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ABSTRACT  

Conceptual design is considered as the most critical and important phase of design 

process. It is the stage where product’s fundamental features are determined, large 

proportion of the lifecycle cost of the product is committed, and other major decisions 

are made, which have significant impact on the downstream design and related 

manufacturing processes. It is a knowledge intensive process where diverse 

knowledge and several years of experience are put together to design quality and cost 

effective products. Unfortunately, computer support systems for this phase are lagging 

behind compared to the currently available commercial computer aided design (CAD) 

tools for the later stage of design to reduce the designers workload and product 

development time. 

The overall goal of this research is to provide designers with computational tool that 

support conceptual design process. To achieve this goal a methodology that integrates 

systematic design approach with knowledge-based system is proposed in this thesis. 

Accordingly, a framework of computer based computational tool known as 

conceptual design support tool (CDST) is developed using the proposed methodology. 

The tool assists designers in performing functional modeling by providing standard 

vocabularies of functions in the form of function library, generate concepts stored in 

the database from previous designs, display the generated concepts on the 

morphology chart, combine the concepts and evaluate the concepts variants. Concepts 

from subsea processing equipment design have been collected and saved in the 

database. The tool also accepts new concepts from the designer through its knowledge 

acquisition system to be saved in the database for future use. In doing so, it is possible 

to integrate human creativity with data handling capabilities of computers to perform 

conceptual design more efficiently than solely manual design. The tool can also be 

used as a knowledge management system to preserve expert’s knowledge and train 

novice designers. The applicability of the proposed methodology and developed tool 

is illustrated and validated by using a case study and validation test conducted by 

independent evaluators.  
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ABSTRAK 

Reka bentuk konseptual adalah dianggap sebagai fasa paling akut dan penting bagi 

proses rekabentuk. Ia adalah peringkat di mana ciri-ciri utama produk ditentukan, 

peruntukan besar bagi kos kitaran hasil keluaran terlibat, dan keputusan-keputusan 

utama lain dibuat, yang mempunyai kesan mendalam ke akhir rekabentuk dan proses 

pembuatan. Ia satu ilmu proses intensif di mana pengetahuan pelbagai dan 

pengalaman yang panjang digabungkan untuk membentuk hasil akhir yang berkualiti 

dan kos yang berpatutan. Malangnya, sistem-sistem sokongan komputer untuk fasa ini 

agak ketinggalan berbanding dengan alat reka bentuk terbantu komputer (CAD) 

komersial yang kini boleh didapati banyak dipasaran terutamanya alat bantu komputer 

untuk peringkat akhir reka bentuk. Dengan ini dapat mengurangkan beban kerja 

pereka dan masa pembentukan hasil keluaran. 

Matlamat keseluruhan kajian ini adalah untuk melengkapkan alat terbantu computer 

yang menyokong proses rekabentuk konsepsi. Bagi mencapai matlamat ini satu 

kaedah dicadangkan dalam disertasi ini bagi mengintegrasikan pendekatan reka 

bentuk sistematik dengan sistem berasaskan pengetahuan. Oleh kerana itu, satu 

rangka kerja untuk alat terbantu komputer yang dikenali sebagai alat rekabentuk 

konsepsi terbantu komputer (CDST) adalah dibangunkan menggunakan kaedah yang 

dicadangkan. Alat terbantu ini dpat membantu pereka dalam melaksanakan model 

fungsi dengan menyediakan piawaian perbendaharaan kata fungsi dalam bentuk 

simpanan perpustakaan, menjana konsep-konsep simpanan dalam pangkalan data 

daripada rekaan-rekaan sebelumnya, paparan konsep-konsep dijanakan pada carta tata 

kata dan menggabungkan konsep-konsep itu dan menilai konsep-konsep yang 

berbeza. Konsep-konsep daripada peralatan proses dikumpul dan disimpan dalam 

pangkalan data. Alat terbantu ini juga menerima konsep-konsep baru daripada pereka 

melalui sistem tambahan pengetahuan untuk disimpan dalam pangkalan data untuk 

digunakan kemudian. Dengan ini, ada kemungkinan untuk menyatukan kreativiti 

insani dengan keupayaan pengendalian data komputer untuk menjalankan rekabentuk 

konsep dengan lebih cekap daripada rekabentuk tangan. Alat terbantu ini juga boleh 
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digunakan sebagai satu sistem pengurusan pengetahuan untuk mengekalkan 

pengetahuan pakar dan melatih pereka-pereka baru. Kebolehgunaan kaedah yang 

dicadangkan dan alat terbantu yang dihasilkan akan digambar dan disahkan dengan 

menggunakan satu kajian kes dan ujian pengesahan dijalankan oleh para penilai 

bebas.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview of Engineering Design 

Engineering design is the process of devising a system, component, or process to meet 

perceived needs. Even though humans have been designing products for thousands of 

years, design research is still going on. This is because of the current competitive 

market, developing more efficient and new approaches, and dynamic customer 

requirement for new, cost effective and high quality products. In order to make the 

design process more effective and efficient, design research aims at developing means 

to understand the design and develop a support system to enable design process in 

getting more successful products (Blessing and Chakrabarti, 2009). Product quality, 

cost and time to market are the key measures for the effectiveness of design process 

(Ullman, 2003). Careful and detail exploration of alternative options may result in low 

cost and quality products. However, this requires more time and the process is also 

knowledge intensive. Thus, the designer needs to be supported with efficient tools to 

compete in the market.  

Although it may be difficult to always border line between different phases, design 

process can generally be classified into four phases as shown in Figure 1.1 (Pahl and 

Beitz, 1996, French, 1998). Planning and task clarification is the first phase in which 

the designer identifies customer needs, collects information about the requirements 

and come up with requirements list or design specification as an output. The second 

phase of design is conceptual design, which takes the requirement list as an input and 

come up with one or more concept variants that can satisfy the requirements. This 

requires abstracting the essential problems, establishing functional structure, 

searching for alternative concepts, combining those concepts to form concept variants, 

and evaluating those concept variants. The selected concept variant is further 

developed in the embodiment design phase, where preliminary form design, material 

selection and calculations are done which results in determining the construction 

structure or overall layout. The last phase of design is the detail design phase in which 

details of production and operation documents are prepared. Among these phases, 
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conceptual design is considered to be the most critical phase of design. This is 

because conceptual design is:  

i. the most demanding phase from the designer’s point of view to generate new 

solution or make remarkable improvements on the design;  

ii. the stage where product’s fundamental features are determined with imprecise 

and incomplete information; and  

iii. the stage where large proportion of the product’s lifecycle cost is committed 

and other major decisions are made.  

Depending on its originality or innovativeness, a design activity can be classified as 

original, adaptive, or variant design (Pahl and Beitz, 1996). In original design, new 

solution principles are invented by selecting and combining known principles and 

technology, or by inventing completely new technology. When existing or slightly 

changed tasks are solved using new solution principles, it can also be considered as 

original design. Original designs usually proceed through all the design phases. In 

adaptive design, known and established solution principles are adapted to changed 

requirements, whereas in variant design the sizes and arrangements of parts and 

assemblies are varied within the limits set by previously designed product structures. 

In practice, it is often not possible to define precisely the boundaries between the 

three types of design and the majority of design problems are adaptation and variation 

of existing designs.  
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Figure 1.1 Phases of design process (adapted from (Pahl and Beitz, 1996)) 

1.2 Problem Statement 

Conceptual design is considered as the most important and critical phase of any 

product design process. It is the stage where the product's fundamental features are 
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determined, 70-85% of the life-cycle costs of the product are committed (Sieger and 

Salmi, 1997, Zuo and Director, 2000, Hsu and Liu, 2000, Rao et al., 1999) and other 

major decisions are made with incomplete and imprecise information. Decisions made 

early at this stage have a significant impact on other aspects of the product’s life cycle 

such as quality, cost, and manufacturability. It is usually difficult and even impossible 

to compensate a poorly conceived concept with good detail design process (Pahl and 

Beitz, 1996, Hsu and Woon, 1998, Rao et al., 1999, Hsu and Liu, 2000, Wang et al., 

2002). Therefore, conceptual design requires special attention in order to get 

successful design. 

Currently, there are several mechanical computer aided design (CAD) tools in the 

market to reduce the workload of human designer and product development time. 

However, most of these tools are used in the later phases of design such as drafting, 

geometric modeling, and computer aided engineering (CAE), which are mostly based 

on geometric information. These tools do not deal with the aspects of conceptual 

design process such as functional modeling, concept generation, combination and 

evaluation, which are function based and important during the conceptual design 

phase. Hence, the strength and use of the currently available CAD tools lies more at 

the detail design phase than the conceptual phase (Robertson and Radcliffe, 2009). 

Currently, there is no known commercial CAD tool that can be used for the whole 

conceptual design process. 

In designing a product, knowledge about the product is gained as the design process 

progress from conceptual design to the detail design phase, but the impact of decision 

declines. This is because decisions made at the earlier stages become constraints for 

the later stage. Hence, the later stage of design is mostly done within the limits set 

during the conceptual phase. Figure 1.2 shows the impact of decision and the 

availability of computer tools during the different phases of the product design 

process. This indicates that there is a greater opportunity to enhance the design 

process during the conceptual design phase if computer support tools are employed. 

Furthermore, as the knowledge about the design is gained during the design process, 

the design requirements may change or evolve to new requirement, which has not 

been recognized at the beginning. This makes the design process iterative through 
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which some of the design activities are repeated for refinement and improvement. 

Possible design options should be explored exhaustively and carefully to make 

necessary changes early in the design process. Changes made at the later stage of 

design are more costly and results in delay of the final product release (Qiu et al., 

2002). The iterative and repetitive design tasks can be computer assisted in order to 

reduce product development time and improve the design process. 

 

Figure 1.2 Impact of decision and availability of computer tools during the design 
process (Wang et al., 2002) 

Conceptual design process is knowledge intensive, and requires collaboration of 

expertise from different disciplines as it needs large amount of diverse information. 

Furthermore, these large amount of data needs to be explored (i.e., processed) 

carefully to get better design. However, humans can only process seven plus or minus 

two information at a time (Miller, 1956). Because of this limitation, it is difficult to 

explore all the design space manually within a given time and make sound judgment. 

On the other hand, computers are capable of handling and processing large data 

though they are not creative like human being. The hypothesis of this research is that, 

by combining human creativity with computer capabilities it is possible to perform the 

conceptual design process more effectively than solely manual design.   

1.3 Research Objective 

The objectives of the research work reported in this thesis are: 
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1. To investigate the problems associated with function-based conceptual design 

process. 

2. To propose a model or framework that can be used in functional design at the 

conceptual design stage to assist designers. 

3. To develop a computer based design support tool to test and validate the 

proposed model.    

The objectives of this research are realized through the development of the following 

research modules: 

• Functional modeling: This includes defining functionality and representation 

of functions in such a way that it is both understood by the machine and 

human being. 

• Concept generation: This includes representing concepts, generating concepts 

from database using domain independent production rules, assisting designers 

in conducting concept generation process manually, and displaying the 

generated concepts on morphology chart. 

• Concept combination: This includes domain independent production rules to 

combine generated concepts to create concept variants. 

• Concept evaluation: This includes assisting designers to define selection 

criteria for a given design problem and evaluating concept variants using 

different evaluation techniques.   

In this research, a methodology integrating systematic design approach with a 

knowledge based system is proposed to develop the conceptual design process model 

as shown in Figure 1.3.  The proposed model is implemented into a computer program 

known as conceptual design support tool (CDST) to assist designers during the 

conceptual design process and improve the design process. The detail methodology 

and development of CDST are discussed in Chapter 3 and Chapter 4 respectively.   
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Figure 1.3 Schematic view of the general methodology in developing the CDST 

1.4 Scope of the Research 

The objective of this research is not meant to fully computerize or automate the entire 

conceptual design process and substitute human designer with the computer tool. 

However, the aim is to integrate human creativity with computational and data 

handling capabilities of computers which results in hybrid conceptual design process.  

The design knowledge in the computer support tool is developed based on design 

reuse philosophy. Design reuse plays central role in the conceptual design stage 

especially in concept generation process. Conceptual design knowledge can be 

obtained from experts or extracted from existing products and saved in the design 

knowledge base. Knowledge from current design process can also be used for future 

designs. To archive design knowledge in a computer, the use of standard method of 

representing mechanical functions and alternative concepts is important. This fosters 

reuse of the design knowledge for other similar problems in the future. The alternative 

concepts at this early phase of design are at higher level of abstraction with no detail 



Chapter 1: Introduction                                                                                                8 
 

 

geometric or material information. Hence, only the concept’s functionality and 

input/output flows are captured.  

The computer support system will be used in generating alternative concepts for given 

functions, creating morphology chart, combining compatible alternative concepts, and 

evaluate the concept variants in the mechanical engineering domain. In general, the 

tool will assist human designer in the conceptual design process: 

• by providing design knowledge from past experiences;  

• handling some of the monotonous and time consuming tasks which gives the 

designer more time to concentrate on the creative part of design where 

humans are better than computers; and 

• capturing the new concepts generated during the current design process for 

future reuse. 

The production rules in the knowledge-based system are generic to be used for any 

mechanical conceptual design process. However, the domain of application for the 

current research is concerned with conceptual design knowledge of subsea process 

equipment design in oil and gas industry. There is no known conceptual design 

support tool so far to address this domain. In recent years because of high global oil 

demand, depletion of old onshore fields and technological advancement, operators are 

moving to deepwater field development.  The produced fluid from subsea wells which 

is mostly a multiphase mixture of oil, water and gas is transported to a platform or 

floating production storage and offloading (FPSO) deck located many kilometers 

away for processing. Because of back pressure imposed by production risers and long 

tie-backs there is a growing interest in processing the produced fluids on the seafloor 

(i.e., subsea processing) (Scott et al., 2004). Subsea processing mainly comprises of 

subsea separation and boosting. Separating fluids on the sea floor will avoid lifting 

large volumes of water to the surface for processing and disposal. Furthermore, 

subsea processing provides lesser susceptibility to hydrate formation since all the 

processing to final saleable crude can be done at the seabed. In general subsea 

processing provides reduced load requirement on the platform, and improved 

recoveries and greater efficiencies (Lyons and Plisga, 2005). However, subsea 



Chapter 1: Introduction                                                                                                9 
 

 

processing is an emerging technology which has not yet been fully utilized and there 

is also resistance from operators to use this new approach.  Figure 1.4 shows a typical 

subsea processing consisting of separator module and multiphase pump module. 

 

 Figure 1.4 An example of subsea processing (Sapihie, 2007)  

1.5 Thesis Organization 

This thesis is composed of seven chapters. Chapter 2 presents the literature review of 

researches related to this work. This includes review of conceptual design process, 

support of artificial intelligence systems in design, and a survey of function-based 

design and computer aided conceptual design tools so far developed as bench 

mark. Chapter 3 presents the research methodology used to achieve the objective of 

this research. The proposed conceptual design model and the integrated knowledge-

based system together with the programming environments used to implement the 

model are discussed. Chapter 4 presents the development of the conceptual design 

support tool (CDST) in detail. The applicability and implementation of CDST is 

illustrated with case studies in Chapter 5. CDST is demonstrated first with conceptual 

design of three phase separator and then with a general conceptual design support tool 
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for subsea process equipment (CDSTsped). Chapter 6 describes about the verification 

and validation tests conducted by reviewers after using CDST. Finally Chapter 7 

concludes this thesis by discussing the contributions and limitation of the work 

presented together with recommendation for future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the state of the art in the conceptual design research and areas in 

the computer support tool development for conceptual design. In particular, different 

conceptual design process models and the integration of artificial intelligence with 

design in developing computer aided conceptual design tools are reviewed. Function-

based design approach together with the definition, classifications, representations, 

and decomposition of functions is presented. Finally, a review of existing computer 

aided conceptual design tools that support designers in performing conceptual design 

is presented. 

2.2 Introduction to Conceptual Design Process  

Conceptual design has been defined as that phase of design process where the 

designer identifies the essential problem through abstraction, establish functional 

structure, search for suitable working principles (concepts) and combine these into a 

working structure (concept variants), and evaluate the concept variants against 

technical and economical criteria to come up with one or two concept variants for 

further development (Pahl and Beitz, 1996). It is the phase where most important 

decisions are made by combining the knowledge from engineering science, practical 

experience, production methods, and marketing (French, 1998). The goal of 

conceptual design phase is to explore the design problem and field of solutions, 

together with finding the best solution that is feasible for further development 

(Bonnema and Houten, 2004).There is greatest demand from the designer to make 

remarkable improvements on the design at this stage. Hence, conceptual design is a 

complex process where the designer needs to make wise decisions by considering 

several parameters.  
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In order to support the conceptual design activity with computers, the product to be 

designed and the knowledge from which the design is developed needs to be modeled 

correctly. But this modeling process is considered as one of the most difficult issues 

to address (Hsu and Woon, 1998). Feature-based, knowledge-based and function-

based design models are some of the modeling approaches used during the conceptual 

design process. These modeling approaches in relation to conceptual design support 

system will be reviewed next. 

Feature-based design 

When a product model is built using design features, it is known as design by features 

or feature-based design approach. There are varieties of definitions for the term 

“feature” in design literature indicating no consensus among the researchers (Hashim 

et al., 1994, Allada, 2001).  Considering its purpose Hashim (Hashim et al., 1994) 

defined feature as a geometric entity having geometric attributes (e.g., holes, 

protrusions, bosses etc) that either provides or accepts a function. Features can be 

used to convey information used to model the relationships between the requirements, 

functional description, and physical solutions of a product (Brunettia and Golob, 

2000). Computer tools developed based on feature-based design approach allows the 

designer to use mechanical features stored in feature library to build the product 

(Kamrani and Vijayan, 2006). Furthermore, this design approach helps the designer to 

consider the manufacturability and assembly process early in the conceptual stage.  

Feature based design approach suffers from the following limitations (Allada, 2001): 

1. Feature validation needs to be performed every time a new feature is added to 

ensure the new feature is placed in correct position or it does not affects the 

existing features. 

2. The determination of what features must be present in the feature library. A 

feature library with limited number of feature primitives may be difficult to 

satisfy various design needs, i.e., represent various design problems (Hsu and 

Woon, 1998). On the other hand a feature library with too many predefined 

features becomes cumbersome for the designer.  

 



Chapter 2: Literature Review                                                                                       13 
 

 

Knowledge-based design 

Conceptual design is a knowledge intensive process where diversified knowledge and 

several years of experience are required to design quality, cost effective, and 

innovative product. Knowledge of experienced designers should be acquired and kept 

for future reuse or to train novice designers before the experienced designers retire or 

leave the company. Knowledge-based design is a computer based design approach 

which relies on knowledge acquired from experienced designers, analyzing existing 

products, handbooks, patents etc. to automatically perform design process or to 

support designers. The acquired knowledge is represented in the form of facts and 

production rules in the knowledge-based system. A knowledge-based system is an 

artificial intelligence (AI) system, consisting of domain knowledge in the knowledge 

base, a controlling mechanism (an inference engine), and interface to the outside 

world through user interface. Knowledge-based system use symbolic representation of 

knowledge which can easily be understood both by human designer and the machine. 

Furthermore, since the domain knowledge is separated from the controlling 

mechanism, it is easy to add new knowledge during the program development or later 

(Hopgood, 2001). A number of researchers used knowledge-based design approach 

for conceptual design of products to generate design solutions from existing design 

knowledge (Tong and Gomory, 1993, Bracewell and Sharpe, 1996, Sieger and Salmi, 

1997, Moulianitis et al., 1999, Zhang et al., 2001b).  

Function-based design 

The conceptual design stage, which starts with requirements list and results in concept 

variants satisfying those requirements, is function oriented, and the process is known 

as functional design. Every product has reason behind its existence which is its 

function. The main design focus at the conceptual design stage is to find design 

solutions that can achieve the required functions, hence conceptual design is 

considered as function driven and the process functional design. Tor et al (Tor et al., 

1998) defined functional design as an approach for designing CAD software that 

incorporates the representation of functional information, as well as structural 

information, and its aim is to provide computer tools to link design functions with the 

physical embodiments used to realize the functions.    
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Representing functionality in a computer program in human and machine 

understandable form, and functional reasoning (i.e., the use and manipulation of 

functional knowledge in a form suitable for computer based environment) are the 

basis for computer support tools using function-based design approach. A number of 

researchers advocate function-based design approach (Suh, 1990, Pahl and Beitz, 

1996, Dieter, 2000, Ullman, 2003). In function-based design, the customer 

requirements are transformed into sets of functions (i.e., functional modeling) in a 

solution neutral form, which helps the designer not to stick to specific solutions too 

early in the design process. Functional models of products/devices provide a high-

level representational framework in which activities such as design, diagnosis, 

verification, and modification can be performed without reference to the actual 

structure of the system (Erdena et al., 2008). Using the functional model, the designer 

generates wide-ranging alternative solutions and selects the most promising ones for 

further development. The function-based design approach will be discussed in detail 

in Sections 2.5 and 2.6. 

In this thesis, a hybrid approach consisting of function-based and knowledge-based 

design approaches is used to develop the computer aided conceptual design tool 

which will be discussed further in Chapter 3.   

