
STATUS OF THESIS

Title of thesis Function-Based Computer Aided Conceptual Design Support
Tool

I DEREJE ENGIDA WOLDEMICHAEL hereby allow my thesis to be placed at

the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP)

with the following conditions:

1. The thesis becomes the properties of UTP.

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

Confidential
 Non-confidential Х

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for years.

Remarks on disclosure:

Endorsed by

Signature of Author

Signature of Supervisor

Permanent

Address:

Addis Ababa University
Faculty of Technology(N)
Addis Ababa, Ethiopia

Name of supervisor:

AP Dr. Fakhruldin Mohd Hashim

Date:____________________ Date:____________________

ii

APPROVAL PAGE

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor

The undersigned certify that they have read, and recommended to The Postgraduate

Studies Program for acceptance, a thesis entitled “Function-Based Computer Aided

Conceptual Design Support Tool” submitted by Dereje Engida Woldemichael for

the fulfillment of the requirements for the degree of Doctor of Philosophy in

Mechanical Engineering.

Date

Signature : ____________________________

Main Supervisor : A.P. Dr. Fakhruldin Mohd Hashim

Date : ____________________________

iii

TITLE PAGE

UNIVERSITI TEKNOLOGI PETRONAS

Function-Based Computer Aided Conceptual Design Support Tool

By

Dereje Engida Woldemichael

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

MECHANICAL ENGINEERING PROGRAMME

BANDAR SERI ISKANDAR,

PERAK

NOVEMBER, 2009

© Dereje Engida Woldemichael

iv

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any degree at Universiti Teknologi

PETRONAS or other institutions.

Signature : __

Name : Dereje Engida Woldemichael

Date : __

v

DEDICATION

To my Father Engida Woldemichael Endaylalu and Uncle Tirfe Woldeamanuel

Woldemariam

vi

ACKNOWLEDGEMENTS

First of all I would like to thank my savior the Almighty GOD for giving me the

strength and ability to achieve what I have done and guide me throughout my life.

I am deeply indebted to my supervisor Assoc. Prof. Dr. Fakhruldin Mohd Hashim

for his invaluable advices and exceptional guidance during my study.

I would also like to extend thanks to the faculty members and postgraduate students

who have participated in verification and validation of CDST for their time,

suggestions and comments, especially Dr. Syed Ihtsham Ul Haq Gilani, Dr. Dayang

Rohaya Binti Awang Rambli, Dr. Suziah Binti Sulaiman , Mr Rahmat Iskandar

Khairul Shazi, Mr Azman Bin Zainuddin, Mr Chanyalew Taye, Mr Mesfin Gizaw,

and Mr Tamiru Alemu. Special thanks to Mr. Johan Lindberg from CLIPS support

group who helped me to learn the language. Thanks to all who have supported me in

one way or another, especially fellow Ethiopians in UTP.

Finally, thanks to all my family for their support and encouragement. Special thanks

is reserved to my wife Kidist Bisrat who take care of our little baby Selam alone;

without her patience, constant support, and encouragement my achievements would

not be possible.

vii

ABSTRACT

Conceptual design is considered as the most critical and important phase of design

process. It is the stage where product’s fundamental features are determined, large

proportion of the lifecycle cost of the product is committed, and other major decisions

are made, which have significant impact on the downstream design and related

manufacturing processes. It is a knowledge intensive process where diverse

knowledge and several years of experience are put together to design quality and cost

effective products. Unfortunately, computer support systems for this phase are lagging

behind compared to the currently available commercial computer aided design (CAD)

tools for the later stage of design to reduce the designers workload and product

development time.

The overall goal of this research is to provide designers with computational tool that

support conceptual design process. To achieve this goal a methodology that integrates

systematic design approach with knowledge-based system is proposed in this thesis.

Accordingly, a framework of computer based computational tool known as

conceptual design support tool (CDST) is developed using the proposed methodology.

The tool assists designers in performing functional modeling by providing standard

vocabularies of functions in the form of function library, generate concepts stored in

the database from previous designs, display the generated concepts on the

morphology chart, combine the concepts and evaluate the concepts variants. Concepts

from subsea processing equipment design have been collected and saved in the

database. The tool also accepts new concepts from the designer through its knowledge

acquisition system to be saved in the database for future use. In doing so, it is possible

to integrate human creativity with data handling capabilities of computers to perform

conceptual design more efficiently than solely manual design. The tool can also be

used as a knowledge management system to preserve expert’s knowledge and train

novice designers. The applicability of the proposed methodology and developed tool

is illustrated and validated by using a case study and validation test conducted by

independent evaluators.

viii

ABSTRAK

Reka bentuk konseptual adalah dianggap sebagai fasa paling akut dan penting bagi

proses rekabentuk. Ia adalah peringkat di mana ciri-ciri utama produk ditentukan,

peruntukan besar bagi kos kitaran hasil keluaran terlibat, dan keputusan-keputusan

utama lain dibuat, yang mempunyai kesan mendalam ke akhir rekabentuk dan proses

pembuatan. Ia satu ilmu proses intensif di mana pengetahuan pelbagai dan

pengalaman yang panjang digabungkan untuk membentuk hasil akhir yang berkualiti

dan kos yang berpatutan. Malangnya, sistem-sistem sokongan komputer untuk fasa ini

agak ketinggalan berbanding dengan alat reka bentuk terbantu komputer (CAD)

komersial yang kini boleh didapati banyak dipasaran terutamanya alat bantu komputer

untuk peringkat akhir reka bentuk. Dengan ini dapat mengurangkan beban kerja

pereka dan masa pembentukan hasil keluaran.

Matlamat keseluruhan kajian ini adalah untuk melengkapkan alat terbantu computer

yang menyokong proses rekabentuk konsepsi. Bagi mencapai matlamat ini satu

kaedah dicadangkan dalam disertasi ini bagi mengintegrasikan pendekatan reka

bentuk sistematik dengan sistem berasaskan pengetahuan. Oleh kerana itu, satu

rangka kerja untuk alat terbantu komputer yang dikenali sebagai alat rekabentuk

konsepsi terbantu komputer (CDST) adalah dibangunkan menggunakan kaedah yang

dicadangkan. Alat terbantu ini dpat membantu pereka dalam melaksanakan model

fungsi dengan menyediakan piawaian perbendaharaan kata fungsi dalam bentuk

simpanan perpustakaan, menjana konsep-konsep simpanan dalam pangkalan data

daripada rekaan-rekaan sebelumnya, paparan konsep-konsep dijanakan pada carta tata

kata dan menggabungkan konsep-konsep itu dan menilai konsep-konsep yang

berbeza. Konsep-konsep daripada peralatan proses dikumpul dan disimpan dalam

pangkalan data. Alat terbantu ini juga menerima konsep-konsep baru daripada pereka

melalui sistem tambahan pengetahuan untuk disimpan dalam pangkalan data untuk

digunakan kemudian. Dengan ini, ada kemungkinan untuk menyatukan kreativiti

insani dengan keupayaan pengendalian data komputer untuk menjalankan rekabentuk

konsep dengan lebih cekap daripada rekabentuk tangan. Alat terbantu ini juga boleh

ix

digunakan sebagai satu sistem pengurusan pengetahuan untuk mengekalkan

pengetahuan pakar dan melatih pereka-pereka baru. Kebolehgunaan kaedah yang

dicadangkan dan alat terbantu yang dihasilkan akan digambar dan disahkan dengan

menggunakan satu kajian kes dan ujian pengesahan dijalankan oleh para penilai

bebas.

x

TABLE OF CONTENTS

TABLE OF CONTENTS

Status of Thesis ... i

Approval page .. ii

Title page ... iii

Declaration .. iv

Dedication .. v

Acknowledgements ... vi

Abstract .. vii

Abstrak ... viii

Table of contents .. x

List of Tables .. xiv

List of Figures .. xv

CHAPTER 1: INTRODUCTION .. 1

1.1 Overview of Engineering Design .. 1

1.2 Problem Statement .. 3

1.3 Research Objective .. 5

1.4 Scope of the Research ... 7

1.5 Thesis Organization ... 9

CHAPTER 2: LITERATURE REVIEW ... 11

2.1 Introduction ... 11

2.2 Introduction to Conceptual Design Process .. 11

2.3 AI in Design .. 14

2.4 Knowledge-Based System... 17

xi

2.4.1 The knowledge base ... 18

2.4.2 The inference engine .. 20

2.5 Function-Based Design: A Survey .. 21

2.5.1 Definition of Function.. 21

2.5.2 Functional Representation ... 22

2.5.3 Functional Classifications .. 24

2.6 Function-to-Form Mapping ... 31

2.7 Concept Evaluation Process .. 37

2.7.1 Pugh’s Evaluation Method ... 38

2.7.2 Weighted decision matrix .. 38

2.7.3 Analytical hierarchy process (AHP) .. 42

2.8 Computer Aided Conceptual Design (CACD) Tools: A Survey 45

2.9 Summary ... 55

CHAPTER 3: METHODOLOGY ... 56

3.1 Introduction ... 56

3.2 Conceptual Design Process Model .. 57

3.2.1 Functional Modeling .. 60

3.2.2 Concept Generation ... 62

3.2.3 Concept Combination .. 65

3.2.4 Concept Evaluation .. 67

3.3 Model Construction ... 68

3.3.1 Software Design Specifications and Requirements 69

3.3.2 Programming Environment .. 72

3.4 Summary ... 73

CHAPTER 4: DEVELOPMENT OF CONCEPTUAL DESIGN SUPPORT TOOL

(CDST) ... 75

xii

4.1 Introduction ... 75

4.2 Development of the Software .. 76

4.2.1 Basic Programming Elements and Knowledge Representation

Formalism in CLIPS .. 76

4.2.2 The Functional Modeling Module ... 80

4.2.3 Concept Generation Module .. 83

4.2.4 Concept Combination Module ... 89

4.2.5 Concept Evaluation Module .. 92

4.2.6 The GUI Development and its Integration with CLIPS 92

4.3 Integration of the Modules and Initial Testing .. 93

4.4 Summary ... 94

CHAPTER 5: CASE STUDIES... 96

5.1 Introduction ... 96

5.2 Conceptual Design of Oil and Gas Separator using CDST 96

5.2.1 Problem Description and Functional Modeling 96

5.2.2 Concept Generation and Combination ... 101

5.2.3 Concept Evaluation .. 106

5.3 CDST for Subsea Process Equipment Design... 112

CHAPTER 6: VERIFICATION AND VALIDATION OF CDST 119

6.1 Verification of CDST .. 119

6.2 Validation Test .. 119

6.2.1 Selection of Evaluators .. 120

6.2.2 Evaluation Methods and Procedures .. 120

6.2.3 Validation Test Results .. 121

6.3 Summary ... 127

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 128

xiii

7.1 Contributions of the Research ... 128

7.2 Critique of the Research .. 131

7.3 Recommendation for Future Research .. 133

REFERENCES .. 135

Appendix A: Source Code and Support Documents .. 144

A.1 Contents of the Attached CD .. 144

A.2 CDST in Different File Formats.. 144

A.3 Source Code .. 145

Appendix B: List of Software used to Develop CDST .. 147

Appendix C: Evaluation questionnaire .. 148

xiv

LIST OF TABLES

Table 2.1 Hundal's primary categories and sub-categories of basic functions (Hundal,

1990) .. 25

Table 2.2 Basic function groups and their extension (Kirschman and Fadel, 1998) ... 26

Table 2.3 Functional basis reconciled function set (adapted from (Hirtz et al., 2002))

.. 30

Table 2.4 Functional basis reconciled flow set (adapted from (Hirtz et al., 2002)) 31

Table 2.5 Fundamental scale of absolute numbers (Saaty, 1994) 40

Table 2.6 Weighted decision matrix .. 41

Table 2.7 A 5-point and 11-point scale for concept evaluation (Dieter, 2000). 42

Table 2.8 A hypothetical example to demonstrate AHP with three alternative concepts

and two selection criteria ... 44

Table 2.9 Summary of CACD tools ... 53

Table 6.1 Overview of the number of concepts generated by two of the evaluators

compared with CDST .. 122

Table B.1 List of software used to develop CDST .. 147

Table C.1 CDST evaluation questionnaire .. 148

xv

LIST OF FIGURES

Figure 1.1 Phases of design process (adapted from (Pahl and Beitz, 1996)) 3

Figure 1.2 Impact of decision and availability of computer tools during the design

process (Wang et al., 2002).. 5

Figure 1.3 Schematic view of the general methodology in developing the CDST 7

Figure 1.4 An example of subsea processing (Sapihie, 2007) 9

Figure 2.1 Architectural components of knowledge-based system 18

Figure 2.2 Decomposing overall function into subfunctions (adapted from (Pahl and

Beitz, 1996)) .. 32

Figure 2.3 Functional decomposition and mapping in axiomatic design approach 34

Figure 2.4 The general form of function logic diagram (adapted from (Sturges et al.,

1996)) ... 35

Figure 3.1 Steps in conceptual design process ... 58

Figure 3.2 The proposed conceptual design model ... 60

Figure 3.3 Functional structure of hand-held nailer ... 62

Figure 3.4 Pseudo code to create theoretically possible concept variants 66

Figure 3.5 The waterfall model of software development (adapted from (Fisher,

1991)) ... 69

Figure 3.6 Flow chart of the CDST ... 71

Figure 4.1 The structure of a knowledge-based system and programming

environments used ... 76

Figure 4.2 A deftemplate construct to define function in CLIPS 80

xvi

Figure 4.3 Screenshot of the function library .. 82

Figure 4.4 A deftemplate construct to define alternative concepts in CLIPS 84

Figure 4.5 Sample alternative concepts representation in the database 85

Figure 4.6 A general syntax for defrule construct ... 86

Figure 4.7 Sample mapping rule .. 87

Figure 4.8 Mapping rule to prevent repeated rule firing .. 87

Figure 4.9 A mapping rule when there is no alterative concept in the database 88

Figure 4.10 Screenshot of alternative concepts input window 89

Figure 4.11 Theoretically possible concept combination rule for 3 subfunctions 91

Figure 4.12 Flow compatible concept combination rule for 3 subfunctions 92

Figure 4.13 Screenshot of CDST welcoming window .. 93

Figure 5.1 Functional model for three-phase oil and gas separator 97

Figure 5.2 CDST welcoming window ... 98

Figure 5.3 Screenshot of the function library .. 99

Figure 5.4 Screen shot of pull down menu to load input functional structure 100

Figure 5.5 Function type selector for concept generation .. 102

Figure 5.6 Design summary window ... 103

Figure 5.7 Morphology chart ... 104

Figure 5.8 Concept variants represented textually ... 106

Figure 5.9 Schematic representation of the concepts ... 106

Figure 5.10 Concept selection process main window .. 107

Figure 5.11 Evaluation criteria input window ... 107

xvii

Figure 5.12 Absolute comparison window with list of concepts for concept variant 3

.. 108

Figure 5.13 Screenshot of concept screening window ... 109

Figure 5.14 Weight assigning method selection popup window 110

Figure 5.15 Pairwise comparison matrix ... 110

Figure 5.16 Final concept evaluation using weighted decision matrix 111

Figure 5.17 Schematic view of the selected concept variant 111

Figure 5.18 Flow chart for CDSTsped ... 113

Figure 5.19 Screenshot of CDSTsped initial window ... 115

Figure 5.20 Selection of pump type ... 115

Figure 5.21 Kinetic pump design window ... 116

Figure 5.22 Viewing alternative concepts for a given subfunction 117

Figure 5.23 Separator design window ... 118

Figure 6.1 Concepts generated by the evaluators to separate liquid-gas mixture 122

Figure 6.2 Percentage rating for functional testing .. 123

Figure 6.3 Evaluators' rating for organization of the user interface 124

Figure 6.4 Startup/shutdown and positive test results ... 124

Figure 6.5 Summary of evaluators rating on general use of CDST 125

Figure 6.6 Evaluators rating on the overall achievement of the program 125

Figure 6.7 Excerpt from the saved design history ... 126

Figure A.1 An excerpt from CDST source code in CLIPS .. 145

Figure A.2 An excerpt from the source code of GUI in Python environment 146

Chapter 1: Introduction 1

CHAPTER 1: INTRODUCTION

1.1 Overview of Engineering Design

Engineering design is the process of devising a system, component, or process to meet

perceived needs. Even though humans have been designing products for thousands of

years, design research is still going on. This is because of the current competitive

market, developing more efficient and new approaches, and dynamic customer

requirement for new, cost effective and high quality products. In order to make the

design process more effective and efficient, design research aims at developing means

to understand the design and develop a support system to enable design process in

getting more successful products (Blessing and Chakrabarti, 2009). Product quality,

cost and time to market are the key measures for the effectiveness of design process

(Ullman, 2003). Careful and detail exploration of alternative options may result in low

cost and quality products. However, this requires more time and the process is also

knowledge intensive. Thus, the designer needs to be supported with efficient tools to

compete in the market.

Although it may be difficult to always border line between different phases, design

process can generally be classified into four phases as shown in Figure 1.1 (Pahl and

Beitz, 1996, French, 1998). Planning and task clarification is the first phase in which

the designer identifies customer needs, collects information about the requirements

and come up with requirements list or design specification as an output. The second

phase of design is conceptual design, which takes the requirement list as an input and

come up with one or more concept variants that can satisfy the requirements. This

requires abstracting the essential problems, establishing functional structure,

searching for alternative concepts, combining those concepts to form concept variants,

and evaluating those concept variants. The selected concept variant is further

developed in the embodiment design phase, where preliminary form design, material

selection and calculations are done which results in determining the construction

structure or overall layout. The last phase of design is the detail design phase in which

details of production and operation documents are prepared. Among these phases,

Chapter 1: Introduction 2

conceptual design is considered to be the most critical phase of design. This is

because conceptual design is:

i. the most demanding phase from the designer’s point of view to generate new

solution or make remarkable improvements on the design;

ii. the stage where product’s fundamental features are determined with imprecise

and incomplete information; and

iii. the stage where large proportion of the product’s lifecycle cost is committed

and other major decisions are made.

Depending on its originality or innovativeness, a design activity can be classified as

original, adaptive, or variant design (Pahl and Beitz, 1996). In original design, new

solution principles are invented by selecting and combining known principles and

technology, or by inventing completely new technology. When existing or slightly

changed tasks are solved using new solution principles, it can also be considered as

original design. Original designs usually proceed through all the design phases. In

adaptive design, known and established solution principles are adapted to changed

requirements, whereas in variant design the sizes and arrangements of parts and

assemblies are varied within the limits set by previously designed product structures.

In practice, it is often not possible to define precisely the boundaries between the

three types of design and the majority of design problems are adaptation and variation

of existing designs.

Chapter 1: Introduction 3

Task

Clarify and define
 the task

Design
Specification

Develop the principal solution:
-identify essential problems
-establish function structure
-search for working principles and structure
-combine and firm up into concept variants
-evaluate against technical and economical criteria

Concept

Develop the Construction structure:
-preliminary form design, material selection and
calculation
-select best preliminary layout
-refine and improve layout
-evaluate against technical and economical
criteria

Preliminary Sketch

Define the construction structure:
-eliminate weak spots
-check for errors, disturbing influences and
minimum costs
-prepare the preliminary parts list and
production and assembly documents

Prepare production and operating
documents:
-elaborate detail drawings and parts lists
-complete production, assembly, transport
and operating instructions
-check all documents

Definitive Sketch

Product documentation

Solution

U
pd

at
in

g
an

d
im

pr
ov

em
en

t

Task clarification

Conceptual Design

Embodiment Design

Detail Design

In
fo

rm
at

io
n

ad
ap

ts
 to

 sp
ec

ifi
ca

tio
n

Figure 1.1 Phases of design process (adapted from (Pahl and Beitz, 1996))

1.2 Problem Statement

Conceptual design is considered as the most important and critical phase of any

product design process. It is the stage where the product's fundamental features are

Chapter 1: Introduction 4

determined, 70-85% of the life-cycle costs of the product are committed (Sieger and

Salmi, 1997, Zuo and Director, 2000, Hsu and Liu, 2000, Rao et al., 1999) and other

major decisions are made with incomplete and imprecise information. Decisions made

early at this stage have a significant impact on other aspects of the product’s life cycle

such as quality, cost, and manufacturability. It is usually difficult and even impossible

to compensate a poorly conceived concept with good detail design process (Pahl and

Beitz, 1996, Hsu and Woon, 1998, Rao et al., 1999, Hsu and Liu, 2000, Wang et al.,

2002). Therefore, conceptual design requires special attention in order to get

successful design.

Currently, there are several mechanical computer aided design (CAD) tools in the

market to reduce the workload of human designer and product development time.

However, most of these tools are used in the later phases of design such as drafting,

geometric modeling, and computer aided engineering (CAE), which are mostly based

on geometric information. These tools do not deal with the aspects of conceptual

design process such as functional modeling, concept generation, combination and

evaluation, which are function based and important during the conceptual design

phase. Hence, the strength and use of the currently available CAD tools lies more at

the detail design phase than the conceptual phase (Robertson and Radcliffe, 2009).

Currently, there is no known commercial CAD tool that can be used for the whole

conceptual design process.

In designing a product, knowledge about the product is gained as the design process

progress from conceptual design to the detail design phase, but the impact of decision

declines. This is because decisions made at the earlier stages become constraints for

the later stage. Hence, the later stage of design is mostly done within the limits set

during the conceptual phase. Figure 1.2 shows the impact of decision and the

availability of computer tools during the different phases of the product design

process. This indicates that there is a greater opportunity to enhance the design

process during the conceptual design phase if computer support tools are employed.

Furthermore, as the knowledge about the design is gained during the design process,

the design requirements may change or evolve to new requirement, which has not

been recognized at the beginning. This makes the design process iterative through

Chapter 1: Introduction 5

which some of the design activities are repeated for refinement and improvement.

Possible design options should be explored exhaustively and carefully to make

necessary changes early in the design process. Changes made at the later stage of

design are more costly and results in delay of the final product release (Qiu et al.,

2002). The iterative and repetitive design tasks can be computer assisted in order to

reduce product development time and improve the design process.

Figure 1.2 Impact of decision and availability of computer tools during the design
process (Wang et al., 2002)

Conceptual design process is knowledge intensive, and requires collaboration of

expertise from different disciplines as it needs large amount of diverse information.

Furthermore, these large amount of data needs to be explored (i.e., processed)

carefully to get better design. However, humans can only process seven plus or minus

two information at a time (Miller, 1956). Because of this limitation, it is difficult to

explore all the design space manually within a given time and make sound judgment.

On the other hand, computers are capable of handling and processing large data

though they are not creative like human being. The hypothesis of this research is that,

by combining human creativity with computer capabilities it is possible to perform the

conceptual design process more effectively than solely manual design.

1.3 Research Objective

The objectives of the research work reported in this thesis are:

Chapter 1: Introduction 6

1. To investigate the problems associated with function-based conceptual design

process.

2. To propose a model or framework that can be used in functional design at the

conceptual design stage to assist designers.

3. To develop a computer based design support tool to test and validate the

proposed model.

The objectives of this research are realized through the development of the following

research modules:

• Functional modeling: This includes defining functionality and representation

of functions in such a way that it is both understood by the machine and

human being.

• Concept generation: This includes representing concepts, generating concepts

from database using domain independent production rules, assisting designers

in conducting concept generation process manually, and displaying the

generated concepts on morphology chart.

• Concept combination: This includes domain independent production rules to

combine generated concepts to create concept variants.

• Concept evaluation: This includes assisting designers to define selection

criteria for a given design problem and evaluating concept variants using

different evaluation techniques.

In this research, a methodology integrating systematic design approach with a

knowledge based system is proposed to develop the conceptual design process model

as shown in Figure 1.3. The proposed model is implemented into a computer program

known as conceptual design support tool (CDST) to assist designers during the

conceptual design process and improve the design process. The detail methodology

and development of CDST are discussed in Chapter 3 and Chapter 4 respectively.

Chapter 1: Introduction 7

Figure 1.3 Schematic view of the general methodology in developing the CDST

1.4 Scope of the Research

The objective of this research is not meant to fully computerize or automate the entire

conceptual design process and substitute human designer with the computer tool.

However, the aim is to integrate human creativity with computational and data

handling capabilities of computers which results in hybrid conceptual design process.

The design knowledge in the computer support tool is developed based on design

reuse philosophy. Design reuse plays central role in the conceptual design stage

especially in concept generation process. Conceptual design knowledge can be

obtained from experts or extracted from existing products and saved in the design

knowledge base. Knowledge from current design process can also be used for future

designs. To archive design knowledge in a computer, the use of standard method of

representing mechanical functions and alternative concepts is important. This fosters

reuse of the design knowledge for other similar problems in the future. The alternative

concepts at this early phase of design are at higher level of abstraction with no detail

Chapter 1: Introduction 8

geometric or material information. Hence, only the concept’s functionality and

input/output flows are captured.

The computer support system will be used in generating alternative concepts for given

functions, creating morphology chart, combining compatible alternative concepts, and

evaluate the concept variants in the mechanical engineering domain. In general, the

tool will assist human designer in the conceptual design process:

• by providing design knowledge from past experiences;

• handling some of the monotonous and time consuming tasks which gives the

designer more time to concentrate on the creative part of design where

humans are better than computers; and

• capturing the new concepts generated during the current design process for

future reuse.

