two approaches, i.e. linearized approximation and nonlinear approach, are presented to design the controller of the dynamic model which behaves as nonlinear system. In linearized approximation, the nonlinear model is linearized about the equilibrium point by using Taylor series. Since the linearized model is controllable then a linear control strategy is applied. In order to analyze the stability of the system, Lyapunov’s linearization method is used. Since the eigenvalues of the linearized model is zero, λ = 0, then the Lyapunov’s linearization method cannot determine whether the nonlinear system is stable or unstable. The second method of Lyapunov stability analysis, i.e. Lyapunov direct method, is also applied. By using this method, it can be known that the equilibrium point of this depth positioning system is unstable, furthermore, nonlinear approach, i.e. state-space feedback linearization and inputoutput feedback linearization, are also used to stabilize this system. These control strategies are then simulated in MATLAB/Simulink. All control strategies designed in this thesis can asymptotically stabilize the equilibrium point, for t →∞ , e→0 . The linearized approximation approach is the fastest to reach steady state compare to the others, but it consumes more power. For tracking a trajectory, input-output linearization gives better performance compare to the others by resulting smallest error. If the change of trajectory is constant, then error of input-output feedback linearization converges to zero. For linearized approach and state-space feedback linearization, if change of input is 0.1ms−1 then absolute error converge to 2.408m and 6.082m respectively, and if change input is 0.2ms−1 then absolute error converge to 6.361m and 12.163m respectively.

Item Type: Thesis (Masters)
Depositing User: Users 5 not found.
Date Deposited: 05 Jun 2012 08:39
Last Modified: 25 Jan 2017 09:45
URI: http://utpedia.utp.edu.my/id/eprint/2910

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...