2.3 AI in Design 

Artificial intelligence (AI) has been defined as the simulation of human intelligence 

on a machine, so as to make the machine efficient to identify and use the right piece 

of knowledge at a given step of solving a problem (Konar, 2000). For the machine, to 

think intelligently, domain knowledge should be represented and stored together with 

means to reason about the knowledge. Within AI, three main directions of reasoning 

can be distinguished (Rentema and Jansen, 2000):  

• Reasoning by logic, e.g.  Rule-based reasoning technique in expert systems 

where the domain knowledge can be formalized into simple rules.  
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• Reasoning by learning, e.g. Artificial Neural Networks (ANN). An ANN 

consists of a network of nodes (processing elements) connected via adjustable 

weights (connections). By training the network with a large set of input-output 

pairs, the system learns the functional relation between the input and the 

output space. ANN is good for classification tasks and for performing 

associative memory retrieval. Hence, many neural networks applications in 

engineering design are geared towards either classifying the designs into 

families of design problems, or to finding the nearest values for the design 

parameters (Hsu and Woon, 1998). 

• Reasoning by analogy, e.g. case-based reasoning technique. Case-based 

reasoning is the general problem solving method where a given problem is 

solved by retrieving and adapting stored solution to a closely related problem 

(Goel and Chandrasekaran, 1990). When a new problem is presented, the 

system searches for cases with similar problem descriptions. Although the 

retrieved case usually does not completely fit the new problem, the retrieved 

solution may be a good starting point for further adaptation. 

AI systems are suitable to solve non-deterministic and “ill-structured” problems. 

Design problems are widely recognized as being “ill-defined” or “ill-structured”, as 

opposed to well-defined or well-structured problems which have clear goal, and often 

one clear answer (Cross, 2008). The characteristics of “ill-defined” or “ill-structured” 

problems are: 

• There is no definitive formulation of the problem. When the problem is 

initially set, the goals are usually vague, and many constraints and criteria are 

unknown.  

• Any problem formulation may embody inconsistencies. Mostly, many 

conflicts and inconsistencies emerge only in the process of problem solving, 

and these have to be resolved in the solution.  

• Formulations of the problem are solution-dependent. It is difficult to formulate 

a problem statement without implicitly or explicitly referring to a solution 

concept. 
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• Proposing solutions is a means of understanding the problem. 

• There is no definitive solution to the problem. The mapping between the 

problem and solution is not usually one-to-one, which makes designing non-

deterministic process. Different solutions can be equally valid responses to the 

initial problem. 

These non-deterministic and “ill-structured” natures of design make it suitable to be 

solved with AI systems. Integrating AI with design begins in the early 1980s. The 

goal of using AI systems in design at that time was to develop intelligent CAD system 

that could design products more or less automatically with minimum user inputs and 

interactions (Tomiyama, 2007). Design was considered in its broader sense including 

analysis, selection (of components or materials), parametric design, optimization, data 

integrity management (such as geometric constraint management), process planning, 

and synthesis. However, this objective has not been achieved. Because of this, in the 

past two decades, the research in this area focus on developing an integrated design 

support environment that can provide useful knowledge and guide the designer rather 

than automating the design process. Tomiyama (Tomiyama, 2007) pointed out two 

major concepts as requirements for intelligent CAD development: 

• The intensive use of design knowledge to design artifacts in one way or 

another, and 

• The intelligent CAD should exhibit knowledge management capabilities 

because design is mostly a knowledge generation process. 

A number of researches have been done in integrating AI with design especially 

during the conceptual design stage. For example, EFDEX (Engineering Functional 

Design Expert) is a knowledge-based (rule-based) system for automating conceptual 

design for specific domain (Zhang et al., 2001b), and AIDA (Artificial Intelligence 

supported Design of Aircraft), integrates rule-based and case-based techniques for 

supporting designers in the conceptual design of aircraft (Rentema and Jansen, 2000). 

The general descriptions of these systems and other computer aided conceptual design 

tools will be discussed further in Section 2.8.   
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In this research from AI system, a knowledge-based system is used to achieve the 

objectives of the research. Next, the components and features of a knowledge based 

system are reviewed.  

2.4 Knowledge-Based System 

Knowledge-based system is an artificial intelligence system which uses stored 

knowledge to solve problems in a specific domain. The three essential components of 

a knowledge-based system are:  

i. The knowledge base;  

ii. The inference engine; and  

iii. Interface to the outside world.  

The separation of the domain knowledge (knowledge base) from the controlling 

mechanism (inference engine) makes knowledge-based systems different from 

conventional programs where domain knowledge is intimately intertwined with 

software for controlling the application of that knowledge (Hopgood, 2001). This 

separation makes it possible to represent knowledge in a more natural way in which 

humans describe their own problem solving techniques.  Furthermore, the explicit 

separation of knowledge from control makes it easier to add new knowledge, both 

during the program development and in the program’s life time by incorporating a 

knowledge acquisition module to the knowledge-based system. The architectural 

components of a typical knowledge based system with knowledge acquisition module 

are shown in Figure 2.1. In the following sections these components of the 

knowledge-based system are discussed further. 
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Figure 2.1 Architectural components of knowledge-based system 

2.4.1 The knowledge base 

The knowledge base contains the domain specific and control knowledge which is 

used to solve problems in the domain. This knowledge can be obtained from experts 

or published literatures such as handbooks, manuals, etc. The acquired knowledge 

should be represented following appropriate knowledge representation formalism and 

encoded so that it is amenable to computer manipulation. Knowledge can be 

represented and stored in the knowledge base in various forms. The main knowledge 

representation formalisms proposed in the literature includes (Nikolopoulos, 1997):  

• Rules (Production rules) represent knowledge in the form of :  

If <condition> then <conclusion or action> 

• Semantic network represents knowledge as a labeled directed graph with nodes 

(oval shaped) corresponding to objects, situations or concepts and arcs 

corresponding to relations or association between the nodes. The term 

semantic networks encompass a family of graph-based representations. These 

includes: 

 Conceptual graph represents knowledge using connected bipartite 

graph whose nodes represent either concepts (represented as box), or 
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conceptual relations (represented as ellipse). Conceptual graph does 

not use labeled arcs unlike semantic networks; instead the conceptual 

relation nodes represent relations between concepts (Luger and 

Stubblefield, 1998). 

 Petri nets represent knowledge using a directed bipartite graph having 

two types of nodes known by places (i.e., conditions) and transitions 

(i.e., discrete events that may occur), and directed arcs to connect 

nodes of different types describing which places are pre- and/or post 

conditions for which transition. A place is considered as an input to a 

transition if and only if there is a directed arc from the place to the 

transition and as an output to a transition if and only if there is an arc 

from the transition to the place. The place nodes are represented by 

circles and the transition by bars or boxes.  

• Frames provide a means for organizing and representing knowledge as 

structured objects consisting of named slots with attached values. Frames can 

be connected through class-subclass relationships to form a frame system 

allowing data abstraction and inheritance i.e., a frame can inherit properties 

from its parent.  

• Object oriented paradigm (OOP) provides a means to represent knowledge in 

a structured manner including data abstraction, inheritance, encapsulation (or 

information hiding), and dynamic binding (or late binding) (Hopgood, 2001). 

Because of this, knowledge representation with this scheme requires a 

programming language which supports these capabilities. 

• Hybrid representation combines multiple representation paradigms into a 

single integrated programming environment. The fact that different sections of 

knowledge base may be encoded more efficiently using different formalisms, 

reveals the importance of hybrid systems.  

The selection of knowledge representation scheme among these varieties of 

approaches depends on the knowledge to be represented and the capability of 

programming environment used.  
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2.4.2 The inference engine 

The inference engine is the controlling mechanism which contains general algorithms, 

which are able to manipulate the knowledge stored in the knowledge base. In 

knowledge-based systems the inference mechanism compares the data/facts in the fact 

base with the information in the knowledge base and decides which information in the 

knowledge base applies to the data/fact to deduce results in an organized manner. The 

inference engine works based on an inference rule and a search strategy. There are 

two types of inference engines: forward-chaining or data-driven and backward-

chaining or goal-driven.   

2.4.2.1 Forward Chaining 

In forward chaining or data-driven method, rules are selected and applied in response 

to the current fact base. The fact base comprises all facts known by the system, which 

are either derived by rules or supplied directly. In this method, the information in the 

fact base is compared with the IF part of the rules in the knowledge base. If a rule is 

found whose IF part matches the information in the fact base, then the rule fires, i.e., 

the rule's THEN part is added to the fact base. The procedure repeats until all possible 

conclusions are drawn. 

2.4.2.2 Backward-chaining 

Backward-chaining is an inference strategy that assumes the existence of a goal that 

needs to be established or disproved. In backward-chaining, the system forms a 

hypothesis that corresponds to the THEN part of a rule or set of rules in the 

knowledge base and then attempts to justify it by searching the fact base to establish 

the facts appearing in the IF part of the rule or rules. If successful, the hypothesis is 

established and the system reports its results; otherwise, another hypothesis is formed 

and the inference mechanism repeats the procedure.  

The selection of the inference mechanism used for a given problem depends on the 

knowledge representation chosen, since each knowledge representation scheme has its 

own associated inference mechanism, i.e., different knowledge representation 

techniques support different types of inference processes. In addition to this, the 

programming environment chosen also affects the inferencing mechanism (for 
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example Prolog uses backward-chaining inferencing while CLIPS uses forward-

chaining mechanism). 

2.5 Function-Based Design: A Survey  

In this section, function-based design approach is reviewed from different 

perspectives in the literature. Various approaches used to classify and represent 

functional knowledge with their merits and demerits are presented together with the 

approaches used in the current research.  

2.5.1 Definition of Function 

Even though function is a critical aspect of design, especially during the conceptual 

design stage, there is no clear, uniform, objective, and widely accepted definition of 

function (Umeda and Tomiyama, 1997). Function represents the designer’s intent 

about the expected product’s basic characteristics. Some of the definitions available in 

the literature are presented next. 

From design problem solving point of view, Pahl and Beitz defined function as the 

general input/output relationship of a system whose purpose is to perform a task and it 

should be represented independent of any particular solution (Pahl and Beitz, 1996). 

Function has also been defined from performance point of view by Cole (Cole, 1998) 

as the actions a system must perform in response to its environment in order to 

achieve the mission or goals given to it. Considering the way the design problems and 

their solutions should be described, Chakrabarti and Bligh (Chakrabarti and Bligh, 

2001) defined function as a description of the action or effect required by a design 

problem, or that supplied by a solution. With regards to designer’s intention in 

defining/describing a design problem, function has been defined as purpose or 

intended use (Hashim et al., 1994). From design goal (i.e., device/artifact) point of 

view, Stone and Wood (Stone and Wood, 2000) defined function as a description of 

an operation to be performed by a device or artifact. According to Sturges et al 

(Sturges et al., 1993, Sturges et al., 1996), function is defined as the domain-

independent characteristics or behavior of elements or groups of elements. Umeda et 

al (Umeda et al., 1996) argue that it is difficult to distinguish function clearly from 
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human behavior from which it is abstracted and defined function as a description of 

behavior abstracted by the human through recognition of the behavior in order to 

utilize the behavior.  

Apart from variations in defining function, all the researchers agree that function 

plays central role in product design and development process especially at the 

conceptual design stage. They defined function from different perspectives. It is 

believed that these definitions are acceptable provided that they are capable to express 

the designer’s intent and describe the effect provided by the product or device 

unambiguously.  

2.5.2 Functional Representation 

Conceptual design process can be considered as transformation of design specification 

which is given as requirements list (i.e., functional requirements) into one or more 

concepts that can satisfy these requirements for further development. In order to 

develop computational methods to support this synthesis process, formal conceptual 

design process model is required, where design problem and solutions can be 

described and represented in terms of their functions. A formal functional 

representation technique is important for functional modeling and functional 

reasoning among others. The representation scheme should support easy definition, 

modification, and retrieval of functions by the designer for specific design problem.  

Traditionally there have been three approaches to represent functions in design 

(Chakrabarti and Blessing, 1996, Chiang et al., 2001). These are: 

i. Representing function in the form of verb-noun pairs – an example would be 

the function of a shaft, i.e., “transmit torque”; 

ii. Input-output flow transformations, where the inputs and outputs can be 

energy, materials, or information, i.e., flow-based representation; and 

iii. Transformation between input-output situations and states, i.e., state-based 

representation 
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However, the last two approaches can be grouped together and functional 

representation can be generalized in two approaches as proposed by Chakrabarti and 

Bligh (Chakrabarti and Bligh, 2001): 

i. Linguistic (Natural-language-like) representation of function, i.e., verb-noun 

pairs. This kind or representation is close to the way humans express their 

ideas, however it is difficult to formalize in a generalized way for computer 

application. 

ii. Mathematical representation of function, where function is expressed as a 

transformation between input and output. Input/output transformations can be 

represented by mathematical functions in situations where a function involves 

the process of flow of energy, material or signal, or physical quantities. This 

representation can be easily formalized for computer application but it needs 

translation to designer’s natural language.  

From these two approaches, it is preferable to represent function qualitatively, using a 

linguistic description since mathematical representation of design in the early stage is 

not always feasible with limited information available. Thus, in this research, a hybrid 

functional representation approach is used consisting of linguistic approach by verb-

noun pair together with the flows of energy, material and signals where applicable. 

The relationship between inputs and outputs is expressed independently of the 

solutions. This hybrid representation minimizes the limitation of flow based 

representation and gives more flexibility to the designer. For insistence, flow based 

representation can not sufficiently describe a function which is not transformation 

between input and output (e.g. function of a bolt). In such cases function is 

represented by verb + noun pair (connect/fix solid material for bolt). Similarly, if the 

function consists of transformations of flows as in the case of motor for example, the 

function is represented with verb + noun together with flow description (e.g., convert 

electrical energy to mechanical energy for motor)  
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2.5.3 Functional Classifications  

Classification (taxonomy) of mechanical functions has been one of the research areas 

in the design community to develop common classification scheme. Functional 

classification of mechanical functions is required to: 

i. Provide standardized common design language to represent a product and 

eliminate semantic confusion; 

ii. Assist in developing computational tools for function-based design approach; 

and 

iii. Assist designers in developing functional modeling process indicating clear 

stopping point for functional decomposition in a repeatable manner.  

The work done by Collins et al (Collins et al., 1976) can be considered as the first 

attempt to list mechanical functions. After studying the failure mode and occurrence 

of helicopter system, they described each part of a helicopter in terms of its 

function(s). Based on this, they propose classification consisting of 46 keywords and 

40 antecedent adjectives from which they identified 105 elemental mechanical 

functions. According to their work elemental mechanical function is defined as a 

distinctive generic characterization of the basic function of a machine part without 

reference to the specific application for which it is used. Their classification has the 

following limitations: 

i. Despite the fact that helicopter is a complex machine, their classification may 

not be exhaustive enough to cover all mechanical functions. 

ii. The elemental mechanical functions are not grouped or organized logically, 

thus it may be considered as collection of mechanical functions rather than 

classification, and 

iii. There are several functions which seem to be repeated and can be grouped 

together, for example switching and gas switching, signal transmitting and 

information transmitting, pumping and pumping oil are considered to be 

different functions.   
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In the early eighties, Pahl and Beitz (Pahl and Beitz, 1996) proposed five generally 

valid functions namely: change, vary, connect, channel, and store which are derived 

respectively from type, magnitude, number, place and time characteristics. They also 

defined three types of flows: flow of matter, energy, and signal. However the 

generally valid functions are at higher level of abstraction, which may sometimes 

hinder the direct search for solutions.  

Extending the functional classifications of Pahl and Beitz, Hundal (Hundal, 1990) 

classified primary categories of basic functional classes into six as channel, 

store/supply, connect, branch, change magnitude, and convert. He further classified 

each of these according to the quantities handled (material, energy, signal), the input 

and/or output, their physical forms and other necessary descriptors and proposed 

thirty nine sub-categories of these basic functions shown in Table 2.1. 

Table 2.1 Hundal's primary categories and sub-categories of basic functions (Hundal, 
1990)  

Primary categories 
of basic functions 

Sub-categories 

channel transmit, transport, move, stop 

store/supply store, supply 

connect connect, compare, mark, valve, switch, pack, 

mix, add, subtract, multiply, divide, AND, OR 

branch cut, branch, count, display, separate 

change magnitude process, crush, form, coalesce, change 

convert liquefy, solidify, evaporate, condense, integrate, 

differentiate, NOT, display, sense, convert 

 

Kirschman and Fadel (Kirschman and Fadel, 1998) proposed taxonomy of elemental 

mechanical functions after analyzing Collin’s work (Collins et al., 1976) and 

considering consumer products. Accordingly they proposed four basic mechanical 



Chapter 2: Literature Review                                                                                       26 
 

 

function groups which are related to the concepts of Motion, Power / Matter, Control, 

and Enclosure. This classification system was extended to cover more descriptive 

mechanical functions, as shown in Table 2.2. To increase the information content of 

the function which is normally established by combining verb-adjective, they include 

directions and convert to sentence form that leads to about 150 combinations of 

elemental mechanical functions. Though their taxonomy is more structured and 

includes functions of consumer products in addition to Collin’s work, it does not 

attempt to cover all functions used in mechanical design.  Furthermore, there 

functional representation which is formed by verb-adjective varies from the 

commonly used verb-noun representation adapted from value engineering in the early 

sixties.   

Table 2.2 Basic function groups and their extension (Kirschman and Fadel, 1998) 

 

motion 

 

• rotary, linear, oscillatory, other 

• create, convert, modify, dissipate, transmit 

• flexible, rigid 

 

 

control 

 

• power, motion, information 

• continuous, discreet 

• modification, indication 

• user-supplied, internal feedback 

 

power/matter 

 

• store, intake, expel, modify, transmit, dissipate 

• electrical, mechanical, other 

 

enclose 

 

• cover, view, protect 

• removal, permanent 

• support, attach, connect, guide, limit 

 

Deng et al (Deng et al., 1998) argue that it is not possible to classify all mechanical 

functions because of the diversity in mechanical components. They defined 
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fundamental mechanical functions as the lowest level embodiment functions. 

Fundamental mechanical functions are functions which are associated with 

fundamental physical structures. Accordingly, they classified fundamental mechanical 

functions into four categories as:  

1. Functions relating to supplying or storing energy or material, e.g. the functions 

of electric motor, spring, flying wheel, oil tank, etc. 

2. Functions relating to transmitting energy or material. This category can be 

further classified as: 

• Transmitting motion, e.g. the functions of shaft, gear, belt, chain; 

• Transmitting force or moment 

• Transmitting material, e.g. the function of pipe.  

3. Functions relating to converging or branching energy or material, e.g. the 

functions of switch, valve, gear train, etc. 

4. Functions relating to changing form or magnitude of energy or material, or 

physical quantities relating to energy. This category can be further classified 

as: 

• Changing form of energy, or changing form of physical quantities relating 

to energy, or changing form of material,  

• Changing magnitude of physical quantities relating to energy, or flow of 

material. 

These categories neither lay ground for common vocabulary to perform functional 

modeling in a repeatable manner nor clearly define stopping point for functional 

decomposition in creating functional structure.  

Stone and Wood (Stone and Wood, 2000), proposed a common design language 

termed as “functional basis”, which allows designers to describe a product’s overall 

function as a set of simpler sub-functions. They defined functional basis as a standard 

set of functions and flows capable of describing the mechanical design space. With 
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this definition, they proposed a group of eight classes of mechanical functions: 

branch, channel, connect, control magnitude, convert, provision, signal, and support. 

These classes are extended to include twenty four basic functions and eight flow 

restricted functions. Functional basis also defines three classes of flows: material, 

signal and energy; with nineteen basic and eleven sub-basic flows. In functional basis, 

functions (both overall and sub-) must be expressed as a verb-object pair where the 

basis functions fill the verb spot and the basis flows provide the object. They claim 

that functional basis subsumes previous taxonomies and offers a more complete and 

consistent set of functions and flows that is non-redundant, for electromechanical 

domain. 

Szykman et al (Szykman et al., 1999) from the National Institute of Standards and 

Technology (NIST), United States, developed a taxonomy of about 120 functions and 

over 100 flows, by extracting and distilling from extensive review of literature related 

to function and flows terminologies. There are several similarities between their 

taxonomy and the functional basis of Stone and Wood. Because of this, researchers 

from NIST taxonomy and functional basis reconcile the two functional vocabularies 

following a three step algorithm consisting of review, union and reconcile steps, and 

come up with reconciled functional basis (Hirtz et al., 2002). They claim that the 

reconciled functional basis completely describe the electromechanical design space. 

In the reconciled functional basis, functions are classified into eight classes (primary): 

branch, channel, connect, control magnitude, convert, provision, signal and support; 

which further classified into forty five secondary and tertiary classes of action verbs 

as shown in Table 2.3. Similarly, the reconciled flow set consists of three basic 

classes (primary) flows: material, energy and signal, which also have forty two 

secondary and tertiary flows as shown in Table 2.4. Note that in both tables, the 

column labeled as “correspondents” is provided as aid for mapping from terms that 

are not in the reconciled functional basis to the terms that are.  

After thoroughly studying those functional classifications and taxonomies, the 

requirement of standard functional representation which should be exhaustive enough 

to cover most of mechanical design domain, and accepted by the design community 

remains central to be addressed. There are two options to tackle this problem: to adopt 
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one of those taxonomies with some modification or to come up with new taxonomy of 

mechanical functions. The latter option seems to be reinventing the wheel as several 

classifications have been done in the past, and needs time to make it universal 

language. Thus, among those classifications discussed in this section, the reconciled 

functional basis proposed by Hirtz et al (Hirtz et al., 2002), is adopted in this research. 