The production rules in the knowledge-based system are generic to be used for any

mechanical conceptual design process. However, the domain of application for the

current research is concerned with conceptual design knowledge of subsea process

equipment design in oil and gas industry. There is no known conceptual design

support tool so far to address this domain. In recent years because of high global oil

demand, depletion of old onshore fields and technological advancement, operators are

moving to deepwater field development. The produced fluid from subsea wells which

is mostly a multiphase mixture of oil, water and gas is transported to a platform or

floating production storage and offloading (FPSO) deck located many kilometers

away for processing. Because of back pressure imposed by production risers and long

tie-backs there is a growing interest in processing the produced fluids on the seafloor

(i.e., subsea processing) (Scott et al., 2004). Subsea processing mainly comprises of

subsea separation and boosting. Separating fluids on the sea floor will avoid lifting

large volumes of water to the surface for processing and disposal. Furthermore,

subsea processing provides lesser susceptibility to hydrate formation since all the

processing to final saleable crude can be done at the seabed. In general subsea

processing provides reduced load requirement on the platform, and improved

recoveries and greater efficiencies (Lyons and Plisga, 2005). However, subsea

Chapter 1: Introduction 9

processing is an emerging technology which has not yet been fully utilized and there

is also resistance from operators to use this new approach. Figure 1.4 shows a typical

subsea processing consisting of separator module and multiphase pump module.

 Figure 1.4 An example of subsea processing (Sapihie, 2007)

1.5 Thesis Organization

This thesis is composed of seven chapters. Chapter 2 presents the literature review of

researches related to this work. This includes review of conceptual design process,

support of artificial intelligence systems in design, and a survey of function-based

design and computer aided conceptual design tools so far developed as bench

mark. Chapter 3 presents the research methodology used to achieve the objective of

this research. The proposed conceptual design model and the integrated knowledge-

based system together with the programming environments used to implement the

model are discussed. Chapter 4 presents the development of the conceptual design

support tool (CDST) in detail. The applicability and implementation of CDST is

illustrated with case studies in Chapter 5. CDST is demonstrated first with conceptual

design of three phase separator and then with a general conceptual design support tool

Chapter 1: Introduction 10

for subsea process equipment (CDSTsped). Chapter 6 describes about the verification

and validation tests conducted by reviewers after using CDST. Finally Chapter 7

concludes this thesis by discussing the contributions and limitation of the work

presented together with recommendation for future research.

Chapter 2: Literature Review 11

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter reviews the state of the art in the conceptual design research and areas in

the computer support tool development for conceptual design. In particular, different

conceptual design process models and the integration of artificial intelligence with

design in developing computer aided conceptual design tools are reviewed. Function-

based design approach together with the definition, classifications, representations,

and decomposition of functions is presented. Finally, a review of existing computer

aided conceptual design tools that support designers in performing conceptual design

is presented.

2.2 Introduction to Conceptual Design Process

Conceptual design has been defined as that phase of design process where the

designer identifies the essential problem through abstraction, establish functional

structure, search for suitable working principles (concepts) and combine these into a

working structure (concept variants), and evaluate the concept variants against

technical and economical criteria to come up with one or two concept variants for

further development (Pahl and Beitz, 1996). It is the phase where most important

decisions are made by combining the knowledge from engineering science, practical

experience, production methods, and marketing (French, 1998). The goal of

conceptual design phase is to explore the design problem and field of solutions,

together with finding the best solution that is feasible for further development

(Bonnema and Houten, 2004).There is greatest demand from the designer to make

remarkable improvements on the design at this stage. Hence, conceptual design is a

complex process where the designer needs to make wise decisions by considering

several parameters.

Chapter 2: Literature Review 12

In order to support the conceptual design activity with computers, the product to be

designed and the knowledge from which the design is developed needs to be modeled

correctly. But this modeling process is considered as one of the most difficult issues

to address (Hsu and Woon, 1998). Feature-based, knowledge-based and function-

based design models are some of the modeling approaches used during the conceptual

design process. These modeling approaches in relation to conceptual design support

system will be reviewed next.

Feature-based design

When a product model is built using design features, it is known as design by features

or feature-based design approach. There are varieties of definitions for the term

“feature” in design literature indicating no consensus among the researchers (Hashim

et al., 1994, Allada, 2001). Considering its purpose Hashim (Hashim et al., 1994)

defined feature as a geometric entity having geometric attributes (e.g., holes,

protrusions, bosses etc) that either provides or accepts a function. Features can be

used to convey information used to model the relationships between the requirements,

functional description, and physical solutions of a product (Brunettia and Golob,

2000). Computer tools developed based on feature-based design approach allows the

designer to use mechanical features stored in feature library to build the product

(Kamrani and Vijayan, 2006). Furthermore, this design approach helps the designer to

consider the manufacturability and assembly process early in the conceptual stage.

Feature based design approach suffers from the following limitations (Allada, 2001):

1. Feature validation needs to be performed every time a new feature is added to

ensure the new feature is placed in correct position or it does not affects the

existing features.

2. The determination of what features must be present in the feature library. A

feature library with limited number of feature primitives may be difficult to

satisfy various design needs, i.e., represent various design problems (Hsu and

Woon, 1998). On the other hand a feature library with too many predefined

features becomes cumbersome for the designer.

Chapter 2: Literature Review 13

Knowledge-based design

Conceptual design is a knowledge intensive process where diversified knowledge and

several years of experience are required to design quality, cost effective, and

innovative product. Knowledge of experienced designers should be acquired and kept

for future reuse or to train novice designers before the experienced designers retire or

leave the company. Knowledge-based design is a computer based design approach

which relies on knowledge acquired from experienced designers, analyzing existing

products, handbooks, patents etc. to automatically perform design process or to

support designers. The acquired knowledge is represented in the form of facts and

production rules in the knowledge-based system. A knowledge-based system is an

artificial intelligence (AI) system, consisting of domain knowledge in the knowledge

base, a controlling mechanism (an inference engine), and interface to the outside

world through user interface. Knowledge-based system use symbolic representation of

knowledge which can easily be understood both by human designer and the machine.

Furthermore, since the domain knowledge is separated from the controlling

mechanism, it is easy to add new knowledge during the program development or later

(Hopgood, 2001). A number of researchers used knowledge-based design approach

for conceptual design of products to generate design solutions from existing design

knowledge (Tong and Gomory, 1993, Bracewell and Sharpe, 1996, Sieger and Salmi,

1997, Moulianitis et al., 1999, Zhang et al., 2001b).

Function-based design

The conceptual design stage, which starts with requirements list and results in concept

variants satisfying those requirements, is function oriented, and the process is known

as functional design. Every product has reason behind its existence which is its

function. The main design focus at the conceptual design stage is to find design

solutions that can achieve the required functions, hence conceptual design is

considered as function driven and the process functional design. Tor et al (Tor et al.,

1998) defined functional design as an approach for designing CAD software that

incorporates the representation of functional information, as well as structural

information, and its aim is to provide computer tools to link design functions with the

physical embodiments used to realize the functions.

Chapter 2: Literature Review 14

Representing functionality in a computer program in human and machine

understandable form, and functional reasoning (i.e., the use and manipulation of

functional knowledge in a form suitable for computer based environment) are the

basis for computer support tools using function-based design approach. A number of

researchers advocate function-based design approach (Suh, 1990, Pahl and Beitz,

1996, Dieter, 2000, Ullman, 2003). In function-based design, the customer

requirements are transformed into sets of functions (i.e., functional modeling) in a

solution neutral form, which helps the designer not to stick to specific solutions too

early in the design process. Functional models of products/devices provide a high-

level representational framework in which activities such as design, diagnosis,

verification, and modification can be performed without reference to the actual

structure of the system (Erdena et al., 2008). Using the functional model, the designer

generates wide-ranging alternative solutions and selects the most promising ones for

further development. The function-based design approach will be discussed in detail

in Sections 2.5 and 2.6.

In this thesis, a hybrid approach consisting of function-based and knowledge-based

design approaches is used to develop the computer aided conceptual design tool

which will be discussed further in Chapter 3.

2.3 AI in Design

Artificial intelligence (AI) has been defined as the simulation of human intelligence

on a machine, so as to make the machine efficient to identify and use the right piece

of knowledge at a given step of solving a problem (Konar, 2000). For the machine, to

think intelligently, domain knowledge should be represented and stored together with

means to reason about the knowledge. Within AI, three main directions of reasoning

can be distinguished (Rentema and Jansen, 2000):

• Reasoning by logic, e.g. Rule-based reasoning technique in expert systems

where the domain knowledge can be formalized into simple rules.

Chapter 2: Literature Review 15

• Reasoning by learning, e.g. Artificial Neural Networks (ANN). An ANN

consists of a network of nodes (processing elements) connected via adjustable

weights (connections). By training the network with a large set of input-output

pairs, the system learns the functional relation between the input and the

output space. ANN is good for classification tasks and for performing

associative memory retrieval. Hence, many neural networks applications in

engineering design are geared towards either classifying the designs into

families of design problems, or to finding the nearest values for the design

parameters (Hsu and Woon, 1998).

• Reasoning by analogy, e.g. case-based reasoning technique. Case-based

reasoning is the general problem solving method where a given problem is

solved by retrieving and adapting stored solution to a closely related problem

(Goel and Chandrasekaran, 1990). When a new problem is presented, the

system searches for cases with similar problem descriptions. Although the

retrieved case usually does not completely fit the new problem, the retrieved

solution may be a good starting point for further adaptation.

AI systems are suitable to solve non-deterministic and “ill-structured” problems.

Design problems are widely recognized as being “ill-defined” or “ill-structured”, as

opposed to well-defined or well-structured problems which have clear goal, and often

one clear answer (Cross, 2008). The characteristics of “ill-defined” or “ill-structured”

problems are:

• There is no definitive formulation of the problem. When the problem is

initially set, the goals are usually vague, and many constraints and criteria are

unknown.

• Any problem formulation may embody inconsistencies. Mostly, many

conflicts and inconsistencies emerge only in the process of problem solving,

and these have to be resolved in the solution.

• Formulations of the problem are solution-dependent. It is difficult to formulate

a problem statement without implicitly or explicitly referring to a solution

concept.

Chapter 2: Literature Review 16

• Proposing solutions is a means of understanding the problem.

• There is no definitive solution to the problem. The mapping between the

problem and solution is not usually one-to-one, which makes designing non-

deterministic process. Different solutions can be equally valid responses to the

initial problem.

These non-deterministic and “ill-structured” natures of design make it suitable to be

solved with AI systems. Integrating AI with design begins in the early 1980s. The

goal of using AI systems in design at that time was to develop intelligent CAD system

that could design products more or less automatically with minimum user inputs and

interactions (Tomiyama, 2007). Design was considered in its broader sense including

analysis, selection (of components or materials), parametric design, optimization, data

integrity management (such as geometric constraint management), process planning,

and synthesis. However, this objective has not been achieved. Because of this, in the

past two decades, the research in this area focus on developing an integrated design

support environment that can provide useful knowledge and guide the designer rather

than automating the design process. Tomiyama (Tomiyama, 2007) pointed out two

major concepts as requirements for intelligent CAD development:

• The intensive use of design knowledge to design artifacts in one way or

another, and

• The intelligent CAD should exhibit knowledge management capabilities

because design is mostly a knowledge generation process.

A number of researches have been done in integrating AI with design especially

during the conceptual design stage. For example, EFDEX (Engineering Functional

Design Expert) is a knowledge-based (rule-based) system for automating conceptual

design for specific domain (Zhang et al., 2001b), and AIDA (Artificial Intelligence

supported Design of Aircraft), integrates rule-based and case-based techniques for

supporting designers in the conceptual design of aircraft (Rentema and Jansen, 2000).

The general descriptions of these systems and other computer aided conceptual design

tools will be discussed further in Section 2.8.

Chapter 2: Literature Review 17

In this research from AI system, a knowledge-based system is used to achieve the

objectives of the research. Next, the components and features of a knowledge based

system are reviewed.

2.4 Knowledge-Based System

Knowledge-based system is an artificial intelligence system which uses stored

knowledge to solve problems in a specific domain. The three essential components of

a knowledge-based system are:

i. The knowledge base;

ii. The inference engine; and

iii. Interface to the outside world.

The separation of the domain knowledge (knowledge base) from the controlling

mechanism (inference engine) makes knowledge-based systems different from

conventional programs where domain knowledge is intimately intertwined with

software for controlling the application of that knowledge (Hopgood, 2001). This

separation makes it possible to represent knowledge in a more natural way in which

humans describe their own problem solving techniques. Furthermore, the explicit

separation of knowledge from control makes it easier to add new knowledge, both

during the program development and in the program’s life time by incorporating a

knowledge acquisition module to the knowledge-based system. The architectural

components of a typical knowledge based system with knowledge acquisition module

are shown in Figure 2.1. In the following sections these components of the

knowledge-based system are discussed further.

Chapter 2: Literature Review 18

Figure 2.1 Architectural components of knowledge-based system

2.4.1 The knowledge base

The knowledge base contains the domain specific and control knowledge which is

used to solve problems in the domain. This knowledge can be obtained from experts

or published literatures such as handbooks, manuals, etc. The acquired knowledge

should be represented following appropriate knowledge representation formalism and

encoded so that it is amenable to computer manipulation. Knowledge can be

represented and stored in the knowledge base in various forms. The main knowledge

representation formalisms proposed in the literature includes (Nikolopoulos, 1997):

• Rules (Production rules) represent knowledge in the form of :

If <condition> then <conclusion or action>

• Semantic network represents knowledge as a labeled directed graph with nodes

(oval shaped) corresponding to objects, situations or concepts and arcs

corresponding to relations or association between the nodes. The term

semantic networks encompass a family of graph-based representations. These

includes:

 Conceptual graph represents knowledge using connected bipartite

graph whose nodes represent either concepts (represented as box), or

Chapter 2: Literature Review 19

conceptual relations (represented as ellipse). Conceptual graph does

not use labeled arcs unlike semantic networks; instead the conceptual

relation nodes represent relations between concepts (Luger and

Stubblefield, 1998).

 Petri nets represent knowledge using a directed bipartite graph having

two types of nodes known by places (i.e., conditions) and transitions

(i.e., discrete events that may occur), and directed arcs to connect

nodes of different types describing which places are pre- and/or post

conditions for which transition. A place is considered as an input to a

transition if and only if there is a directed arc from the place to the

transition and as an output to a transition if and only if there is an arc

from the transition to the place. The place nodes are represented by

circles and the transition by bars or boxes.

• Frames provide a means for organizing and representing knowledge as

structured objects consisting of named slots with attached values. Frames can

be connected through class-subclass relationships to form a frame system

allowing data abstraction and inheritance i.e., a frame can inherit properties

from its parent.

• Object oriented paradigm (OOP) provides a means to represent knowledge in

a structured manner including data abstraction, inheritance, encapsulation (or

information hiding), and dynamic binding (or late binding) (Hopgood, 2001).

Because of this, knowledge representation with this scheme requires a

programming language which supports these capabilities.

• Hybrid representation combines multiple representation paradigms into a

single integrated programming environment. The fact that different sections of

knowledge base may be encoded more efficiently using different formalisms,

reveals the importance of hybrid systems.

The selection of knowledge representation scheme among these varieties of

approaches depends on the knowledge to be represented and the capability of

programming environment used.

Chapter 2: Literature Review 20

2.4.2 The inference engine

The inference engine is the controlling mechanism which contains general algorithms,

which are able to manipulate the knowledge stored in the knowledge base. In

knowledge-based systems the inference mechanism compares the data/facts in the fact

base with the information in the knowledge base and decides which information in the

knowledge base applies to the data/fact to deduce results in an organized manner. The

inference engine works based on an inference rule and a search strategy. There are

two types of inference engines: forward-chaining or data-driven and backward-

chaining or goal-driven.

2.4.2.1 Forward Chaining

In forward chaining or data-driven method, rules are selected and applied in response

to the current fact base. The fact base comprises all facts known by the system, which

are either derived by rules or supplied directly. In this method, the information in the

fact base is compared with the IF part of the rules in the knowledge base. If a rule is

found whose IF part matches the information in the fact base, then the rule fires, i.e.,

the rule's THEN part is added to the fact base. The procedure repeats until all possible

conclusions are drawn.

2.4.2.2 Backward-chaining

Backward-chaining is an inference strategy that assumes the existence of a goal that

needs to be established or disproved. In backward-chaining, the system forms a

hypothesis that corresponds to the THEN part of a rule or set of rules in the

knowledge base and then attempts to justify it by searching the fact base to establish

the facts appearing in the IF part of the rule or rules. If successful, the hypothesis is

established and the system reports its results; otherwise, another hypothesis is formed

and the inference mechanism repeats the procedure.

The selection of the inference mechanism used for a given problem depends on the

knowledge representation chosen, since each knowledge representation scheme has its

own associated inference mechanism, i.e., different knowledge representation

techniques support different types of inference processes. In addition to this, the

programming environment chosen also affects the inferencing mechanism (for

Chapter 2: Literature Review 21

example Prolog uses backward-chaining inferencing while CLIPS uses forward-

chaining mechanism).

2.5 Function-Based Design: A Survey

In this section, function-based design approach is reviewed from different

perspectives in the literature. Various approaches used to classify and represent

functional knowledge with their merits and demerits are presented together with the

approaches used in the current research.

2.5.1 Definition of Function

Even though function is a critical aspect of design, especially during the conceptual

design stage, there is no clear, uniform, objective, and widely accepted definition of

function (Umeda and Tomiyama, 1997). Function represents the designer’s intent

about the expected product’s basic characteristics. Some of the definitions available in

the literature are presented next.

From design problem solving point of view, Pahl and Beitz defined function as the

general input/output relationship of a system whose purpose is to perform a task and it

should be represented independent of any particular solution (Pahl and Beitz, 1996).

Function has also been defined from performance point of view by Cole (Cole, 1998)

as the actions a system must perform in response to its environment in order to

achieve the mission or goals given to it. Considering the way the design problems and

their solutions should be described, Chakrabarti and Bligh (Chakrabarti and Bligh,

2001) defined function as a description of the action or effect required by a design

problem, or that supplied by a solution. With regards to designer’s intention in

defining/describing a design problem, function has been defined as purpose or

intended use (Hashim et al., 1994). From design goal (i.e., device/artifact) point of

view, Stone and Wood (Stone and Wood, 2000) defined function as a description of

an operation to be performed by a device or artifact. According to Sturges et al

(Sturges et al., 1993, Sturges et al., 1996), function is defined as the domain-

independent characteristics or behavior of elements or groups of elements. Umeda et

al (Umeda et al., 1996) argue that it is difficult to distinguish function clearly from

Chapter 2: Literature Review 22

human behavior from which it is abstracted and defined function as a description of

behavior abstracted by the human through recognition of the behavior in order to

utilize the behavior.

Apart from variations in defining function, all the researchers agree that function

plays central role in product design and development process especially at the

conceptual design stage. They defined function from different perspectives. It is

believed that these definitions are acceptable provided that they are capable to express

the designer’s intent and describe the effect provided by the product or device

unambiguously.

2.5.2 Functional Representation

Conceptual design process can be considered as transformation of design specification

which is given as requirements list (i.e., functional requirements) into one or more

concepts that can satisfy these requirements for further development. In order to

develop computational methods to support this synthesis process, formal conceptual

design process model is required, where design problem and solutions can be

described and represented in terms of their functions. A formal functional

representation technique is important for functional modeling and functional

reasoning among others. The representation scheme should support easy definition,

modification, and retrieval of functions by the designer for specific design problem.

Traditionally there have been three approaches to represent functions in design

(Chakrabarti and Blessing, 1996, Chiang et al., 2001). These are:

i. Representing function in the form of verb-noun pairs – an example would be

the function of a shaft, i.e., “transmit torque”;

ii. Input-output flow transformations, where the inputs and outputs can be

energy, materials, or information, i.e., flow-based representation; and

iii. Transformation between input-output situations and states, i.e., state-based

representation

Chapter 2: Literature Review 23

However, the last two approaches can be grouped together and functional

representation can be generalized in two approaches as proposed by Chakrabarti and

Bligh (Chakrabarti and Bligh, 2001):

i. Linguistic (Natural-language-like) representation of function, i.e., verb-noun

pairs. This kind or representation is close to the way humans express their

ideas, however it is difficult to formalize in a generalized way for computer

application.

ii. Mathematical representation of function, where function is expressed as a

transformation between input and output. Input/output transformations can be

represented by mathematical functions in situations where a function involves

the process of flow of energy, material or signal, or physical quantities. This

representation can be easily formalized for computer application but it needs

translation to designer’s natural language.

From these two approaches, it is preferable to represent function qualitatively, using a

linguistic description since mathematical representation of design in the early stage is

not always feasible with limited information available. Thus, in this research, a hybrid

functional representation approach is used consisting of linguistic approach by verb-

noun pair together with the flows of energy, material and signals where applicable.

The relationship between inputs and outputs is expressed independently of the

solutions. This hybrid representation minimizes the limitation of flow based

representation and gives more flexibility to the designer. For insistence, flow based

representation can not sufficiently describe a function which is not transformation

between input and output (e.g. function of a bolt). In such cases function is

represented by verb + noun pair (connect/fix solid material for bolt). Similarly, if the

function consists of transformations of flows as in the case of motor for example, the

function is represented with verb + noun together with flow description (e.g., convert

electrical energy to mechanical energy for motor)

Chapter 2: Literature Review 24

2.5.3 Functional Classifications

Classification (taxonomy) of mechanical functions has been one of the research areas

in the design community to develop common classification scheme. Functional

classification of mechanical functions is required to:

i. Provide standardized common design language to represent a product and

eliminate semantic confusion;

ii. Assist in developing computational tools for function-based design approach;

and

iii. Assist designers in developing functional modeling process indicating clear

stopping point for functional decomposition in a repeatable manner.

The work done by Collins et al (Collins et al., 1976) can be considered as the first

attempt to list mechanical functions. After studying the failure mode and occurrence

of helicopter system, they described each part of a helicopter in terms of its

function(s). Based on this, they propose classification consisting of 46 keywords and

40 antecedent adjectives from which they identified 105 elemental mechanical

functions. According to their work elemental mechanical function is defined as a

distinctive generic characterization of the basic function of a machine part without

reference to the specific application for which it is used. Their classification has the

following limitations:

i. Despite the fact that helicopter is a complex machine, their classification may

not be exhaustive enough to cover all mechanical functions.

ii. The elemental mechanical functions are not grouped or organized logically,

thus it may be considered as collection of mechanical functions rather than

classification, and

iii. There are several functions which seem to be repeated and can be grouped

together, for example switching and gas switching, signal transmitting and

information transmitting, pumping and pumping oil are considered to be

different functions.

Chapter 2: Literature Review 25

In the early eighties, Pahl and Beitz (Pahl and Beitz, 1996) proposed five generally

valid functions namely: change, vary, connect, channel, and store which are derived

respectively from type, magnitude, number, place and time characteristics. They also

defined three types of flows: flow of matter, energy, and signal. However the

generally valid functions are at higher level of abstraction, which may sometimes

hinder the direct search for solutions.

Extending the functional classifications of Pahl and Beitz, Hundal (Hundal, 1990)

classified primary categories of basic functional classes into six as channel,

store/supply, connect, branch, change magnitude, and convert. He further classified

each of these according to the quantities handled (material, energy, signal), the input

and/or output, their physical forms and other necessary descriptors and proposed

thirty nine sub-categories of these basic functions shown in Table 2.1.

Table 2.1 Hundal's primary categories and sub-categories of basic functions (Hundal,
1990)

Primary categories
of basic functions

Sub-categories

channel transmit, transport, move, stop

store/supply store, supply

connect connect, compare, mark, valve, switch, pack,

mix, add, subtract, multiply, divide, AND, OR

branch cut, branch, count, display, separate

change magnitude process, crush, form, coalesce, change

convert liquefy, solidify, evaporate, condense, integrate,

differentiate, NOT, display, sense, convert

Kirschman and Fadel (Kirschman and Fadel, 1998) proposed taxonomy of elemental

mechanical functions after analyzing Collin’s work (Collins et al., 1976) and

considering consumer products. Accordingly they proposed four basic mechanical

Chapter 2: Literature Review 26

function groups which are related to the concepts of Motion, Power / Matter, Control,

and Enclosure. This classification system was extended to cover more descriptive

mechanical functions, as shown in Table 2.2. To increase the information content of

the function which is normally established by combining verb-adjective, they include

directions and convert to sentence form that leads to about 150 combinations of

elemental mechanical functions. Though their taxonomy is more structured and

includes functions of consumer products in addition to Collin’s work, it does not

attempt to cover all functions used in mechanical design. Furthermore, there

functional representation which is formed by verb-adjective varies from the

commonly used verb-noun representation adapted from value engineering in the early

sixties.

Table 2.2 Basic function groups and their extension (Kirschman and Fadel, 1998)

motion

• rotary, linear, oscillatory, other

• create, convert, modify, dissipate, transmit

• flexible, rigid

control

• power, motion, information

• continuous, discreet

• modification, indication

• user-supplied, internal feedback

power/matter

• store, intake, expel, modify, transmit, dissipate

• electrical, mechanical, other

enclose

• cover, view, protect

• removal, permanent

• support, attach, connect, guide, limit

Deng et al (Deng et al., 1998) argue that it is not possible to classify all mechanical

functions because of the diversity in mechanical components. They defined

Chapter 2: Literature Review 27

fundamental mechanical functions as the lowest level embodiment functions.

Fundamental mechanical functions are functions which are associated with

fundamental physical structures. Accordingly, they classified fundamental mechanical

functions into four categories as:

1. Functions relating to supplying or storing energy or material, e.g. the functions

of electric motor, spring, flying wheel, oil tank, etc.

2. Functions relating to transmitting energy or material. This category can be

further classified as:

• Transmitting motion, e.g. the functions of shaft, gear, belt, chain;

• Transmitting force or moment

• Transmitting material, e.g. the function of pipe.

3. Functions relating to converging or branching energy or material, e.g. the

functions of switch, valve, gear train, etc.

4. Functions relating to changing form or magnitude of energy or material, or

physical quantities relating to energy. This category can be further classified

as:

• Changing form of energy, or changing form of physical quantities relating

to energy, or changing form of material,

• Changing magnitude of physical quantities relating to energy, or flow of

material.

These categories neither lay ground for common vocabulary to perform functional

modeling in a repeatable manner nor clearly define stopping point for functional

decomposition in creating functional structure.

Stone and Wood (Stone and Wood, 2000), proposed a common design language

termed as “functional basis”, which allows designers to describe a product’s overall

function as a set of simpler sub-functions. They defined functional basis as a standard

set of functions and flows capable of describing the mechanical design space. With

Chapter 2: Literature Review 28

this definition, they proposed a group of eight classes of mechanical functions:

branch, channel, connect, control magnitude, convert, provision, signal, and support.

These classes are extended to include twenty four basic functions and eight flow

restricted functions. Functional basis also defines three classes of flows: material,

signal and energy; with nineteen basic and eleven sub-basic flows. In functional basis,

functions (both overall and sub-) must be expressed as a verb-object pair where the

basis functions fill the verb spot and the basis flows provide the object. They claim

that functional basis subsumes previous taxonomies and offers a more complete and

consistent set of functions and flows that is non-redundant, for electromechanical

domain.

Szykman et al (Szykman et al., 1999) from the National Institute of Standards and

Technology (NIST), United States, developed a taxonomy of about 120 functions and

over 100 flows, by extracting and distilling from extensive review of literature related

to function and flows terminologies. There are several similarities between their

taxonomy and the functional basis of Stone and Wood. Because of this, researchers

from NIST taxonomy and functional basis reconcile the two functional vocabularies

following a three step algorithm consisting of review, union and reconcile steps, and

come up with reconciled functional basis (Hirtz et al., 2002). They claim that the

reconciled functional basis completely describe the electromechanical design space.

In the reconciled functional basis, functions are classified into eight classes (primary):

branch, channel, connect, control magnitude, convert, provision, signal and support;

which further classified into forty five secondary and tertiary classes of action verbs

as shown in Table 2.3. Similarly, the reconciled flow set consists of three basic

classes (primary) flows: material, energy and signal, which also have forty two

secondary and tertiary flows as shown in Table 2.4. Note that in both tables, the

column labeled as “correspondents” is provided as aid for mapping from terms that

are not in the reconciled functional basis to the terms that are.

After thoroughly studying those functional classifications and taxonomies, the

requirement of standard functional representation which should be exhaustive enough

to cover most of mechanical design domain, and accepted by the design community

remains central to be addressed. There are two options to tackle this problem: to adopt

Chapter 2: Literature Review 29

one of those taxonomies with some modification or to come up with new taxonomy of

mechanical functions. The latter option seems to be reinventing the wheel as several

classifications have been done in the past, and needs time to make it universal

language. Thus, among those classifications discussed in this section, the reconciled

functional basis proposed by Hirtz et al (Hirtz et al., 2002), is adopted in this research.

The rationale behind this selection is that, this classification subsumes most of the

previous classifications and includes most of the action verbs for mechanical design.

Chapter 2: Literature Review 30

 Table 2.3 Functional basis reconciled function set (adapted from (Hirtz et al., 2002))

Class(Primary) Secondary Tertiary Correspondent

Branch

Separate Isolate, sever, disjoin
 Divide Detach, isolate, release, sort, split, disconnect,

subtract
 Extract Refine, filter, purify, percolate, strain, clear
 Remove Cut, drill, lathe, polish, sand
Distribute Diffuse, dispel, disperse, dissipate, diverge, scatter

Channel Import Form entrance, allow, input, capture
Export Dispose, eject, emit, empty, remove, destroy,

eliminate
Transfer Carry, deliver
 Transport Advance, lift, move

Transmit Conduct, convey
Guide Direct, shift, steer, straighten, switch
 Translate Move, relocate
 Rotate Spin, turn
 Allow DOF Constrain, unfasten, unlock

Connect Couple Associate, connect
 Join Assemble, fasten
 Link Attach
Mix Add, blend, coalesce, combine, pack

Control
Magnitude

Actuate Enable, initiate, start, turn-on
Regulate Control, equalize, limit, maintain
 Increase Allow, open
 Decrease Close, delay, interrupt
Change Adjust, modulate, clear, demodulate, invert,

normalize, rectify, reset
 scale, vary, modify
 Increment Amplify, enhance, magnify, multiply
 Decrement Attenuate, dampen, reduce
 Shape Compact, compress, crush, pierce, deform, form
 Condition Prepare, adapt, treat
Stop End, halt, pause, interrupt, restrain
 Prevent Disable, turn-off
 Inhibit Shield, insulate, protect, resist

Convert Convert Condense, create, decode, differentiate, digitize,
encode, evaporate, generate, integrate, liquefy,
process, solidify, transform

Provision Store Accumulate
 Contain Capture, enclose
 Collect Absorb, consume, fill, reserve
Supply Provide, replenish, retrieve

Signal Sense Feel, determine
 Detect Discern, perceive, recognize
 Measure Identify, locate
Indicate Announce, show, denote, record, register
 Track Mark, time
 Display Emit, expose, select
Process Compare, calculate, check

Support Stabilize Steady
Secure Constrain, hold, place, fix
Position Align, locate, orient

Chapter 2: Literature Review 31

Table 2.4 Functional basis reconciled flow set (adapted from (Hirtz et al., 2002))

Class
(Primary)

Secondary Tertiary Correspondents

Material

Human Hand, foot, head
Gas Homogeneous
Liquid Incompressible, compressible,

homogeneous

Solid

Object Rigid-body, elastic-body, widget
Particulate
Composite

Plasma

Mixture

Gas–gas
Liquid–liquid Aggregate
Solid–solid
Solid–liquid
Liquid–gas
Solid–gas
Solid–liquid–gas
Colloidal Aerosol

Signal

Status

Auditory Tone, word
Olfactory
Tactile Temperature, pressure, roughness
Taste
Visual Position, displacement

Control Analog Oscillatory
Discrete Binary

Energy Human
Acoustic
Biological
Chemical
Electrical

Electromagnetic Optical
Solar

Hydraulic
Hydraulic
Magnetic

Mechanical Rotational
Translational

Pneumatic
Radioactive/Nuclear
Thermal

2.6 Function-to-Form Mapping

In this section, the process of mapping functions to structures and different

approaches of functional decomposition principles are discussed. The task of the

designer during the conceptual design process is to find suitable concept that can

Chapter 2: Literature Review 32

satisfy the given requirements and constraints. The requirements at this phase of

design describe the overall function of the product. This high level abstract

formulation of design should be decomposed into less complex subfunctions, before

the form (structure) that can perform the function is sought. This increases the

innovative capability of the designer by reducing the cognitive effort required in

finding solutions. There are different approaches by different researchers for

functional decomposition. Some of these approaches are discussed next.

In their systematic design approach, Pahl and Beitz (Pahl and Beitz, 1996) proposed

functional decomposition using the technique based on the flow of energy, material,

and signal. The overall function of a given complex design problem is first defined in

terms of the inputs and outputs of all the quantities involved. This overall function is

then broken down into identifiable subfunctions which follow the flow of energy,

material and signal as shown in Figure 2.2. The decomposition process continues until

solution to each subfunctions can easily be found resulting in functional structure for

the given design problem. Finally the alternative design solutions for each

subfunction are generated and mapped to each subfunction.

Energy
Material

Signal
Overall function Energy'

Material'

Signal'

Subfunction-1 Subfunction-2 Subfunction-3

Subfunction-4

Subfunction-2-1 Subfunction-2-2

C
om

pl
ex

ity

Figure 2.2 Decomposing overall function into subfunctions (adapted from (Pahl and
Beitz, 1996))

Chapter 2: Literature Review 33

The process of analyzing the requirements list and decomposing the overall function

into subfunctions and creating functional structure is known as functional modeling.

For flow based functions Kurfman et al (Kurfman et al., 2003) proposed five steps to

derive functional modeling. These steps are:

i. Identify the input and output flows (material, energy and signal) that

address customer needs,

ii. Generate a black box model of the product to be designed,

iii. Create function chains for each input flow,

iv. Aggregate function chains into a functional model, and

v. Verify the functional model with customer needs i.e., check that the

collective effect of all the subfunctions in the functional model can satisfy

the customer’s needs.

The overall function is satisfied by combining the generated solution for each

subfunction in bottom-up approach. The main problem with this type of functional

decomposition is at what point should the decomposition stop and start mapping. As

stated in Section 2.5.3, the decompositions should stop when each subfunction is

expressed in terms of elemental mechanical functions provided that the overall

function can be achieved by combining the subfunctions in the functional structure.

For each function in the functional structure the designer generate alternative concepts

satisfying those subfunctions. There are a number of manual concept generation

methods that improve creativity. Among these, the most recommended ones are:

i. Conventional concept generation methods such as brainstorming, 6-3-5

method, Delphi method, and Gallery method (Pahl and Beitz, 1996,

Ullman, 2003).

ii. Logical concept generation method such as TRIZ (McMunigal et al.,

2006).

Chapter 2: Literature Review 34

iii. Design by analogy. For example, using biomimetic design which uses

biological phenomena to inspire solutions to engineering problems (Mak

and Shu, 2008, Chakrabarti et al., 2005).

iv. Combination of these methods.

Suh (Suh, 1990) proposed hierarchical decomposition in his axiomatic design

approach. According to his approach, the first step in the design process is to establish

hierarchical functional requirements (FRs) from the needs that the final product must

satisfy. These hierarchical functional requirements in functional domain are directly

mapped to design parameters (DPs) in physical domain, which are also hierarchical.

However, FRs at the ith level cannot be decomposed into the next level of the FRs

hierarchy without first going over to the physical domain and developing a solution

that satisfies the ith level FRs with all the corresponding DPs (Figure 2.3). This zigzag

process continues until the FRs can no longer be decomposed. Though, this can be

considered as stopping point for functional decomposition, Suh did not propose

vocabulary of standard functional requirements.

FR-1

 .
 .
 .

Functional Requirements Design Parameters

FR-2.1 FR-2.2

FR-2.1.1 FR-2.1.2

FR-2.n.m

DP-1

 .
 .
 .

DP-2.1 DP-2.2

DP-2.1.1 DP-2.1.2

DP-2.n.m

Figure 2.3 Functional decomposition and mapping in axiomatic design approach

Functional block diagram (FBD) or functional logic diagram, which is drawn using

the rules of functional logic developed by Charles Bytheway in the early sixties, can

also be used for functional decomposition and function to form mapping (Sturges et

al., 1996). In FBD, the overall design problem is identified and represented at higher

Chapter 2: Literature Review 35

level of abstraction by basic function which is decomposed by the design team into

several functions. These secondary functions are then translated into components or

recursively decomposed. The function decomposition process continues until one can

map each function into a component or system that will accomplish it. The general

form of the FBD, shown in Figure 2.4, represent the function block (or node)

consisting of the function name (what is done) in verb + noun format. The nodes to

the left of a given function node represent the reason why a function is included with

a higher level function. The nodes to the right are functions describing how the

function is performed with lower level functions. Each higher level function is

connected to the lower level function preserving this how/why relationship. They did

not describe any standardized vocabulary of functions used to create FBD, and it is

practically rare to find a one-to-one correspondence between functions and

components.

Higher order
function Basic

Function

Scope line

Component 1

Secondary
Function 1

Secondary
Function2

Secondary
Function n

Lower order
Function 1

Lower order
Function 2

Lower order
Function 3

Lower order
Function 4

Lower order
Function n

Component 2

Component 3

Component n

Scope line

Actions

Why How

Objective Components

Figure 2.4 The general form of function logic diagram (adapted from (Sturges et al.,
1996))

Zhang et al (Zhang et al., 2001a) define construction rules for function decomposition

and mapping. In their knowledge-based conceptual synthesizer (KBCS), they used

Chapter 2: Literature Review 36

predefined decomposition rules to guide the decomposition and mapping process. In

KBCS, the design process starts by defining the goal function i.e., the overall function

to be achieved in the working memory. The system searches the behavior base to find

the behavior whose functional output matches with the given goal function. If there is

no match in the behavior base, function decomposition rule is fired and the goal

function decomposed. However, if there is matching behavior in the behavior base,

mapping between the function and behavior is done, and the matching behavior will

be retrieved into the working memory, where its deriving input is taken to be the new

design goal. This process continues recursively until the deriving input of the matched

behavior is provided by the working environment. The system prescribe automating

the design process but it works in a closed world system, i.e., the system works only

for those functions whose decomposition rules are in the knowledge base, requiring

new domain knowledge for each product.

An example of the function decomposition rule in the KBCS is given here:

Rule specific_Decompose 1

 IF a desired function is Insert terminal into housing

 THEN decompose it into Clamp housing after locating it

 AND Insert terminal after holding it.

In general from those research works reviewed in this section, it can be summarized

that functional decomposition is a subjective process which depends on the designer

performing it. Two designers may not come up with the same functional

decomposition for the same design problem. Therefore, standardized taxonomies of

mechanical functions can be used to indicate at what point to stop functional

decomposition. Accordingly, functional decomposition should continue until all the

subfunctions can be represented with these standard mechanical functions. This is also

important to perform functional design in a repeatable manner.

Chapter 2: Literature Review 37

2.7 Concept Evaluation Process

Conceptual design process can be considered as an activity consisting problem

definition, generation of concepts, firm up the generated concepts into concept

variants followed by evaluation to decide the best concept for further development.

All the subsequent design activities depend on the decision made during the concept

evaluation process; therefore, care must be taken not to overlook better design

options. At the early stage of design, product concepts always need refinement and

are subject to change. However, changes made later in the design stage are costly. To

reduce design iteration, and the cost incurred due to this, designers must select

product concepts with better performance. Ulrich and Eppinger (Ulrich and Eppinger,

2004), defined concept selection as the process of evaluating concepts with respect to

customer needs and other criteria, comparing the relative strengths and weakness of

the concepts and selecting one or more concepts for further investigation, testing, or

development. Unfortunately, this decision is made at the stage where the designers

have incomplete, uncertain, and evolving information about the concepts.

The first task in the concept evaluation process is identifying the concept evaluation

criteria including technical and economical characteristics of the concept based on the

customer requirement. The criteria should help at least to distinguish one of the

alternative concepts from the others. In other words, if all the alternative concepts

have same value for a given criterion, that criterion should be eliminated as it has no

contribution in making decision.

The most common formal and systematic methods of concept selection methods

include Pugh’s evaluation method (concept screening method as modified by Ulrich

and Eppinger (Ulrich and Eppinger, 2004)) , weighted decision matrix, and analytical

hierarchy process (AHP). In addition to these, there are less structured methods used

in industry such as concept review meetings, checklists or expert assessment (based

on personal preference and expertise), voting on concept variants, and intuitive

selection of concepts. The study conducted by Salonen and Perttula (Salonen and

Perttula, 2005) revealed that the degree of utilization of formal and systematic

concept selection methods in industry is relatively low. On the other hand, the less

Chapter 2: Literature Review 38

structured methods possess a higher degree of utilization in the industry than the

formal and systematic methods. However, their finding also concludes a higher

degree of satisfaction in those companies using one or more formal and systematic

concept selection methods compared to those companies who do not use.

An overview of the systematic methods of concept selection approaches is presented

next.

2.7.1 Pugh’s Evaluation Method

Pugh’s concept selection method, proposed by Stuart Pugh (Pugh, 1990), is the most

widely known and referred concept selection methodology (Pahl and Beitz, 1996,

Dieter, 2000, Ullman, 2003, Ulrich and Eppinger, 2004). To use Pugh’s concept

selection method, it is required first to choose the evaluation criteria and prepare a

selection matrix with the selection criteria on the first column and the alternative

concepts on the first row of the matrix. Then, one of the concept variants is selected as

a datum concept or a competitive products concept is added as a datum next to the last

alternative concept. The evaluation process is performed by comparing each concept

variant and the datum concept with respect to each criterion and giving values: “+” if

the concept variant is better than the datum, “-” if the concept variant is worse than

the datum, or “0” or “S” if the concept variant is same as the datum concept. A score

pattern for each concept variant is calculated as the number of pluses, minuses and

zeros or S’s. Even though this method can be used to eliminate infeasible concepts it

assumes all the criteria are equally important and it did not indicate how much better

or worse the concept is compared to the datum. Concept screening method (Ulrich

and Eppinger, 2004) is a modified version of Pugh’s concept selection method where

the net score of the concept variants is calculated as a sum of pluses and minuses

allowing ranking of the concept variants. However, this method also inherits the

limitation of Pugh’s concept selection method.

2.7.2 Weighted decision matrix

A decision matrix is a method of evaluating competing alternative concepts by

ranking the selection criteria with weighting factors and rating the degree to which

each concept variant meets the criterion. In this method, a relative weight is assigned

Chapter 2: Literature Review 39

to each criterion since in reality the evaluation criteria markedly differ in terms of

importance. The relative weight can be assigned by using either of the following

methods (Sen and Yang, 1998):

i. The direct assignment technique: where the decision maker assign weights

based on his/her experience using certain evaluation standards.

ii. Pairwise comparison: In this method each criterion is compared with all other

criteria one at a time, and rated in comparison matrix. Comparison matrix is n

by n matrix, where the row and column headings are the criteria. A given

criterion is rated as ‘0’ if it is less important than the other and as ‘1’ if it is

more important. The normalized row value is taken as weight for each

criterion. The drawback of this approach is the difficulty in handling the

number of comparisons as the number of criterion increases. The other

drawback of this approach is that, since there is no intermediate value between

‘0’ and ‘1’, the comparison become coarse and difficult to differentiate.

iii. Analytical Hierarchy Process (AHP): AHP can be used to assign weights to

each criterion by comparing with each other like pairwise comparison method.

However, instead of using ‘0’ and ‘1’ to compare the criteria, a 9 point scale

known as fundamental scale of AHP (Saaty, 1994) shown in Table 2.5 is used

to make the comparison finer.

Chapter 2: Literature Review 40

Table 2.5 Fundamental scale of absolute numbers (Saaty, 1994)

Intensity of
Importance

Definition Explanation

1 Equal importance Two activities contribute equally to the
objective

3 Moderate importance Experience and judgment slightly favor
one activity over another

5 Strong importance Experience and judgment strongly favor
one activity over another

7 Very strong importance An activity is favored very strongly over
another; its dominance demonstrated in
practice

9 Absolute/extreme importance The evidence favoring one activity over
another is of the highest possible order of
affirmation

2,4,6,8 Immediate values between above
scale values

Sometimes one needs to interpolate a
compromise judgment numerically
because there is no good word to describe
it.

Reciprocals
of above

If element i has one of the above
non-zero numbers assigned on it
when compared with activity j,
then j has the reciprocal value
when compared to i

A comparison mandated by choosing the
smaller element as the unit to estimate the
larger one as a multiple of that unit.

The decision matrix is prepared with the selection criteria and their respective weights

in the first and second column of the matrix respectively; whereas the alternative

concepts to be evaluated are displayed on the top of the matrix as shown in Table 2.6.

Each concept variant is rated with respect to each criterion by using a 5-point scale

(Table 2.7) when the knowledge about the criteria is not detailed and an 11-point

scale when the information is more complete (Dieter, 2000).

After all the concept variants are rated with respect to each criterion, regardless of the

used scale the total score for each concept variant is calculated as the weighted sum of

the concept variant’s rating given by:

Chapter 2: Literature Review 41

∑∑
==

==
n

i
jii

n

i
jij rwRR

1
,

1
,

 Where:

Ri,j = weighted score of concept j for the ith criterion

wi = weighting factor for ith criterion

 ri,j = row rating of concept j for the ith criterion

 n = number of criteria

 Rj = the total score of concept j

Table 2.6 Weighted decision matrix

 Concept Variants (CV)

CV -1 CV -2 . CV -j

Selection

Criteria

weight Rating Weighted

score

Rating Weighted

score

. . Rating Weighted

score

C -1 w1 r11 R11 r12 R12 . . r1j R1j

C -2 w2 r21 R21 r22 R22 . . r2j R2j

.

C –n wn rn1 Rn1 rn2 Rn3 . . rnj Rnj

Total score R1 R2 . Rj

Chapter 2: Literature Review 42

Table 2.7 A 5-point and 11-point scale for concept evaluation (Dieter, 2000).

11-point scale Description 5-point scale Description

0 Totally useless solution
0 Inadequate

1 Very inadequate solution

2 Weak solution
1 Weak

3 Poor solution

4 Tolerable solution

2 satisfactory 5 Satisfactory solution

6 Good solution with a few
drawbacks

7 Good solution
3 Good

8 Very good solution

9 Excellent (exceeds the
requirement) 4 Excellent

10 Ideal solution

2.7.3 Analytical hierarchy process (AHP)

Analytical hierarchy process, developed by Thomas L. Saaty, is a structured multi-

criteria decision making framework well suited for evaluation problems whose criteria

have a hierarchical structure (Saaty, 1994). In using AHP, both the criteria and the

alternative concepts are pair wisely compared as follows:

Step 1:

For each criterion, prepare a square matrix (comparison matrix) in which the

set of alternative concept is compared with itself. Each judgment represents

the dominance of an alternative concept in the column on the left over an

alternative concept in the row on top. It reflects the answers to two

questions: which of the two concepts is more important with respect to the

criterion under consideration, and how strongly, using the fundamental scale

of absolute numbers shown in Table 2.5, for the alternative concept on the left

Chapter 2: Literature Review 43

over the alternative concept at the top of the matrix. If the element on the left is

less important than that on the top of the matrix, we enter the reciprocal value in

the corresponding position in the matrix.

Step 2:

From all the paired comparisons calculate the local priorities (weight) and

display them on the right of the matrix. To calculate the local priorities:

i. Normalize the weight by computing the sum of each column and then

divide each column by the corresponding sum.

ii. Compute the average values of each row which is the local

priority(weight)

Step 3:

Similarly, prepare a pairwise comparison matrix for the criteria, evaluate using

fundamental scale of absolute numbers, and calculate the priorities (weights).

Step 4:

Prepare decision matrix, with the local priorities and calculate the final (global)

priorities for each alternative concepts.

These steps are demonstrated by taking a hypothetical example with three alternative

concepts: A, B and D, and two criteria: C1 and C2 in Table 2.8.

Chapter 2: Literature Review 44

Table 2.8 A hypothetical example to demonstrate AHP with three alternative concepts
and two selection criteria

Step 1:

C1: Criteria1
 A B D
A 1 3 5
B 1/3 1 1/5
D 1/5 5 1

C2: Criteria2
 A B D
A 1 5 7
B 1/5 1 3
D 1/7 1/3 1

Step 2: C1: Criteria1
 A B D Priority
A 0.65 0.33 0.81 0.6
B 0.21 0.11 0.03 0.12
D 0.13 0.56 0.16 0.28

C2: Criteria2
 A B D Priority
A 0.75 0.79 0.64 0.73
B 0.15 0.16 0.27 0.19
D 0.1 0.05 0.09 0.08

Step 3: Criteria
i. ii.
 C1 C2
C1 1 5
 C2 1/5 1

 C1 C2 Priority
C1 0.83 0.83 0.83
C2 0.17 0.17 0.17

Step 4: Decision matrix
 weight A B D
C1 0.83 0.6 0.12 0.28
C2 0.17 0.73 0.19 0.08
Global priority 0.62 0.13 0.25

AHP provides a diagnostic tool for assessing the consistency of the preference and

reduces the bias on the decision maker. However, it is a relatively complex method

with long decision process, especially when the number of alternative concepts is

large with increased number of criteria requiring each alternative concept to be

compared with all others for each criterion.

A combination of these concept evaluation methods should be used iteratively in

order to select the best concept for further development. In addition some of the

concept may be combined to improve their performance and the design process

repeated.

Chapter 2: Literature Review 45

2.8 Computer Aided Conceptual Design (CACD) Tools: A Survey

Several commercial computer aided design tools have been developed in the past to

reduce the workload of human designer, reduce duration of the product development

time, and simplify the design process. Most of these tools are geometry based rather

than function-based, concentrating on the later phases of the design process. Thus, the

contribution of computers in the conceptual design phase is at its infancy compared to

embodiment and detail design phases. The support of computers in the conceptual

design phase is lagging behind because:

• The knowledge of design requirements and constraints during this early phase

is usually imprecise and incomplete making it difficult to implement (Hsu and

Woon, 1998).