The rationale behind this selection is that, this classification subsumes most of the 

previous classifications and includes most of the action verbs for mechanical design.  
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 Table 2.3 Functional basis reconciled function set (adapted from (Hirtz et al., 2002)) 

Class(Primary)  Secondary  Tertiary  Correspondent  

Branch  

Separate   Isolate, sever, disjoin  
 Divide  Detach, isolate, release, sort, split, disconnect, 

subtract  
 Extract  Refine, filter, purify, percolate, strain, clear  
 Remove  Cut, drill, lathe, polish, sand  
Distribute   Diffuse, dispel, disperse, dissipate, diverge, scatter  

Channel  Import   Form entrance, allow, input, capture  
Export   Dispose, eject, emit, empty, remove, destroy, 

eliminate  
Transfer   Carry, deliver  
 Transport  Advance, lift, move  

Transmit  Conduct, convey 
Guide   Direct, shift, steer, straighten, switch  
 Translate  Move, relocate  
 Rotate  Spin, turn  
 Allow DOF Constrain, unfasten, unlock  

Connect  Couple   Associate, connect  
 Join  Assemble, fasten  
 Link  Attach  
Mix   Add, blend, coalesce, combine, pack  

 
 
 
 
 
Control  
Magnitude  

Actuate   Enable, initiate, start, turn-on  
Regulate   Control, equalize, limit, maintain  
 Increase  Allow, open  
 Decrease  Close, delay, interrupt  
Change   Adjust, modulate, clear, demodulate, invert, 

normalize, rectify, reset  
  scale, vary, modify  
 Increment  Amplify, enhance, magnify, multiply  
 Decrement  Attenuate, dampen, reduce  
 Shape  Compact, compress, crush, pierce, deform, form  
 Condition  Prepare, adapt, treat  
Stop   End, halt, pause, interrupt, restrain  
 Prevent  Disable, turn-off  
 Inhibit  Shield, insulate, protect, resist  

Convert  Convert   Condense, create, decode, differentiate, digitize, 
encode, evaporate, generate, integrate, liquefy, 
process, solidify, transform  

Provision  Store   Accumulate  
 Contain  Capture, enclose  
 Collect  Absorb, consume, fill, reserve  
Supply   Provide, replenish, retrieve  

Signal  Sense   Feel, determine  
 Detect Discern, perceive, recognize 
 Measure Identify, locate 
Indicate  Announce, show, denote, record, register 
 Track Mark, time 
 Display Emit, expose, select 
Process  Compare, calculate, check 

Support Stabilize  Steady 
Secure  Constrain, hold, place, fix 
Position  Align, locate, orient 



Chapter 2: Literature Review                                                                                       31 
 

 

Table 2.4 Functional basis reconciled flow set (adapted from (Hirtz et al., 2002)) 

Class 
(Primary)  

Secondary  Tertiary  Correspondents  

Material  

Human   Hand, foot, head  
Gas   Homogeneous  
Liquid   Incompressible, compressible, 

homogeneous  
 
Solid  

Object  Rigid-body, elastic-body, widget  
Particulate   
Composite   

Plasma    

Mixture  

Gas–gas   
Liquid–liquid  Aggregate 
Solid–solid  
Solid–liquid   
Liquid–gas   
Solid–gas   
Solid–liquid–gas   
Colloidal  Aerosol  

Signal  

Status  

Auditory  Tone, word  
Olfactory   
Tactile  Temperature, pressure, roughness  
Taste   
Visual  Position, displacement  

Control  Analog  Oscillatory  
Discrete  Binary  

Energy  Human    
Acoustic    
Biological    
Chemical    
Electrical    

Electromagnetic  Optical   
Solar   

Hydraulic    
Hydraulic   
Magnetic   

Mechanical Rotational  
Translational  

Pneumatic   
Radioactive/Nuclear   
Thermal   

 

2.6 Function-to-Form Mapping 

In this section, the process of mapping functions to structures and different 

approaches of functional decomposition principles are discussed.  The task of the 

designer during the conceptual design process is to find suitable concept that can 
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satisfy the given requirements and constraints. The requirements at this phase of 

design describe the overall function of the product. This high level abstract 

formulation of design should be decomposed into less complex subfunctions, before 

the form (structure) that can perform the function is sought. This increases the 

innovative capability of the designer by reducing the cognitive effort required in 

finding solutions. There are different approaches by different researchers for 

functional decomposition. Some of these approaches are discussed next.  

In their systematic design approach, Pahl and Beitz (Pahl and Beitz, 1996) proposed 

functional decomposition using the technique based on the flow of energy, material, 

and signal. The overall function of a given complex design problem is first defined in 

terms of the inputs and outputs of all the quantities involved. This overall function is 

then broken down into identifiable subfunctions which follow the flow of energy, 

material and signal as shown in Figure 2.2. The decomposition process continues until 

solution to each subfunctions can easily be found resulting in functional structure for 

the given design problem.  Finally the alternative design solutions for each 

subfunction are generated and mapped to each subfunction.  
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Material'
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Figure 2.2 Decomposing overall function into subfunctions (adapted from (Pahl and 
Beitz, 1996)) 
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The process of analyzing the requirements list and decomposing the overall function 

into subfunctions and creating functional structure is known as functional modeling. 

For flow based functions Kurfman et al (Kurfman et al., 2003) proposed five steps to 

derive functional modeling. These steps are:  

i. Identify the input and output flows (material, energy and signal) that 

address customer needs,  

ii. Generate a black box model of the product to be designed,  

iii. Create function chains for each input flow,  

iv. Aggregate function chains into a functional model, and  

v. Verify the functional model with customer needs i.e., check that the 

collective effect of all the subfunctions in the functional model can satisfy 

the customer’s needs. 

The overall function is satisfied by combining the generated solution for each 

subfunction in bottom-up approach.  The main problem with this type of functional 

decomposition is at what point should the decomposition stop and start mapping. As 

stated in Section 2.5.3, the decompositions should stop when each subfunction is 

expressed in terms of elemental mechanical functions provided that the overall 

function can be achieved by combining the subfunctions in the functional structure. 

For each function in the functional structure the designer generate alternative concepts 

satisfying those subfunctions. There are a number of manual concept generation 

methods that improve creativity. Among these, the most recommended ones are: 

i. Conventional concept generation methods such as brainstorming, 6-3-5 

method, Delphi method,  and Gallery method (Pahl and Beitz, 1996, 

Ullman, 2003).  

ii. Logical concept generation method such as TRIZ (McMunigal et al., 

2006). 



Chapter 2: Literature Review                                                                                       34 
 

 

iii. Design by analogy. For example, using biomimetic design which uses 

biological phenomena to inspire solutions to engineering problems (Mak 

and Shu, 2008, Chakrabarti et al., 2005).  

iv. Combination of these methods.  

Suh (Suh, 1990) proposed hierarchical decomposition in his axiomatic design 

approach. According to his approach, the first step in the design process is to establish 

hierarchical functional requirements (FRs) from the needs that the final product must 

satisfy. These hierarchical functional requirements in functional domain are directly 

mapped to design parameters (DPs) in physical domain, which are also hierarchical. 

However, FRs at the ith level cannot be decomposed into the next level of the FRs 

hierarchy without first going over to the physical domain and developing a solution 

that satisfies the ith level FRs with all the corresponding DPs (Figure 2.3). This zigzag 

process continues until the FRs can no longer be decomposed.  Though, this can be 

considered as stopping point for functional decomposition, Suh did not propose 

vocabulary of standard functional requirements. 

FR-1

 .
  .
  .

Functional Requirements Design Parameters

FR-2.1 FR-2.2

FR-2.1.1 FR-2.1.2

FR-2.n.m

DP-1

 .
  .
  .

DP-2.1 DP-2.2

DP-2.1.1 DP-2.1.2

DP-2.n.m

 

Figure 2.3 Functional decomposition and mapping in axiomatic design approach 

Functional block diagram (FBD) or functional logic diagram, which is drawn using 

the rules of functional logic developed by Charles Bytheway in the early sixties, can 

also be used for functional decomposition and function to form mapping (Sturges et 

al., 1996). In FBD, the overall design problem is identified and represented at higher 
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level of abstraction by basic function which is decomposed by the design team into 

several functions. These secondary functions are then translated into components or 

recursively decomposed. The function decomposition process continues until one can 

map each function into a component or system that will accomplish it. The general 

form of the FBD, shown in Figure 2.4, represent the function block (or node) 

consisting of the function name (what is done) in verb + noun format. The nodes to 

the left of a given function node represent the reason why a function is included with 

a higher level function. The nodes to the right are functions describing how the 

function is performed with lower level functions. Each higher level function is 

connected to the lower level function preserving this how/why relationship. They did 

not describe any standardized vocabulary of functions used to create FBD, and it is 

practically rare to find a one-to-one correspondence between functions and 

components.  
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Figure 2.4 The general form of function logic diagram (adapted from (Sturges et al., 
1996)) 

Zhang et al (Zhang et al., 2001a) define construction rules for function decomposition 

and mapping. In their knowledge-based conceptual synthesizer (KBCS), they used 
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predefined decomposition rules to guide the decomposition and mapping process. In 

KBCS, the design process starts by defining the goal function i.e., the overall function 

to be achieved in the working memory. The system searches the behavior base to find 

the behavior whose functional output matches with the given goal function. If there is 

no match in the behavior base, function decomposition rule is fired and the goal 

function decomposed. However, if there is matching behavior in the behavior base, 

mapping between the function and behavior is done, and the matching behavior will 

be retrieved into the working memory, where its deriving input is taken to be the new 

design goal. This process continues recursively until the deriving input of the matched 

behavior is provided by the working environment. The system prescribe automating 

the design process but it works in a closed world system, i.e., the system works only 

for those functions whose decomposition rules are in the knowledge base, requiring 

new domain knowledge for each product.  

An example of the function decomposition rule in the KBCS is given here: 

Rule specific_Decompose 1 

    IF a desired function is Insert terminal into housing 

   THEN decompose it into Clamp housing after locating it  

  AND Insert terminal after holding it. 

In general from those research works reviewed in this section, it can be summarized 

that functional decomposition is a subjective process which depends on the designer 

performing it. Two designers may not come up with the same functional 

decomposition for the same design problem. Therefore, standardized taxonomies of 

mechanical functions can be used to indicate at what point to stop functional 

decomposition. Accordingly, functional decomposition should continue until all the 

subfunctions can be represented with these standard mechanical functions. This is also 

important to perform functional design in a repeatable manner.   
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2.7 Concept Evaluation Process 

Conceptual design process can be considered as an activity consisting problem 

definition, generation of concepts, firm up the generated concepts into concept 

variants followed by evaluation to decide the best concept for further development.  

All the subsequent design activities depend on the decision made during the concept 

evaluation process; therefore, care must be taken not to overlook better design 

options. At the early stage of design, product concepts always need refinement and 

are subject to change. However, changes made later in the design stage are costly. To 

reduce design iteration, and the cost incurred due to this, designers must select 

product concepts with better performance.  Ulrich and Eppinger (Ulrich and Eppinger, 

2004), defined  concept selection as the process of evaluating concepts with respect to 

customer needs and other criteria, comparing the relative strengths and weakness of 

the concepts and selecting one or more concepts for further investigation, testing, or 

development. Unfortunately, this decision is made at the stage where the designers 

have incomplete, uncertain, and evolving information about the concepts.   

The first task in the concept evaluation process is identifying the concept evaluation 

criteria including technical and economical characteristics of the concept based on the 

customer requirement. The criteria should help at least to distinguish one of the 

alternative concepts from the others. In other words, if all the alternative concepts 

have same value for a given criterion, that criterion should be eliminated as it has no 

contribution in making decision. 

The most common formal and systematic methods of concept selection methods 

include Pugh’s evaluation method (concept screening method as modified by Ulrich 

and Eppinger (Ulrich and Eppinger, 2004)) , weighted decision matrix, and analytical 

hierarchy process (AHP). In addition to these, there are less structured methods used 

in industry such as concept review meetings, checklists or expert assessment (based 

on personal preference and expertise), voting on concept variants, and intuitive 

selection of concepts. The study conducted by Salonen and Perttula (Salonen and 

Perttula, 2005) revealed that the degree of utilization of formal and systematic 

concept selection methods in industry is relatively low. On the other hand, the less 
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structured methods possess a higher degree of utilization in the industry than the 

formal and systematic methods.  However, their finding also concludes a higher 

degree of satisfaction in those companies using one or more formal and systematic 

concept selection methods compared to those companies who do not use.  

An overview of the systematic methods of concept selection approaches is presented 

next. 

2.7.1 Pugh’s Evaluation Method 

Pugh’s concept selection method, proposed by Stuart Pugh (Pugh, 1990), is the most 

widely known and referred concept selection methodology (Pahl and Beitz, 1996, 

Dieter, 2000, Ullman, 2003, Ulrich and Eppinger, 2004). To use Pugh’s concept 

selection method, it is required first to choose the evaluation criteria and prepare a 

selection matrix with the selection criteria on the first column and the alternative 

concepts on the first row of the matrix. Then, one of the concept variants is selected as 

a datum concept or a competitive products concept is added as a datum next to the last 

alternative concept. The evaluation process is performed by comparing each concept 

variant and the datum concept with respect to each criterion and giving values: “+” if 

the concept variant is better than the datum, “-” if the concept variant is worse than 

the datum, or “0” or “S” if the concept variant is same as the datum concept. A score 

pattern for each concept variant is calculated as the number of pluses, minuses and 

zeros or S’s. Even though this method can be used to eliminate infeasible concepts it 

assumes all the criteria are equally important and it did not indicate how much better 

or worse the concept is compared to the datum. Concept screening method (Ulrich 

and Eppinger, 2004) is a modified version of Pugh’s concept selection method where 

the net score of the concept variants is calculated as a sum of pluses and minuses 

allowing ranking of the concept variants. However, this method also inherits the 

limitation of Pugh’s concept selection method.  

2.7.2 Weighted decision matrix 

A decision matrix is a method of evaluating competing alternative concepts by 

ranking the selection criteria with weighting factors and rating the degree to which 

each concept variant meets the criterion. In this method, a relative weight is assigned 
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to each criterion since in reality the evaluation criteria markedly differ in terms of 

importance. The relative weight can be assigned by using either of the following 

methods (Sen and Yang, 1998): 

i. The direct assignment technique: where the decision maker assign weights 

based on his/her experience using certain evaluation standards. 

ii. Pairwise comparison: In this method each criterion is compared with all other 

criteria one at a time, and rated in comparison matrix. Comparison matrix is n 

by n matrix, where the row and column headings are the criteria. A given 

criterion is rated as ‘0’ if it is less important than the other and as ‘1’ if it is 

more important. The normalized row value is taken as weight for each 

criterion. The drawback of this approach is the difficulty in handling the 

number of comparisons as the number of criterion increases. The other 

drawback of this approach is that, since there is no intermediate value between 

‘0’ and ‘1’, the comparison become coarse and difficult to differentiate. 

iii. Analytical Hierarchy Process (AHP): AHP can be used to assign weights to 

each criterion by comparing with each other like pairwise comparison method. 

However, instead of using ‘0’ and ‘1’ to compare the criteria, a 9 point scale 

known as fundamental scale of AHP (Saaty, 1994) shown in Table 2.5 is used 

to make the comparison finer.   
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Table 2.5 Fundamental scale of absolute numbers (Saaty, 1994) 

Intensity of 
Importance 

Definition Explanation 

1 Equal importance Two activities contribute equally to the 
objective 

3 Moderate importance Experience and judgment slightly favor 
one activity over another 

5 Strong importance Experience and judgment strongly favor 
one activity over another 

7 Very strong importance An activity is favored very strongly over 
another; its dominance demonstrated in 
practice 

9 Absolute/extreme importance The evidence favoring one activity over 
another is of the highest possible order of 
affirmation 

2,4,6,8 Immediate values between above 
scale values 

Sometimes one needs to interpolate a 
compromise judgment numerically 
because there is no good word to describe 
it. 

Reciprocals 
of above 

If element i has one of the above 
non-zero numbers assigned on it 
when compared with activity j, 
then j has the reciprocal value 
when compared to i 

A comparison mandated by choosing the 
smaller element as the unit to estimate the 
larger one as a multiple of that unit. 

 

The decision matrix is prepared with the selection criteria and their respective weights 

in the first and second column of the matrix respectively; whereas the alternative 

concepts to be evaluated are displayed on the top of the matrix as shown in Table 2.6. 

Each concept variant is rated with respect to each criterion by using a 5-point scale 

(Table 2.7) when the knowledge about the criteria is not detailed and an 11-point 

scale when the information is more complete (Dieter, 2000). 

After all the concept variants are rated with respect to each criterion, regardless of the 

used scale the total score for each concept variant is calculated as the weighted sum of 

the concept variant’s rating given by: 
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 Where: 

Ri,j = weighted score of concept j for the ith criterion 

wi = weighting factor for ith criterion 

 ri,j = row rating of concept j for the ith criterion 

 n = number of criteria 

 Rj = the total score of concept j 

Table 2.6 Weighted decision matrix 

 Concept Variants (CV)

CV -1 CV -2 . CV -j

Selection 

Criteria 

weight Rating Weighted 

score 

Rating Weighted 

score 

. . Rating Weighted 

score 

C -1 w1 r11 R11 r12 R12 . . r1j R1j 

C -2 w2 r21 R21 r22 R22 . . r2j R2j 

. . . . . . . . . . 

C –n wn rn1 Rn1 rn2 Rn3 . . rnj Rnj 

Total score R1 R2 . Rj 
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Table 2.7 A 5-point and 11-point scale for concept evaluation (Dieter, 2000).  

11-point scale Description 5-point scale Description 

0 Totally useless solution 
0 Inadequate 

1 Very inadequate solution 

2 Weak solution 
1 Weak 

3 Poor solution 

4 Tolerable solution 

2 satisfactory 5 Satisfactory solution 

6 Good solution with a few 
drawbacks 

7 Good solution 
3 Good 

8 Very good solution 

9 Excellent (exceeds the 
requirement) 4 Excellent 

10 Ideal solution 

 

2.7.3 Analytical hierarchy process (AHP) 

Analytical hierarchy process, developed by Thomas L. Saaty, is a structured multi-

criteria decision making framework well suited for evaluation problems whose criteria 

have a hierarchical structure (Saaty, 1994). In using AHP, both the criteria and the 

alternative concepts are pair wisely compared as follows: 

Step 1:   

For each criterion, prepare a square matrix (comparison matrix) in which the 

set of alternative concept is compared with itself. Each judgment represents 

the dominance of an alternative concept in the column on the left over an 

alternative concept in the row on top.  It reflects the answers to two 

questions: which of the two concepts is more important with respect to the 

criterion under consideration, and how strongly, using the fundamental scale 

of absolute numbers shown in Table 2.5, for the alternative concept on the left 
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over the alternative concept at the top of the matrix.  If the element on the left is 

less important than that on the top of the matrix, we enter the reciprocal value in 

the corresponding position in the matrix.  

Step 2: 

From all the paired comparisons calculate the local priorities (weight) and 

display them on the right of the matrix.  To calculate the local priorities: 

i. Normalize the weight by computing the sum of each column and then 

divide each column by the corresponding sum. 

ii. Compute the average values of each row which is the local 

priority(weight) 

Step 3: 

Similarly, prepare a pairwise comparison matrix for the criteria, evaluate using 

fundamental scale of absolute numbers, and calculate the priorities (weights). 

Step 4: 

Prepare decision matrix, with the local priorities and calculate the final (global) 

priorities for each alternative concepts. 

These steps are demonstrated by taking a hypothetical example with three alternative 

concepts: A, B and D, and two criteria: C1 and C2 in Table 2.8. 
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Table 2.8 A hypothetical example to demonstrate AHP with three alternative concepts 
and two selection criteria 

 
 
Step 1: 
 

C1: Criteria1 
 A B D 
A 1 3 5 
B 1/3 1 1/5
D 1/5 5 1 

 

C2: Criteria2 
 A B D 
A 1 5 7 
B 1/5 1 3 
D 1/7 1/3 1 

 

Step 2:  C1: Criteria1 
 A B D Priority 
A 0.65 0.33 0.81 0.6 
B 0.21 0.11 0.03 0.12 
D 0.13 0.56 0.16 0.28 

 

C2: Criteria2 
 A B D Priority 
A 0.75 0.79 0.64 0.73 
B 0.15 0.16 0.27 0.19 
D 0.1 0.05 0.09 0.08 

 

Step 3: Criteria 
i.                                                        ii. 
 C1 C2 
C1 1 5 
 C2 1/5 1 

                                         

  C1 C2 Priority
C1 0.83 0.83 0.83 
C2 0.17 0.17 0.17 

Step 4: Decision matrix 
 weight A B D 
C1 0.83 0.6 0.12 0.28 
C2 0.17 0.73 0.19 0.08 
Global priority 0.62 0.13 0.25 

 

 

AHP provides a diagnostic tool for assessing the consistency of the preference and 

reduces the bias on the decision maker. However, it is a relatively complex method 

with long decision process, especially when the number of alternative concepts is 

large with increased number of criteria requiring each alternative concept to be 

compared with all others for each criterion. 

A combination of these concept evaluation methods should be used iteratively in 

order to select the best concept for further development. In addition some of the 

concept may be combined to improve their performance and the design process 

repeated. 
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2.8 Computer Aided Conceptual Design (CACD) Tools: A Survey 

Several commercial computer aided design tools have been developed in the past to 

reduce the workload of human designer, reduce duration of the product development 

time, and simplify the design process. Most of these tools are geometry based rather 

than function-based, concentrating on the later phases of the design process. Thus, the 

contribution of computers in the conceptual design phase is at its infancy compared to 

embodiment and detail design phases. The support of computers in the conceptual 

design phase is lagging behind because: 

• The knowledge of design requirements and constraints during this early phase 

is usually imprecise and incomplete making it difficult to implement (Hsu and 

Woon, 1998).   