• Currently available conventional CAD system does not have built in

intelligent system to perform functional reasoning (Zhang et al., 2001b).

Currently, there is no known commercial computer aided conceptual design tool that

can be used to design all products in the market. However, there are a number of

prototype tools developed in research centers such as MODESSA (Kersten, 1995),

Schemebuilder (Bracewell and Sharpe, 1996), web based morphological chart (Huang

and Mak, 1999), AIDA (Rentema and Jansen, 2000), EFDEX (Zhang et al., 2001b),

2nd-CAD (Vargas-Hernandez and Shah, 2004), IDEA-INSPIRE (Chakrabarti et al.,

2005), and Concept Generator (Bryant et al., 2005). These tools use varieties of

approaches for representation and categorization of knowledge. The working

principles and the main features of these tools are reviewed next.

MODESSA

Kersten (Kersten, 1995) developed a computer based conceptual design support

system known as MODESSA (which is an acronym for MOrphological DESign

Support Aid). MODESSA consists of morphological chart, information sheet

regarding functions and alternative concepts and weighting table for concept

evaluation. Function is described using two words: the action that should be done and

material to be handled (e.g. fill case). The user of MODESSA manually selects

Chapter 2: Literature Review 46

functions, requirements, and alternative concepts from a database or creates a new

one. The design process is performed by selecting one subfunction at a time, and

perform manual search for alternatives followed by evaluation of alternatives for the

same subfunction. The alternatives of the next subfunction are selected based on the

selection of the first alternative and the process continues until the last subfunction.

There is no intelligent system to retrieve the design knowledge from the database and

most of the actions are dependent on the user. Furthermore, the databases of

MODESSA are limited in their coverage.

Schemebuilder

Schemebuilder is a knowledge-based design support tool to assist designers in the

conceptual and embodiment design of mechatronic products (Bracewell and Sharpe,

1996). In using Schemebuilder as conceptual design tool, a function used to describe a

given design problem must be a member the pre-defined functional embodiment

knowledge-base where functions are hierarchically classified as data function, energy

function or mass transfer function. The function will gradually decompose and

embodied using bond graph based functional decomposition principle. The generated

alternative solutions for those functions are represented in the information structure of

FEST-ER (Functional Embodiment STructure-Extended Recursively) which is an

extension of a traditional function–means tree structure. Unlike traditional function-

means tree structure, FEST-ER supports referencing to already embodied functions in

case they appear more than once, and embodiment of more than one functions by

single means. The designer can terminate those branches in the structure that seems to

be infeasible. The generated schemes can be viewed in the integrated 3D modeler and

simulated for design verification. Even though, the bond graph model of a design

object can be constructed and simulated in Schemebuilder, it has a difficulty to

represent functions that are not represented as power flow, inheriting the disadvantage

of bond graph technique.

Web based morphological chart

Huang and Mak (Huang and Mak, 1999) developed a prototype web based

morphological chart, which consists of five web based modules namely: concept

Chapter 2: Literature Review 47

browser/editor, concept base, function analyzer, concept generator and concept

assessor. The concept browser/editor allows the user to enter new concepts into the

concept base and/or explore its contents. Functional analysis system technique

(FAST) is used to create function means tree in the system. The concept generator

performs the task of creating the morphology chart from concept base, short listing

conceivable means based on feasibility, and combining short-listed feasible means.

Among these, short listing feasible means and concept combination process are done

manually. The combined concept variants are evaluated using web based Pugh’s

concept selection chart. The concept base consists of generic functional requirements

expressed as goals, potential solution principles expressed as means, and their

relationships. However, the concept base has limitations in its coverage, where only

eight assembly functions and forty means are stored in its database.

AIDA

AIDA (Artificial Intelligence supported Design of Aircraft), is computer aided

conceptual design tool developed by Rentema and Jansen for aircraft design (Rentema

and Jansen, 2000). The AIDA system consists of three separate modules and user

interface. The first module is case-based reasoning module where case-based

reasoning techniques from AI system is used to first retrieve ‘a best matching’ case

from case-based database of previous successful designs. The retrieved case is reused

after adaptation for the current design problem. However, the adapted case should

first be evaluated before other adaptations can be applied which will be done in the

next module i.e., functional module. Functional module supports the execution of

parameter studies which includes network of numerical relations using rule-based

reasoning technique to evaluate and modify adapted cases produced by the previous

module. The rules link functional parameter (from specification) to structural

parameters (from design objects) which will be taken as input to the last module, i.e.,

the geometrical module. Successfully adapted cases will be saved in the database for

future reuse. The geometrical module uses constrained aided geometrical modeling

technique to display solid model of the suggested aircraft for visualization and to

deduce some geometrical information such as volume and area. This module is

implemented in Pro/Engineer; a commercial feature based modeling software. The

Chapter 2: Literature Review 48

domain of application of AIDA is limited to aircraft design and it is more used in

“routine design” type rather than “creative design”.

EFDEX

EFDEX (Engineering Functional Design Expert) is a knowledge-based conceptual

design tool developed by Zhang et al (Zhang et al., 2001b). They proposed an

extended Function-Environment-Behavior-Structure (FEBS) modeling framework as

a reasoning strategy in EFDEX. This modeling framework consists of three layers:

function layer where the overall functional requirement is decomposed gradually and

hierarchically, behavior layer where a set of behaviors are interconnected with each

other, and environment layer where the working environment enable the functional

output to achieve the requirement in the behavior layer. EFDEX integrates rule-based

and object oriented knowledge representation scheme to represent function related

design characteristics. They developed 255 domain specific rules to perform

functional design of an automatic assembly system for manufacturing electronic

connectors. In addition to these, there are general rules that are used to solve general

problems such as anti-looping rules to prevent recursive firing and rules to terminate

searching branch.

EFDEX uses both backward and forward chaining inferencing mechanisms. The

inferencing strategy starts when the user gives as inputs the overall functional

requirement. The system first scans the behavior base to find behavior whose

functional output can match with the given functional requirement and satisfies the

functional constraint. If there is no match found, then the inference engine scans the

rule base to search for domain specific production rules to decompose the function,

and continue searching for matching behavior for those subfunctions. If there is

matching behavior, the behavior is retrieved into the working memory, and its driving

input is taken as new functional requirement. The general rule to terminate the search

process will be fired at this stage to check if the new functional requirement is

available in the working environment. If it is found in the working environment, the

branch will be terminated, otherwise the system scans the behavior base and the

process continues recursively. Finally potential concept variants produced by the run

will be listed and the concept variants evaluated manually. The tool is limited to

Chapter 2: Literature Review 49

conceptual design of automatic assembly system for manufacturing systems and to

use the tool for other products it requires building domain knowledge specific to that

product. Reusing the design knowledge to design products other than its initial

intended use is limited. The tool is towards automating the conceptual design process

except the concept evaluation is done manually.

2nd-CAD

SECOND-CAD (Systems Engineering CONceptual Design-CAD) or 2nd-CAD is

another computer aided conceptual design tool developed by Vergas-Hernandez and

Shah for electromechanical systems (Vargas-Hernandez and Shah, 2004). They claim

that 2nd-CAD supports conceptual design process specifically in functional design,

behavior modeling, and component selection from standard industrial supply catalogs

for mechanical, fluid, and electric engineering domains. Among the three main flows

(material, energy, and signal), which are widely accepted in the design community,

only the flow of energy is considered in the reported version of 2nd-CAD to represent

function, behavior and component. They represent behavior using bond graph and

preferred mathematical representation of functions rather than linguistic

(grammatical) representation considering the computational manipulation. In

representing function, behavior and component two options are available in 2nd-CAD

for the user: define a new category or select from previously defined categories in the

catalogue. To represent structures they propose three types of relationships:

1. Flow relationships to relate the output flow of an element to the input flow

of another. The attributes compared depend on the element level, (e.g. for

functions only the domain and power type are compared, for behaviors the

effort and flow are compared in addition to those for functions, and for

components the input/output specifications are compared in addition to

those for behaviors).

2. Composition relationships relate parent elements to child elements

defining in the process a subsystem hierarchy (e.g. ancestors and

descendants).

Chapter 2: Literature Review 50

3. Mapping relationship connects elements from different structures (e.g.

function to behavior) to obtain interconnected structures.

The system interacts with the user through graphical user interface receiving inputs

and providing outputs. The received input is converted into quires which will be sent

into database management system that interacts with the catalogs and structure

database. No case study is presented to demonstrate the application of this tool. 2nd-

CAD is limited to products having behavior with power flow; this limitation is

inherited from bond graph representation used. Furthermore, mathematical

representation of functions used in 2nd-CAD limits its area of application; since

representing all functions mathematically early at this stage is difficult specially when

designing new device.

IDEA-INSPIRE

Chakrabarti et al (Chakrabarti et al., 2005) developed a computational tool known as

IDEA-INSPIRE, which can be used for supporting designers in generating solutions

for a given design problem based on analogical reasoning methodology mainly for

mechanisms design. The software tool consists of two databases: database of natural

systems with about 100 entries from plant and animal domain, and database of

artificial systems. Each entry in these databases is constructed using the proposed

SAPPhIRE (which stands for State-Action-Part-Phenomenon-lnput-oRgan-Effect)

model of causality in human-understandable form and a computer-understandable

form. The user of IDEA-INSPIRE software either browse the entities in the natural

and artificial systems database or search for solutions for a given problem through the

provided graphical user interface. In searching for solution in the database, the

designer first analyze the given design problem and give the action described using a

verb, noun, and adjective (VNA) as an input to the software. The program takes these

as “input” variables and searches the computer-understandable form of the entries for

these variables. If a direct match with the variables is not found, it would search for

synonyms of each variable in the entries and give a corresponding weight. The output

of the software is a list of matched entries sorted in a descending order of importance

to solve the problem. These solutions, in addition to matching with the input, have

Chapter 2: Literature Review 51

potential to inspire new solutions. Thus, there are three types of solutions expected

from the software for the designer:

1. Exact solution: when all the constructs in an entry match with that of the given

inputs and it is accepted as the potential solution for the given problem.

2. Partial solution: when some of the constructs in an entry match with that of

the given inputs and it is accepted as potential partial solution for the given

problem.

3. Inspirational solution: when an entry with an exact or partial match with the

given inputs triggers generation of new solution.

The designer may redefine the problem using different VNA words and repeat the

process until satisfactory solutions are found. The tool is limited to concept generation

process, i.e., concept combination to create concept variants and their evaluation is

done manually.

Concept Generator

Bryant et al (Bryant et al., 2005) proposed a computational based method of concept

generation that quickly produces concept variants. Over the course of several years,

they have developed a web-based design repository to store design knowledge of

about 50 consumer products with collaboration between two universities (University

of Missouri–Rolla and University of Texas at Austin). The design knowledge in the

repository is collected by reverse engineering process, i.e., dissecting products and

recording the product information such as functionality, bills of materials, and design

structure matrix (DSM) i.e., the component-component compatibility. The conceptual

functional model developed based on functional basis is given by the designer as

input to the system together with function component matrix (FCM), i.e., the

function-component relationship extracted from the web-based design repository.

Then, the set of concept variants are computed using the proposed matrix

manipulation on the FCM, and the functional model represented as connectivity

matrix. The component-component compatibility is defined by extracting from the

design repository in the form of DCM to prune incompatible concept variants. Finally,

Chapter 2: Literature Review 52

the system provides ranked list of concept variants based on compatibility of the

components. The concept generation program with graphical user interface to

automate the concept generation process is created based on the above principle.

However, their concept generation program is limited to single non-branching flow

chains, thus branching functional model with multiple flows (material, energy, and/or

signal) should be divided into single non-branching flow chains with the total number

of chains limited to 5. Furthermore, only a maximum of 10 subfunctions is accepted

by the software in each chain. Concept evaluation process and compiling the concept

variants of each chain to obtain the complete solution are done manually.

Summary of CACD tools

As can be seen from the computer aided conceptual design tools reviewed in this

section, there is no known tool that can be used to design all mechanical products.

Some of the tools are domain dependent, while others support only part of the

conceptual design process like concept generation. Among the tools, MODESSA and

web based morphological chart covers the entire conceptual design process

(functional analysis, concept generation and evaluation) and have certain similarity

with the conceptual design support tool (CDST) developed in this research. The

computer aided conceptual design tools reviewed in this section are summarized

in Table 2.9.

Chapter 2: Literature Review 53

Table 2.9 Summary of CACD tools

Tool Capabilities Main features Domain Limitations
MODESSA
(Kersten,
1995)

A morphological
design support
system for
functional
design, concept
generation and
evaluation

• GUI containing “morphological overview”,
“info sheet” and “weighting table”

• contains functional, requirements, design
alternatives and previous projects databases.

• the designer manually selects functions,
requirements, and alternative concepts from
databases or create new one.

flexible
filling and
case
packing

• limited in its coverage;
• almost every action

depends on the users;
• has no intelligent system

for concept combination
and retrievals

Schemebuil
der
(Bracewell
and Sharpe,
1996)

A conceptual
and embodiment
design tool

• knowledge-based system
• bond graph based functional decomposition
• FESTER to represent generated concepts
• integrated 3D modeler for simulation

mechatronic
products

difficult to represent functions
not represented as power flow,
(limitation on bond graph
representation)

Web based
morphologic
al chart
(Huang and
Mak, 1999)

A web based
conceptual
design support
system for
collaborative
product
development

• consists of 5 web-based modules: concept
browser/editor, concept base, functional
analyzer, concept generator, and concept
assessor.

• FAST technique to create function means tree,
Morphology chart to represent generated
concepts

• Pugh’s concept selection method

assembly
system for
electrical
plug

• limited in its coverage
(only 8 assembly functions
and 40 means)

• manual concept
combination, and selection
of conceivable means,

• lacks means for
documentation of design
history for later retrieval
and reuse.

AIDA
(Rentema
and Jansen,
2000)

A design
assistant tool for
conceptual
design of
aircraft, using
generate and test
strategy

• case based reasoning techniques to propose
and adapt initial concepts ,

• rule based reasoning techniques to analyze and
evaluate the concept , and

• constrained based geometric modeling
techniques to model and visualize the proposal
in Pro E.

air craft • limited to aircraft design
• used mainly for routine

design
• did not follow the common

conceptual design steps
(function-means/concept)

Chapter 2: Literature Review 54

Table 2.9 (continued)

EFDEX
(Zhang et
al., 2001b)

An expert
system for
functional design
of engineering
system

• knowledge-based system
• functional decomposition and concept

generation using FEBS modeling to create
concept variants

• automation of conceptual design

automated
assembly
system for
electronic
connectors

• extension of the tool to
other products requires
writing new production
rules

• concept evaluation is done
manually.

2nd-CAD
(Vargas-
Hernandez
and Shah,
2004)

A tool for
conceptual
systems design
in
electromechanic
al domain

• functional design, where functions are
represented mathematically,

• behavior modeling using bond graph,
• component selection from standard industrial

supply catalogs,
• GUI to receive input and provide output

electro-
mechanical

• difficulty in representing
non power behaviors
(limitation of bond graph
representation)

• material and signal flows
are not included

• difficult to represent all
functions mathematically.

IDEA-
INSPIRE
(Chakrabarti
et al., 2005)

An inspirational
tool which uses
design by
analogy to
generate
concepts

• consists of databases of natural and artificial
systems,

• functions are represented in VNA form
• concepts are generated by searching for

analogical similarity in the database

mechanism
design

covers only the concept
generation part of conceptual
design process, the remaining
parts are done manually

Concept
Generator
(Bryant et
al., 2005)

A concept
generation tool
utilizing
functional basis
and design
repository

• functional basis for functional representation
• web-based design repository of consumer

product obtained via reverse engineering
method,

• computational based concept generation
algorithm to generate and rank concept
variants.

consumer
product

limited to single flow non-
branching functional structure

Chapter 2: Literature Review 55

2.9 Summary

In this chapter, research works related with conceptual design process have been

reviewed. Literatures covering the entire conceptual design process from functional

analysis to concept evaluation were reviewed. In relation with modeling the conceptual

design process feature-based, knowledge-based and function-based design approaches

have been discussed with their pros and cons. Accordingly a hybrid design approach

consisting of function-based design with knowledge-based design approach is selected as

a basis for developing the framework of conceptual design process. Research works

related to the integration of AI systems, particularly knowledge-based systems, with

conceptual design process have been reviewed. In addition different knowledge

representation formalisms have been discussed.

Researches related with function-based design approach have been reviewed thoroughly

to address the definition and representation of function, and functional classifications

(taxonomy of mechanical functions). After analyzing the pros and cons of existing

methods; linguistic approach for functional representation and reconciled functional basis

for classification of mechanical functions have been adopted.

This chapter also reviews the existing prototype computer aided conceptual design

support tools developed so far in research centers. The features and capabilities of those

tools have been discussed together with their limitations. These tools vary in their domain

of applications, knowledge representation formalisms and coverage. Features and

capabilities of the conceptual design support tool developed in this research to address

some of the limitations of the existing tools together with major contributions of research

are presented in Chapter 7.

In the following chapter, the methodology to achieve the objectives of this research is

discussed. Some of the design approaches adopted in this chapter are utilized in devising

the methodology.

Chapter 3: Methodology 56

CHAPTER 3: METHODOLOGY

3.1 Introduction

The problem statement and objectives of the research reported in this thesis have been

outlined in Chapter 1. The states of the art and researches in the area of the conceptual

design process and computer support tools for conceptual design were reviewed

in Chapter 2 together with some of the approaches adopted in this research. In this

chapter, the methodology used to develop an appropriate conceptual design model

that can be used to build a computer based tool for supporting designers during the

conceptual design process, is presented.

After examining the way human designer performs conceptual design process, a

conceptual design model is proposed using a systematic design approach together

with a knowledge-based system. This model is later used to develop the computer

aided conceptual design support tool. Here, a model is considered as a simplified

representation of a complex system with the goal of providing predictions of the

system’s behavior or performance measures (metrics) of interest (Altiok and

Melamed, 2007). Models reflect certain features of a real system, i.e., only those

aspects intended to be relevant to the characteristic under study. The following steps

were used in developing and implementing the conceptual design model:

i. Problem analysis and information collection. An extensive literature survey is

done to analyze the conceptual design process. The steps in the conceptual

design process are examined and areas where human designer needs computer

support identified. Furthermore, representations of the collected information

are dealt with.

ii. Data collection. This includes collecting the necessary domain knowledge

about the products to be designed from handbooks, patents, existing products,

and experts. In addition, the necessary tools/equipments (in this case

programming languages used) for model construction are prepared.

Chapter 3: Methodology 57

iii. Model construction. The collected data are organized and the model

implemented into a computer program.

iv. Model verification. This to make sure that the model is constructed correctly,

and does what it is supposed to do according to its specification.

v. Model validation. This is to confirm that the results of the model are

acceptable by taking practical case studies and comparing with the models

counterpart or perform validation tests.

 The first two steps are discussed in the following sections of this chapter, while the

remaining steps: model construction, verification and validations are discussed in the

next chapters.

3.2 Conceptual Design Process Model

Conceptual design process can be considered as the transformation of design

specification which is given as requirement list into one or more concepts that can

satisfy these requirements for further development. Careful and extensive exploration

of the design space helps not to overlook better design solutions. This is because in

most cases there is more than one solution that can satisfy the given requirement. In

order to model this process, first how a human designer performs conceptual design

following a systematic design approach which is widely used by designers and

included in a number of design textbooks (Pahl and Beitz, 1996, Dieter, 2000,

Ullman, 2003, Cross, 2008), is examined. In conducting manual conceptual design

process using a systematic design approach, the human designer:

i. Analyzes the requirements or customer needs and converts these requirements

into the overall function.

ii. Depending on the complexity of the problem, decompose the overall function

into less complex subfunctions.

iii. Generates a set of alternative concepts for each function/subfunction by

applying knowledge which is in the designer’s area of expertise. These

generated concepts are posted on a morphology chart.

Chapter 3: Methodology 58

iv. Synthesize (i.e., combine) the alternative concepts for each subfunction to get

a set of concept variants that can satisfy the requirements or customer needs.

v. Evaluate these concept variants based on technical and economical criteria and

selects one or two concept variants for further development.

These steps are shown schematically in Figure 3.1.

D
ec

om
po

se

S
yn

th
es

iz
e

Figure 3.1 Steps in conceptual design process

From the steps in manual conceptual design process described above, the following

key issues can be pointed out regarding computer support tools:

• Conceptual design is knowledge intensive process requiring diverse

knowledge and its modeling should include a means to store and present

design knowledge upon request to augment the knowledge of the designer

outside his area of specialization/ scope.

• Concept generation process can be automated provided that the necessary

knowledge is acquired and stored in the computer system.

• Some of the tasks like concept combination process and representing the

generated concepts on morphology chart are repetitive and time consuming

which may be computer supported.

Chapter 3: Methodology 59

To address these issues, the systematic design approach needs to be integrated with a

knowledge-based system to support designers with computer tools. Accordingly, a

conceptual design process model, shown in Figure 3.2 is proposed. This model

consists of the four major steps in conceptual design: identifying and clarifying the

functions required, generating alternative concepts, combining those alternative

concepts into concept variants, and evaluation of the concept variants integrated with

knowledge-based system.

From this model, it can be seen that the conceptual design process can be considered

as a series of activities and achievements. The activities are: functional modeling,

concept generation, concept combination and concept evaluation. These activities are

done combining the human designer’s knowledge and/or the design knowledge-base

system. The achievements from a given activity are displayed to the user and given as

input to the design knowledge-base system to perform the next activity. The dashed

line indicates the information flow between the activities/achievements and the design

knowledge-based system. This model is taken as base for the development of the

conceptual design support tool (CDST) described in Chapter 4. The detailed

descriptions of each activity in the conceptual design model and how the knowledge-

based system is incorporated will be discussed in the following sections.

Chapter 3: Methodology 60

Figure 3.2 The proposed conceptual design model

3.2.1 Functional Modeling

Functional modeling is a process of analyzing the requirement list or design

specification to come up with the overall function of the design problem and

decomposing this into discrete easily solvable subfunctions to establish functional

structure. Functional modeling provides an abstract method for representing and

documenting a given design task (Kuttig, 1993). Furthermore, functional modeling

permits the designer the ability to view the complete design at the earliest stage. It is

well known that form follows functions, and every product has some reason for its

existence which is its function.

Chapter 3: Methodology 61

During functional modeling process, the requirement list or the design specification is

described in terms of the overall function by the designer. The designer then

decompose overall function based on its complexity into subfunctions and the

functional structure constructed guided by the function library provided. Function

library is constructed systematically from primary, secondary and tertiary function

and flow classifications adopted from the reconciled functional basis (Hirtz et al.,

2002) as discussed previously in Section 2.5.3. The designer stops decomposing the

functions when all the subfunctions in the functional structure can be represented by

the functions in the function library. Function is represented using the following

attributes/slots:

Function

 Name: verb + Noun

 Complement: additional information

 Input: {input flows}

 Output: {output flows}

 Matched: {yes/no}

In this representation, the name slot is used to describe the function using action verb

+ noun, the functional class takes the verb position and flow corresponds to noun. The

complement slot is used to describe additional information about the function and to

represent transformation functions. The input and output slots are used to describe the

flows. The matched slot, whose default value is “no”, is included to facilitate rule

firing during concept generation process.

The process of creating functional structure for a given design problem may not be

done in single step. The designer may need to iteratively construct the functional

structure until the collective effect of all the subfunctions included in the functional

structure represents the required overall function. As an example, a flow based

functional structure of hand-held nailer (Ulrich and Eppinger, 2004) represented in

black box is shown in Figure 3.3. In constructing this functional structure, it was

assumed that electrical energy is given as source of energy in the design specification.

If other form of energy was used, a different functional structure would have been

obtained. Even for the same assumption taken here, a different functional structure

Chapter 3: Methodology 62

may be obtained if the accumulation of energy is not considered to be in the

mechanical domain. This shows the subjective nature of functional modeling, i.e., it is

rare to obtain identical functional structure by two designers for the same design

problem. Once the functional structure is done manually guided by the function

library, the next step is to generate as much alternative solutions as possible that can

satisfy each subfunction in the functional structure.

Figure 3.3 Functional structure of hand-held nailer

3.2.2 Concept Generation

Concept generation is the creative and most demanding part of the design process

where the designer generates a set of alternative concepts for each

function/subfunction by applying a knowledge in his/her area of expertise. A concept

is an idea/principle, a component, or an assembly that can be used as a means to

provide certain function(s). Concepts can be represented as verbal or textual

descriptions, sketches or any other form that gives an indication of how the function

can be achieved. The goal of the concept generation step in the conceptual design

process model is to generate many concepts quickly and early in the design process by

making use of existing design knowledge in the concepts database. This can help to

Chapter 3: Methodology 63

supplement the designer’s knowledge by providing concepts outside the scope or

areas of expertise of the designer. Furthermore, the generated concept may stimulate

the designer to generate new ideas.