• Currently available conventional CAD system does not have built in 

intelligent system to perform functional reasoning (Zhang et al., 2001b). 

Currently, there is no known commercial computer aided conceptual design tool that 

can be used to design all products in the market. However, there are a number of 

prototype tools developed in research centers such as MODESSA (Kersten, 1995), 

Schemebuilder (Bracewell and Sharpe, 1996), web based morphological chart (Huang 

and Mak, 1999), AIDA (Rentema and Jansen, 2000), EFDEX (Zhang et al., 2001b), 

2nd-CAD (Vargas-Hernandez and Shah, 2004), IDEA-INSPIRE (Chakrabarti et al., 

2005),  and Concept Generator (Bryant et al., 2005). These tools use varieties of 

approaches for representation and categorization of knowledge. The working 

principles and the main features of these tools are reviewed next.  

MODESSA 

Kersten (Kersten, 1995) developed a computer based conceptual design support 

system known as MODESSA (which is an acronym for MOrphological DESign 

Support Aid). MODESSA consists of morphological chart, information sheet 

regarding functions and alternative concepts and weighting table for concept 

evaluation. Function is described using two words: the action that should be done and 

material to be handled (e.g. fill case). The user of MODESSA manually selects 
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functions, requirements, and alternative concepts from a database or creates a new 

one. The design process is performed by selecting one subfunction at a time, and 

perform manual search for alternatives followed by evaluation of alternatives for the 

same subfunction. The alternatives of the next subfunction are selected based on the 

selection of the first alternative and the process continues until the last subfunction. 

There is no intelligent system to retrieve the design knowledge from the database and 

most of the actions are dependent on the user. Furthermore, the databases of 

MODESSA are limited in their coverage.  

Schemebuilder 

Schemebuilder is a knowledge-based design support tool to assist designers in the 

conceptual and embodiment design of mechatronic products (Bracewell and Sharpe, 

1996). In using Schemebuilder as conceptual design tool, a function used to describe a 

given design problem must be a member the pre-defined functional embodiment 

knowledge-base where functions are hierarchically classified as data function, energy 

function or mass transfer function. The function will gradually decompose and 

embodied using bond graph based functional decomposition principle. The generated 

alternative solutions for those functions are represented in the information structure of 

FEST-ER (Functional Embodiment STructure-Extended Recursively) which is an 

extension of a traditional function–means tree structure. Unlike traditional function-

means tree structure, FEST-ER supports referencing to already embodied functions in 

case they appear more than once, and embodiment of more than one functions by 

single means. The designer can terminate those branches in the structure that seems to 

be infeasible. The generated schemes can be viewed in the integrated 3D modeler and 

simulated for design verification. Even though, the bond graph model of a design 

object can be constructed and simulated in Schemebuilder, it has a difficulty to 

represent functions that are not represented as power flow, inheriting the disadvantage 

of bond graph technique. 

Web based morphological chart 

Huang and Mak (Huang and Mak, 1999) developed a prototype web based 

morphological chart, which consists of five web based modules namely: concept 
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browser/editor, concept base, function analyzer, concept generator and concept 

assessor.  The concept browser/editor allows the user to enter new concepts into the 

concept base and/or explore its contents. Functional analysis system technique 

(FAST) is used to create function means tree in the system. The concept generator 

performs the task of creating the morphology chart from concept base, short listing 

conceivable means based on feasibility, and combining short-listed feasible means. 

Among these, short listing feasible means and concept combination process are done 

manually. The combined concept variants are evaluated using web based Pugh’s 

concept selection chart. The concept base consists of generic functional requirements 

expressed as goals, potential solution principles expressed as means, and their 

relationships. However, the concept base has limitations in its coverage, where only 

eight assembly functions and forty means are stored in its database.  

AIDA 

AIDA (Artificial Intelligence supported Design of Aircraft), is computer aided 

conceptual design tool developed by Rentema and Jansen for aircraft design (Rentema 

and Jansen, 2000). The AIDA system consists of three separate modules and user 

interface. The first module is case-based reasoning module where case-based 

reasoning techniques from AI system is used to first retrieve ‘a best matching’ case 

from case-based database of previous successful designs. The retrieved case is reused 

after adaptation for the current design problem. However, the adapted case should 

first be evaluated before other adaptations can be applied which will be done in the 

next module i.e., functional module. Functional module supports the execution of 

parameter studies which includes network of numerical relations using rule-based 

reasoning technique to evaluate and modify adapted cases produced by the previous 

module. The rules link functional parameter (from specification) to structural 

parameters (from design objects) which will be taken as input to the last module, i.e., 

the geometrical module. Successfully adapted cases will be saved in the database for 

future reuse. The geometrical module uses constrained aided geometrical modeling 

technique to display solid model of the suggested aircraft for visualization and to 

deduce some geometrical information such as volume and area. This module is 

implemented in Pro/Engineer; a commercial feature based modeling software. The 
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domain of application of AIDA is limited to aircraft design and it is more used in 

“routine design” type rather than “creative design”.   

EFDEX 

EFDEX (Engineering Functional Design Expert) is a knowledge-based conceptual 

design tool developed by Zhang et al (Zhang et al., 2001b). They proposed an 

extended Function-Environment-Behavior-Structure (FEBS) modeling framework as 

a reasoning strategy in EFDEX. This modeling framework consists of three layers: 

function layer where the overall functional requirement is decomposed gradually and 

hierarchically, behavior layer where a set of behaviors are interconnected with each 

other, and environment layer where the working environment enable the functional 

output to achieve the requirement in the behavior layer. EFDEX integrates rule-based 

and object oriented knowledge representation scheme to represent function related 

design characteristics. They developed 255 domain specific rules to perform 

functional design of an automatic assembly system for manufacturing electronic 

connectors. In addition to these, there are general rules that are used to solve general 

problems such as anti-looping rules to prevent recursive firing and rules to terminate 

searching branch.  

EFDEX uses both backward and forward chaining inferencing mechanisms. The 

inferencing strategy starts when the user gives as inputs the overall functional 

requirement. The system first scans the behavior base to find behavior whose 

functional output can match with the given functional requirement and satisfies the 

functional constraint. If there is no match found, then the inference engine scans the 

rule base to search for domain specific production rules to decompose the function, 

and continue searching for matching behavior for those subfunctions. If there is 

matching behavior, the behavior is retrieved into the working memory, and its driving 

input is taken as new functional requirement. The general rule to terminate the search 

process will be fired at this stage to check if the new functional requirement is 

available in the working environment. If it is found in the working environment, the 

branch will be terminated, otherwise the system scans the behavior base and the 

process continues recursively. Finally potential concept variants produced by the run 

will be listed and the concept variants evaluated manually. The tool is limited to 
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conceptual design of automatic assembly system for manufacturing systems and to 

use the tool for other products it requires building domain knowledge specific to that 

product. Reusing the design knowledge to design products other than its initial 

intended use is limited. The tool is towards automating the conceptual design process 

except the concept evaluation is done manually.  

2nd-CAD 

SECOND-CAD (Systems Engineering CONceptual Design-CAD) or 2nd-CAD is 

another computer aided conceptual design tool developed by Vergas-Hernandez and 

Shah for electromechanical systems (Vargas-Hernandez and Shah, 2004). They claim 

that 2nd-CAD supports conceptual design process specifically in functional design, 

behavior modeling, and component selection from standard industrial supply catalogs 

for mechanical, fluid, and electric engineering domains. Among the three main flows 

(material, energy, and signal), which are widely accepted in the design community, 

only the flow of energy is considered in the reported version of 2nd-CAD to represent 

function, behavior and component. They represent behavior using bond graph and 

preferred mathematical representation of functions rather than linguistic 

(grammatical) representation considering the computational manipulation. In 

representing function, behavior and component two options are available in 2nd-CAD 

for the user: define a new category or select from previously defined categories in the 

catalogue. To represent structures they propose three types of relationships: 

1. Flow relationships to relate the output flow of an element to the input flow 

of another. The attributes compared depend on the element level, (e.g. for 

functions only the domain and power type are compared, for behaviors the 

effort and flow are compared in addition to those for functions, and for 

components the input/output specifications are compared in addition to 

those for behaviors). 

2. Composition relationships relate parent elements to child elements 

defining in the process a subsystem hierarchy (e.g. ancestors and 

descendants).  
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3. Mapping relationship connects elements from different structures (e.g. 

function to behavior) to obtain interconnected structures. 

The system interacts with the user through graphical user interface receiving inputs 

and providing outputs. The received input is converted into quires which will be sent 

into database management system that interacts with the catalogs and structure 

database. No case study is presented to demonstrate the application of this tool. 2nd-

CAD is limited to products having behavior with power flow; this limitation is 

inherited from bond graph representation used. Furthermore, mathematical 

representation of functions used in 2nd-CAD limits its area of application; since 

representing all functions mathematically early at this stage is difficult specially when 

designing new device.   

IDEA-INSPIRE 

Chakrabarti et al (Chakrabarti et al., 2005) developed a computational tool known as 

IDEA-INSPIRE, which can be used for supporting designers in generating solutions 

for a given design problem based on analogical reasoning methodology mainly for 

mechanisms design. The software tool consists of two databases: database of natural 

systems with about 100 entries from plant and animal domain, and database of 

artificial systems. Each entry in these databases is constructed using the proposed 

SAPPhIRE (which stands for State-Action-Part-Phenomenon-lnput-oRgan-Effect) 

model of causality in human-understandable form and a computer-understandable 

form. The user of IDEA-INSPIRE software either browse the entities in the natural 

and artificial systems database or search for solutions for a given problem through the 

provided graphical user interface. In searching for solution in the database, the 

designer first analyze the given design problem and give the action described using a 

verb, noun, and adjective (VNA) as an input to the software. The program takes these 

as “input” variables and searches the computer-understandable form of the entries for 

these variables. If a direct match with the variables is not found, it would search for 

synonyms of each variable in the entries and give a corresponding weight. The output 

of the software is a list of matched entries sorted in a descending order of importance 

to solve the problem. These solutions, in addition to matching with the input, have 
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potential to inspire new solutions. Thus, there are three types of solutions expected 

from the software for the designer: 

1. Exact solution: when all the constructs in an entry match with that of the given 

inputs and it is accepted as the potential solution for the given problem. 

2. Partial solution: when some of the constructs in an entry match with that of 

the given inputs and it is accepted as potential partial solution for the given 

problem. 

3. Inspirational solution: when an entry with an exact or partial match with the 

given inputs triggers generation of new solution. 

The designer may redefine the problem using different VNA words and repeat the 

process until satisfactory solutions are found. The tool is limited to concept generation 

process, i.e., concept combination to create concept variants and their evaluation is 

done manually.  

Concept Generator 

Bryant et al (Bryant et al., 2005) proposed a computational based method of concept 

generation that quickly produces concept variants. Over the course of several years, 

they have developed a web-based design repository to store design knowledge of 

about 50 consumer products with collaboration between two universities (University 

of Missouri–Rolla and University of Texas at Austin). The design knowledge in the 

repository is collected by reverse engineering process, i.e., dissecting products and 

recording the product information such as functionality, bills of materials, and design 

structure matrix (DSM) i.e., the component-component compatibility. The conceptual 

functional model developed based on functional basis is given by the designer as 

input to the system together with function component matrix (FCM), i.e., the 

function-component relationship extracted from the web-based design repository. 

Then, the set of concept variants are computed using the proposed matrix 

manipulation on the FCM, and the functional model represented as connectivity 

matrix. The component-component compatibility is defined by extracting from the 

design repository in the form of DCM to prune incompatible concept variants. Finally, 
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the system provides ranked list of concept variants based on compatibility of the 

components. The concept generation program with graphical user interface to 

automate the concept generation process is created based on the above principle. 

However, their concept generation program is limited to single non-branching flow 

chains, thus branching functional model with multiple flows (material, energy, and/or 

signal) should be divided into single non-branching flow chains with the total number 

of chains limited to 5. Furthermore, only a maximum of 10 subfunctions is accepted 

by the software in each chain. Concept evaluation process and compiling the concept 

variants of each chain to obtain the complete solution are done manually.   

Summary of CACD tools 

As can be seen from the computer aided conceptual design tools reviewed in this 

section, there is no known tool that can be used to design all mechanical products. 

Some of the tools are domain dependent, while others support only part of the 

conceptual design process like concept generation. Among the tools, MODESSA and 

web based morphological chart covers the entire conceptual design process 

(functional analysis, concept generation and evaluation) and have certain similarity 

with the conceptual design support tool (CDST) developed in this research. The 

computer aided conceptual design tools reviewed in this section are summarized 

in Table 2.9.  
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Table 2.9 Summary of CACD tools 

Tool Capabilities Main features Domain Limitations 
MODESSA 
(Kersten, 
1995) 

A morphological 
design support 
system for 
functional 
design, concept 
generation and 
evaluation 

• GUI containing “morphological overview”, 
“info sheet” and “weighting table” 

• contains functional, requirements, design 
alternatives and previous projects databases. 

• the designer manually selects functions, 
requirements, and alternative concepts from 
databases or create new one. 

flexible 
filling and 
case 
packing 

• limited in its coverage; 
• almost every action 

depends on the users;  
• has no intelligent system 

for concept combination 
and retrievals 

Schemebuil
der 
(Bracewell 
and Sharpe, 
1996) 

A conceptual 
and embodiment 
design tool 

• knowledge-based system 
• bond graph based functional decomposition 
• FESTER to represent generated concepts   
• integrated 3D modeler for simulation 

mechatronic 
products 

difficult to represent functions 
not represented as power flow, 
(limitation on bond graph 
representation) 

Web based 
morphologic
al chart 
(Huang and 
Mak, 1999) 

A web based 
conceptual 
design support 
system for 
collaborative 
product 
development 

• consists of 5 web-based modules: concept 
browser/editor, concept base, functional 
analyzer, concept generator, and concept 
assessor. 

• FAST technique to create function means tree, 
Morphology chart to represent generated 
concepts 

• Pugh’s concept selection method  

assembly 
system for 
electrical 
plug 

• limited in its coverage 
(only 8 assembly functions 
and 40 means)  

• manual concept 
combination, and selection 
of conceivable means, 

• lacks means for 
documentation of design 
history for later retrieval 
and reuse. 

AIDA 
(Rentema 
and Jansen, 
2000) 

A design 
assistant tool for 
conceptual 
design of 
aircraft, using 
generate and test 
strategy 

• case based reasoning techniques to propose 
and adapt initial concepts , 

• rule based reasoning techniques to analyze and 
evaluate the concept , and  

• constrained based geometric modeling 
techniques  to model and visualize the proposal 
in Pro E. 

air craft • limited to aircraft design 
• used mainly for routine 

design 
• did not follow the common 

conceptual design steps 
(function-means/concept) 
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Table 2.9 (continued) 

EFDEX 
(Zhang et 
al., 2001b) 

An expert 
system for 
functional design 
of engineering 
system 

• knowledge-based system  
• functional decomposition and concept 

generation using FEBS modeling to create 
concept variants 

• automation of conceptual design 

automated 
assembly 
system for 
electronic 
connectors 

• extension of the tool to 
other products requires 
writing new production 
rules 

• concept evaluation is done 
manually.  

2nd-CAD 
(Vargas-
Hernandez 
and Shah, 
2004) 

A tool for 
conceptual 
systems design 
in 
electromechanic
al domain 

• functional design, where functions are 
represented mathematically, 

•  behavior modeling using bond graph, 
• component selection from standard industrial 

supply catalogs,  
• GUI to receive input and provide output 

electro-
mechanical 

• difficulty in representing 
non power behaviors 
(limitation of bond graph 
representation)  

• material and signal flows 
are not included 

• difficult to represent all 
functions mathematically. 

IDEA-
INSPIRE 
(Chakrabarti 
et al., 2005) 

An inspirational 
tool which uses 
design by 
analogy to 
generate 
concepts 

• consists of databases of natural and artificial 
systems,  

• functions are represented in VNA form 
• concepts are generated by searching for 

analogical similarity in the database  

mechanism 
design 

covers only the concept 
generation part of conceptual 
design process, the remaining 
parts are done manually 

Concept 
Generator 
(Bryant et 
al., 2005) 

A concept 
generation tool 
utilizing 
functional basis 
and design 
repository 

• functional basis for functional representation 
• web-based design repository of consumer 

product obtained via reverse engineering 
method, 

• computational based concept generation 
algorithm to generate and rank concept 
variants.  

consumer 
product 

limited to single flow non-
branching functional structure 
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2.9 Summary 

In this chapter, research works related with conceptual design process have been 

reviewed. Literatures covering the entire conceptual design process from functional 

analysis to concept evaluation were reviewed. In relation with modeling the conceptual 

design process feature-based, knowledge-based and function-based design approaches 

have been discussed with their pros and cons. Accordingly a hybrid design approach 

consisting of function-based design with knowledge-based design approach is selected as 

a basis for developing the framework of conceptual design process. Research works 

related to the integration of AI systems, particularly knowledge-based systems, with 

conceptual design process have been reviewed. In addition different knowledge 

representation formalisms have been discussed.  

Researches related with function-based design approach have been reviewed thoroughly 

to address the definition and representation of function, and functional classifications 

(taxonomy of mechanical functions). After analyzing the pros and cons of existing 

methods; linguistic approach for functional representation and reconciled functional basis 

for classification of mechanical functions have been adopted.  

This chapter also reviews the existing prototype computer aided conceptual design 

support tools developed so far in research centers. The features and capabilities of those 

tools have been discussed together with their limitations. These tools vary in their domain 

of applications, knowledge representation formalisms and coverage. Features and 

capabilities of the conceptual design support tool developed in this research to address 

some of the limitations of the existing tools together with major contributions of research 

are presented in Chapter 7.    

In the following chapter, the methodology to achieve the objectives of this research is 

discussed. Some of the design approaches adopted in this chapter are utilized in devising 

the methodology.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction  

The problem statement and objectives of the research reported in this thesis have been 

outlined in Chapter 1. The states of the art and researches in the area of the conceptual 

design process and computer support tools for conceptual design were reviewed 

in Chapter 2 together with some of the approaches adopted in this research. In this 

chapter, the methodology used to develop an appropriate conceptual design model 

that can be used to build a computer based tool for supporting designers during the 

conceptual design process, is presented. 

After examining the way human designer performs conceptual design process, a 

conceptual design model is proposed using a systematic design approach together 

with a knowledge-based system. This model is later used to develop the computer 

aided conceptual design support tool. Here, a model is considered as a simplified 

representation of a complex system with the goal of providing predictions of the 

system’s behavior or performance measures (metrics) of interest (Altiok and 

Melamed, 2007). Models reflect certain features of a real system, i.e., only those 

aspects intended to be relevant to the characteristic under study. The following steps 

were used in developing and implementing the conceptual design model: 

i. Problem analysis and information collection. An extensive literature survey is 

done to analyze the conceptual design process. The steps in the conceptual 

design process are examined and areas where human designer needs computer 

support identified. Furthermore, representations of the collected information 

are dealt with. 

ii. Data collection. This includes collecting the necessary domain knowledge 

about the products to be designed from handbooks, patents, existing products, 

and experts. In addition, the necessary tools/equipments (in this case 

programming languages used) for model construction are prepared. 
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iii. Model construction.  The collected data are organized and the model 

implemented into a computer program.  

iv. Model verification. This to make sure that the model is constructed correctly, 

and does what it is supposed to do according to its specification. 

v. Model validation. This is to confirm that the results of the model are 

acceptable by taking practical case studies and comparing with the models 

counterpart or perform validation tests.  

 The first two steps are discussed in the following sections of this chapter, while the 

remaining steps: model construction, verification and validations are discussed in the 

next chapters.  

3.2 Conceptual Design Process Model 

Conceptual design process can be considered as the transformation of design 

specification which is given as requirement list into one or more concepts that can 

satisfy these requirements for further development. Careful and extensive exploration 

of the design space helps not to overlook better design solutions. This is because in 

most cases there is more than one solution that can satisfy the given requirement. In 

order to model this process, first how a human designer performs conceptual design 

following a systematic design approach which is widely used by designers and 

included in a number of design textbooks (Pahl and Beitz, 1996, Dieter, 2000, 

Ullman, 2003, Cross, 2008), is examined. In conducting manual conceptual design 

process using a systematic design approach, the human designer:  

i. Analyzes the requirements or customer needs and converts these requirements 

into the overall function.  

ii. Depending on the complexity of the problem, decompose the overall function 

into less complex subfunctions.  

iii. Generates a set of alternative concepts for each function/subfunction by 

applying knowledge which is in the designer’s area of expertise. These 

generated concepts are posted on a morphology chart.  
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iv. Synthesize (i.e., combine) the alternative concepts for each subfunction to get 

a set of concept variants that can satisfy the requirements or customer needs.  

v. Evaluate these concept variants based on technical and economical criteria and 

selects one or two concept variants for further development.  

These steps are shown schematically in Figure 3.1.   
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Figure 3.1 Steps in conceptual design process 

From the steps in manual conceptual design process described above, the following 

key issues can be pointed out regarding computer support tools: 

• Conceptual design is knowledge intensive process requiring diverse 

knowledge and its modeling should include a means to store and present 

design knowledge upon request to augment the knowledge of the designer 

outside his area of specialization/ scope.  

• Concept generation process can be automated provided that the necessary 

knowledge is acquired and stored in the computer system. 

• Some of the tasks like concept combination process and representing the 

generated concepts on morphology chart are repetitive and time consuming 

which may be computer supported. 
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To address these issues, the systematic design approach needs to be integrated with a 

knowledge-based system to support designers with computer tools. Accordingly, a 

conceptual design process model, shown in Figure 3.2 is proposed. This model 

consists of the four major steps in conceptual design: identifying and clarifying the 

functions required, generating alternative concepts, combining those alternative 

concepts into concept variants, and evaluation of the concept variants integrated with 

knowledge-based system.  

From this model, it can be seen that the conceptual design process can be considered 

as a series of activities and achievements. The activities are: functional modeling, 

concept generation, concept combination and concept evaluation. These activities are 

done combining the human designer’s knowledge and/or the design knowledge-base 

system. The achievements from a given activity are displayed to the user and given as 

input to the design knowledge-base system to perform the next activity. The dashed 

line indicates the information flow between the activities/achievements and the design 

knowledge-based system.  This model is taken as base for the development of the 

conceptual design support tool (CDST) described in Chapter 4. The detailed 

descriptions of each activity in the conceptual design model and how the knowledge-

based system is incorporated will be discussed in the following sections.  
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Figure 3.2 The proposed conceptual design model 

3.2.1 Functional Modeling 

Functional modeling is a process of analyzing the requirement list or design 

specification to come up with the overall function of the design problem and 

decomposing this into discrete easily solvable subfunctions to establish functional 

structure. Functional modeling provides an abstract method for representing and 

documenting a given design task (Kuttig, 1993). Furthermore, functional modeling 

permits the designer the ability to view the complete design at the earliest stage. It is 

well known that form follows functions, and every product has some reason for its 

existence which is its function.  
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During functional modeling process, the requirement list or the design specification is 

described in terms of the overall function by the designer. The designer then 

decompose overall function based on its complexity into subfunctions and the 

functional structure constructed guided by the function library provided. Function 

library is constructed systematically from primary, secondary and tertiary function 

and flow classifications adopted from the reconciled functional basis (Hirtz et al., 

2002) as discussed previously in Section 2.5.3. The designer stops decomposing the 

functions when all the subfunctions in the functional structure can be represented by 

the functions in the function library. Function is represented using the following 

attributes/slots: 

Function 

 Name:                verb + Noun 

 Complement:  additional information 

 Input:  {input flows} 

 Output: {output flows} 

 Matched:   {yes/no} 

In this representation, the name slot is used to describe the function using action verb 

+ noun, the functional class takes the verb position and flow corresponds to noun. The 

complement slot is used to describe additional information about the function and to 

represent transformation functions. The input and output slots are used to describe the 

flows. The matched slot, whose default value is “no”, is included to facilitate rule 

firing during concept generation process.  

The process of creating functional structure for a given design problem may not be 

done in single step. The designer may need to iteratively construct the functional 

structure until the collective effect of all the subfunctions included in the functional 

structure represents the required overall function. As an example, a flow based 

functional structure of hand-held nailer (Ulrich and Eppinger, 2004) represented in 

black box is shown in Figure 3.3.  In constructing this functional structure, it was 

assumed that electrical energy is given as source of energy in the design specification. 

If other form of energy was used, a different functional structure would have been 

obtained. Even for the same assumption taken here, a different functional structure 
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may be obtained if the accumulation of energy is not considered to be in the 

mechanical domain. This shows the subjective nature of functional modeling, i.e., it is 

rare to obtain identical functional structure by two designers for the same design 

problem. Once the functional structure is done manually guided by the function 

library, the next step is to generate as much alternative solutions as possible that can 

satisfy each subfunction in the functional structure.  

 

Figure 3.3 Functional structure of hand-held nailer 

3.2.2 Concept Generation 

Concept generation is the creative and most demanding part of the design process 

where the designer generates a set of alternative concepts for each 

function/subfunction by applying a knowledge in his/her area of expertise. A concept 

is an idea/principle, a component, or an assembly that can be used as a means to 

provide certain function(s). Concepts can be represented as verbal or textual 

descriptions, sketches or any other form that gives an indication of how the function 

can be achieved. The goal of the concept generation step in the conceptual design 

process model is to generate many concepts quickly and early in the design process by 

making use of existing design knowledge in the concepts database. This can help to 
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supplement the designer’s knowledge by providing concepts outside the scope or 

areas of expertise of the designer. Furthermore, the generated concept may stimulate 

the designer to generate new ideas.  

An alternative concepts database is developed from which the system searches and 

generates concepts for a given function. In this research, conceptual design 

knowledge about subsea process equipments has been obtained from text books and 

handbooks (Arnold and Stewart, 1999b, Arnold and Stewart, 1999a, Karassik et al., 

2001, Lyons and Plisga, 2005, Robert O. Parmely, 2005), patents (Boley, 1985, 

Saruwatari, 1988, Filho, 1992, Massinon, 1992, Jager, 1994, Hatton, 1998, Ditria and 

Hadfield, 2001, Nilsen and Wolff, 2005, Lush et al., 2007), manufacturers catalogues, 

and personal experience and stored in the alternative concepts database. Design 

knowledge refers to concepts saved in the design knowledge base as facts and 

production rules used to derive the conceptual design process.   

One of the requirements of the computer assistant tool is to accept design knowledge 

from the user in the course of designing in addition to providing those saved in the 

database. Thus, when new ideas or technologies are invented or if there is a need to 

generate new concepts not included in the database manual concept generation 

methods can be used to expand the alternative concepts database throughout the life 

of the tool.  

In manual design process, the generated concepts are drawn on a morphology chart 

and posted. Morphology chart or morphological matrix, which was first proposed by 

Zwicky (Zwicky, 1967), is a matrix consisting of all functions on the first column and 

alternative concepts on the columns adjacent to each function. Morphology chart 

represents a methodology for organizing alternative solutions for each subfunctions 

and combining them to generate a great number of concept variants each of which can 

potentially satisfy the overall requirement. It is used as a means to record information 

about the solutions for the relevant functions and aid in the cognitive process of 

generating design solutions. 

 Similar to the manual design process, the computer tool should display all the 

available concepts from the database on morphology chart so that the designers may 
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add some more concepts if they have new idea not included in the morphology chart. 

Novice designers can also learn from the experience of experts by exploring these 

concepts or may generate new ideas inspired by the automatically generated concepts. 

An electronic version of morphology chart that displays all the generated concepts is 

developed. 

3.2.2.1 Conceptual Knowledge Representation  

Similar to functional representation, the alternative concepts need to be represented in 

computable manner to facilitate automated concept generation. In principle, the 

representation of concepts should consist of functionality, behavior, assembly, and 

technical specifications such as dimensions and material. However, these detail 

information may not be available at this early stage with the conventional concept 

generation methods, and if all these are to be fulfilled, it may result in early rejection 

of ideas because of incompleteness. Thus, the concepts are assumed to be at higher 

level of abstraction with no dimension or material information. Therefore, the 

information captured during this study for each concept is only the functionality and 

input and output flows. Accordingly, alternative concepts are represented in the 

database with the following attributes/slots:  

Alternative-Concept     

Name:                                     String  

Schematic-representation:     Sketch   

Input:                                    {input flows}   

Output:                                  {output flows}     

Primary-Function:                {function}  

Secondary-Function:            {function/Nil}    

Other effects:                        {side-effects/Nil} 

Here, the name slot is used to describe the name of the concept and the schematic-

representation to include sketches of the concept. The input and output slots are used 

to indicate material, energy, and/or signal flows of the concept. For concepts where 

there is no flow, the input and output slots will have nil value. For concepts that can 

perform more than one function, the secondary-function slot is included. The default 



Chapter 3: Methodology                                                                                              65 
 

 

value for this slot is nil, but each concept must have at least primary function slot 

value. Other effects slot is added to include if there is any side effect the concept can 

cause other than the desired purpose. While the tool is in use, if the designer wants to 

add new concepts to the database, a simple graphical user interface for knowledge 

acquisition will be provided where those slot values can be given by the designer as 

input. 

3.2.2.2 Automating the Concept Generation Process 

The concept generation process is done using predefined domain independent 

production rules which will be discussed in detail in Chapter 4. The rules are domain 

independent in the sense that, the rules are represented in terms of variables to 

generate all concepts regardless of the product to be designed. This is achieved by 

systematically representing the conceptual design knowledge in computable form 

together with the pattern matching properties and inferencing mechanisms used. Two 

types of rules are used for concept generation. The first one is mapping rule, where 

for all subfunctions in the functional structure from functional modeling process and 

given as input to the system, the system searches for concepts whose primary or 

secondary function matches with the subfunction.  If there are alternative concepts in 

the concept base, the subfunction and all the alternative concepts will be included in 

the morphology chart. However, if there is no alternative concept for one or more of 

the subfunctions in the database, the second type of rule will be fired. In this case the 

user will be asked to perform concept generation manually using conventional 

concept generation methods discussed earlier and give as input the alternative 

concepts that will be saved in the database for future use. Finally, the subfunctions 

and their corresponding alternative concepts are displayed on the morphology chart. 

The next step is to combine those alternative concepts to get concept variants.  

3.2.3 Concept Combination 

After alternative concepts are generated for each subfunction in the functional 

structure, the overall function is achieved by combining the concepts. Combinatorial 

explosion is the main problem in concept combination process. For instance if there 

are five subfunctions having six, three, six, four, and five alternative concepts 

respectively for those subfunctions; the total number of concept variants will be 6 x 3 
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x 6 x 4x 5 = 2160. Practically, it is difficult to evaluate all these concept variants, 

because of time and resource limitation. One of the means to reduce the number of 

concept variants is to include compatibility rule, which may be flow compatibility or 

geometric compatibility. Applying geometric compatibility is not possible at this 

stage because the concepts are at higher level of abstraction with no geometric 

information in the concepts base.  Instead, flow compatibility rules can be included in 

the knowledge base since the input and output flows of each concept are captured in 

the concepts base.  

Two types of rules are used to combine the concepts in the knowledge base: 

• General rule to create theoretically possible concept variants: in this case, the 

concept variants are created by taking one concept at a time for each 

subfunction in the morphology chart. Assume that there are z subfunctions in 

the morphology chart, each having different number of alternative concepts 

say r, s...t. The pseudo code to generate theoretically possible concept variants 

is shown in Figure 3.4. 

Subfunction-1 = { Alt.concept-1, Alt.concept-2, …, Alt.concept-r}; 
Subfunction-2 = { Alt.concept-1, Alt.concept-2, …, Alt.concept-s}; 

. 

. 
Subfunction-z = { Alt.concept-1, Alt.concept-2, …, Alt.concept-t}; 
Concept-variant = 0;  
        foreach (x1 in Subfunction-1) 
        { 
            foreach (x2 in Subfunction-2) 
            { 
                .   
                 . 
      { 
                      foreach (xz in Subfunction-z) 
                      { 
                         Write (Concept-variant + “:” “ x1 +”, “ x2 + ”, “ . + ”, “. +”, “ xz ”); 
                         Concept-variant += 1; 
                       } 
        . . 
     } 
              } 
          } 

  Figure 3.4 Pseudo code to create theoretically possible concept variants 
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• Flow constrained rule to create flow compatible concept variants: the 

synthesis process is the same as the general rule, but flow compatibility 

constraint is added. Concept variants are considered compatible, if and only if 

the output flow of the preceding concept is the same as the input flow of the 

succeeding concept in the morphology chart. This rule is limited to single flow 

non-branching functional structure. If there is branching functional structure, it 

needs to be decomposed manually into single flow non branching functional 

structure before it is given as input to the system. 

The concept variants can be displayed both textually and schematically showing all 

the component concepts that make up the concept variant. The details of the rules 

used to perform concept combination process will be presented in the next chapter. 

3.2.4 Concept Evaluation 

 Even though, the concept variants obtained during the concept combination process 

may satisfy customer requirements, it is difficult and impossible to develop all the 

concepts because of time and cost constraints. All the subsequent design activities 

depend on the decision made during the concept evaluation process; therefore, care 

must be taken not to overlook better design options. At the early stage of design, 

product concepts always need refinement and are subject to change. However, 

changes made later in the design stage are costly. To reduce design iteration, and the 

cost incurred due to this, designers must select product concepts with better 

performance.   

From the concept evaluation methods discussed Section 2.7 absolute comparison, 

concept screening, and weighted decision matrix are used to evaluate the concept 

variants. Accordingly, the concept variants are first evaluated using absolute 

comparison method, where concepts are directly compared with set of requirements. 

This consists of: 

• Feasibility judgment i.e., based on the comparison made to prior experience. 

• Evaluation based on assessment of technological readiness (state-of-the-art 

capabilities). 
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• Evaluation based on go/no-go screening of customer requirements 

Some of the infeasible concept variants will be eliminated using the absolute 

comparison method. The remaining concept variants will be evaluated using concept 

screening method iteratively taking competitive product or one of the concept variants 

as a datum. If the competitive product is to be taken as datum concept, it should be 

reduced to the same level of abstraction as other concept variants. This process will 

reduce further the number of concept variants. The remaining concept variants will 

finally be evaluated using weighted decision matrix method. In this method, relative 

weight is assigned to each criteria based on their importance using either direct 

assignment technique or pairwise comparison using analytical hierarchy process. The 

result of the weighted decision matrix is ranked concept variants, from which one or 

more concepts will be selected for further development or combine some of the 

concept variants to obtain better performance and repeat the conceptual design 

process.  

3.3 Model Construction 

Model construction is the process of converting the conceptual design process model 

proposed in Section 3.2, into a computer program (CDST) to test and verify the 

proposed model. The development of CDST follows the “waterfall” model of 

software development cycle (Figure 3.5), which was adopted by most software 

professionals (Fisher, 1991, Rakitin, 2001). In the “waterfall” model, the software 

development cycle starts with the requirement analysis phase which consists of 

analyzing the basic designer’s requirement in the conceptual design process where 

computers can support the repetitive and time consuming tasks to get the software 

requirement or software design specification. This process have been explained in the 

previous chapters in developing the conceptual design model and pointing out the 

main areas where computer can better support human designer in terms of 

functionality requirement and user interface designs. The next phase is design 

specification, where the software blueprint in the form of general flowchart together 

with module decompositions is dealt with. The third phase is implementation of the 
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model which consists of coding, testing and debugging each module designed in the 

design specification. Each built module should be tested individually and integrated 

into single program structure. The integrated program (software) then verified and 

validated by testing before the software is being released. Fixing any bugs or 

problems encountered by users during usage is dealt and maintained in the later phase. 

Requirements
Analysis 

Design 
Specification

Implementation/ 
Coding

Integration and 
Testing

Maintenance

 

Figure 3.5 The waterfall model of software development (adapted from (Fisher, 
1991)) 

3.3.1 Software Design Specifications and Requirements  

It has been pointed out in the previous sections that the main requirement (i.e., the 

designer’s requirement) is to get computer support in performing conceptual design 

process. Since the requirement is not to automate the conceptual design, the software 

should provide information to the designer for decision making, and also accept input 

from the designer. Furthermore, the software needs to accept new knowledge from the 

current design process and retain it for future use, allowing the knowledge-base to be 

built incrementally. The software needs to have a graphical user interface (GUI) to 
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interact with the user which can easily be controlled by mouse having windows, 

icons, and menus giving visual feedback about the actions being performed.  

For ease of implementation in coding the software, the conceptual design process is 

decomposed into four modules: functional modeling, concept generation, concept 

combination, and concept evaluation. Each module is built based on the proposed 

framework separately but in a compatible manner where the outputs and inputs of the 

consecutive parts are matched. In addition to these modules, there is a central 

graphical user interface which helps to hide all the programming details from the user 

and link all the modules in seamless way. The system interacts with the user, the 

hardware, and other systems such as database and software through its interface. The 

user interface may employ questions and answers, menu driven system, or graphical 

interface. The user interface simplifies communications and hides much of the 

systems complexity. The main requirements for the user interface in this research are: 

it should be easy to use and give visual feedback about actions performed such as 

displaying the schematic representation of each alternative concept. Thus, a graphical 

user interface (GUI) which can easily be controlled by mouse having windows, icons, 

and menus is developed for the user to interact with the computer.  

The other requirement from the proposed framework is that, the system acquires 

knowledge from the current design process in addition to providing existing concepts 

during the concept generation process. Knowledge acquisition is the process of 

collecting the knowledge necessary for problem solving and encoding it in the form 

suitable for computer manipulation. This part is included to ease the addition of new 

alternative concepts throughout the life of the tool with mouse and keyboard driven 

graphical user interface dedicated for this purpose. From the human understandable 

form in the graphical user interface, the inputs are converted into machine 

understandable form by the system and saved in the database.  

The overall flow diagram (blueprint) of the software (i.e., CDST) is shown in Figure 

3.6. This flow diagram will be used to build the software in Chapter 4 and as a 

verification document in Chapter 6.  
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 Figure 3.6 Flow chart of the CDST 
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3.3.2 Programming Environment 

The selection of the programming environment is done after analyzing the 

requirements and specifications set in the previous section. The primary objective is 

to select programming language and construct the representation and control 

structures required for performing conceptual design process. A number of 

programming environments are available in the market for knowledge-based system 

development. The availability, cost and capabilities in handling the type of knowledge 

(i.e., symbolic and schematic) were the factors used to select the languages.   

Prolog, one of the artificial intelligence programming languages in earlier days, was 

first considered. Prolog is a declarative language (i.e., a language that expresses the 

logic of a computation without describing its control flow), which uses backward 

chaining inference mechanism. An expert system shell based on prolog known as Flex 

Expert Systems Toolkit from Logic programming Associates Ltd (LPA, n.d.) was 

obtained as a free trial version to experiment on it. Because of the nature of the 

knowledge to be represented (i.e., symbolic and schematic), Prolog needs to be 

integrated with other programming language, since it is purely a symbolic language 

and cannot accept sketches. Furthermore, it incurs additional cost to purchase as it is 

not readily available.  

The other programming environment considered was CLIPS (C Language Integrated 

Production System). CLIPS is a public domain expert system shell (Riley, 2008), 

which was initially developed by the Software Technology Branch (STB), 

NASA/Lyndon B. Johnson Space Center. CLIPS is a forward-chaining, rule-based 

production-system language, based on the RETE algorithm for pattern-matching 

(Giarratano and Riley, 1998). CLIPS allow hybrid knowledge representation 

including rule based, user defined functions and object-oriented programming in one. 

CLIPS is also a symbolic language, which cannot support graphical representation of 

knowledge such as sketches. For this application, wxCLIPS which is an extension of 

CLIPS to develop knowledge-based system applications with graphical interface was 

readily available as public domain software (Smart, 1997). An initial study was 

conducted to develop a prototype conceptual design tool for subsea process 

equipments using wxCLIPS (Woldemichael and Hashim, 2007).  The result was 
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promising even though there were some limitations such as flexibility in terms of 

creating different GUI components and compatibility (i.e., wxCLIPS was developed 

based on CLIPS 5.1, and not updated to be compatible with the current version of 

CLIPS 6.30). Because of these reasons another alternative programming environment 

compatible with the current version of CLIPS was explored.  

After thoroughly investigating possible options, wxPython is considered as graphical 

user interface (GUI) development environment. wxPython is a public domain cross-

platform wrapper for the GUI application programming interface (API) wxWidgets 

for the Python programming language (Dunn). The interface between Python and 

CLIPS can be done by PyCLIPS which is also public domain open source software 

(Garosi, 2008a). Thus all the programming environments selected are freely available 

under public domain license. 

3.4 Summary 

In this chapter the methodology used to achieve the objectives of this research was 

presented. Specifically a conceptual design process model has been proposed after 

analyzing manual conceptual design process and identifying areas where computer 

support can be introduced.  Accordingly, the framework of function-based conceptual 

design process integrating systematic design approach with knowledge-based system 

is presented. In this framework, the entire conceptual design process is divided into 

four modules representing the major activities in performing conceptual design. These 

modules are: functional modeling, concept generation, concept combination and 

concept evaluation. In each module the knowledge representation formalisms, their 

inputs and outputs together with the processes to achieve these, and the activities done 

by the designer and the computer were identified. 

To verify the proposed methodology, a roadmap to convert the proposed conceptual 

design process model into a computer program in the form of flowchart is also 

presented in this chapter. In addition the following public domain open source 

programming environments to build CDST were selected:  
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• CLIPS to build the knowledge-base, 

• wxPython to develop GUI and represent schematic knowledge, and  

• PyCLIPS to integrate the CLIPS with Python.  

In the next chapter, the selected programming environments are used to develop the 

conceptual design support tool based on the methodology proposed in this chapter.  
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CHAPTER 4: DEVELOPMENT OF CONCEPTUAL DESIGN SUPPORT 

TOOL (CDST) 

4.1 Introduction 

In this chapter, the conceptual design process model proposed in Chapter 3 is 

converted into computer program using CLIPS, wxPython, and PyCLIPS as 

programming languages. Figure 4.1 shows the programming languages used to 

develop each architectural components of the knowledge-based system. Knowledge in 

the form of rules, facts, and functions (i.e., in the form of procedural program) are 

represented in CLIPS. CLIPS has built in forward chaining inference engine to 

control the knowledge. The graphical user interface is built using wxPython which is 

a Python module itself. PyClips is used to embed CLIPS in Python and write 

production rules within Python programming environment (Garosi, 2008b). In 

general, CLIPS is used for the knowledge-base, the inference engine, the knowledge 

acquisition, and the interface.  On the other hand, the GUI which includes the 

knowledge acquisition and displaying the output of the program both textually and 

schematically is built using wxPython.   