An alternative concepts database is developed from which the system searches and

generates concepts for a given function. In this research, conceptual design

knowledge about subsea process equipments has been obtained from text books and

handbooks (Arnold and Stewart, 1999b, Arnold and Stewart, 1999a, Karassik et al.,

2001, Lyons and Plisga, 2005, Robert O. Parmely, 2005), patents (Boley, 1985,

Saruwatari, 1988, Filho, 1992, Massinon, 1992, Jager, 1994, Hatton, 1998, Ditria and

Hadfield, 2001, Nilsen and Wolff, 2005, Lush et al., 2007), manufacturers catalogues,

and personal experience and stored in the alternative concepts database. Design

knowledge refers to concepts saved in the design knowledge base as facts and

production rules used to derive the conceptual design process.

One of the requirements of the computer assistant tool is to accept design knowledge

from the user in the course of designing in addition to providing those saved in the

database. Thus, when new ideas or technologies are invented or if there is a need to

generate new concepts not included in the database manual concept generation

methods can be used to expand the alternative concepts database throughout the life

of the tool.

In manual design process, the generated concepts are drawn on a morphology chart

and posted. Morphology chart or morphological matrix, which was first proposed by

Zwicky (Zwicky, 1967), is a matrix consisting of all functions on the first column and

alternative concepts on the columns adjacent to each function. Morphology chart

represents a methodology for organizing alternative solutions for each subfunctions

and combining them to generate a great number of concept variants each of which can

potentially satisfy the overall requirement. It is used as a means to record information

about the solutions for the relevant functions and aid in the cognitive process of

generating design solutions.

 Similar to the manual design process, the computer tool should display all the

available concepts from the database on morphology chart so that the designers may

Chapter 3: Methodology 64

add some more concepts if they have new idea not included in the morphology chart.

Novice designers can also learn from the experience of experts by exploring these

concepts or may generate new ideas inspired by the automatically generated concepts.

An electronic version of morphology chart that displays all the generated concepts is

developed.

3.2.2.1 Conceptual Knowledge Representation

Similar to functional representation, the alternative concepts need to be represented in

computable manner to facilitate automated concept generation. In principle, the

representation of concepts should consist of functionality, behavior, assembly, and

technical specifications such as dimensions and material. However, these detail

information may not be available at this early stage with the conventional concept

generation methods, and if all these are to be fulfilled, it may result in early rejection

of ideas because of incompleteness. Thus, the concepts are assumed to be at higher

level of abstraction with no dimension or material information. Therefore, the

information captured during this study for each concept is only the functionality and

input and output flows. Accordingly, alternative concepts are represented in the

database with the following attributes/slots:

Alternative-Concept

Name: String

Schematic-representation: Sketch

Input: {input flows}

Output: {output flows}

Primary-Function: {function}

Secondary-Function: {function/Nil}

Other effects: {side-effects/Nil}

Here, the name slot is used to describe the name of the concept and the schematic-

representation to include sketches of the concept. The input and output slots are used

to indicate material, energy, and/or signal flows of the concept. For concepts where

there is no flow, the input and output slots will have nil value. For concepts that can

perform more than one function, the secondary-function slot is included. The default

Chapter 3: Methodology 65

value for this slot is nil, but each concept must have at least primary function slot

value. Other effects slot is added to include if there is any side effect the concept can

cause other than the desired purpose. While the tool is in use, if the designer wants to

add new concepts to the database, a simple graphical user interface for knowledge

acquisition will be provided where those slot values can be given by the designer as

input.

3.2.2.2 Automating the Concept Generation Process

The concept generation process is done using predefined domain independent

production rules which will be discussed in detail in Chapter 4. The rules are domain

independent in the sense that, the rules are represented in terms of variables to

generate all concepts regardless of the product to be designed. This is achieved by

systematically representing the conceptual design knowledge in computable form

together with the pattern matching properties and inferencing mechanisms used. Two

types of rules are used for concept generation. The first one is mapping rule, where

for all subfunctions in the functional structure from functional modeling process and

given as input to the system, the system searches for concepts whose primary or

secondary function matches with the subfunction. If there are alternative concepts in

the concept base, the subfunction and all the alternative concepts will be included in

the morphology chart. However, if there is no alternative concept for one or more of

the subfunctions in the database, the second type of rule will be fired. In this case the

user will be asked to perform concept generation manually using conventional

concept generation methods discussed earlier and give as input the alternative

concepts that will be saved in the database for future use. Finally, the subfunctions

and their corresponding alternative concepts are displayed on the morphology chart.

The next step is to combine those alternative concepts to get concept variants.

3.2.3 Concept Combination

After alternative concepts are generated for each subfunction in the functional

structure, the overall function is achieved by combining the concepts. Combinatorial

explosion is the main problem in concept combination process. For instance if there

are five subfunctions having six, three, six, four, and five alternative concepts

respectively for those subfunctions; the total number of concept variants will be 6 x 3

Chapter 3: Methodology 66

x 6 x 4x 5 = 2160. Practically, it is difficult to evaluate all these concept variants,

because of time and resource limitation. One of the means to reduce the number of

concept variants is to include compatibility rule, which may be flow compatibility or

geometric compatibility. Applying geometric compatibility is not possible at this

stage because the concepts are at higher level of abstraction with no geometric

information in the concepts base. Instead, flow compatibility rules can be included in

the knowledge base since the input and output flows of each concept are captured in

the concepts base.

Two types of rules are used to combine the concepts in the knowledge base:

• General rule to create theoretically possible concept variants: in this case, the

concept variants are created by taking one concept at a time for each

subfunction in the morphology chart. Assume that there are z subfunctions in

the morphology chart, each having different number of alternative concepts

say r, s...t. The pseudo code to generate theoretically possible concept variants

is shown in Figure 3.4.

Subfunction-1 = { Alt.concept-1, Alt.concept-2, …, Alt.concept-r};
Subfunction-2 = { Alt.concept-1, Alt.concept-2, …, Alt.concept-s};

.

.
Subfunction-z = { Alt.concept-1, Alt.concept-2, …, Alt.concept-t};
Concept-variant = 0;
 foreach (x1 in Subfunction-1)
 {
 foreach (x2 in Subfunction-2)
 {
 .
 .
 {
 foreach (xz in Subfunction-z)
 {
 Write (Concept-variant + “:” “ x1 +”, “ x2 + ”, “ . + ”, “. +”, “ xz ”);
 Concept-variant += 1;
 }
 . .
 }
 }
 }

 Figure 3.4 Pseudo code to create theoretically possible concept variants

Chapter 3: Methodology 67

• Flow constrained rule to create flow compatible concept variants: the

synthesis process is the same as the general rule, but flow compatibility

constraint is added. Concept variants are considered compatible, if and only if

the output flow of the preceding concept is the same as the input flow of the

succeeding concept in the morphology chart. This rule is limited to single flow

non-branching functional structure. If there is branching functional structure, it

needs to be decomposed manually into single flow non branching functional

structure before it is given as input to the system.

The concept variants can be displayed both textually and schematically showing all

the component concepts that make up the concept variant. The details of the rules

used to perform concept combination process will be presented in the next chapter.

3.2.4 Concept Evaluation

 Even though, the concept variants obtained during the concept combination process

may satisfy customer requirements, it is difficult and impossible to develop all the

concepts because of time and cost constraints. All the subsequent design activities

depend on the decision made during the concept evaluation process; therefore, care

must be taken not to overlook better design options. At the early stage of design,

product concepts always need refinement and are subject to change. However,

changes made later in the design stage are costly. To reduce design iteration, and the

cost incurred due to this, designers must select product concepts with better

performance.

From the concept evaluation methods discussed Section 2.7 absolute comparison,

concept screening, and weighted decision matrix are used to evaluate the concept

variants. Accordingly, the concept variants are first evaluated using absolute

comparison method, where concepts are directly compared with set of requirements.

This consists of:

• Feasibility judgment i.e., based on the comparison made to prior experience.

• Evaluation based on assessment of technological readiness (state-of-the-art

capabilities).

Chapter 3: Methodology 68

• Evaluation based on go/no-go screening of customer requirements

Some of the infeasible concept variants will be eliminated using the absolute

comparison method. The remaining concept variants will be evaluated using concept

screening method iteratively taking competitive product or one of the concept variants

as a datum. If the competitive product is to be taken as datum concept, it should be

reduced to the same level of abstraction as other concept variants. This process will

reduce further the number of concept variants. The remaining concept variants will

finally be evaluated using weighted decision matrix method. In this method, relative

weight is assigned to each criteria based on their importance using either direct

assignment technique or pairwise comparison using analytical hierarchy process. The

result of the weighted decision matrix is ranked concept variants, from which one or

more concepts will be selected for further development or combine some of the

concept variants to obtain better performance and repeat the conceptual design

process.

3.3 Model Construction

Model construction is the process of converting the conceptual design process model

proposed in Section 3.2, into a computer program (CDST) to test and verify the

proposed model. The development of CDST follows the “waterfall” model of

software development cycle (Figure 3.5), which was adopted by most software

professionals (Fisher, 1991, Rakitin, 2001). In the “waterfall” model, the software

development cycle starts with the requirement analysis phase which consists of

analyzing the basic designer’s requirement in the conceptual design process where

computers can support the repetitive and time consuming tasks to get the software

requirement or software design specification. This process have been explained in the

previous chapters in developing the conceptual design model and pointing out the

main areas where computer can better support human designer in terms of

functionality requirement and user interface designs. The next phase is design

specification, where the software blueprint in the form of general flowchart together

with module decompositions is dealt with. The third phase is implementation of the

Chapter 3: Methodology 69

model which consists of coding, testing and debugging each module designed in the

design specification. Each built module should be tested individually and integrated

into single program structure. The integrated program (software) then verified and

validated by testing before the software is being released. Fixing any bugs or

problems encountered by users during usage is dealt and maintained in the later phase.

Requirements
Analysis

Design
Specification

Implementation/
Coding

Integration and
Testing

Maintenance

Figure 3.5 The waterfall model of software development (adapted from (Fisher,
1991))

3.3.1 Software Design Specifications and Requirements

It has been pointed out in the previous sections that the main requirement (i.e., the

designer’s requirement) is to get computer support in performing conceptual design

process. Since the requirement is not to automate the conceptual design, the software

should provide information to the designer for decision making, and also accept input

from the designer. Furthermore, the software needs to accept new knowledge from the

current design process and retain it for future use, allowing the knowledge-base to be

built incrementally. The software needs to have a graphical user interface (GUI) to

Chapter 3: Methodology 70

interact with the user which can easily be controlled by mouse having windows,

icons, and menus giving visual feedback about the actions being performed.

For ease of implementation in coding the software, the conceptual design process is

decomposed into four modules: functional modeling, concept generation, concept

combination, and concept evaluation. Each module is built based on the proposed

framework separately but in a compatible manner where the outputs and inputs of the

consecutive parts are matched. In addition to these modules, there is a central

graphical user interface which helps to hide all the programming details from the user

and link all the modules in seamless way. The system interacts with the user, the

hardware, and other systems such as database and software through its interface. The

user interface may employ questions and answers, menu driven system, or graphical

interface. The user interface simplifies communications and hides much of the

systems complexity. The main requirements for the user interface in this research are:

it should be easy to use and give visual feedback about actions performed such as

displaying the schematic representation of each alternative concept. Thus, a graphical

user interface (GUI) which can easily be controlled by mouse having windows, icons,

and menus is developed for the user to interact with the computer.

The other requirement from the proposed framework is that, the system acquires

knowledge from the current design process in addition to providing existing concepts

during the concept generation process. Knowledge acquisition is the process of

collecting the knowledge necessary for problem solving and encoding it in the form

suitable for computer manipulation. This part is included to ease the addition of new

alternative concepts throughout the life of the tool with mouse and keyboard driven

graphical user interface dedicated for this purpose. From the human understandable

form in the graphical user interface, the inputs are converted into machine

understandable form by the system and saved in the database.

The overall flow diagram (blueprint) of the software (i.e., CDST) is shown in Figure

3.6. This flow diagram will be used to build the software in Chapter 4 and as a

verification document in Chapter 6.

Chapter 3: Methodology 71

 Figure 3.6 Flow chart of the CDST

Chapter 3: Methodology 72

3.3.2 Programming Environment

The selection of the programming environment is done after analyzing the

requirements and specifications set in the previous section. The primary objective is

to select programming language and construct the representation and control

structures required for performing conceptual design process. A number of

programming environments are available in the market for knowledge-based system

development. The availability, cost and capabilities in handling the type of knowledge

(i.e., symbolic and schematic) were the factors used to select the languages.

Prolog, one of the artificial intelligence programming languages in earlier days, was

first considered. Prolog is a declarative language (i.e., a language that expresses the

logic of a computation without describing its control flow), which uses backward

chaining inference mechanism. An expert system shell based on prolog known as Flex

Expert Systems Toolkit from Logic programming Associates Ltd (LPA, n.d.) was

obtained as a free trial version to experiment on it. Because of the nature of the

knowledge to be represented (i.e., symbolic and schematic), Prolog needs to be

integrated with other programming language, since it is purely a symbolic language

and cannot accept sketches. Furthermore, it incurs additional cost to purchase as it is

not readily available.

The other programming environment considered was CLIPS (C Language Integrated

Production System). CLIPS is a public domain expert system shell (Riley, 2008),

which was initially developed by the Software Technology Branch (STB),

NASA/Lyndon B. Johnson Space Center. CLIPS is a forward-chaining, rule-based

production-system language, based on the RETE algorithm for pattern-matching

(Giarratano and Riley, 1998). CLIPS allow hybrid knowledge representation

including rule based, user defined functions and object-oriented programming in one.

CLIPS is also a symbolic language, which cannot support graphical representation of

knowledge such as sketches. For this application, wxCLIPS which is an extension of

CLIPS to develop knowledge-based system applications with graphical interface was

readily available as public domain software (Smart, 1997). An initial study was

conducted to develop a prototype conceptual design tool for subsea process

equipments using wxCLIPS (Woldemichael and Hashim, 2007). The result was

Chapter 3: Methodology 73

promising even though there were some limitations such as flexibility in terms of

creating different GUI components and compatibility (i.e., wxCLIPS was developed

based on CLIPS 5.1, and not updated to be compatible with the current version of

CLIPS 6.30). Because of these reasons another alternative programming environment

compatible with the current version of CLIPS was explored.

After thoroughly investigating possible options, wxPython is considered as graphical

user interface (GUI) development environment. wxPython is a public domain cross-

platform wrapper for the GUI application programming interface (API) wxWidgets

for the Python programming language (Dunn). The interface between Python and

CLIPS can be done by PyCLIPS which is also public domain open source software

(Garosi, 2008a). Thus all the programming environments selected are freely available

under public domain license.

3.4 Summary

In this chapter the methodology used to achieve the objectives of this research was

presented. Specifically a conceptual design process model has been proposed after

analyzing manual conceptual design process and identifying areas where computer

support can be introduced. Accordingly, the framework of function-based conceptual

design process integrating systematic design approach with knowledge-based system

is presented. In this framework, the entire conceptual design process is divided into

four modules representing the major activities in performing conceptual design. These

modules are: functional modeling, concept generation, concept combination and

concept evaluation. In each module the knowledge representation formalisms, their

inputs and outputs together with the processes to achieve these, and the activities done

by the designer and the computer were identified.

To verify the proposed methodology, a roadmap to convert the proposed conceptual

design process model into a computer program in the form of flowchart is also

presented in this chapter. In addition the following public domain open source

programming environments to build CDST were selected:

Chapter 3: Methodology 74

• CLIPS to build the knowledge-base,

• wxPython to develop GUI and represent schematic knowledge, and

• PyCLIPS to integrate the CLIPS with Python.

In the next chapter, the selected programming environments are used to develop the

conceptual design support tool based on the methodology proposed in this chapter.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 75

CHAPTER 4: DEVELOPMENT OF CONCEPTUAL DESIGN SUPPORT

TOOL (CDST)

4.1 Introduction

In this chapter, the conceptual design process model proposed in Chapter 3 is

converted into computer program using CLIPS, wxPython, and PyCLIPS as

programming languages. Figure 4.1 shows the programming languages used to

develop each architectural components of the knowledge-based system. Knowledge in

the form of rules, facts, and functions (i.e., in the form of procedural program) are

represented in CLIPS. CLIPS has built in forward chaining inference engine to

control the knowledge. The graphical user interface is built using wxPython which is

a Python module itself. PyClips is used to embed CLIPS in Python and write

production rules within Python programming environment (Garosi, 2008b). In

general, CLIPS is used for the knowledge-base, the inference engine, the knowledge

acquisition, and the interface. On the other hand, the GUI which includes the

knowledge acquisition and displaying the output of the program both textually and

schematically is built using wxPython.

The main programming language (i.e., CLIPS) to develop CDST is introduced first to

familiarize the reader with knowledge representation formalism. The software

development process is divided into different modules for ease of implementation and

testing. Sample CLIPS codes for the constructs and rules used in each module are

presented and explained. However, the detail construction of the GUI is not explained

in this chapter. The source code for the entire program consists of thousands of lines

and several files. Considering the number of pages it takes, only screenshot of the

excerpt from the source code is presented in Appendix A. The complete source codes

and other file formats are found in the attached CD.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 76

Figure 4.1 The structure of a knowledge-based system and programming
environments used

4.2 Development of the Software

Converting the software requirement or design specification into code is the most

demanding and time consuming phase of the software development cycle. In this

section, detail description of each module in the software development with regards to

the knowledge-based system and GUI is presented. To make the implementation

easier to understand, and familiarize the reader with CLIPS programming used in this

thesis for knowledge-based development, the basic programming elements are

introduced next. The GUI is built using wxPython and its codes are not discussed

here, except some screenshots to display the result.

4.2.1 Basic Programming Elements and Knowledge Representation Formalism

in CLIPS

CLIPS provides three basic elements for writing programs: primitive data types for

representing symbolic and numeric information, functions for manipulating data, and

constructs for adding to a knowledge-base (Giarratano, 2007). These basic elements

are used in representing knowledge in rule-based and procedural programming within

CLIPS.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 77

These programming paradigms work based on the information represented and saved

in the system in the form of facts and/or global variables. Facts are pieces of

information/data required by the CLIPS program to reason out in solving a given

problem. Facts consist of a relation name followed by zero (if it is ordered facts) or

more slots (if it is non-ordered facts), and their associated values. Facts may be added,

removed, modified or duplicated in the system (fact list) using assert, retract, modify,

or duplicate commands respectively.

Function in CLIPS is a piece of executable code identified by a specific name which

returns a useful value or performs a useful side effect (such as displaying

information). Even though CLIPS supports both user defined functions, (i.e.,

functions written externally with other languages and linked with CLIPS), and system

defined functions, (i.e., functions that have been defined internally by the CLIPS

environment) only the system defined functions were used here.

From the several defining constructs provided by CLIPS to add information to the

knowledge-base, the followings were used:

• Deftemplate: a construct used to create a template which can then be used by

non-ordered facts to access fields of the fact by name.

• Deffacts: a construct that allows a list of facts to be defined which are

automatically asserted whenever the reset command is used.

• Defglobal: a construct that allows variables to be defined which are global in

scope throughout the CLIPS environment.

• Deffunction: a construct that allows the user to define new functions (i.e.,

system defined function) in CLIPS directly.

• Defrule: a construct that allows defining rules.

• Defmodule: a construct which allows knowledge-base to be partitioned.

All constructs in CLIPS are surrounded by parentheses. The construct opens with a

left parenthesis and closes with a right parenthesis. Comments can be added to the

CLIPS code to make it easier to understand. All constructs (with the exception of

Chapter 4: Development of Conceptual Design Support Tool (CDST) 78

defglobal) allow a comment directly following the construct name. Comments can

also be placed within CLIPS code by using a semicolon (;). Everything from the

semicolon until the next return character will be ignored by CLIPS. If the semicolon

is the first character in the line, the entire line will be treated as a comment.

The rule-based programming paradigm in CLIPS provides a means to represent

knowledge in the form of rules. Rules are used to represent heuristics, or “rules of

thumb”, which specify a set of actions to be performed for a given situation. A rule is

composed of an antecedent (the if portion or the left-hand side (LHS) of the rule) and

a consequent (the then portion or the right-hand side (RHS) of the rule).

The antecedent of a rule is a set of conditions (or conditional elements) which must be

satisfied for the rule to be applicable. In CLIPS, the conditions of a rule are satisfied

based on the existence or non-existence of specified facts in the fact list. One type of

condition which can be specified is a pattern. Patterns consist of a set of restrictions

which are used to determine which facts satisfy the condition specified by the pattern.

The process of matching facts to patterns is known as pattern-matching. The inference

engine of CLIPS provides a mechanism, which automatically matches patterns against

the current state of the fact list and determines which rules are applicable.

The consequent of a rule is the set of actions to be executed when the rule is

applicable. The actions of applicable rules are executed when the CLIPS inference

engine is instructed to begin execution of applicable rules. The preferred mechanisms

in CLIPS for ordering the execution of rules are salience and modules.

Salience allows for explicitly specifying one rule to be executed before another. If

more than one rule is applicable, the inference engine uses a conflict resolution

strategy to select which rule should have its actions executed first. A conflict

resolution strategy is an implicit mechanism for specifying the order in which rules of

equal salience should be executed. CLIPS provides seven conflict resolution

strategies; among these the most common ones are:

• Depth strategy: - newly activated rules are placed above all rules of the same

salience.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 79

• Breadth strategy:- newly activated rules are placed below all rules of the same

salience.

• Simplicity strategy: - among rules of the same salience, newly activated rules

are placed above all activations of rules with equal or higher specificity.

The specificity of a rule is determined by the number of comparisons that must

be performed on the LHS of the rule.

• Complexity strategy: - among rules of the same salience, newly activated rules

are placed above all activations of rules with equal or lower specificity.

The default strategy is depth, but new strategy can be set by using the

“set-strategy” command, which will reorder the agenda based upon the new strategy.

Agenda is the lists of rules whose conditions are satisfied and have not yet been

executed. Each module has its own agenda. The agenda acts similar to a stack where

the top rule on the agenda is the first one to be executed. When a rule is newly

activated, its placement on the agenda is based on the following factors:

a. Newly activated rules are placed above all rules of lower salience and below

all rules of higher salience.

b. Among rules of equal salience, the current conflict resolution strategy is used

to determine the placement among the other rules of equal salience.

c. If a rule is activated (along with several other rules) by the same assertion or

retraction of a fact, and steps (a) and (b) are unable to specify an ordering,

then the rule is arbitrarily ordered in relation to the other rules with which it

was activated.

Modules allow to explicitly specify that all of the rules in a particular group (module)

should be executed before all of the rules in a different group. In addition, CLIPS

modules also allow a set of constructs to be grouped together such that explicit control

can be maintained over restricting the access of the constructs by other modules. Two

defmodule constructs (AUXILIARY and MAIN) are created in CDST to provide rule

execution control.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 80

The syntax of the CLIPS constructs used in each module are presented in the

following sections.

4.2.2 The Functional Modeling Module

Functional modeling is the first part responsible for creating the functional structure in

CDST. This consists of the function library and the necessary attributes required to

define and represent a given function. Function is represented in CLIPS by creating a

deftemplate construct as shown in Figure 4.21, which is the implementation of

function representation explained in Section 3.2.1. The first line in this figure (Line 1)

describes the module (i.e. AUXILIARY in this case) in which the template named

“function” is defined. Lines 2-7 define the slots, slot name, and default value (if any).

Slots can also be constrained by value, type and numeric range. A slot can hold either

a single-field value (defined as slot) or multi-field value (defined as multislot). Thus,

when the keyword slot is specified, the slot can hold one value, where as when the

keyword multislot is specified, the slot can hold a multifield value comprised of zero

or more fields.

Figure 4.2 A deftemplate construct to define function in CLIPS

Once the deftemplate is defined, any function can be defined using the construct

specified. For example a function transmit rotational energy can be defined as:

1 In this thesis, examples of CLIPS code are presented annotated with line numbers on the left. Please
note that these line numbers are not part of the CLIPS program, instead introduced in this thesis to
facilitate easy reference to particular line in the CLIPS program.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 81

(function

(verb transmit)

 (noun rotational energy)

 (input rotational energy)

 (output rotational energy))

In this case, those slots defined in the template and have no value during definition

will be considered as nil, unless they have default value. Therefore, the actual

definition of this function in the system is:

(function

(verb transmit)

 (noun rotational energy)

 (complement nil)

 (input rotational energy)

 (output rotational energy)

 (matched no))

Based on the deftemplate defined in Figure 4.2 a function library from which the

designer selects elementary functions is built. The function library is database of all

functions and flows from the reconciled functional basis (Section 2.5.3). Using the

developed GUI (Figure 4.3) the user selects the subfunctions in the functional

structure from the function library.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 82

Figure 4.3 Screenshot of the function library

The functional modeling process which consists of decomposing the overall function

into subfunctions is basically done manually by the designer. The program assists the

designer in defining those subfunctions by providing the function library.