The main programming language (i.e., CLIPS) to develop CDST is introduced first to 

familiarize the reader with knowledge representation formalism. The software 

development process is divided into different modules for ease of implementation and 

testing. Sample CLIPS codes for the constructs and rules used in each module are 

presented and explained. However, the detail construction of the GUI is not explained 

in this chapter. The source code for the entire program consists of thousands of lines 

and several files. Considering the number of pages it takes, only screenshot of the 

excerpt from the source code is presented in Appendix A. The complete source codes 

and other file formats are found in the attached CD.  
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Figure 4.1 The structure of a knowledge-based system and programming 
environments used 

4.2 Development of the Software 

Converting the software requirement or design specification into code is the most 

demanding and time consuming phase of the software development cycle. In this 

section, detail description of each module in the software development with regards to 

the knowledge-based system and GUI is presented. To make the implementation 

easier to understand, and familiarize the reader with CLIPS programming used in this 

thesis for knowledge-based development, the basic programming elements are 

introduced next. The GUI is built using wxPython and its codes are not discussed 

here, except some screenshots to display the result.  

4.2.1 Basic Programming Elements and Knowledge Representation Formalism 

in CLIPS 

CLIPS provides three basic elements for writing programs: primitive data types for 

representing symbolic and numeric information, functions for manipulating data, and 

constructs for adding to a knowledge-base (Giarratano, 2007). These basic elements 

are used in representing knowledge in rule-based and procedural programming within 

CLIPS.  
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These programming paradigms work based on the information represented and saved 

in the system in the form of facts and/or global variables.  Facts are pieces of 

information/data required by the CLIPS program to reason out in solving a given 

problem. Facts consist of a relation name followed by zero (if it is ordered facts) or 

more slots (if it is non-ordered facts), and their associated values. Facts may be added, 

removed, modified or duplicated in the system (fact list) using assert, retract, modify, 

or duplicate commands respectively. 

Function in CLIPS is a piece of executable code identified by a specific name which 

returns a useful value or performs a useful side effect (such as displaying 

information). Even though CLIPS supports both user defined functions, (i.e., 

functions written externally with other languages and linked with CLIPS), and system 

defined functions, (i.e., functions that have been defined internally by the CLIPS 

environment) only the system defined functions were used here. 

From the several defining constructs provided by CLIPS to add information to the 

knowledge-base, the followings were used: 

• Deftemplate: a construct used to create a template which can then be used by 

non-ordered facts to access fields of the fact by name.  

• Deffacts: a construct that allows a list of facts to be defined which are 

automatically asserted whenever the reset command is used.  

• Defglobal:  a construct that allows variables to be defined which are global in 

scope throughout the CLIPS environment. 

• Deffunction: a construct that allows the user to define new functions (i.e., 

system defined function) in CLIPS directly. 

• Defrule: a construct that allows defining rules.  

• Defmodule: a construct which allows knowledge-base to be partitioned. 

All constructs in CLIPS are surrounded by parentheses. The construct opens with a 

left parenthesis and closes with a right parenthesis. Comments can be added to the 

CLIPS code to make it easier to understand. All constructs (with the exception of 
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defglobal) allow a comment directly following the construct name. Comments can 

also be placed within CLIPS code by using a semicolon (;). Everything from the 

semicolon until the next return character will be ignored by CLIPS. If the semicolon 

is the first character in the line, the entire line will be treated as a comment. 

The rule-based programming paradigm in CLIPS provides a means to represent 

knowledge in the form of rules. Rules are used to represent heuristics, or “rules of 

thumb”, which specify a set of actions to be performed for a given situation. A rule is 

composed of an antecedent (the if portion or the left-hand side (LHS) of the rule) and 

a consequent (the then portion or the right-hand side (RHS) of the rule).  

The antecedent of a rule is a set of conditions (or conditional elements) which must be 

satisfied for the rule to be applicable. In CLIPS, the conditions of a rule are satisfied 

based on the existence or non-existence of specified facts in the fact list. One type of 

condition which can be specified is a pattern. Patterns consist of a set of restrictions 

which are used to determine which facts satisfy the condition specified by the pattern. 

The process of matching facts to patterns is known as pattern-matching. The inference 

engine of CLIPS provides a mechanism, which automatically matches patterns against 

the current state of the fact list and determines which rules are applicable.  

The consequent of a rule is the set of actions to be executed when the rule is 

applicable. The actions of applicable rules are executed when the CLIPS inference 

engine is instructed to begin execution of applicable rules. The preferred mechanisms 

in CLIPS for ordering the execution of rules are salience and modules.  

Salience allows for explicitly specifying one rule to be executed before another. If 

more than one rule is applicable, the inference engine uses a conflict resolution 

strategy to select which rule should have its actions executed first. A conflict 

resolution strategy is an implicit mechanism for specifying the order in which rules of 

equal salience should be executed. CLIPS provides seven conflict resolution 

strategies; among these the most common ones are:  

• Depth strategy: - newly activated rules are placed above all rules of the same 

salience. 
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• Breadth strategy:- newly activated rules are placed below all rules of the same 

salience.  

• Simplicity strategy: - among rules of the same salience, newly activated rules 

are placed above all activations of rules with equal or higher specificity. 

The specificity of a rule is determined by the number of comparisons that must 

be performed on the LHS of the rule.  

• Complexity strategy: - among rules of the same salience, newly activated rules 

are placed above all activations of rules with equal or lower specificity. 

The default strategy is depth, but new strategy can be set by using the 

“set-strategy” command, which will reorder the agenda based upon the new strategy. 

Agenda is the lists of rules whose conditions are satisfied and have not yet been 

executed. Each module has its own agenda. The agenda acts similar to a stack where 

the top rule on the agenda is the first one to be executed. When a rule is newly 

activated, its placement on the agenda is based on the following factors: 

a. Newly activated rules are placed above all rules of lower salience and below 

all rules of higher salience. 

b. Among rules of equal salience, the current conflict resolution strategy is used 

to determine the placement among the other rules of equal salience. 

c. If a rule is activated (along with several other rules) by the same assertion or 

retraction of a fact, and steps (a) and (b) are unable to specify an ordering, 

then the rule is arbitrarily ordered in relation to the other rules with which it 

was activated.  

Modules allow to explicitly specify that all of the rules in a particular group (module) 

should be executed before all of the rules in a different group.  In addition, CLIPS 

modules also allow a set of constructs to be grouped together such that explicit control 

can be maintained over restricting the access of the constructs by other modules. Two 

defmodule constructs (AUXILIARY and MAIN) are created in CDST to provide rule 

execution control.  
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The syntax of the CLIPS constructs used in each module are presented in the 

following sections. 

4.2.2 The Functional Modeling Module 

Functional modeling is the first part responsible for creating the functional structure in 

CDST. This consists of the function library and the necessary attributes required to 

define and represent a given function. Function is represented in CLIPS by creating a 

deftemplate construct as shown in Figure 4.21, which is the implementation of 

function representation explained in Section 3.2.1. The first line in this figure (Line 1) 

describes the module (i.e. AUXILIARY in this case) in which the template named 

“function” is defined. Lines 2-7 define the slots, slot name, and default value (if any). 

Slots can also be constrained by value, type and numeric range. A slot can hold either 

a single-field value (defined as slot) or multi-field value (defined as multislot). Thus, 

when the keyword slot is specified, the slot can hold one value, where as when the 

keyword multislot is specified, the slot can hold a multifield value comprised of zero 

or more fields. 

 

Figure 4.2 A deftemplate construct to define function in CLIPS 

Once the deftemplate is defined, any function can be defined using the construct 

specified. For example a function transmit rotational energy can be defined as: 

 

 

 

                                                 
1 In this thesis, examples of CLIPS code are presented annotated with line numbers on the left. Please 
note that these line numbers are not part of the CLIPS program, instead introduced in this thesis to 
facilitate easy reference to particular line in the CLIPS program. 
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(function  

(verb   transmit) 

 (noun   rotational energy) 

 (input   rotational energy) 

  (output  rotational energy)) 

In this case, those slots defined in the template and have no value during definition 

will be considered as nil, unless they have default value. Therefore, the actual 

definition of this function in the system is: 

(function  

(verb   transmit) 

 (noun   rotational energy) 

 (complement  nil) 

 (input   rotational energy) 

 (output  rotational energy) 

 (matched  no)) 

Based on the deftemplate defined in Figure 4.2 a function library from which the 

designer selects elementary functions is built. The function library is database of all 

functions and flows from the reconciled functional basis (Section 2.5.3). Using the 

developed GUI (Figure 4.3) the user selects the subfunctions in the functional 

structure from the function library.  
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Figure 4.3 Screenshot of the function library 

The functional modeling process which consists of decomposing the overall function 

into subfunctions is basically done manually by the designer. The program assists the 

designer in defining those subfunctions by providing the function library.  

The function library shown in Figure 4.3 starts by accepting input from the designer 

textually about the overall function of the product to be designed. Then, each 

subfunction in functional structure is selected from the library and added to the 

system (fact list). To define a subfunction, first the user selects the functional class, 

representing the primary category (class) in the reconciled functional basis, having 

eight choices: branch, channel, connect, control magnitude, convert, provision, signal, 

and support. Each functional class brings the corresponding secondary and tertiary 
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categories to populate the choices of the “verb” field of the function name. Therefore, 

when one functional class is selected, the corresponding secondary and tertiary 

categories will be available as verb choice items in the function name, which was 

initially empty. Similarly, the user selects one option from the primary flow class 

which has three choices: energy, material, and signal. This selection will 

automatically populate the noun field of the function name and the input and output 

flow choices, with secondary and tertiary categories of flow sets in reconciled 

function basis.  If the definition of the subfunction requires additional information, the 

user can give the information textually in the complement text field. After all the 

choice items are selected, the “Add Function” button is used to add (assert) the 

subfunction to current system (fact list), which will display the added subfunction in 

the “Selected subfunctions” window. All the subfunctions in the functional structure 

are added to the system following the same procedure. The next step is to generate 

alternative concepts for those subfunctions. This will be discussed in the next module. 

4.2.3 Concept Generation Module 

The input to the concept generation module is the set of subfunctions from the 

functional modeling in the form of functional structure and its output is set of 

alternative concepts displayed on morphology chart that can satisfy those 

subfunctions. In order to generate alternative concepts for functions, the system 

requires knowledge in terms of facts in the alternative concepts database, and the 

necessary rules to perform the matching.  

Similar to functional representation, a deftemplate construct is required to represent 

and save alternative concepts in the alternative concepts database. The alternative 

concepts deftemplate construct shown in Figure 4.4, is constructed based on the 

methodology devised in Section 3.2.2. The first line in this figure (Line 8) describes 

the module (i.e. MAIN) in which the template named “alternative-concept” is defined. 

The remaining lines 9-19 define the slots. In the slot definition, three types of inputs 

and outputs are given (Lines 11-16); these are included to differentiate material (-m), 

energy (-e) and signal (-s) flows. The slots function-1 and function-2 stands for the 

primary function and secondary function respectively for each concept. 
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Figure 4.4 A deftemplate construct to define alternative concepts in CLIPS 

The alternative concepts database is built based on the deftemplate constructed 

in Figure 4.4. Known design knowledge in the form of facts can be collected and 

saved using deffacts construct in the database. For example, if there are known 

concepts in a given domain, then those facts can be grouped together with single 

name and saved in the database as shown in Figure 4.5. This defined list of facts can 

be loaded to the system and automatically asserted with a “reset” command in CLIPS. 

Line 20 in this figure represents the name of the deffacts construct (i.e., concepts-xx 

in this case). There are three concepts defined in this construct (electric motor, shaft, 

and linear actuator) which may be expanded by adding more concepts. The schematic 

representation of each concept can be sketched on CAD software or manual sketches 

may be scanned and saved in the database with the same file name as the alternative 

concepts name in wxPython supported file format. Some of the wxPython supported 

file formats includes: windows bitmap (BMP), joint photographic experts group 

(JPEG), graphic interchange format (GIF), interchange file format (IFF), tagged 

image file (TIF), portable network graphics (PNG), and windows icon format (ICO). 

The alternative concepts database contains similar deffacts construct which are 

defined during program development. New design knowledge may also be added 

while using the software using the knowledge acquisition provided. 
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20 (deffacts concepts-XX
21 (alternative-concept  (name electric-motor)
22 (input-e electrical energy)
23 (output-e rotational energy)
24 (function-1 supply rotational energy)
25 (function-2 convert electrical energy to rotational energy))
26 (alternative-concept  (name shaft)
27 (input-e rotational energy)
28 (output-e rotational energy)
29 (function-1 transmit rotational energy))
30 (alternative-concept  (name linear-actuator)
31 (input-e hydraulic energy)
32 (output-e translational energy)
33 (function-1 supply translational energy)
34 (function-2 convert hydraulic energy to translational energy))
35 )  

Figure 4.5 Sample alternative concepts representation in the database 

Once the alternative concepts database is built, the next step is to develop rules that 

can use the database to generate concepts.  Rules are defined in CLIPS using defrule 

construct. The general syntax of defrule construct is shown in Figure 4.6. Each rule in 

CLIPS is identified with unique name (line 36); redefining another rule with the same 

name will overwrite the previous rule. Optional comments may be placed next to the 

rule name on line 36. Line 37 describes optional declaration of the rule property such 

as salience to guide the order of firing (executing) rules. The next part is the main part 

of the LHS of the rule which consists of a series of conditional elements that must be 

satisfied for the rule to be placed on the agenda. There are eight types of conditional 

elements: pattern, test, and, or, not, exists, for all, and logical conditional elements. 

An implicit “and” conditional element always surrounds all the patterns on the LHS. 

The pattern conditional element is the most basic and commonly used conditional 

element containing constraints which are used to determine if any pattern entities 

(facts) satisfy the pattern. The arrow on line 39 (=>) separates the LHS from the RHS. 

The RHS contains a list of actions to be performed when the LHS of the rule is 

satisfied. There is no limit to the number of conditional elements or actions a rule may 

have; other than the limitation placed by actual available memory. Actions are 

performed sequentially when all the conditional elements on the LHS are satisfied.  
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Figure 4.6 A general syntax for defrule construct 

The concept generation rules are built considering the pattern matching properties of 

the rules in CLIPS. The main objective in defining those rules is to provide generic 

rule that can be used to generate alternative concepts regardless of the product to be 

designed. This is achieved by systematically representing the design knowledge and 

the heuristic rules in the knowledge-base. Hence, the concept generation rules are 

represented in terms of variables, which provide the following advantages: 

1. There is no need to write individual rules for each product to be designed by 

the tool. This reduces the total number of rules required. 

2. The tool becomes domain independent, i.e., theoretically any product can be 

designed using the tool provided that the design knowledge is available in the 

database and represented in terms of the functions in the reconciled functional 

basis together with the knowledge representation formalism used in this thesis. 

3. Future knowledge addition does not require the program to be altered.   

 The domain independent rule is meant to find and display all the alternative concepts 

for each subfunction in functional structure which are given as input to the current 

working memory. The first mapping rule which search the database for concepts 

whose primary function matches with the given subfunction is shown in Figure 4.7. In 

this rule a salience of 500 is declared (line 42), making the rule top priority. Line 43 

restricts the rule to be fired only when the user choose to search for primary functions. 

Line 44 describes function in terms of variables which is not matched yet to be 

matched with the alternative concept (line 45) whose primary function is the same as 

the function given. Variable are represented using “?” and symbol if it is single field 

slot and “$?” and symbol if it is multifield value. If the condition on the LHS of this 

rule is met, then the function and the alternative concept are included in the 

morphology chart (line 47). The rule will fire repeatedly until all the alternative 
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concepts in the database satisfying this condition are retrieved. Similarly, there is 

another rule that searches the alternative concepts database for secondary function 

changing the values of line 43 and 45.    

 

Figure 4.7 Sample mapping rule 

To prevent the rules form repeated firing indefinitely, another type of rule with less 

salience is introduced to modify the property of the matched function from “no” to 

“yes” as shown in Figure 4.8, line 56. The matched slot value could have been 

changed in the previous rule by modifying the property of the function in the action 

part of the rule (Figure 4.7), had the mapping between function and alternative 

function been one to one. All the concept generation rules are activated by “Go” 

button next to the “Generate alternative concepts” text in the function library (Figure 

4.3). 

 

Figure 4.8 Mapping rule to prevent repeated rule firing 

There may be one or more subfunction that is not matched yet with those concept 

generation rules, if the conditions are not met (i.e. if there is no alternative concept in 

the database whose either primary or secondary function matches with the 

subfunction). In such cases, another type of rule is required to handle this particular 

situation. The main purpose of this rule is to notify the user about the unavailability of 
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concept in the database for that particular function (line 67 in Figure 4.9). When there 

is no alternative concept in the database, the rule first remove the function from the 

current fact list (line 65) and then introduce a new buffer function (line 66) whose 

alternative concept is going to be generated manually by the user. Notice that, the 

declared salience for this rule is 30 (line 58), indicating that this rule will be fired after 

the rules with higher priority search the database and fail to match.  

 

Figure 4.9 A mapping rule when there is no alterative concept in the database 

Furthermore, besides notifying the user when there is no alternative concept in the 

database, the system will also ask to perform concept generation manually for those 

subfunctions with no alternative concept in the database. A simple GUI shown 

in Figure 4.10 is built to accept manually generated concepts as input to the system 

and save in the alternative concepts database for future use.  

The final output of the concept generation process is the morphology chart consisting 

of the subfunctions in the functional structure together with all the available 

alternative concepts (both generated from the database and by the user). The 

morphology chart is constructed using wxPython’s grid element (Rappin and Dunn, 

2006). The morphology chart can display as many alternative concepts as there are in 

the concept database without limitation. This has been tested with ideal case where 

there are more than 20 alternative options for single function, to be displayed on the 

morphology chart. The concepts in the morphology chart (especially those generated 

by the software) may stimulate/inspire the designer to add some more concepts not 

included in the morphology chart. In such cases, the designer can add new concepts to 

the database using the pull down menu in the function library (Figure 4.3) which 
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launches the alternative concepts input window (Figure 4.10). The morphology chart 

shows the solutions for each subfunction separately. To obtain, the overall solution, 

those individual solutions need to be combined. This process is treated in the next 

module.  

 

Figure 4.10 Screenshot of alternative concepts input window 

4.2.4 Concept Combination Module 

The concept combination process takes the morphology chart as an input and gives 

the combined concept variants as an output to be evaluated in the concept evaluation 

module. The implementation of the concept combination process is done based on the 

methodology described in Section 3.2.3.  There are two options to be considered in 

concept combination: to combine all theoretically possible solutions, or to combine 

flow compatible solutions. In both cases the combined concepts are displayed both 
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textually and schematically showing the components (concepts) that make up the 

concept variant.  

The main objective in the implementation of the concept combination process is to 

develop generic concept combination rule that can combine concepts regardless of the 

number of subfunctions in the functional structure. This can be done either by writing 

all the rules for each case varying the number of subfunctions starting from two to 

specified number, or to develop a system that can automatically generate the rule 

depending on the number of subfunctions. The first option have been experimented in 

the initial phases of the development but the maximum number of subfunctions 

achieved was ten (Woldemichael and Hashim, 2008). This is because of the 

complexity in constraining each subfunction and its properties which is error prone 

while writing the rules manually. To overcome this limitation, the second option has 

been devised in which a procedural programming approach using deffunction 

construct is used to directly generate the necessary rule for that particular number of 

subfunctions. In this case, only the procedures to build the rules are available in the 

system during the program initiation, i.e., there is no predefined rule at the start of the 

program.  Once the number of subfunction for that particular session is determined 

from the morphology chart and the concept combination process is invoked, then the 

system will generate the necessary rule for that particular number of subfunctions. 

However, this option works only for combining the theoretically possible concept 

variants. The combination of flow compatible concept variants is done using the first 

option which is limited to ten subfunctions for one session.  

The general rule to combine the theoretically possible concept variants is principally 

based on the pseudo code in Section 3.2.3, where the concept variants are created by 

taking one concept at a time for each subfunction in the morphology chart. To 

compare the general rule with flow compatible concept combination rule, consider the 

case where there are three subfunctions in the morphology chart. The general rule to 

combine three subfunctions is shown in Figure 4.11. In this rule, the number of 

subfunctions (line 69) is the fact that is obtained automatically by the system from the 

morphology chart. A test constraining element (line 74) is used as part of the pattern 
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matching process in the LHS of the rule to show each subfunction are different and 

prevent repeated firing of the rule.  

 

Figure 4.11 Theoretically possible concept combination rule for 3 subfunctions 

The corresponding flow compatible combination rule is shown in Figure 4.12. In this 

rule, the basic combination principle is the same as the theoretically possible concept 

variant rule shown in Figure 4.11. However, this rule has additional test constraining 

elements (lines 87 and 88) which require the subsequent alternative concepts for the 

subfunctions in the function structure to have the same input and output. These 

constraining elements are satisfied if and only if the output flow of the preceding 

concept is the same as the input flow of the succeeding concept in the morphology 

chart. Because of this constrain, the applicability of this rule is limited to single flow 

non-branching functional structure. If there is branching functional structure, it needs 

to be decomposed manually into single flow non-branching structure before it is given 

as input to the system.  There are three similar concept combination rules in the 

knowledge-base for each flow type (by varying the value of main flow in line 82) 

with the same number of subfunctions. 
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Figure 4.12 Flow compatible concept combination rule for 3 subfunctions 

4.2.5 Concept Evaluation Module 

The concept evaluation module takes the output of the concept combination phase 

(i.e., concept variants) and gives ranked concept variants as an output. Three concept 

evaluation methods (i.e., absolute comparison, concept screening, and weighted 

decision matrix) are implemented in this module as discussed in Section 3.2.4. The 

software implementation is to automatically prepare the selection matrix, provide GUI 

to accept selection criteria from the user as input, and perform simple arithmetic 

calculation while rating. The concept evaluation module retrieves the concept variants 

from the knowledge-base, i.e., the actions of the concept combination rules (line 78 or 

line 92), and selection criteria from the user to create the concept selection matrix. 

The concept selection matrix is built using wxPython’s grid element. Once the user 

rate the concepts based on their merits, the software can calculate the net score and 

rank the concepts based on the result to assist the user in decision making.   

4.2.6 The GUI Development and its Integration with CLIPS 

The graphical user interface is built using wxPython toolkit, to facilitate easy 

communication between the user and the software by hiding all the programming 

details. The integration of the knowledge-based system developed in CLIPS with 

parent code of the GUI development environment (i.e., Python) is done using 

PyCLIPS module. PyCLIPS embeds full CLIPS functionality in Python applications 

allowing all the libraries and the knowledge-base to be called and used in Python 

environment.  
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wxPython provides standard toolkit to build GUI elements such as: windows, frames, 

graphical images, grids, menus, dialogs, buttons, texts (both editable and static), list 

box, choice items, and popup menu. Thus, a user friendly GUI has been built which 

can accept inputs from the users and display results of the actions being performed. 

There are more than seventeen GUI windows developed starting from the welcoming 

window (Figure 4.13) to windows addressing each activities in conceptual design 

process. Each window has either menus or buttons to control the user’s action such as 

going to the next window, performing specific tasks or quitting the software (Ctrl-Q). 

In addition, help documentation is provided for users on each window either by using 

pull down menu “Help” or pressing “F1” key.    

 

Figure 4.13 Screenshot of CDST welcoming window 

4.3 Integration of the Modules and Initial Testing 

After completing the coding process of each module, the next step is to integrate those 

individual modules to form complete software. However, before integrating the 

component modules into one, each module should be tested individually. Testing is 
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the process of executing programs with the intention of finding errors and checking 

whether the program is performing according to intended plan. Accordingly each 

module has been tested individually to find defects in logic, data, inputs, and outputs. 

After fixing bugs found during the unit (module) testing process, the modules have 

been integrated incrementally performing similar tests at each point.  

The integrated software is converted into an executable file to make it portable and 

use the software without installing the programming environments used to build it. As 

an alternative option, the executable file is converted into windows self installable 

software where users can install on their machine. A user’s guide is also prepared to 

familiarize new users and guide on how to install and use CDST. All supporting 

documents and files are included in the attached CD. The description of these files is 

presented in Appendix A. The list of software and programming language used to 

build CDST are presented in Appendix B. 

4.4 Summary 

In this chapter, the development of CDST was presented as an implementation of the 

proposed conceptual design process model. The knowledge representation formalisms 

in CLIPS were first introduced, followed by how the facts and the production rules in 

each module (i.e., functional modeling, concept generation, concept combination and 

concept evaluation) were constructed. The conceptual design knowledge in terms of 

facts such as functions and alternative concepts were represented using template 

consisting of named slot and attached values. The control knowledge to solve specific 

problem was represented in terms of production rules. The production rules are 

composed of an antecedent (the LHS of the rule) consisting of the conditional 

elements to be met for the rule to be fired and a consequent (the RHS of the rule) 

consisting of actions to be executed.  The production rules are fired based on the 

existence or non-existence of the specified facts in the working memory using pattern 

matching and given conditional elements. Accordingly, the production rules for 

concept generation and concept combination were developed. A knowledge 
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acquisition module to accept new concepts was also developed. The modules were 

built, tested and integrated to form CDST. 

In the next chapter, the features and capabilities of CDST will be demonstrated using 

case studies. In Chapter 6, the verification and validation tests conducted on CDST by 

evaluators will be presented. 
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CHAPTER 5: CASE STUDIES 

5.1 Introduction 

In this chapter the function-based conceptual design framework proposed in 

this Chapter 3 is validated by using the conceptual design support tool developed 

in Chapter 4. The main features and the functionalities of CDST are illustrated with 

case studies. First a conceptual design of three phase subsea separator design is used 

as a case study. This case study demonstrates how the designer would interact with 

the system when engaged in function-based design. The procedures in using the 

CDST are presented by using screenshots of the GUI together with explanations for 

each window. As a second case study, a conceptual design support tool for subsea 

process equipment design (CDSTsped) is introduced. CDSTsped is presented to 

demonstrate how the knowledge-base of CDST can be customized to specific 

products and used as design knowledge management system to train novice designers.   

5.2 Conceptual Design of Oil and Gas Separator using CDST 

This section presents a case study that demonstrates how the developed conceptual 

design support tool assists designers during the early phase of design. Next the steps 

in the conceptual design process are demonstrated using the screenshots from the 

interactions between the designer and the tool. 

5.2.1 Problem Description and Functional Modeling 

A designer is given a task to design a device that can be used to separate subsea oil 

well stream which is a mixture of gases and hydrocarbon liquids mixed with water 

flowing at high velocity into its components. The overall function can be deduced 

from this customer requirement as: to separate three-phase well fluid into oil, gas, and 

water for subsea application. 
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The first step is to translate the customer requirement into functional model manually 

by the designer. The functional modeling of the product to be designed is derived by 

decomposing the overall function into a set of subfunctions with the methods 

described in Section 3.2.1. The subfunction may be classified as main subfunctions 

and auxiliary subfunctions. Main subfunctions are those subfunctions that directly 

contribute to the overall function while auxiliary subfunctions are supporting 

subfunctions which contribute to the overall function indirectly (Pahl and Beitz, 

1996). A thorough study of the principles through which the bond between the 

flowing fluids can be weakened and separated into its components together with the 

study of existing product results in the functional structure shown in Figure 5.1.  Note 

that auxiliary subfunctions are not included in the functional modeling and material 

flow is considered as the primary/main flow in this particular design. 

 

Figure 5.1 Functional model for three-phase oil and gas separator 

The next step is to give those subfunctions as input to the CDST. The design session 

with CDST can be initiated using two approaches: 
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Both options bring the welcoming window shown in Figure 5.2.  

 

i. Double click on the CDST setup file in the executable folder of the software; 

or  

ii. Go to start -> Programs -> Conceptual Design Support -> CDST, if the 

software is installed on the machine.  

 

Figure 5.2 CDST welcoming window 

The “Next” button on this window brings the function library window (Figure 5.3), 

where the subfunctions in the functional structure are given as input to the system. In 

the function library, the user first types the overall functions on the space provided, 

and then give each subfunction as input to the system. Note that the subfunctions in 

the function structure are described in terms of the functions in the function library.  
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Figure 5.3 Screenshot of the function library 

There are two options for the user to give subfunction in the functional structure as 

input to CDST: load from text file or select from the function library. 

To load from text file: 

i. Prepare a text file with all the subfunctions following CLIPS input 

format as defined in function template (Figure 4.2) and save as a text file 

(i.e., write the following entry in any text editor and save as 

“filename.txt”). 

(function (verb distribute) (noun  liquid-gas mixture)) 

(function (verb separate) (noun  liquid-gas mixture)) 

(function (verb extract) (noun  liquid) (complement  droplet)) 
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(function (verb regulate) (noun  gas) (complement  flow)) 

(function (verb separate) (noun  liquid-liquid mixture)) 

(function (verb regulate) (noun  liquid) (complement  flow)) 

 

ii. Use the “File” pull down menu on the function library window shown 

in Figure 5.4 and select “Load”, or press Ctrl+L key to load the saved 

text file.  

 

 

Figure 5.4 Screen shot of pull down menu to load input functional structure 

  

iii. The loaded subfunctions will be displayed on the “Selected 

subfunctions” text window in the function library window (Figure 5.3).  

To select the subfunctions from the function library the user goes through the 

following steps: 

1. Use the functional class choice item and select from the eight primary 

or main classes of functions that corresponds to your subfunction. This 

will populate the “Verb” choice item with the secondary and tertiary 

functions in the Function Name. The user can view the help documents 

by pressing “F1” key to know which action verbs are under a given 

primary class. 

2. Use the primary flow choice item and select the flow type 

corresponding to your subfunction. This will populate the “Noun”, 

“Input Flow”, and “Output Flow” choice items with the secondary and 

tertiary flows corresponding to the selected flow. 

3. Select the verb and noun choices. Add textually the complement if the 

function cannot be described by verb + noun. Select the corresponding 

input and output flows. Note that the complement, the input flow and 
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output flow are optional, i.e., in cases where there is no input and 

output flows and the function can be described by only verb + noun, 

these attributes can be omitted. 

4. Press the “Add Function” button to add the subfunction into the 

working memory. The added subfunction will be displayed in the 

“Selected subfunction” text field. You can remove the added function 

from the working memory using the “Undo Add Function” button one 

at a time.  

5. Repeat steps 1-4 until all the subfunctions in the functional structure 

are added. Note that fact duplication is not enabled in the CLIPS, thus 

when there are duplicate subfunctions in the functional structure only 

one subfunction should be given. 

5.2.2 Concept Generation and Combination 

The “Add Function” button in the function library window (Figure 5.3) and the 

“Load” in the “File” pull down menu (Figure 5.4) instruct the software to add (assert) 

those subfunctions into the current working memory of the knowledge-based system. 

Once all the subfunctions are added to working memory, the concept generation 

process is initiated by using the “Go” button in the function library window next to 

“Generate alternative concepts” text. This brings, a pop up window shown in Figure 

5.5 for the user to select the type of function to be considered for concept generation. 

If the user selects the “Both Primary and Secondary Functions” option, the system 

will search for concepts whose primary and secondary function match with the 

subfunctions in the function structure. On the other hand, if “Only Primary Functions” 

is selected only primary functions are considered in searching for the alternative 

concepts. 
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Figure 5.5 Function type selector for concept generation 

In both cases, if there are alternative concepts in the database for each subfunction, a 

text message which states “concepts are generated for all subfunctions successfully” 

will be displayed. If one or more subfunctions have no alternative concept, then 

message windows will popup to generate concepts manually. Furthermore, if some of 

the generated concepts have side effects, the system will suggest to the user for 

possible consideration of the side effects as new requirement. This effect 

demonstrates the evolving nature of requirements during conceptual design process 

and how CDST integrate this effect. 

In this particular case all the subfunctions have alternative concepts from the database 

with no side effects, thus there is no need to generate concepts manually or consider 

the side effects as new requirement. In addition to this, a new concept can be added to 

the database by using the “Generate” pull down menu in the function library window 

which brings an alternative concept input window (shown in Figure 4.10) for manual 

concept generation.  

The “Next” button on the function library window brings design summary window 

(Figure 5.6) where the designer can review all the subfunctions and their respective 

alternative concepts generated individually. For each subfunctions in the functional 

structure given as input to the system, the user can view the respective alternative 

concepts in the database both textually and schematically in this window. The 

subfunctions and all the alternative concepts can be viewed on the morphology chart 
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using the “Create Morphology Chart” button on this window. The morphology chart 

for this design is shown in Figure 5.7.  

 

Figure 5.6 Design summary window 
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Figure 5.7 Morphology chart 

In the morphology chart the user examines the generated concepts and can reject 

some of the infeasible concepts based on experience. As the number of concepts in 

the database increases the number of alternative concepts generated by the tool also 

increases and the user needs to decide which of the concepts have to be rejected. This 
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will be imminent especially when the concepts in the database are extracted from 

existing products and used to design other products. The user of CDST has an option 

to reject infeasible concepts right on the morphology chart. This helps to reduce the 

combinatorial explosion later in the concept combination process. When the user 

clicks on any of the concepts in the morphology chart, the concepts name is displayed 

textually. The user deletes the text if the concept is considered to be infeasible and use 

the “Refresh” pull down menu to remove the rejected concept’s sketch and redraw the 

morphology chart.  

The concept combination process is initiated by using "create" pull down menu on the 

morphology chart. The user has two options, either to create all theoretically possible 

concept variants or flow compatible concept variants. However, the flow compatible 

concept variant combination works only for non-branching single flow functional 

structure; thus this option is not applicable for this particular case study. Combining 

the concepts in the morphology chart results in 108 theoretically possible concept 

variants obtained from the concept combination process. Based on the customer’s 

requirement and feasibility of the concepts to be used for subsea applications the 

following concepts are removed from the morphology chart: vertical-vessel from 

separate liquid-gas mixture; coalescence-pack from extract liquid droplet; and fixed-

weir from separate liquid-liquid mixture. After refreshing the morphology chart, the 

remaining concepts are combined resulting in a total of 36 theoretically possible 

concept variants. 

 The concept variants are displayed textually indicating the name of all the concepts 

(components) in that particular concept variant as shown in Figure 5.8.  In addition, 

the concepts (components) in each concept variant can be viewed schematically by 

using “view” pull down menu on the morphology chart window. Figure 5.9 shows the 

concepts (components) of concept variant number 1 schematically.  
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Figure 5.8 Concept variants represented textually 

 

Figure 5.9 Schematic representation of the concepts  

5.2.3 Concept Evaluation 

Once the concept variants are created, the user uses the “Go to” pull down menu in 

the morphology chart window (Figure 5.7) and selects the concept evaluation option. 

The main window of the concept evaluation process is shown in Figure 5.10. 
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Figure 5.10 Concept selection process main window 

As stated in the Section 3.2.4, the concept evaluation process starts by identifying 

evaluation criteria. The user can select predefined evaluation criteria (default values) 

or give new evaluation criteria using criteria input window. Figure 5.11 shows the 

window that accepts criteria from the user.  

 

Figure 5.11 Evaluation criteria input window 
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The first evaluation process is using absolute comparison method. In this method 

concept variants are evaluated based on go/no-go screening of customer requirement, 

judgment of feasibility of the design, and assessment of technological readiness using 

absolute comparison window. From the customer requirement the separator is to be 

used for subsea application in a three phase flow. This impose a constraint that those 

concept variants with spherical vessel to be excluded because of its high cost of 

manufacturing and less efficiency to separate three phase flow. Similarly, those 

concept variants with bucket-and-weir as a means to separate liquid-liquid mixture are 

considered to be rejected. Accordingly those concept variants with spherical vessels 

and bucket-and-weir will be eliminated at this stage. The user decides whether to 

continue or reject each concept variant by choosing either yes or no on the absolute 

comparison window. The components of each concept variants either textually or 

schematically can be viewed by double clicking on the respective concept variant 

column in the absolute comparison window.  For example the components of concept 

variant number three are displayed as shown in Figure 5.12. Once the decision is done 

for all the concept variants, then the user uses “Refresh” pull down menu to eliminate 

those rejected concept variants. This reduces the total number concept variant to 9. 

 

Figure 5.12  Absolute comparison window with list of concepts for concept variant 3 

From the absolute comparison window (Figure 5.12), using the “Go to” pull down 

menu, the user selects either concept screening method or weighted decision matrix 

method to evaluate the remaining concept variants. First let’s consider the concept 

screening method to evaluate the concept variants. The concept screening window has 

pull down menu to select one of the concept variants or add a new concept variant as 
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a datum. A datum concept variant is the one considered to be the best among the 

concept variants or a competitive products concept variant reduced to the same level 

of abstraction. Here, Concept variant 25 is considered as a datum concept from the 

concept variants. The user rates each concept variant as: 1 if it is better than the datum 

concept, 0 if it is the same as the datum concept and -1 if it is worse than the datum 

concept for each criterion. This is an iterative process and after each evaluation those 

concept variants with poor performance may be eliminated. For brevity, only the final 

concept screening window is shown in Figure 5.13. The concept variants with “No” 

value for the last row of the concept screening matrix are removed using the 

“Refresh” pull down menu.  

 

Figure 5.13 Screenshot of concept screening window 

The remaining concept variants are finally evaluated by weighted decision matrix 

method. The weighted decision matrix window is obtained by using the “Go to” pull 

down menu on the concepts screening window. This brings the popup window for 

selecting weight assignment method for each criterion (Figure 5.14). The direct 

assignment method is selected when the designer assign weight based on his/her 

previous experience. Here, a pairwise comparison matrix is used to assign the weight 

as shown in Figure 5.15. In pairwise comparison, each criterion is compared with all 

the criteria and rated using the guide line discussed in Section 3.2.4.   
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Figure 5.14 Weight assigning method selection popup window 

 

Figure 5.15 Pairwise comparison matrix 

Once the user rates each criterion in the upper triangular matrix, the row total and the 

normalized weights are calculated using the “Calculate” and “Calculate Normalized 

weight” buttons respectively. The normalized weight is the relative weight of each 

criterion. Then, the user uses the “Next” button to go to the weighted decision matrix 

and rate each concept variant using a 5-point scale. The total score is calculated and 
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the concept variants ranked using the “Evaluate” and “Rank” pull down menus 

respectively (Figure 5.16). According to the evaluation result concept variant number 

25 ((dished-head-baffle-plates) + (horizontal-vessel) + (wire-mesh-pad) + (pressure-

control-valve) + (spillover-weir) + (level-control-valve)) is selected for further 

development whose schematic view is shown in Figure 5.17.   

 

Figure 5.16 Final concept evaluation using weighted decision matrix 
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Figure 5.17 Schematic view of the selected concept variant 

The system automatically creates a text file as report while the user is performing the 

design process. The file contains date and time at which the design is conducted, the 

overall function, the subfunctions, the concepts generated, the concepts rejected by 
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the user on morphology chart, the combined concept variants, and the selected 

concept variant. This helps to preserve the design history for future reference. 

It can be summarized from this case study that, the conceptual design support tool 

developed based on the proposed model assists designer by: 

i. Supplementing designer’s knowledge with the generated concepts from the 

knowledge base, and 

ii. Handling the repetitive and time consuming tasks such as constructing the 

morphology chart, combining concepts, and creating concept evaluation 

matrices.  

5.3 CDST for Subsea Process Equipment Design  

In this section, the knowledge-base developed for CDST is used to build a conceptual 

design support tool specifically for subsea process equipments to demonstrate 

component selection for existing products. The main objective is to demonstrate how 

design knowledge of existing products can systematically be represented and saved in 

the computer system as knowledge management system for future use or training 

novice designers.  

The conceptual design support tool for subsea process equipment design (CDSTsped) 

is developed using the knowledge-base for CDST by modifying the GUI. The main 

difference between CDST and CDSTsped lays on the functional modeling. In 

CDSTsped, instead of selecting the subfunctions from the function library, the user 

will select the overall function from the given choices (i.e., the functional modeling is 

built in). Once the user selects the overall function, the system will populate the 

subfunctions for that particular choice. This is followed by generating alternative 

concepts for each subfunction from the alternative concepts database. The flow chart 

for CDSTsped is shown in Figure 5.18.  
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Figure 5.18 Flow chart for CDSTsped 



Chapter 5: Case Studies                                                                                             114 
 

 

As can be seen from this flow chart, the concept generation, concept combination and 

concept evaluation processes are identical with the CDST flowchart shown in Figure 

3.6. Through a user friendly GUI developed, the user can easily explore the design 

information and perform conceptual design using push buttons, choice items, and 

menu bars. Next, the design process using CDSTsped is demonstrated with 

screenshots of GUI.  

The design session with CDSTsped can be initiated using two approaches: 

i. Double click on the CDSTsped setup file in the executable folder of the 

software; or  

ii. Go to start -> Programs -> Conceptual Design Support -> CDSTsped, if the 

software is installed on the machine.  

Both options bring the welcoming window shown in Figure 5.19. 

Next, the designer selects the type of product to be designed (Separator or pump) in 

the initial window of CDSTsped. Depending on the selection, specific product design 

window through which the remaining design process continues in the form of 

question and answer will be displayed. Selecting the pump option brings the pump 

design window (Figure 5.20), where the user selects the type of pump to be designed. 
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Figure 5.19 Screenshot of CDSTsped initial window 

 

Figure 5.20 Selection of pump type 

When the user selects the dynamic (kinetic) pump type from Figure 5.20 and clicks on 

the “Next” button, a kinetic design window which shows the overall function, the 

subfunctions and all the alternative concepts generated from the alternative concepts 

database is displayed (Figure 5.21). However, if the user selects displacement pump 

from Figure 5.20 , a displacement pump design window (Figure 5.22) will appear 
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where the user can select the energy type and view the subfunctions and the generated 

alternative concepts.  

 

Figure 5.21 Kinetic pump design window 
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Figure 5.22 Viewing alternative concepts for a given subfunction 

Similarly if the user selects the separator option in Figure 5.19, the separator design 

window shown in Figure 5.23 will appear. In this window the user has to select either 

a two-phase or three-phase flow separator as the overall function. Based on this 

selection the system will populate the respective subfunctions and generate their 

alternative concepts.  
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Figure 5.23 Separator design window 

In all cases (Figure 5.21, Figure 5.22, Figure 5.23) the next step is to view all the 

subfunctions and their alternative concepts on the morphology chart using the “Create 

Morphology Chart” button. The remaining design process such as concept 

combination and concept evaluation follow the same procedure as CDST and will not 

be repeated here.  

The CDSTsped demonstrated in this section shows its importance in preserving the 

design knowledge for future use and to train novice designers. For each product 

designed in given company similar tool can be developed with the methodology 

proposed in this thesis. The importance of such tools is inevitable with the current 

high turnover of experienced designers looking for better payment and retirement. 