The function library shown in Figure 4.3 starts by accepting input from the designer

textually about the overall function of the product to be designed. Then, each

subfunction in functional structure is selected from the library and added to the

system (fact list). To define a subfunction, first the user selects the functional class,

representing the primary category (class) in the reconciled functional basis, having

eight choices: branch, channel, connect, control magnitude, convert, provision, signal,

and support. Each functional class brings the corresponding secondary and tertiary

Chapter 4: Development of Conceptual Design Support Tool (CDST) 83

categories to populate the choices of the “verb” field of the function name. Therefore,

when one functional class is selected, the corresponding secondary and tertiary

categories will be available as verb choice items in the function name, which was

initially empty. Similarly, the user selects one option from the primary flow class

which has three choices: energy, material, and signal. This selection will

automatically populate the noun field of the function name and the input and output

flow choices, with secondary and tertiary categories of flow sets in reconciled

function basis. If the definition of the subfunction requires additional information, the

user can give the information textually in the complement text field. After all the

choice items are selected, the “Add Function” button is used to add (assert) the

subfunction to current system (fact list), which will display the added subfunction in

the “Selected subfunctions” window. All the subfunctions in the functional structure

are added to the system following the same procedure. The next step is to generate

alternative concepts for those subfunctions. This will be discussed in the next module.

4.2.3 Concept Generation Module

The input to the concept generation module is the set of subfunctions from the

functional modeling in the form of functional structure and its output is set of

alternative concepts displayed on morphology chart that can satisfy those

subfunctions. In order to generate alternative concepts for functions, the system

requires knowledge in terms of facts in the alternative concepts database, and the

necessary rules to perform the matching.

Similar to functional representation, a deftemplate construct is required to represent

and save alternative concepts in the alternative concepts database. The alternative

concepts deftemplate construct shown in Figure 4.4, is constructed based on the

methodology devised in Section 3.2.2. The first line in this figure (Line 8) describes

the module (i.e. MAIN) in which the template named “alternative-concept” is defined.

The remaining lines 9-19 define the slots. In the slot definition, three types of inputs

and outputs are given (Lines 11-16); these are included to differentiate material (-m),

energy (-e) and signal (-s) flows. The slots function-1 and function-2 stands for the

primary function and secondary function respectively for each concept.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 84

Figure 4.4 A deftemplate construct to define alternative concepts in CLIPS

The alternative concepts database is built based on the deftemplate constructed

in Figure 4.4. Known design knowledge in the form of facts can be collected and

saved using deffacts construct in the database. For example, if there are known

concepts in a given domain, then those facts can be grouped together with single

name and saved in the database as shown in Figure 4.5. This defined list of facts can

be loaded to the system and automatically asserted with a “reset” command in CLIPS.

Line 20 in this figure represents the name of the deffacts construct (i.e., concepts-xx

in this case). There are three concepts defined in this construct (electric motor, shaft,

and linear actuator) which may be expanded by adding more concepts. The schematic

representation of each concept can be sketched on CAD software or manual sketches

may be scanned and saved in the database with the same file name as the alternative

concepts name in wxPython supported file format. Some of the wxPython supported

file formats includes: windows bitmap (BMP), joint photographic experts group

(JPEG), graphic interchange format (GIF), interchange file format (IFF), tagged

image file (TIF), portable network graphics (PNG), and windows icon format (ICO).

The alternative concepts database contains similar deffacts construct which are

defined during program development. New design knowledge may also be added

while using the software using the knowledge acquisition provided.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 85

20 (deffacts concepts-XX
21 (alternative-concept (name electric-motor)
22 (input-e electrical energy)
23 (output-e rotational energy)
24 (function-1 supply rotational energy)
25 (function-2 convert electrical energy to rotational energy))
26 (alternative-concept (name shaft)
27 (input-e rotational energy)
28 (output-e rotational energy)
29 (function-1 transmit rotational energy))
30 (alternative-concept (name linear-actuator)
31 (input-e hydraulic energy)
32 (output-e translational energy)
33 (function-1 supply translational energy)
34 (function-2 convert hydraulic energy to translational energy))
35)

Figure 4.5 Sample alternative concepts representation in the database

Once the alternative concepts database is built, the next step is to develop rules that

can use the database to generate concepts. Rules are defined in CLIPS using defrule

construct. The general syntax of defrule construct is shown in Figure 4.6. Each rule in

CLIPS is identified with unique name (line 36); redefining another rule with the same

name will overwrite the previous rule. Optional comments may be placed next to the

rule name on line 36. Line 37 describes optional declaration of the rule property such

as salience to guide the order of firing (executing) rules. The next part is the main part

of the LHS of the rule which consists of a series of conditional elements that must be

satisfied for the rule to be placed on the agenda. There are eight types of conditional

elements: pattern, test, and, or, not, exists, for all, and logical conditional elements.

An implicit “and” conditional element always surrounds all the patterns on the LHS.

The pattern conditional element is the most basic and commonly used conditional

element containing constraints which are used to determine if any pattern entities

(facts) satisfy the pattern. The arrow on line 39 (=>) separates the LHS from the RHS.

The RHS contains a list of actions to be performed when the LHS of the rule is

satisfied. There is no limit to the number of conditional elements or actions a rule may

have; other than the limitation placed by actual available memory. Actions are

performed sequentially when all the conditional elements on the LHS are satisfied.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 86

Figure 4.6 A general syntax for defrule construct

The concept generation rules are built considering the pattern matching properties of

the rules in CLIPS. The main objective in defining those rules is to provide generic

rule that can be used to generate alternative concepts regardless of the product to be

designed. This is achieved by systematically representing the design knowledge and

the heuristic rules in the knowledge-base. Hence, the concept generation rules are

represented in terms of variables, which provide the following advantages:

1. There is no need to write individual rules for each product to be designed by

the tool. This reduces the total number of rules required.

2. The tool becomes domain independent, i.e., theoretically any product can be

designed using the tool provided that the design knowledge is available in the

database and represented in terms of the functions in the reconciled functional

basis together with the knowledge representation formalism used in this thesis.

3. Future knowledge addition does not require the program to be altered.

 The domain independent rule is meant to find and display all the alternative concepts

for each subfunction in functional structure which are given as input to the current

working memory. The first mapping rule which search the database for concepts

whose primary function matches with the given subfunction is shown in Figure 4.7. In

this rule a salience of 500 is declared (line 42), making the rule top priority. Line 43

restricts the rule to be fired only when the user choose to search for primary functions.

Line 44 describes function in terms of variables which is not matched yet to be

matched with the alternative concept (line 45) whose primary function is the same as

the function given. Variable are represented using “?” and symbol if it is single field

slot and “$?” and symbol if it is multifield value. If the condition on the LHS of this

rule is met, then the function and the alternative concept are included in the

morphology chart (line 47). The rule will fire repeatedly until all the alternative

Chapter 4: Development of Conceptual Design Support Tool (CDST) 87

concepts in the database satisfying this condition are retrieved. Similarly, there is

another rule that searches the alternative concepts database for secondary function

changing the values of line 43 and 45.

Figure 4.7 Sample mapping rule

To prevent the rules form repeated firing indefinitely, another type of rule with less

salience is introduced to modify the property of the matched function from “no” to

“yes” as shown in Figure 4.8, line 56. The matched slot value could have been

changed in the previous rule by modifying the property of the function in the action

part of the rule (Figure 4.7), had the mapping between function and alternative

function been one to one. All the concept generation rules are activated by “Go”

button next to the “Generate alternative concepts” text in the function library (Figure

4.3).

Figure 4.8 Mapping rule to prevent repeated rule firing

There may be one or more subfunction that is not matched yet with those concept

generation rules, if the conditions are not met (i.e. if there is no alternative concept in

the database whose either primary or secondary function matches with the

subfunction). In such cases, another type of rule is required to handle this particular

situation. The main purpose of this rule is to notify the user about the unavailability of

Chapter 4: Development of Conceptual Design Support Tool (CDST) 88

concept in the database for that particular function (line 67 in Figure 4.9). When there

is no alternative concept in the database, the rule first remove the function from the

current fact list (line 65) and then introduce a new buffer function (line 66) whose

alternative concept is going to be generated manually by the user. Notice that, the

declared salience for this rule is 30 (line 58), indicating that this rule will be fired after

the rules with higher priority search the database and fail to match.

Figure 4.9 A mapping rule when there is no alterative concept in the database

Furthermore, besides notifying the user when there is no alternative concept in the

database, the system will also ask to perform concept generation manually for those

subfunctions with no alternative concept in the database. A simple GUI shown

in Figure 4.10 is built to accept manually generated concepts as input to the system

and save in the alternative concepts database for future use.

The final output of the concept generation process is the morphology chart consisting

of the subfunctions in the functional structure together with all the available

alternative concepts (both generated from the database and by the user). The

morphology chart is constructed using wxPython’s grid element (Rappin and Dunn,

2006). The morphology chart can display as many alternative concepts as there are in

the concept database without limitation. This has been tested with ideal case where

there are more than 20 alternative options for single function, to be displayed on the

morphology chart. The concepts in the morphology chart (especially those generated

by the software) may stimulate/inspire the designer to add some more concepts not

included in the morphology chart. In such cases, the designer can add new concepts to

the database using the pull down menu in the function library (Figure 4.3) which

Chapter 4: Development of Conceptual Design Support Tool (CDST) 89

launches the alternative concepts input window (Figure 4.10). The morphology chart

shows the solutions for each subfunction separately. To obtain, the overall solution,

those individual solutions need to be combined. This process is treated in the next

module.

Figure 4.10 Screenshot of alternative concepts input window

4.2.4 Concept Combination Module

The concept combination process takes the morphology chart as an input and gives

the combined concept variants as an output to be evaluated in the concept evaluation

module. The implementation of the concept combination process is done based on the

methodology described in Section 3.2.3. There are two options to be considered in

concept combination: to combine all theoretically possible solutions, or to combine

flow compatible solutions. In both cases the combined concepts are displayed both

Chapter 4: Development of Conceptual Design Support Tool (CDST) 90

textually and schematically showing the components (concepts) that make up the

concept variant.

The main objective in the implementation of the concept combination process is to

develop generic concept combination rule that can combine concepts regardless of the

number of subfunctions in the functional structure. This can be done either by writing

all the rules for each case varying the number of subfunctions starting from two to

specified number, or to develop a system that can automatically generate the rule

depending on the number of subfunctions. The first option have been experimented in

the initial phases of the development but the maximum number of subfunctions

achieved was ten (Woldemichael and Hashim, 2008). This is because of the

complexity in constraining each subfunction and its properties which is error prone

while writing the rules manually. To overcome this limitation, the second option has

been devised in which a procedural programming approach using deffunction

construct is used to directly generate the necessary rule for that particular number of

subfunctions. In this case, only the procedures to build the rules are available in the

system during the program initiation, i.e., there is no predefined rule at the start of the

program. Once the number of subfunction for that particular session is determined

from the morphology chart and the concept combination process is invoked, then the

system will generate the necessary rule for that particular number of subfunctions.

However, this option works only for combining the theoretically possible concept

variants. The combination of flow compatible concept variants is done using the first

option which is limited to ten subfunctions for one session.

The general rule to combine the theoretically possible concept variants is principally

based on the pseudo code in Section 3.2.3, where the concept variants are created by

taking one concept at a time for each subfunction in the morphology chart. To

compare the general rule with flow compatible concept combination rule, consider the

case where there are three subfunctions in the morphology chart. The general rule to

combine three subfunctions is shown in Figure 4.11. In this rule, the number of

subfunctions (line 69) is the fact that is obtained automatically by the system from the

morphology chart. A test constraining element (line 74) is used as part of the pattern

Chapter 4: Development of Conceptual Design Support Tool (CDST) 91

matching process in the LHS of the rule to show each subfunction are different and

prevent repeated firing of the rule.

Figure 4.11 Theoretically possible concept combination rule for 3 subfunctions

The corresponding flow compatible combination rule is shown in Figure 4.12. In this

rule, the basic combination principle is the same as the theoretically possible concept

variant rule shown in Figure 4.11. However, this rule has additional test constraining

elements (lines 87 and 88) which require the subsequent alternative concepts for the

subfunctions in the function structure to have the same input and output. These

constraining elements are satisfied if and only if the output flow of the preceding

concept is the same as the input flow of the succeeding concept in the morphology

chart. Because of this constrain, the applicability of this rule is limited to single flow

non-branching functional structure. If there is branching functional structure, it needs

to be decomposed manually into single flow non-branching structure before it is given

as input to the system. There are three similar concept combination rules in the

knowledge-base for each flow type (by varying the value of main flow in line 82)

with the same number of subfunctions.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 92

Figure 4.12 Flow compatible concept combination rule for 3 subfunctions

4.2.5 Concept Evaluation Module

The concept evaluation module takes the output of the concept combination phase

(i.e., concept variants) and gives ranked concept variants as an output. Three concept

evaluation methods (i.e., absolute comparison, concept screening, and weighted

decision matrix) are implemented in this module as discussed in Section 3.2.4. The

software implementation is to automatically prepare the selection matrix, provide GUI

to accept selection criteria from the user as input, and perform simple arithmetic

calculation while rating. The concept evaluation module retrieves the concept variants

from the knowledge-base, i.e., the actions of the concept combination rules (line 78 or

line 92), and selection criteria from the user to create the concept selection matrix.

The concept selection matrix is built using wxPython’s grid element. Once the user

rate the concepts based on their merits, the software can calculate the net score and

rank the concepts based on the result to assist the user in decision making.

4.2.6 The GUI Development and its Integration with CLIPS

The graphical user interface is built using wxPython toolkit, to facilitate easy

communication between the user and the software by hiding all the programming

details. The integration of the knowledge-based system developed in CLIPS with

parent code of the GUI development environment (i.e., Python) is done using

PyCLIPS module. PyCLIPS embeds full CLIPS functionality in Python applications

allowing all the libraries and the knowledge-base to be called and used in Python

environment.

Chapter 4: Development of Conceptual Design Support Tool (CDST) 93

wxPython provides standard toolkit to build GUI elements such as: windows, frames,

graphical images, grids, menus, dialogs, buttons, texts (both editable and static), list

box, choice items, and popup menu. Thus, a user friendly GUI has been built which

can accept inputs from the users and display results of the actions being performed.

There are more than seventeen GUI windows developed starting from the welcoming

window (Figure 4.13) to windows addressing each activities in conceptual design

process. Each window has either menus or buttons to control the user’s action such as

going to the next window, performing specific tasks or quitting the software (Ctrl-Q).

In addition, help documentation is provided for users on each window either by using

pull down menu “Help” or pressing “F1” key.

Figure 4.13 Screenshot of CDST welcoming window

4.3 Integration of the Modules and Initial Testing

After completing the coding process of each module, the next step is to integrate those

individual modules to form complete software. However, before integrating the

component modules into one, each module should be tested individually. Testing is

Chapter 4: Development of Conceptual Design Support Tool (CDST) 94

the process of executing programs with the intention of finding errors and checking

whether the program is performing according to intended plan. Accordingly each

module has been tested individually to find defects in logic, data, inputs, and outputs.

After fixing bugs found during the unit (module) testing process, the modules have

been integrated incrementally performing similar tests at each point.

The integrated software is converted into an executable file to make it portable and

use the software without installing the programming environments used to build it. As

an alternative option, the executable file is converted into windows self installable

software where users can install on their machine. A user’s guide is also prepared to

familiarize new users and guide on how to install and use CDST. All supporting

documents and files are included in the attached CD. The description of these files is

presented in Appendix A. The list of software and programming language used to

build CDST are presented in Appendix B.

4.4 Summary

In this chapter, the development of CDST was presented as an implementation of the

proposed conceptual design process model. The knowledge representation formalisms

in CLIPS were first introduced, followed by how the facts and the production rules in

each module (i.e., functional modeling, concept generation, concept combination and

concept evaluation) were constructed. The conceptual design knowledge in terms of

facts such as functions and alternative concepts were represented using template

consisting of named slot and attached values. The control knowledge to solve specific

problem was represented in terms of production rules. The production rules are

composed of an antecedent (the LHS of the rule) consisting of the conditional

elements to be met for the rule to be fired and a consequent (the RHS of the rule)

consisting of actions to be executed. The production rules are fired based on the

existence or non-existence of the specified facts in the working memory using pattern

matching and given conditional elements. Accordingly, the production rules for

concept generation and concept combination were developed. A knowledge

Chapter 4: Development of Conceptual Design Support Tool (CDST) 95

acquisition module to accept new concepts was also developed. The modules were

built, tested and integrated to form CDST.

In the next chapter, the features and capabilities of CDST will be demonstrated using

case studies. In Chapter 6, the verification and validation tests conducted on CDST by

evaluators will be presented.

Chapter 5: Case Studies 96

CHAPTER 5: CASE STUDIES

5.1 Introduction

In this chapter the function-based conceptual design framework proposed in

this Chapter 3 is validated by using the conceptual design support tool developed

in Chapter 4. The main features and the functionalities of CDST are illustrated with

case studies. First a conceptual design of three phase subsea separator design is used

as a case study. This case study demonstrates how the designer would interact with

the system when engaged in function-based design. The procedures in using the

CDST are presented by using screenshots of the GUI together with explanations for

each window. As a second case study, a conceptual design support tool for subsea

process equipment design (CDSTsped) is introduced. CDSTsped is presented to

demonstrate how the knowledge-base of CDST can be customized to specific

products and used as design knowledge management system to train novice designers.

5.2 Conceptual Design of Oil and Gas Separator using CDST

This section presents a case study that demonstrates how the developed conceptual

design support tool assists designers during the early phase of design. Next the steps

in the conceptual design process are demonstrated using the screenshots from the

interactions between the designer and the tool.

5.2.1 Problem Description and Functional Modeling

A designer is given a task to design a device that can be used to separate subsea oil

well stream which is a mixture of gases and hydrocarbon liquids mixed with water

flowing at high velocity into its components. The overall function can be deduced

from this customer requirement as: to separate three-phase well fluid into oil, gas, and

water for subsea application.

Chapter 5: Case Studies 97

The first step is to translate the customer requirement into functional model manually

by the designer. The functional modeling of the product to be designed is derived by

decomposing the overall function into a set of subfunctions with the methods

described in Section 3.2.1. The subfunction may be classified as main subfunctions

and auxiliary subfunctions. Main subfunctions are those subfunctions that directly

contribute to the overall function while auxiliary subfunctions are supporting

subfunctions which contribute to the overall function indirectly (Pahl and Beitz,

1996). A thorough study of the principles through which the bond between the

flowing fluids can be weakened and separated into its components together with the

study of existing product results in the functional structure shown in Figure 5.1. Note

that auxiliary subfunctions are not included in the functional modeling and material

flow is considered as the primary/main flow in this particular design.

Figure 5.1 Functional model for three-phase oil and gas separator

The next step is to give those subfunctions as input to the CDST. The design session

with CDST can be initiated using two approaches:

Chapter 5: Case Studies 98

Both options bring the welcoming window shown in Figure 5.2.

i. Double click on the CDST setup file in the executable folder of the software;

or

ii. Go to start -> Programs -> Conceptual Design Support -> CDST, if the

software is installed on the machine.

Figure 5.2 CDST welcoming window

The “Next” button on this window brings the function library window (Figure 5.3),

where the subfunctions in the functional structure are given as input to the system. In

the function library, the user first types the overall functions on the space provided,

and then give each subfunction as input to the system. Note that the subfunctions in

the function structure are described in terms of the functions in the function library.

Chapter 5: Case Studies 99

Figure 5.3 Screenshot of the function library

There are two options for the user to give subfunction in the functional structure as

input to CDST: load from text file or select from the function library.

To load from text file:

i. Prepare a text file with all the subfunctions following CLIPS input

format as defined in function template (Figure 4.2) and save as a text file

(i.e., write the following entry in any text editor and save as

“filename.txt”).

(function (verb distribute) (noun liquid-gas mixture))

(function (verb separate) (noun liquid-gas mixture))

(function (verb extract) (noun liquid) (complement droplet))

Chapter 5: Case Studies 100

(function (verb regulate) (noun gas) (complement flow))

(function (verb separate) (noun liquid-liquid mixture))

(function (verb regulate) (noun liquid) (complement flow))

ii. Use the “File” pull down menu on the function library window shown

in Figure 5.4 and select “Load”, or press Ctrl+L key to load the saved

text file.

Figure 5.4 Screen shot of pull down menu to load input functional structure

iii. The loaded subfunctions will be displayed on the “Selected

subfunctions” text window in the function library window (Figure 5.3).

To select the subfunctions from the function library the user goes through the

following steps:

1. Use the functional class choice item and select from the eight primary

or main classes of functions that corresponds to your subfunction. This

will populate the “Verb” choice item with the secondary and tertiary

functions in the Function Name. The user can view the help documents

by pressing “F1” key to know which action verbs are under a given

primary class.

2. Use the primary flow choice item and select the flow type

corresponding to your subfunction. This will populate the “Noun”,

“Input Flow”, and “Output Flow” choice items with the secondary and

tertiary flows corresponding to the selected flow.

3. Select the verb and noun choices. Add textually the complement if the

function cannot be described by verb + noun. Select the corresponding

input and output flows. Note that the complement, the input flow and

Chapter 5: Case Studies 101

output flow are optional, i.e., in cases where there is no input and

output flows and the function can be described by only verb + noun,

these attributes can be omitted.

4. Press the “Add Function” button to add the subfunction into the

working memory. The added subfunction will be displayed in the

“Selected subfunction” text field. You can remove the added function

from the working memory using the “Undo Add Function” button one

at a time.

5. Repeat steps 1-4 until all the subfunctions in the functional structure

are added. Note that fact duplication is not enabled in the CLIPS, thus

when there are duplicate subfunctions in the functional structure only

one subfunction should be given.

5.2.2 Concept Generation and Combination

The “Add Function” button in the function library window (Figure 5.3) and the

“Load” in the “File” pull down menu (Figure 5.4) instruct the software to add (assert)

those subfunctions into the current working memory of the knowledge-based system.

Once all the subfunctions are added to working memory, the concept generation

process is initiated by using the “Go” button in the function library window next to

“Generate alternative concepts” text. This brings, a pop up window shown in Figure

5.5 for the user to select the type of function to be considered for concept generation.

If the user selects the “Both Primary and Secondary Functions” option, the system

will search for concepts whose primary and secondary function match with the

subfunctions in the function structure. On the other hand, if “Only Primary Functions”

is selected only primary functions are considered in searching for the alternative

concepts.

Chapter 5: Case Studies 102

Figure 5.5 Function type selector for concept generation

In both cases, if there are alternative concepts in the database for each subfunction, a

text message which states “concepts are generated for all subfunctions successfully”

will be displayed. If one or more subfunctions have no alternative concept, then

message windows will popup to generate concepts manually. Furthermore, if some of

the generated concepts have side effects, the system will suggest to the user for

possible consideration of the side effects as new requirement. This effect

demonstrates the evolving nature of requirements during conceptual design process

and how CDST integrate this effect.

In this particular case all the subfunctions have alternative concepts from the database

with no side effects, thus there is no need to generate concepts manually or consider

the side effects as new requirement. In addition to this, a new concept can be added to

the database by using the “Generate” pull down menu in the function library window

which brings an alternative concept input window (shown in Figure 4.10) for manual

concept generation.

The “Next” button on the function library window brings design summary window

(Figure 5.6) where the designer can review all the subfunctions and their respective

alternative concepts generated individually. For each subfunctions in the functional

structure given as input to the system, the user can view the respective alternative

concepts in the database both textually and schematically in this window. The

subfunctions and all the alternative concepts can be viewed on the morphology chart

Chapter 5: Case Studies 103

using the “Create Morphology Chart” button on this window. The morphology chart

for this design is shown in Figure 5.7.

Figure 5.6 Design summary window

Chapter 5: Case Studies 104

Figure 5.7 Morphology chart

In the morphology chart the user examines the generated concepts and can reject

some of the infeasible concepts based on experience. As the number of concepts in

the database increases the number of alternative concepts generated by the tool also

increases and the user needs to decide which of the concepts have to be rejected. This

Chapter 5: Case Studies 105

will be imminent especially when the concepts in the database are extracted from

existing products and used to design other products. The user of CDST has an option

to reject infeasible concepts right on the morphology chart. This helps to reduce the

combinatorial explosion later in the concept combination process. When the user

clicks on any of the concepts in the morphology chart, the concepts name is displayed

textually. The user deletes the text if the concept is considered to be infeasible and use

the “Refresh” pull down menu to remove the rejected concept’s sketch and redraw the

morphology chart.

The concept combination process is initiated by using "create" pull down menu on the

morphology chart. The user has two options, either to create all theoretically possible

concept variants or flow compatible concept variants. However, the flow compatible

concept variant combination works only for non-branching single flow functional

structure; thus this option is not applicable for this particular case study. Combining

the concepts in the morphology chart results in 108 theoretically possible concept

variants obtained from the concept combination process. Based on the customer’s

requirement and feasibility of the concepts to be used for subsea applications the

following concepts are removed from the morphology chart: vertical-vessel from

separate liquid-gas mixture; coalescence-pack from extract liquid droplet; and fixed-

weir from separate liquid-liquid mixture. After refreshing the morphology chart, the

remaining concepts are combined resulting in a total of 36 theoretically possible

concept variants.

 The concept variants are displayed textually indicating the name of all the concepts

(components) in that particular concept variant as shown in Figure 5.8. In addition,

the concepts (components) in each concept variant can be viewed schematically by

using “view” pull down menu on the morphology chart window. Figure 5.9 shows the

concepts (components) of concept variant number 1 schematically.

Chapter 5: Case Studies 106

Figure 5.8 Concept variants represented textually

Figure 5.9 Schematic representation of the concepts

5.2.3 Concept Evaluation

Once the concept variants are created, the user uses the “Go to” pull down menu in

the morphology chart window (Figure 5.7) and selects the concept evaluation option.

The main window of the concept evaluation process is shown in Figure 5.10.

Chapter 5: Case Studies 107

Figure 5.10 Concept selection process main window

As stated in the Section 3.2.4, the concept evaluation process starts by identifying

evaluation criteria. The user can select predefined evaluation criteria (default values)

or give new evaluation criteria using criteria input window. Figure 5.11 shows the

window that accepts criteria from the user.

Figure 5.11 Evaluation criteria input window

Chapter 5: Case Studies 108

The first evaluation process is using absolute comparison method. In this method

concept variants are evaluated based on go/no-go screening of customer requirement,

judgment of feasibility of the design, and assessment of technological readiness using

absolute comparison window. From the customer requirement the separator is to be

used for subsea application in a three phase flow. This impose a constraint that those

concept variants with spherical vessel to be excluded because of its high cost of

manufacturing and less efficiency to separate three phase flow. Similarly, those

concept variants with bucket-and-weir as a means to separate liquid-liquid mixture are

considered to be rejected. Accordingly those concept variants with spherical vessels

and bucket-and-weir will be eliminated at this stage. The user decides whether to

continue or reject each concept variant by choosing either yes or no on the absolute

comparison window. The components of each concept variants either textually or

schematically can be viewed by double clicking on the respective concept variant

column in the absolute comparison window. For example the components of concept

variant number three are displayed as shown in Figure 5.12. Once the decision is done

for all the concept variants, then the user uses “Refresh” pull down menu to eliminate

those rejected concept variants. This reduces the total number concept variant to 9.

Figure 5.12 Absolute comparison window with list of concepts for concept variant 3

From the absolute comparison window (Figure 5.12), using the “Go to” pull down

menu, the user selects either concept screening method or weighted decision matrix

method to evaluate the remaining concept variants. First let’s consider the concept

screening method to evaluate the concept variants. The concept screening window has

pull down menu to select one of the concept variants or add a new concept variant as

Chapter 5: Case Studies 109

a datum. A datum concept variant is the one considered to be the best among the

concept variants or a competitive products concept variant reduced to the same level

of abstraction. Here, Concept variant 25 is considered as a datum concept from the

concept variants. The user rates each concept variant as: 1 if it is better than the datum

concept, 0 if it is the same as the datum concept and -1 if it is worse than the datum

concept for each criterion. This is an iterative process and after each evaluation those

concept variants with poor performance may be eliminated. For brevity, only the final

concept screening window is shown in Figure 5.13. The concept variants with “No”

value for the last row of the concept screening matrix are removed using the

“Refresh” pull down menu.

Figure 5.13 Screenshot of concept screening window

The remaining concept variants are finally evaluated by weighted decision matrix

method. The weighted decision matrix window is obtained by using the “Go to” pull

down menu on the concepts screening window. This brings the popup window for

selecting weight assignment method for each criterion (Figure 5.14). The direct

assignment method is selected when the designer assign weight based on his/her

previous experience. Here, a pairwise comparison matrix is used to assign the weight

as shown in Figure 5.15. In pairwise comparison, each criterion is compared with all

the criteria and rated using the guide line discussed in Section 3.2.4.

Chapter 5: Case Studies 110

Figure 5.14 Weight assigning method selection popup window

Figure 5.15 Pairwise comparison matrix

Once the user rates each criterion in the upper triangular matrix, the row total and the

normalized weights are calculated using the “Calculate” and “Calculate Normalized

weight” buttons respectively. The normalized weight is the relative weight of each

criterion. Then, the user uses the “Next” button to go to the weighted decision matrix

and rate each concept variant using a 5-point scale. The total score is calculated and

Chapter 5: Case Studies 111

the concept variants ranked using the “Evaluate” and “Rank” pull down menus

respectively (Figure 5.16). According to the evaluation result concept variant number

25 ((dished-head-baffle-plates) + (horizontal-vessel) + (wire-mesh-pad) + (pressure-

control-valve) + (spillover-weir) + (level-control-valve)) is selected for further

development whose schematic view is shown in Figure 5.17.

Figure 5.16 Final concept evaluation using weighted decision matrix

mixture in

Water out Oil out

Gas out

gas

Oil

water

Pressure
control valve

wire mesh pad

Oil

Oil

LC
LC

PC

Dish head baffle plate

Level control valve

Level control valve

Spill over weir

Figure 5.17 Schematic view of the selected concept variant

The system automatically creates a text file as report while the user is performing the

design process. The file contains date and time at which the design is conducted, the

overall function, the subfunctions, the concepts generated, the concepts rejected by

Chapter 5: Case Studies 112

the user on morphology chart, the combined concept variants, and the selected

concept variant. This helps to preserve the design history for future reference.

It can be summarized from this case study that, the conceptual design support tool

developed based on the proposed model assists designer by:

i. Supplementing designer’s knowledge with the generated concepts from the

knowledge base, and

ii. Handling the repetitive and time consuming tasks such as constructing the

morphology chart, combining concepts, and creating concept evaluation

matrices.

5.3 CDST for Subsea Process Equipment Design

In this section, the knowledge-base developed for CDST is used to build a conceptual

design support tool specifically for subsea process equipments to demonstrate

component selection for existing products. The main objective is to demonstrate how

design knowledge of existing products can systematically be represented and saved in

the computer system as knowledge management system for future use or training

novice designers.

The conceptual design support tool for subsea process equipment design (CDSTsped)

is developed using the knowledge-base for CDST by modifying the GUI. The main

difference between CDST and CDSTsped lays on the functional modeling. In

CDSTsped, instead of selecting the subfunctions from the function library, the user

will select the overall function from the given choices (i.e., the functional modeling is

built in). Once the user selects the overall function, the system will populate the

subfunctions for that particular choice. This is followed by generating alternative

concepts for each subfunction from the alternative concepts database. The flow chart

for CDSTsped is shown in Figure 5.18.

Chapter 5: Case Studies 113

Figure 5.18 Flow chart for CDSTsped

Chapter 5: Case Studies 114

As can be seen from this flow chart, the concept generation, concept combination and

concept evaluation processes are identical with the CDST flowchart shown in Figure

3.6. Through a user friendly GUI developed, the user can easily explore the design

information and perform conceptual design using push buttons, choice items, and

menu bars. Next, the design process using CDSTsped is demonstrated with

screenshots of GUI.

The design session with CDSTsped can be initiated using two approaches:

i. Double click on the CDSTsped setup file in the executable folder of the

software; or

ii. Go to start -> Programs -> Conceptual Design Support -> CDSTsped, if the

software is installed on the machine.

Both options bring the welcoming window shown in Figure 5.19.

Next, the designer selects the type of product to be designed (Separator or pump) in

the initial window of CDSTsped. Depending on the selection, specific product design

window through which the remaining design process continues in the form of

question and answer will be displayed. Selecting the pump option brings the pump

design window (Figure 5.20), where the user selects the type of pump to be designed.

Chapter 5: Case Studies 115

Figure 5.19 Screenshot of CDSTsped initial window

Figure 5.20 Selection of pump type

When the user selects the dynamic (kinetic) pump type from Figure 5.20 and clicks on

the “Next” button, a kinetic design window which shows the overall function, the

subfunctions and all the alternative concepts generated from the alternative concepts

database is displayed (Figure 5.21). However, if the user selects displacement pump

from Figure 5.20 , a displacement pump design window (Figure 5.22) will appear

Chapter 5: Case Studies 116

where the user can select the energy type and view the subfunctions and the generated

alternative concepts.

Figure 5.21 Kinetic pump design window

Chapter 5: Case Studies 117

Figure 5.22 Viewing alternative concepts for a given subfunction

Similarly if the user selects the separator option in Figure 5.19, the separator design

window shown in Figure 5.23 will appear. In this window the user has to select either

a two-phase or three-phase flow separator as the overall function. Based on this

selection the system will populate the respective subfunctions and generate their

alternative concepts.

Chapter 5: Case Studies 118

Figure 5.23 Separator design window

In all cases (Figure 5.21, Figure 5.22, Figure 5.23) the next step is to view all the

subfunctions and their alternative concepts on the morphology chart using the “Create

Morphology Chart” button. The remaining design process such as concept

combination and concept evaluation follow the same procedure as CDST and will not

be repeated here.

The CDSTsped demonstrated in this section shows its importance in preserving the

design knowledge for future use and to train novice designers. For each product

designed in given company similar tool can be developed with the methodology

proposed in this thesis. The importance of such tools is inevitable with the current

high turnover of experienced designers looking for better payment and retirement.

Chapter 6: Verification and Validation of CDST 119

CHAPTER 6: VERIFICATION AND VALIDATION OF CDST

6.1 Verification of CDST

The conceptual design support tool has undergone verification tests by reviewers.

Verification has been defined as the process of evaluating a system or component to

determine whether the products of a given development phase satisfy conditions

imposed at the start of that phase (Rakitin, 2001). Accordingly, the verification of

CDST has been done by two lecturers (both having PhD degree) from computer and

information science department of Universiti Teknologi Petronas (UTP). The main

purpose of this verification process was to test run and inspect the program and verify

the underlying program logic is correct. Both gave positive response with minor

comments to improve the GUI and make it more users friendly and standardize. The

comments were taken positively and necessary changes have been made accordingly

before the software undergoes validation test in the next phase.

6.2 Validation Test

Validation has been defined as the process of evaluating a system or component

during or at the end of the development process to determine whether it satisfies

specified requirements (Rakitin, 2001). Validation activities are performed after the

software is developed to determine if the software correctly implements the

requirements. The standard approach for validation is to collect data from the system

under study and compare them to their model counter parts. The manual conceptual

design process, from which the conceptual design model is developed, can be

compared with CDST, had the objective been automating the conceptual design

process. However, the objective here is to assist human designer during the

conceptual design process with the developed tool, and it cannot be directly compared

with human designer. Instead, the validation is done by performing validation tests by

independent experts in the field. The objective of validation test is to determine if the

Chapter 6: Verification and Validation of CDST 120

software meets all of its requirements as defined in the software requirements

specification (Section 3.3.1).

6.2.1 Selection of Evaluators

Several attempts have been made to get experts from industry working on subsea

process equipment design to test CDST. Unfortunately, this did not materialize

because of different reasons. One of the reasons is that a number of companies

working on the subsea process equipment design have manufacturing plants here in

Malaysia, but the designs come from overseas. Our requests to test the tool were

referred to the parent company located overseas. The next option explored to get

design experts within our premises is faculty members and postgraduate students who

have taught design courses and have industrial experience. Accordingly, three faculty

members and three PhD students were nominated to perform validation test on CDST.

Five of the evaluators have master degree and one PhD degree in mechanical

engineering. All the evaluators have more than eight years of work experience with

some having both academic and industrial experiences.

6.2.2 Evaluation Methods and Procedures

The test methods employed were both functional and Act-like-a-customer (ALAC)

tests (Rakitin, 2001). In functional or black box testing, the test is strictly based on the

requirements and the functionality of the tool; where as in ALAC testing the tests is

developed based on knowledge of how customers use the software. Evaluation

metrics were prepared based on standard test types for the experts to get their ratings.

The test types used were:

• Functional test to determine if specific functions/features work as specified,

i.e., test if all the steps in conceptual design process included in the software

are working;

• Positive testing to determine if a feature produces results that are consistent

with the stated requirements when the software is used properly;

• Startup/shutdown testing to determine if startup and shutdown functions have

been implemented correctly; and

Chapter 6: Verification and Validation of CDST 121

• Usability test to determine the user interface features behavior, as would be

expected by trained or untrained users.

Based on these tests and the general objective of the tool, evaluation criteria in the

form of questionnaire was prepared and given to the evaluators.

Before the evaluators use CDST, two conceptual design problems (problem I: three-

phase separator design demonstrated in Section 5.2 and problem II: design of

handheld nailer) have been given to them to perform manual conceptual design for

two weeks. In each case, a short description about the design problem and a

conceptual functional structure (functional modeling) were given. The main purposes

in performing manual conceptual design were:

• to refresh the evaluators with manual conceptual design process;

• to help the evaluators judge how supportive the tool is and its coverage with

regards to the steps in conceptual design process; and

• to compare the manually generated concepts with the concepts generated by

the tool and if there are new concepts generated by the evaluators to

demonstrate the knowledge acquisition process.

After the evaluators did the manual conceptual design process, they were briefed how

to use the CDST and given the help document. They next perform conceptual design

using CDST for the two problems followed by other design problems whose

alternative concepts are already stored in the database.

6.2.3 Validation Test Results

I. Comparison between Manual and Software Generated Concepts

The evaluators generated concepts based on their personal experience for each

subfunction in the functional structure of the design problems given. However, some

of the evaluators combine the subfunctions and generate concepts, while others omit

to generate concepts for some of the subfunctions. This makes the direct comparison

between the concepts generated by the tool with concepts generated manually a bit

difficult. Nevertheless, the concepts generated by two of the evaluators comply with

tools output. Thus, the concepts generated by both evaluators are compared with the

Chapter 6: Verification and Validation of CDST 122

concepts generated by the CDST and presented in Table 6.1. Even though this is not

intended to be quantitative proof of the efficiency of the tool, in both cases CDST

generates more number of concepts than the manual concept generation. The new

concepts generated by the evaluators are archived in the alternative concepts database

using the knowledge acquisition module provided for future use. Sample concepts

generated by one of the evaluators are shown in Figure 6.1.

Table 6.1 Overview of the number of concepts generated by two of the evaluators
compared with CDST

Problem

Concepts

generated

using CDST

Evaluator

Concepts generated by the evaluator

Total concepts

generated

Concepts similar

with CDST

New

concepts

Problem 1 15

I

13 6 3

Problem 2 9 4 4

Problem 1 15

II

9 9

Problem 2 9 7 6 1

Figure 6.1 Concepts generated by the evaluators to separate liquid-gas mixture

Chapter 6: Verification and Validation of CDST 123

II. Validation Test Ratings

The evaluators use the software and test for functional, positive, startup/shutdown and

usability tests and rate the CDST on the questionnaire prepared. The questionnaire is

found in Appendix C. The evaluators rate the tool with respect to each criterion in the

questionnaire as: 5 = Outstanding, 4 = Good, 3 = Satisfactory, 2 = Poor, and 1 =

Unsatisfactory.

The percentage rating of each criterion by the evaluators in the questionnaire is

summarized as follows:

1. Functional test: The functional tests are evaluated with the evaluation criteria

number 1-4. The overview of percentage ratings for these criteria is shown

in Figure 6.2.

Figure 6.2 Percentage rating for functional testing

2. Usability test: The usability test is evaluated with evaluation criteria number 5

to determine how comfortable the users are with the organization of the user

interface. As shown in Figure 6.3, this criterion got the lowest rating with 50%

Chapter 6: Verification and Validation of CDST 124

of the evaluators rating as good, 17% as satisfactory and the remaining 33% as

poor. This can be rectified by improving some of the features of the user

interface and familiarizing the users with the tool. In practice, it takes some

time to learn how to use any new software until the user gets use to it.

Figure 6.3 Evaluators' rating for organization of the user interface

3. Startup/shutdown and positive tests: The startup/shutdown and positive tests

are evaluated with criteria number 6 and 7 respectively. Evaluators’ rating

results for these tests are shown in Figure 6.4.

Figure 6.4 Startup/shutdown and positive test results

4. General use test: The remaining criteria are used to get the evaluators opinion

on the general use of the tool. Figure 6.5 shows the summary of evaluators

rating on the general use of the tool which includes: enhancing creativity,

training aid for conceptual design education, preserving experts’ knowledge

for future, and demonstrating conceptual design can be computer assisted. The

Chapter 6: Verification and Validation of CDST 125

last evaluation criterion is on whether the software achieves its purpose or not.

The rating for this criterion is shown in Figure 6.6.

Figure 6.5 Summary of evaluators rating on general use of CDST

Figure 6.6 Evaluators rating on the overall achievement of the program

In general the overall result from the validation test is good indicating areas where

further improvements are required. Tool development is cyclic process which

involves continues refinements and evaluations to satisfy the users demand.

Chapter 6: Verification and Validation of CDST 126

In addition to the ratings, the evaluators also gave comments and suggestion to

improve the tool. The comments include:

• The system did not allow saving what have been done.

• The system did not have undo options if the user made mistake in between.

The first comment is addressed by generating a text file that automatically save the

design history and the actions taken by the user. Therefore, the current version of

CDST saves the design history in text format. As an example, an excerpt from the

saved design history is shown in Figure 6.7. Furthermore, the subfunctions are saved

in a separate text file in a reloadable format, so that if the designer wants to repeat the

design some other time to load directly to the system in the function library window.

The second comment on the undo option is also addressed on the function library

window (Figure 5.3), by adding the “Undo Add Function” button to retract

subfunction from the working memory.

Figure 6.7 Excerpt from the saved design history

Chapter 6: Verification and Validation of CDST 127

6.3 Summary

In this chapter, the proposed function-based conceptual design support system is

verified and validated by experts. Valuable comments have been obtained from the

evaluators and addressed. The validation process is done with only six evaluators;

thus, further tests needs to be done by mechanical engineers in the industry with

varying degree of experience to improve the tool. The effectiveness of the tool with

respect to the number of concepts generated and the time required in conducting the

conceptual design process with and without the tool has not been addressed in the

validation test.

Chapter 7: Conclusions and Recommendations 128

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS

7.1 Contributions of the Research

Motivated by the need to support designers with computer tools during conceptual

design process where major design decisions are made with imprecise and incomplete

information, the research reported in this thesis proposed an approach that integrates

human creativity with computer capabilities to perform conceptual design efficiently

than solely manual design. The system is based on design reuse philosophy. Design

reuse plays a major role in product development especially during the early concept

generation phase supplementing the designer’s knowledge by providing stored

knowledge outside the designer’s area of expertise.

The methodology used in this thesis is based on systematic design approach integrated

with knowledge-based system. Complex design problems are represented in

functional terms and decomposed systematically into less complex subfunctions using

top-down design decomposition manually. These subfunctions are selected from the

function library developed via its GUI and given as input to the system. The solutions

or alternative concepts for those subfunctions are generated from the database of the

knowledge-based system which stores past design solutions. The solutions are then

composed to achieve the overall function (concept variants) from which one or two

concept variants are selected based on their merits for further development using

successive concept evaluation methods provided.

The methodology proposed in this research has been demonstrated in a computer

system. This demonstration was accomplished by using public domain open source

programming environments (CLIPS, wxPython, pyCLIPS, and Python). The

following modules have been developed to achieve the overall objective of the

research:

• Functional modeling: Provide exhaustive function library that can be used for

mechanical conceptual design process. This will help to define and represent

Chapter 7: Conclusions and Recommendations 129

functions in such a way that it is understood both by the designer and the

computer. The function library also assists designers by providing a clue

where to stop functional decomposition, i.e., functional decomposition should

be stopped when all the subfunctions can be represented with the elemental

mechanical functions (functions in the library).

• Concept generation: This includes representing and archiving concepts in the

database, generating concepts using domain independent production rules,

assisting designers in performing concept generation manually, and displaying

the generated concepts on morphology chart both schematically and textually.

• Concept combination: Provide domain independent production rules to

combine generated concepts to create concept variants and displaying the

concept variants textually and schematically. It also includes flow

compatibility criterion to reduce the combinatorial explosion for non

branching single flow functional structures.

• Concept evaluation: This includes assisting designers to define evaluation

criteria for a given design problem and evaluating concept variants using

absolute comparison, concept screening and weighted decision matrix

methods.

• Knowledge acquisition module: This module helps to acquire knowledge from

the designer and save it in the database during the program development and

the software life time without modifying the source code. This will assist the

designer to conduct manual concept generation or capture expert’s knowledge

and archive in the computer system for future use.

• Central graphical user interface: This includes the development of a user

friendly graphical user interface (GUI) through which the user interacts with

the system. The GUI consists of standard windows which can easily be

controlled by mouse using buttons, menus, choice items, and popup menus to

perform conceptual design process and explore the design options giving

visual feedback about the actions being performed.

Chapter 7: Conclusions and Recommendations 130

The main contributions of the research presented in this thesis can be summarized as

follows:

i. The developed conceptual design support tool allows designers to carryout

conceptual design process with the aid of computers. Once the designer is

familiar with the developed tool, the designer can use the tool to perform some

of the repetitive and time consuming tasks. The monotonous activities

supported by the tool include concept generation form database, accepting

new concepts from the designer and archiving in the database for future use,

displaying the generated concepts on the morphology chart, concept

combination and creating evaluation matrices for concept evaluation process.

From the interaction between the tool and the designer and the nature of the

conceptual design process, it is difficult to automate conceptual design in

general since there are cases where human interventions (decision) are

required.

ii. The proposed domain independent production rules make CDST generic and

easily expandable tool. Furthermore, the knowledge acquisition module

introduced helps to gain conceptual design knowledge throughout the tool’s

life time. The tool can be updated with new design concepts over time and

takes into consideration future inventions to be included. This makes CDST

novel compared to other tools such as MODESSA (Kersten, 1995), Web-

based morphological chart (Huang and Mak, 1999), and EFDEX (Zhang et al.,

2001b).

iii. It is possible to develop customized tool following the proposed framework

for specific domain of application. For example, CDSTsped presented in

Section 5.3, is developed to specifically address subsea processing equipment

design. Currently there is no known conceptual design tool to address this

domain.

iv. The electronic version of morphological chart developed in this research

which displays schematically all the alternative concepts generated can save

time compared to manual morphological charts posted on the wall which

requires redrawing the concepts each time used. On the other hand, like

manual design process, the designer has greater control over the generated

Chapter 7: Conclusions and Recommendations 131

concepts where infeasible concepts can be rejected right on the morphology

chart before the concept combination process.

v. CDST can be used as knowledge management system to capture and reuse

design knowledge in industry. Design knowledge resides in the brains of

experienced designers. This knowledge can be archived into the computer

system following the proposed knowledge representation scheme. In general,

CDST provides a way to capture abstract design knowledge in the form of

concepts which will be used by the less experienced designers to complement

their knowledge.

vi. CDST can also be used as inspirational tool. Exploring the generated concepts

of the tool can stimulate cognitive process and generation of new ideas

(Benami and Jin, 2002, Chakrabarti et al., 2005). However, it is always

advisable to generate concepts manually before using the tool to minimize

mental fixation to the existing concepts. Thus, the designer must always try to

generate concepts manually and then use the tool to see other options and

generate more concepts inspired by the existing ones.

vii. CDST can be used as means to train designers about conceptual design

process.

7.2 Critique of the Research

The conceptual design support tool presented in this thesis demonstrated how

conceptual design process can be computer assisted with existing design knowledge

archived in computer system. However, there are some limitations in the current

version of the tool which requires further research to enhance its functionality. These

limitations are discussed next.

The first limitation is on functional modeling. The tool does not have mechanism to

decompose the overall function into subfunctions by itself. Because of the subjectivity

in functional decomposition, it is not possible to ensure different designers to achieve

identical functional structure which makes it difficult to generalize decomposition rule

for all products. Thus functional decomposition is done manually by the designer with

Chapter 7: Conclusions and Recommendations 132

the aid of the function library developed to assist as a stopping criterion when the

decomposition reaches the elemental functions in the library. However, for specific

product it is possible to develop production rules that can automatically provide the

subfunctions for a given overall function as demonstrated with CDSTsped.

The second limitation is on the number of concepts generated and means to sort based

on importance. Currently, the alternative concepts database is limited to subsea

process equipment design and few common mechanical design problems added

during the validation process. This limits the number of concepts generated. However,

the concepts database can easily be expanded with the proposed knowledge

acquisition module. In relation to this, the tool provides a means to generate and

display on morphology chart as many alternative concepts as possible depending on

the availability of concepts in the database. However, the approach reported in this

thesis lacks the means to sort based on importance so that it could be easy for the user

to reject the less likely alternative concepts. Currently the designer rejects the less

likely concepts based on experience.

The third limitation is the number of subfunctions handled at a time for concept

combination process. The available rules to combine flow compatible concept

variants in the knowledge base is limited to a maximum of ten subfunctions at a time

in addition to the requirement that the functional structure should be single flow and

none branching. Although the rules for combining theoretically possible concept

variants have no limitation on the number of subfunctions, during test runs, because

of memory limitations on the available computers it was not possible to run the

program for more than ten subfunctions at a time. Thus, when there are more than ten

subfunctions in the functional structure, the user needs to divide manually and give

only a maximum of ten subfunctions at a time and combine later to get the overall

solution.

The fourth limitation is related with the incremental addition of new concepts to the

database. In its current version, the tool is stand alone and works only on the

computer on which the software is installed. Further research to make the tool server

based and accessible through intranet and/or internet would maximize the use of

concepts from designers in different locations.

Chapter 7: Conclusions and Recommendations 133

7.3 Recommendation for Future Research

Although the research presented in this thesis has lay down the framework how

conceptual design process can be computer assisted with the developed conceptual

design support tool, the effectiveness of the tool would benefit from additional

research. In addition to those pointed out in the previous section (Section 7.2) as

limitations, areas that need further research are summarized as follows:

i. Conceptual design is inherently evolutionary process, where the requirements

change as the design process progresses. This is because, decisions made at

one point creates additional requirements to the design and needs to be

addressed. The approach presented in this thesis deals with only initial static

set of requirements and does not support the evolutionary changes, even

though it can give suggestion to the user regarding the side effects from the

generated concepts to be considered as additional requirements. Thus, further

research to extend the dynamic functionality of the tool would be an added

advantage in supporting the designer.

ii. With increasing in the number of concepts in the database the number of

alternative concepts generated and their possible combination will become

difficult to evaluate. One of the possible options to reduce the combinatorial

explosion in addition to those proposed in this thesis includes geometric

compatibility. Even though this research is not aimed at addressing challenges

involving decisions about parametric details that govern the shape, or

geometry of a component, further research to include the parametric details

can help to include geometric compatibility criterion. The geometric

compatibility criterion reduces the number of concept variants by combining

only those concepts which are geometrically compatible. To extend the

existing tool to address geometric compatibility the concepts geometric and

material information should be captured and new production rules needs to be

written.

iii. Eventually the concept variants are further embodied with currently available

commercial CAD tools. Further research to integrate CDST with those CAD

tools is required. This will enable to easily modify concepts, create their 3D

Chapter 7: Conclusions and Recommendations 134

model, and conduct simulation studies to evaluate the concept variants in

addition to the current evaluation methods implemented.

References 135

REFERENCES

Allada, V. (2001) Feature-based design in integrated manufacturing. In Computer-

Aided Design, Engineering, and Manufacturing: Systems Techniques and

Applications. Leondes, C. T. (Ed.) Vol. 5. CRC Press.

Altiok, T. & Melamed, B. (2007) Simulation Modeling and Analysis with Arena,

Elsevier Inc.

Arnold, K. & Stewart, M. (1999a) Surface Production Operations: Design of Gas-

Handling systems and Facilities, 2nd ed. Vol. 2, Butterworth-Heinemann.

Arnold, K. & Stewart, M. (1999b) Surface Production Operations: Design of Oil-

Handling Systems and Facilities, 2nd ed. Vol. 1, Butterworth-Heinemann.

Benami, O. & Jin, Y. (2002) Creative Stimulation in Conceptual Design. In DETC'02.

Montreal, Canada, ASME pp 251-263.

Blessing, L. T. M. & Chakrabarti, A. (2009) DRM, A Design Research Methodology,

Springer-Verlag London Limited.

Boley, R. E. (1985) Horizontal gas and liquid separator. In U.S. Patent, Patent No:

4539023.

Bonnema, G. M. & Houten, F. J. A. M. V. (2004) Conceptual Design in a high-tech

environment. In Methods and tools for co-operative and integrated design.

Tichkiewitch, S. & Dordrecht, D. B. (Eds.). Kluwer Academic Publishers.

Bracewell, R. H. & Sharpe, J. E. E. (1996) Functional descriptions used in computer

support for qualitative scheme generation—Schemebuilder. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 10, 333-346.

Brunettia, G. & Golob, B. (2000) A feature-based approach towards an integrated

product model including conceptual design information. Computer-Aided Design, 32,

877-887.

References 136

Bryant, C. R., Mcadams, D. A., Stone, R. B., Kurtoglu, T. & Campbell, M. I. (2005)

A Computational Technique for Concept Generation. In IDETC/CIE 2005. Long

Beach, California USA, ASME pp 267-276.

Chakrabarti, A. & Blessing, L. (1996) Special Issue: Representing functionality in

design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

10, 251-253.

Chakrabarti, A. & Bligh, T. P. (2001) A scheme for functional reasoning in

conceptual design. Design Studies, 22, 493-517.

Chakrabarti, A., Sarkar, P., Leelavathamma, B. & Nataraju, B. S. (2005) A functional

representation for aiding biomimetic and artificial inspiration of new ideas. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 19, 113-132.

Chiang, W.-C., Pennathur, A. & Mital, A. (2001) Designing and manufacturing

consumer products for functionality: a literature review of current function definition

and design support tools. Integrated Manufacturing Systems, 12, 430-448.

Cole, E. L., Jr. (1998) Functional analysis: a system conceptual design tool IEEE

Transactions on Aerospace and Electronic Systems, 34, 354-365.

Collins, J. A., Hagan, B. T. & Bratt, H. M. (1976) The Failure-Experience Matrix - A

Useful Design Tool. Journal of Engineering in Industry, 98, 1074-1079.

Cross, N. (2008) Engineering Design Methods: Strategies for Product Design, 4th ed,

John Wiley & Sons, Ltd.

Deng, Y.-M., Britton, G. A. & Tor, S. B. (1998) A Design Perspective of Mechanical

Function and its Object-Oriented Representation Scheme. Engineering with

Computers, 14, 309-320.

Dieter, G. E. (2000) Engineering Design: A Materials and Processing Approach, 3rd

ed, New York McGraw-Hill.

References 137

Ditria, J. C. & Hadfield, D. A. (2001) Subsea multiphase fluid separating system and

method. In U.S. Patent, Patent No: 6197095 B1.

Dunn, R., wxPython, Last accessed on 2 July 2009, http://www.wxpython.org/.

Erdena, M. S., Komotoa, H., Beeka, T. J. V., D'amelioa, V., Echavarriaa, E. &

Tomiyamaa, T. (2008) A review of function modeling: Approaches and applications.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 22, 147-

169.

Filho, F. H. D. C. (1992) Deep-water oil and gas production and transportation

system. In U.S. Patent, Patent No: 5154741.

Fisher, A. S. (1991) CASE: Using Software Development Tools, 2nd ed, John Wiley

&Sons, Inc.

French, M. (1998) Conceptual Design for Engineers, 3rd ed, London, Springer.

Garosi, F., (2008a) PyClips, Last accessed on 2 July

2009, http://pyclips.sourceforge.net/web/?q=mainpage.

Garosi, F. (2008b) Pyclips User Manual.

Giarratano, J. C. (2007) CLIPS User's Guide.

Giarratano, J. C. & Riley, G. (1998) Expert systems : principles and programming, 3rd

ed, Boston, PWS Publishing.

Goel, A. K. & Chandrasekaran, B. (1990) A task structure for case-based design. In

IEEE International Conference on System, Man and Cybernetics. pp 587-592.

Hashim, F. M., Juster, N. P. & Pennington, A. D. (1994) A Functional Approach to

Redesign. Engineering with Computers, 10, 125-139.

Hatton, G. J. (1998) Power efficient multi-stage twin screw pump. In U.S. Patent,

Patent No: 5779451.

http://www.wxpython.org/
http://pyclips.sourceforge.net/web/?q=mainpage

References 138

Hirtz, J., Stone, R., Mcadams, D., Szykman, S. & Wood, K. (2002) A Functional

Basis for Engineering Design: Reconciling and Evolving Previous Efforts. Research

in Engineering Design, 13, 65-82.

Hopgood, A. A. (2001) Intelligent Systems for Engineers and Scientists, 2nd ed, CRC

Press.

Hsu, W. & Liu, B. (2000) Conceptual design: issues and challenges. Computer-Aided

Design, 32, 849-850.

Hsu, W. & Woon, I. M. Y. (1998) Current research in the conceptual design of

mechanical products. Computer-Aided Design, 30, 377-389.

Huang, G. Q. & Mak, K. L. (1999) Web-Based Morphological Charts for Concept

Design in Collaborative Product Development. Journal of Intelligent Manufacturing,

10, 267-278.

Hundal, M. S. (1990) A Systematic Method for Developing Function Structures,

Solutions and Concept Variants. Mechanism and Machine Theory, 25, 243-256.

Jager, A. (1994) Eccentric screw pump. In U.S. Patent, Patent No: 5358390.

Kamrani, A. & Vijayan, A. (2006) A methodology for integrated product

development using design and manufacturing templates. Journal of Manufacturing

Technology Management, 17, 656-672.

Karassik, I. J., Messina, J. P., Cooper, P. & Heald, C. C. (Eds.) (2001) Pump

Handbook, McGRAW-HILL.

Kersten, T. (1995) MODESSA: A Computer Based Conceptual Design Support

System. In AI system support for conceptual design, Lancaster International

workshop on engineering design. Sharpe, J. (Ed.). Lancaster, Springer pp 241-259.

Kirschman, C. F. & Fadel, G. M. (1998) Classifying Functions for Mechanical

Design. Journal of Mechanical Design, 120, 475-482.

References 139

Konar, A. (2000) Artificial Intelligence and Soft Computing: Behavioral and

Cognitive Modeling of the Human Brain, CRC Press.

Kurfman, M. A., Stock, M. E., Stone, R. B., Rajan, J. & Wood, K. L. (2003)

Experimental Studies Assessing the Repeatability of a Functional Modeling

Derivation Method. Journal of Mechanical Design, 125, 682-693.

Kuttig, D. (1993) Potential and Limits of Functional Modelling in the CAD Process.

Research in Engineering Design, 5, 40-48.

LPA, Logic Programming Associated Ltd, (n.d.) WIN-PROLOG with Chimera,

VisiRule and Flex, Last accessed on 17 May 2007, http://www.lpa.co.uk/dow_tri.htm.

Luger, G. F. & Stubblefield, W. A. (1998) Artificial Intelligence: Structures and

Strategies for Complex Problem Solving, 3rd ed, Addison Wesley Longman, Inc.

Lush, D., Eng, J., Ucok, H., Hopgood, D., Landeck, C. & Carmon, K. (2007) Subsea

separation system. In U.S. Patent, Patent No: 7210530 B2.

Lyons, W. C. & Plisga, G. J. (Eds.) (2005) Standard Handbook of Petroleum &

Natural Gas Engineering, Gulf Professional Publishing.

Mak, T. & Shu, L. (2008) Using descriptions of biological phenomena for idea

generation. Research in Engineering Design, 19, 21-28.

Massinon, R. M. J. (1992) Multiphase fluid mass transfer pump. In U.S. Patent,

Patent No: 5156537.

Mcmunigal, J. E., Ungvari, S., Slocum, M. & Mcmunigal, R. E. (2006) TRIZ. In

Mechanical Engineers’ Handbook: Materials and Mechanical Design. Kutz, M. (Ed.)

Vol. 1, 3rd ed., John Wiley & Sons, Inc.

Miller, G. A. (1956) The Magical Number Seven, Plus or Minus Two: Some Limits

on our Capacity for Processing Information. Psychological Review, 63, 81-97.

http://www.lpa.co.uk/dow_tri.htm

References 140

Moulianitis, V. C., Dentsoras, A. J. & Aspragathos, N. A. (1999) A knowledge-based

system for the conceptual design of grippers for handling fabrics. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 13, 13-25.

Nikolopoulos, C. (1997) Expert systems: Introduction to first and second generation

and hybrid knowledge based systems, Marcel Dekker, Inc.

Nilsen, P. J. & Wolff, E. A. (2005) Method and a system for separating a mixture. In

U.S. Patent, Patent No: 6872239.

Pahl, G. & Beitz, W. (1996) Engineering Design: A Systematic Approach, 2nd ed,

London, Springer.

Pugh, S. (1990) Total Design: Integrated Methods for Successful Product

Engineering, Addison-Wesley Publishing Company.

Qiu, S. L., Fok, S. C., Chen, C. H. & Xu, S. (2002) Conceptual Design Using

Evolution Strategy. International Journal of Advanced Manufacturing Technology,

20, 683–691.

Rakitin, S. R. (2001) Software Verification and Validation for Practitioners and

Managers, 2nd ed, Artech House, Inc.

Rao, S. S., Nahm, A., Shi, Z., Deng, X. & Syamil, A. (1999) Artificial intelligence

and expert systems applications in new product development - a survey. Journal of

Intelligent Manufacturing, 10, 231-244.

Rappin, N. & Dunn, R. (2006) wxPython in Action, Manning Publications Co.

Rentema, D. & Jansen, E. (2000) An AI Tool for Conceptual Design of Complex

Products. In Design Research in the Netherlands 2000. Achten, H., Vries, B. D. &

Hennessey, J. (Eds.). Eindhoven University of Technology, pp 119-131.

Riley, G., (2008) CLIPS: A Tool for Building Expert Systems, Last accessed on 2 July

2009, http://pyclips.sourceforge.net/web/.

http://pyclips.sourceforge.net/web/

References 141

Robert O. Parmely, P. E. (Ed.) (2005) Machine Devices and Components Illustrated

Sourcebook, MacGraw Hill.

Robertson, B. F. & Radcliffe, D. F. (2009) Impact of CAD tools on creative problem

solving in engineering design. Computer-Aided Design, 41, 136-146.

Saaty, T. L. (1994) How to Make a Decision: The Analytic Hierarchy Process.

Interfaces, 24, 19-43.

Salonen, M. & Perttula, M. (2005) Utilization of Concept Selection Methods - A

Survey of Finnish Industry. In ASME 2005 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference.

Long Beach, California USA, ASME.

Sapihie (2007) Introduction to Deepwater. In Deepwater Technology Workshop.

Universiti Teknologi Petronas.

Saruwatari, M. (1988) Progressive cavity pump. In U.S. Patent, Patent No: 4773834.

Scott, S. L., Devegowda, D. & Martin, A. M. (2004) Assessment of Subsea

Production & Well Systems. In Final Report Submitted to the U.S. Department of

Interior – Minerals Management Service (MMS), Technology Assessment & Research

(TA&R) Program. Department of Petroleum Engineering, Texas A&M University.

Sen, P. & Yang, J.-B. (1998) Multiple Criteria Decision Support in Engineering

Design, New York, Springer.

Sieger, D. B. & Salmi, R. E. (1997) Knowledge representation tool for conceptual

development of product designs. In 1997 IEEE International Conference on Systems,

Man, and Cybernetics. pp 1936-1941.

Smart, J., (1997) wxCLIPS, Last accessed on 11 September

2007, http://www.anthemion.co.uk/wxclips/.

Stone, R. B. & Wood, K. L. (2000) Development of a Functional Basis for Design.

Journal of Mechanical Design, 122, 359-370.

http://www.anthemion.co.uk/wxclips/

References 142

Sturges, R. H., O'shaughnessy, K. & Kilani, M. I. (1996) Computational model for

conceptual design based on extended function logic. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 10, 255-274.

Sturges, R. H. J. R., O'shaughnessy, K. & Reed, R. G. (1993) A Systematic Approach

to Conceptual Design. Concurrent Engineering, 1, 93-105.

Suh, N. P. (1990) The Principles of Design, Oxford University Press.

Szykman, S., Racz, J. W. & Sriram, R. D. (1999) The representation of function in

computer-based design. In 1999 ASME Design Engineering Technical Conferences.

Las Vegas, Nevada, ASME pp 233-246.

Tomiyama, T. (2007) Intelligent computer-aided design systems: Past 20 years and

future 20 years. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 21, 27-29.

Tong, C. & Gomory, A. (1993) A knowledge-based computer environment for the

conceptual design of small electromechanical appliances. Computer, 26, 69-71.

Tor, S. B., Britton, G. A., Chandrashekar, M. & Wee, N. K. (1998) Functional design.

In Integrated Product and Process Development: Methods, Tools, and Technologies.

John M Usher, Utpal Roy & Parsael, H. R. (Eds.). New York, John Willey &Sons,

Inc.

Ullman, D. G. (2003) The mechanical design process, 3rd ed, McGraw-Hill.

Ulrich, K. T. & Eppinger, S. D. (2004) Product Design and Development, 3rd ed,

McGRAW-Hill inc.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y. & Tomiyama, T. (1996)

Supporting conceptual design based on the function-behavior-state modeler. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 10, 275-288.

Umeda, Y. & Tomiyama, T. (1997) Functional Reasoning in Design. IEEE Expert,

42-48.

References 143

Vargas-Hernandez, N. & Shah, J. J. (2004) 2nd-CAD: A Tool for Conceptual Systems

Design in Electromechanical Domain. Journal of Computing and Information Science

in Engineering, 4, 28-36.

Wang, L., Shen, W., Xie, H., Neelamkavil, J. & Pardasani, A. (2002) Collaborative

conceptual design - state of the art and future trends. Computer-Aided Design, 34,

981-996.

Woldemichael, D. E. & Hashim, F. M. (2007) Development of Computer Aided

Conceptual Design Tool for Subsea Process Equipment Design. In Conference on

Design, Simulation, Product Development and Optimization. Ripin, Z. M., Abdullah,

M. Z., Hassan, A. Y., et al. (Eds.). Penang, Malaysia, pp 1-6.

Woldemichael, D. E. & Hashim, F. M. (2008) Concept Modeler: A Computer Aided

Conceptual Design Support Tool. In International Graduate Conference on

Engineering and Science 2008 (IGCES 2008). Johor Bahru, Malaysia.

Zhang, W. Y., Tor, S. B. & Britton, G. A. (2001a) A Prototype Knowledge-Based

System for Conceptual Synthesis of the Design Process. International Journal of

Advanced Manufacturing Technology, 17, 549-557.

Zhang, W. Y., Tor, S. B., Britton, G. A. & Deng, Y.-M. (2001b) EFDEX: A

Knowledge-Based Expert System for Functional Design of Engineering Systems.

Engineering with Computers, 17, 339-353.

Zuo, J. & Director, S. (2000) An Integrated Design Environment for Early Stage

Conceptual Design. In Design, Automation and Test in Europe Conference and

Exhibition 2000. IEEE.

Zwicky, F. (1967) The Morphological Approach to Discovery, Invention, Research

and Construction. In New Methods of Thought and Procedure: Contributions to the

Symposium on Methodologies. Zwicky, F. & Wilson, A. G. (Eds.). New York,

Springer-Verlag.

Appendix A 144

APPENDIX A: SOURCE CODE AND SUPPORT DOCUMENTS

A.1 Contents of the Attached CD

The source codes for CDST and support documents are found in the attached CD. The

attached CD contains:

i. Readme file on how to use the resources on the CD.

ii. CDST users guide in portable document format (pdf)

iii. CDST help document, a compiled html help file, in chm file format

iv. CDST software in different file formats

v. CLIPS, Python, PyClips, and wxPython installable programs

A.2 CDST in Different File Formats

CDST is prepared in three file formats for convenience. These are:

1. Source code: To run the program from the source code CLIPS, Python,

PyClips, and wxPython software should be installed first.

2. Self executable file format: The source code is converted into an executable

file format using a Python module known as Py2exe which is also open source

software.

3. Windows installable file format: The executable files are converted into

windows installable file format using Inno setup software. Inno setup is free

installer for window programs.

Appendix A 145

A.3 Source Code

The source code of CDST consists of thousands of lines and several files. Considering

the number of pages required, only excerpts of sample program from the source code

in CLIPS and Python are shown in Figure A.1 and Figure A.2 respectively.

Figure A.1 An excerpt from CDST source code in CLIPS

Appendix A 146

Figure A.2 An excerpt from the source code of GUI in Python environment

Appendix B 147

APPENDIX B: LIST OF SOFTWARE USED TO DEVELOP CDST

Table B.1 List of software used to develop CDST

Name Version Sources (download link) Purpose Remark

CLIPS 6.30 Beta http://clipsrules.sourceforge.net/ To develop the knowledge-based system (KBS) Open source

Python 2.5.1 http://www.python.org/ To integrate GUI with KBS Open source

wxPython 2.8 http://www.wxpython.org/ To build the GUI Open source

PyCLIPS 1.0.7.348 http://pyclips.sourceforge.net/web/ To embed CLIPS in Python program Open source

Py2exe 0.6.9 http://www.py2exe.org/ To convert the source code into executable file Open source

HTML

Help

Workshop

4.74.8702.0 http://www.softpedia.com/get/Authoring-

tools/Help-e-book-creators/HTML-Help-

Workshop.shtml

To compile html help document into .chm file and online

help

Free software

(Microsoft)

Inno setup 5.2.4-dev http://www.jrsoftware.org/isinfo.php To convert executable file into windows installable file

format

Free software

http://clipsrules.sourceforge.net/
http://www.python.org/
http://www.wxpython.org/
http://pyclips.sourceforge.net/web/
http://www.py2exe.org/
http://www.softpedia.com/get/Authoring-tools/Help-e-book-creators/HTML-Help-Workshop.shtml
http://www.softpedia.com/get/Authoring-tools/Help-e-book-creators/HTML-Help-Workshop.shtml
http://www.softpedia.com/get/Authoring-tools/Help-e-book-creators/HTML-Help-Workshop.shtml
http://www.jrsoftware.org/isinfo.php

Appendix C 148

APPENDIX C: EVALUATION QUESTIONNAIRE

The questionnaire used to evaluate and validate the CDST is shown in Table C.1. The

evaluators rate the tool with respect to each criterion in the questionnaire as:

5 = Outstanding, 4 = Good, 3 = Satisfactory, 2 = Poor, and 1 = Unsatisfactory.

Table C.1 CDST evaluation questionnaire

No. Evaluation Criteria 5 4 3 2 1

1 All the steps in conceptual design process are covered in a

comprehensive manner

2 The program acknowledges input

3 The program supports decision making by helping the users

generate ideas, obtain necessary information, and evaluate

alternatives

4 The user, not the program, controls the decision making

5 The organization of the user interface is clear, logical, and

effective, making it easy for the intended user to understand

6 The user can easily start and exit the program

7 The program is reliable in normal use. Software is bug free

8 Using the program contributes to the user’s creativity by

initiating ideas

9 The program can be a useful resource in academia to teach

conceptual design process

10 The program can be used as means to preserve experts

knowledge for future use

11 The structure of the program demonstrates that conceptual

design can be computer assisted

12 The program achieves its purpose

	STATUS OF THESIS
	APPROVAL PAGE
	TITLE PAGE
	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Overview of Engineering Design
	1.2 Problem Statement
	1.3 Research Objective
	1.4 Scope of the Research
	1.5 Thesis Organization

	CHAPTER 2: LITERATURE REVIEW
	2.1 Introduction
	2.2 Introduction to Conceptual Design Process
	2.3 AI in Design
	2.4 Knowledge-Based System
	2.4.1 The knowledge base
	2.4.2 The inference engine
	2.4.2.1 Forward Chaining
	2.4.2.2 Backward-chaining

	2.5 Function-Based Design: A Survey
	2.5.1 Definition of Function
	2.5.2 Functional Representation
	2.5.3 Functional Classifications

	2.6 Function-to-Form Mapping
	2.7 Concept Evaluation Process
	2.7.1 Pugh’s Evaluation Method
	2.7.2 Weighted decision matrix
	2.7.3 Analytical hierarchy process (AHP)

	2.8 Computer Aided Conceptual Design (CACD) Tools: A Survey
	2.9 Summary

	CHAPTER 3: METHODOLOGY
	3.1 Introduction
	3.2 Conceptual Design Process Model
	3.2.1 Functional Modeling
	3.2.2 Concept Generation
	3.2.2.1 Conceptual Knowledge Representation
	3.2.2.2 Automating the Concept Generation Process

	3.2.3 Concept Combination
	3.2.4 Concept Evaluation

	3.3 Model Construction
	3.3.1 Software Design Specifications and Requirements
	3.3.2 Programming Environment

	3.4 Summary

	CHAPTER 4: DEVELOPMENT OF CONCEPTUAL DESIGN SUPPORT TOOL (CDST)
	4.1 Introduction
	4.2 Development of the Software
	4.2.1 Basic Programming Elements and Knowledge Representation Formalism in CLIPS
	4.2.2 The Functional Modeling Module
	4.2.3 Concept Generation Module
	4.2.4 Concept Combination Module
	4.2.5 Concept Evaluation Module
	4.2.6 The GUI Development and its Integration with CLIPS

	4.3 Integration of the Modules and Initial Testing
	4.4 Summary

	CHAPTER 5: CASE STUDIES
	5.1 Introduction
	5.2 Conceptual Design of Oil and Gas Separator using CDST
	5.2.1 Problem Description and Functional Modeling
	5.2.2 Concept Generation and Combination
	5.2.3 Concept Evaluation

	5.3 CDST for Subsea Process Equipment Design

	CHAPTER 6: VERIFICATION AND VALIDATION OF CDST
	6.1 Verification of CDST
	6.2 Validation Test
	6.2.1 Selection of Evaluators
	6.2.2 Evaluation Methods and Procedures
	6.2.3 Validation Test Results
	I. Comparison between Manual and Software Generated Concepts
	II. Validation Test Ratings

	6.3 Summary

	CHAPTER 7: CONCLUSION AND RECOMMENDATIONS
	7.1 Contributions of the Research
	7.2 Critique of the Research
	7.3 Recommendation for Future Research

	REFERENCES
	Appendix A: SOURCE CODE AND SUPPORT DOCUMENTS
	A.1 Contents of the Attached CD
	A.2 CDST in Different File Formats
	A.3 Source Code

	Appendix B: LIST OF SOFTWARE USED TO DEVELOP CDST
	Appendix C: EVALUATION QUESTIONNAIRE