Chapter 6: Verification and Validation of CDST                                                       119 
 

 

CHAPTER 6: VERIFICATION AND VALIDATION OF CDST  

6.1 Verification of CDST 

The conceptual design support tool has undergone verification tests by reviewers. 

Verification  has been defined as the process of evaluating a system or component to 

determine whether the products of a given development phase satisfy conditions 

imposed at the start of that phase (Rakitin, 2001). Accordingly, the verification of 

CDST has been done by two lecturers (both having PhD degree) from computer and 

information science department of Universiti Teknologi Petronas (UTP). The main 

purpose of this verification process was to test run and inspect the program and verify 

the underlying program logic is correct. Both gave positive response with minor 

comments to improve the GUI and make it more users friendly and standardize.  The 

comments were taken positively and necessary changes have been made accordingly 

before the software undergoes validation test in the next phase. 

6.2 Validation Test 

Validation has been defined as  the process of evaluating a system or component 

during or at the end of the development process to determine whether it satisfies 

specified requirements (Rakitin, 2001). Validation activities are performed after the 

software is developed to determine if the software correctly implements the 

requirements. The standard approach for validation is to collect data from the system 

under study and compare them to their model counter parts. The manual conceptual 

design process, from which the conceptual design model is developed, can be 

compared with CDST, had the objective been automating the conceptual design 

process. However, the objective here is to assist human designer during the 

conceptual design process with the developed tool, and it cannot be directly compared 

with human designer. Instead, the validation is done by performing validation tests by 

independent experts in the field. The objective of validation test is to determine if the 
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software meets all of its requirements as defined in the software requirements 

specification (Section 3.3.1).  

6.2.1 Selection of Evaluators 

Several attempts have been made to get experts from industry working on subsea 

process equipment design to test CDST. Unfortunately, this did not materialize 

because of different reasons. One of the reasons is that a number of companies 

working on the subsea process equipment design have manufacturing plants here in 

Malaysia, but the designs come from overseas. Our requests to test the tool were 

referred to the parent company located overseas. The next option explored to get 

design experts within our premises is faculty members and postgraduate students who 

have taught design courses and have industrial experience. Accordingly, three faculty 

members and three PhD students were nominated to perform validation test on CDST. 

Five of the evaluators have master degree and one PhD degree in mechanical 

engineering. All the evaluators have more than eight years of work experience with 

some having both academic and industrial experiences. 

6.2.2 Evaluation Methods and Procedures 

The test methods employed were both functional and Act-like-a-customer (ALAC) 

tests (Rakitin, 2001). In functional or black box testing, the test is strictly based on the 

requirements and the functionality of the tool; where as in ALAC testing the tests is 

developed based on knowledge of how customers use the software. Evaluation 

metrics were prepared based on standard test types for the experts to get their ratings. 

The test types used were:  

• Functional test to determine if specific functions/features work as specified, 

i.e., test if all the steps in conceptual design process included in the software 

are working; 

• Positive testing to determine if a feature produces results that are consistent 

with the stated requirements when the software is used properly; 

• Startup/shutdown testing to determine if startup and shutdown functions have 

been implemented correctly; and 
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• Usability test to determine the user interface features behavior, as would be 

expected by trained or untrained users. 

Based on these tests and the general objective of the tool, evaluation criteria in the 

form of questionnaire was prepared and given to the evaluators.  

Before the evaluators use CDST, two conceptual design problems (problem I: three-

phase separator design demonstrated in Section 5.2 and problem II: design of 

handheld nailer) have been given to them to perform manual conceptual design for 

two weeks.  In each case, a short description about the design problem and a 

conceptual functional structure (functional modeling) were given. The main purposes 

in performing manual conceptual design were: 

• to refresh the evaluators with manual conceptual design process;  

• to help the evaluators judge how supportive the tool is and its coverage with 

regards to the steps in conceptual design process; and 

• to compare the manually generated concepts with the concepts generated by 

the tool and if there are new concepts generated by the evaluators to 

demonstrate the knowledge acquisition process. 

After the evaluators did the manual conceptual design process, they were briefed how 

to use the CDST and given the help document. They next perform conceptual design 

using CDST for the two problems followed by other design problems whose 

alternative concepts are already stored in the database.  

6.2.3 Validation Test Results 

I. Comparison between Manual and Software Generated Concepts 

The evaluators generated concepts based on their personal experience for each 

subfunction in the functional structure of the design problems given. However, some 

of the evaluators combine the subfunctions and generate concepts, while others omit 

to generate concepts for some of the subfunctions. This makes the direct comparison 

between the concepts generated by the tool with concepts generated manually a bit 

difficult. Nevertheless, the concepts generated by two of the evaluators comply with 

tools output. Thus, the concepts generated by both evaluators are compared with the 
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concepts generated by the CDST and presented in Table 6.1. Even though this is not 

intended to be quantitative proof of the efficiency of the tool, in both cases CDST 

generates more number of concepts than the manual concept generation. The new 

concepts generated by the evaluators are archived in the alternative concepts database 

using the knowledge acquisition module provided for future use. Sample concepts 

generated by one of the evaluators are shown in Figure 6.1. 

Table 6.1 Overview of the number of concepts generated by two of the evaluators 
compared with CDST 

 

Problem 

Concepts 

generated 

using CDST 

 

Evaluator

Concepts generated by the evaluator 

Total concepts 

generated 

Concepts similar 

with CDST 

New 

concepts 

Problem 1 15  

I 

13 6 3 

Problem 2 9 4 4  

Problem 1 15  

II 

9 9  

Problem 2 9 7 6 1 

 

 

Figure 6.1 Concepts generated by the evaluators to separate liquid-gas mixture 
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II. Validation Test Ratings 

The evaluators use the software and test for functional, positive, startup/shutdown and 

usability tests and rate the CDST on the questionnaire prepared. The questionnaire is 

found in Appendix C. The evaluators rate the tool with respect to each criterion in the 

questionnaire as: 5 = Outstanding, 4 = Good, 3 = Satisfactory, 2 = Poor, and 1 = 

Unsatisfactory.  

The percentage rating of each criterion by the evaluators in the questionnaire is 

summarized as follows: 

1. Functional test: The functional tests are evaluated with the evaluation criteria 

number 1-4. The overview of percentage ratings for these criteria is shown 

in Figure 6.2.  

 

Figure 6.2 Percentage rating for functional testing 

2. Usability test: The usability test is evaluated with evaluation criteria number 5 

to determine how comfortable the users are with the organization of the user 

interface. As shown in Figure 6.3, this criterion got the lowest rating with 50% 
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of the evaluators rating as good, 17% as satisfactory and the remaining 33% as 

poor. This can be rectified by improving some of the features of the user 

interface and familiarizing the users with the tool. In practice, it takes some 

time to learn how to use any new software until the user gets use to it.    

 

Figure 6.3 Evaluators' rating for organization of the user interface 

3. Startup/shutdown and positive tests: The startup/shutdown and positive tests 

are evaluated with criteria number 6 and 7 respectively.  Evaluators’ rating 

results for these tests are shown in Figure 6.4.  

 

Figure 6.4 Startup/shutdown and positive test results 

4. General use test: The remaining criteria are used to get the evaluators opinion 

on the general use of the tool. Figure 6.5 shows the summary of evaluators 

rating on the general use of the tool which includes: enhancing creativity, 

training aid for conceptual design education, preserving experts’ knowledge 

for future, and demonstrating conceptual design can be computer assisted. The 
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last evaluation criterion is on whether the software achieves its purpose or not. 

The rating for this criterion is shown in Figure 6.6.   

 

Figure 6.5 Summary of evaluators rating on general use of CDST 

 

Figure 6.6 Evaluators rating on the overall achievement of the program 

In general the overall result from the validation test is good indicating areas where 

further improvements are required. Tool development is cyclic process which 

involves continues refinements and evaluations to satisfy the users demand.  
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In addition to the ratings, the evaluators also gave comments and suggestion to 

improve the tool. The comments include:  

• The system did not allow saving what have been done. 

• The system did not have undo options if the user made mistake in between.  

The first comment is addressed by generating a text file that automatically save the 

design history and the actions taken by the user. Therefore, the current version of 

CDST saves the design history in text format. As an example, an excerpt from the 

saved design history is shown in Figure 6.7. Furthermore, the subfunctions are saved 

in a separate text file in a reloadable format, so that if the designer wants to repeat the 

design some other time to load directly to the system in the function library window. 

The second comment on the undo option is also addressed on the function library 

window (Figure 5.3), by adding the “Undo Add Function” button to retract 

subfunction from the working memory.  

 

Figure 6.7 Excerpt from the saved design history 
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6.3 Summary 

In this chapter, the proposed function-based conceptual design support system is 

verified and validated by experts. Valuable comments have been obtained from the 

evaluators and addressed. The validation process is done with only six evaluators; 

thus, further tests needs to be done by mechanical engineers in the industry with 

varying degree of experience to improve the tool. The effectiveness of the tool with 

respect to the number of concepts generated and the time required in conducting the 

conceptual design process with and without the tool has not been addressed in the 

validation test.  
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

7.1 Contributions of the Research 

Motivated by the need to support designers with computer tools during conceptual 

design process where major design decisions are made with imprecise and incomplete 

information, the research reported in this thesis proposed an approach that integrates 

human creativity with computer capabilities to perform conceptual design efficiently 

than solely manual design. The system is based on design reuse philosophy. Design 

reuse plays a major role in product development especially during the early concept 

generation phase supplementing the designer’s knowledge by providing stored 

knowledge outside the designer’s area of expertise.  

The methodology used in this thesis is based on systematic design approach integrated 

with knowledge-based system. Complex design problems are represented in 

functional terms and decomposed systematically into less complex subfunctions using 

top-down design decomposition manually. These subfunctions are selected from the 

function library developed via its GUI and given as input to the system. The solutions 

or alternative concepts for those subfunctions are generated from the database of the 

knowledge-based system which stores past design solutions. The solutions are then 

composed to achieve the overall function (concept variants) from which one or two 

concept variants are selected based on their merits for further development using 

successive concept evaluation methods provided.  

The methodology proposed in this research has been demonstrated in a computer 

system. This demonstration was accomplished by using public domain open source 

programming environments (CLIPS, wxPython, pyCLIPS, and Python). The 

following modules have been developed to achieve the overall objective of the 

research: 

• Functional modeling: Provide exhaustive function library that can be used for 

mechanical conceptual design process. This will help to define and represent 
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functions in such a way that it is understood both by the designer and the 

computer. The function library also assists designers by providing a clue 

where to stop functional decomposition, i.e., functional decomposition should 

be stopped when all the subfunctions can be represented with the elemental 

mechanical functions (functions in the library). 

• Concept generation: This includes representing and archiving concepts in the 

database, generating concepts using domain independent production rules, 

assisting designers in performing concept generation manually, and displaying 

the generated concepts on morphology chart both schematically and textually. 

• Concept combination: Provide domain independent production rules to 

combine generated concepts to create concept variants and displaying the 

concept variants textually and schematically. It also includes flow 

compatibility criterion to reduce the combinatorial explosion for non 

branching single flow functional structures. 

• Concept evaluation: This includes assisting designers to define evaluation 

criteria for a given design problem and evaluating concept variants using 

absolute comparison, concept screening and weighted decision matrix 

methods.  

• Knowledge acquisition module: This module helps to acquire knowledge from 

the designer and save it in the database during the program development and 

the software life time without modifying the source code. This will assist the 

designer to conduct manual concept generation or capture expert’s knowledge 

and archive in the computer system for future use. 

• Central graphical user interface: This includes the development of a user 

friendly graphical user interface (GUI) through which the user interacts with 

the system.  The GUI consists of standard windows which can easily be 

controlled by mouse using buttons, menus, choice items, and popup menus to 

perform conceptual design process and explore the design options giving 

visual feedback about the actions being performed. 
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The main contributions of the research presented in this thesis can be summarized as 

follows: 

i. The developed conceptual design support tool allows designers to carryout 

conceptual design process with the aid of computers. Once the designer is 

familiar with the developed tool, the designer can use the tool to perform some 

of the repetitive and time consuming tasks. The monotonous activities 

supported by the tool include concept generation form database, accepting 

new concepts from the designer and archiving in the database for future use, 

displaying the generated concepts on the morphology chart, concept 

combination and creating evaluation matrices for concept evaluation process. 

From the interaction between the tool and the designer and the nature of the 

conceptual design process, it is difficult to automate conceptual design in 

general since there are cases where human interventions (decision) are 

required.  

ii. The proposed domain independent production rules make CDST generic and 

easily expandable tool. Furthermore, the knowledge acquisition module 

introduced helps to gain conceptual design knowledge throughout the tool’s 

life time. The tool can be updated with new design concepts over time and 

takes into consideration future inventions to be included. This makes CDST 

novel compared to other tools such as MODESSA (Kersten, 1995), Web-

based morphological chart (Huang and Mak, 1999), and EFDEX (Zhang et al., 

2001b).  

iii. It is possible to develop customized tool following the proposed framework 

for specific domain of application. For example, CDSTsped presented in 

Section 5.3, is developed to specifically address subsea processing equipment 

design. Currently there is no known conceptual design tool to address this 

domain.   

iv. The electronic version of morphological chart developed in this research 

which displays schematically all the alternative concepts generated can save 

time compared to manual morphological charts posted on the wall which 

requires redrawing the concepts each time used. On the other hand, like 

manual design process, the designer has greater control over the generated 
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concepts where infeasible concepts can be rejected right on the morphology 

chart before the concept combination process. 

v. CDST can be used as knowledge management system to capture and reuse 

design knowledge in industry. Design knowledge resides in the brains of 

experienced designers. This knowledge can be archived into the computer 

system following the proposed knowledge representation scheme. In general, 

CDST provides a way to capture abstract design knowledge in the form of 

concepts which will be used by the less experienced designers to complement 

their knowledge. 

vi.  CDST can also be used as inspirational tool. Exploring the generated concepts 

of the tool can stimulate cognitive process and generation of new ideas 

(Benami and Jin, 2002, Chakrabarti et al., 2005). However, it is always 

advisable to generate concepts manually before using the tool to minimize 

mental fixation to the existing concepts. Thus, the designer must always try to 

generate concepts manually and then use the tool to see other options and 

generate more concepts inspired by the existing ones.   

vii. CDST can be used as means to train designers about conceptual design 

process.  

7.2 Critique of the Research 

The conceptual design support tool presented in this thesis demonstrated how 

conceptual design process can be computer assisted with existing design knowledge 

archived in computer system. However, there are some limitations in the current 

version of the tool which requires further research to enhance its functionality. These 

limitations are discussed next. 

The first limitation is on functional modeling. The tool does not have mechanism to 

decompose the overall function into subfunctions by itself. Because of the subjectivity 

in functional decomposition, it is not possible to ensure different designers to achieve 

identical functional structure which makes it difficult to generalize decomposition rule 

for all products. Thus functional decomposition is done manually by the designer with 
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the aid of the function library developed to assist as a stopping criterion when the 

decomposition reaches the elemental functions in the library. However, for specific 

product it is possible to develop production rules that can automatically provide the 

subfunctions for a given overall function as demonstrated with CDSTsped. 

The second limitation is on the number of concepts generated and means to sort based 

on importance. Currently, the alternative concepts database is limited to subsea 

process equipment design and few common mechanical design problems added 

during the validation process. This limits the number of concepts generated. However, 

the concepts database can easily be expanded with the proposed knowledge 

acquisition module. In relation to this, the tool provides a means to generate and 

display on morphology chart as many alternative concepts as possible depending on 

the availability of concepts in the database. However, the approach reported in this 

thesis lacks the means to sort based on importance so that it could be easy for the user 

to reject the less likely alternative concepts. Currently the designer rejects the less 

likely concepts based on experience.  

The third limitation is the number of subfunctions handled at a time for concept 

combination process. The available rules to combine flow compatible concept 

variants in the knowledge base is limited to a maximum of ten subfunctions at a time 

in addition to the requirement that the functional structure should be single flow and 

none branching. Although the rules for combining theoretically possible concept 

variants have no limitation on the number of subfunctions, during test runs, because 

of memory limitations on the available computers it was not possible to run the 

program for more than ten subfunctions at a time. Thus, when there are more than ten 

subfunctions in the functional structure, the user needs to divide manually and give 

only a maximum of ten subfunctions at a time and combine later to get the overall 

solution. 

The fourth limitation is related with the incremental addition of new concepts to the 

database. In its current version, the tool is stand alone and works only on the 

computer on which the software is installed. Further research to make the tool server 

based and accessible through intranet and/or internet would maximize the use of 

concepts from designers in different locations.  
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7.3 Recommendation for Future Research 

Although the research presented in this thesis has lay down the framework how 

conceptual design process can be computer assisted with the developed conceptual 

design support tool, the effectiveness of the tool would benefit from additional 

research. In addition to those pointed out in the previous section (Section 7.2) as 

limitations, areas that need further research are summarized as follows: 

i. Conceptual design is inherently evolutionary process, where the requirements 

change as the design process progresses. This is because, decisions made at 

one point creates additional requirements to the design and needs to be 

addressed. The approach presented in this thesis deals with only initial static 

set of requirements and does not support the evolutionary changes, even 

though it can give suggestion to the user regarding the side effects from the 

generated concepts to be considered as additional requirements. Thus, further 

research to extend the dynamic functionality of the tool would be an added 

advantage in supporting the designer.  

ii. With increasing in the number of concepts in the database the number of 

alternative concepts generated and their possible combination will become 

difficult to evaluate. One of the possible options to reduce the combinatorial 

explosion in addition to those proposed in this thesis includes geometric 

compatibility. Even though this research is not aimed at addressing challenges 

involving decisions about parametric details that govern the shape, or 

geometry of a component, further research to include the parametric details 

can help to include geometric compatibility criterion. The geometric 

compatibility criterion reduces the number of concept variants by combining 

only those concepts which are geometrically compatible. To extend the 

existing tool to address geometric compatibility the concepts geometric and 

material information should be captured and new production rules needs to be 

written.    

iii. Eventually the concept variants are further embodied with currently available 

commercial CAD tools. Further research to integrate CDST with those CAD 

tools is required. This will enable to easily modify concepts, create their 3D 



Chapter 7: Conclusions and Recommendations                                                        134 
 

 

model, and conduct simulation studies to evaluate the concept variants in 

addition to the current evaluation methods implemented.  
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APPENDIX A: SOURCE CODE AND SUPPORT DOCUMENTS  

A.1 Contents of the Attached CD 

The source codes for CDST and support documents are found in the attached CD. The 

attached CD contains: 

i. Readme file on how to use the resources on the CD. 

ii. CDST users guide in portable document format (pdf) 

iii. CDST help document, a compiled html help file, in chm file format  

iv. CDST software in different file formats 

v. CLIPS, Python, PyClips, and wxPython installable programs 

A.2 CDST in Different File Formats 

CDST is prepared in three file formats for convenience. These are: 

1. Source code: To run the program from the source code CLIPS, Python, 

PyClips, and wxPython software should be installed first.  

2. Self executable file format: The source code is converted into an executable 

file format using a Python module known as Py2exe which is also open source 

software.  

3. Windows installable file format: The executable files are converted into 

windows installable file format using Inno setup software. Inno setup is free 

installer for window programs.  
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A.3 Source Code 

The source code of CDST consists of thousands of lines and several files. Considering 

the number of pages required, only excerpts of sample program from the source code 

in CLIPS and Python are shown in Figure A.1 and Figure A.2 respectively.  

 

Figure A.1 An excerpt from CDST source code in CLIPS 
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Figure A.2 An excerpt from the source code of GUI in Python environment 
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APPENDIX B: LIST OF SOFTWARE USED TO DEVELOP CDST 

Table B.1 List of software used to develop CDST 

Name Version Sources (download link) Purpose  Remark 

CLIPS 6.30 Beta http://clipsrules.sourceforge.net/ To develop the knowledge-based system (KBS) Open source 

Python 2.5.1 http://www.python.org/ To integrate GUI with KBS  Open source 

wxPython 2.8 http://www.wxpython.org/ To build the GUI Open source 

PyCLIPS 1.0.7.348 http://pyclips.sourceforge.net/web/ To embed CLIPS in Python program Open source 

Py2exe 0.6.9 http://www.py2exe.org/ To convert the source code into executable file Open source 

HTML 

Help 

Workshop  

4.74.8702.0 http://www.softpedia.com/get/Authoring-

tools/Help-e-book-creators/HTML-Help-

Workshop.shtml 

To compile html help document into .chm file and online 

help  

Free software 

(Microsoft) 

Inno setup 5.2.4-dev http://www.jrsoftware.org/isinfo.php To convert executable file into windows installable file 

format 

Free  software 

 

 

http://clipsrules.sourceforge.net/
http://www.python.org/
http://www.wxpython.org/
http://pyclips.sourceforge.net/web/
http://www.py2exe.org/
http://www.softpedia.com/get/Authoring-tools/Help-e-book-creators/HTML-Help-Workshop.shtml
http://www.softpedia.com/get/Authoring-tools/Help-e-book-creators/HTML-Help-Workshop.shtml
http://www.softpedia.com/get/Authoring-tools/Help-e-book-creators/HTML-Help-Workshop.shtml
http://www.jrsoftware.org/isinfo.php
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APPENDIX C: EVALUATION QUESTIONNAIRE 

The questionnaire used to evaluate and validate the CDST is shown in Table C.1. The 

evaluators rate the tool with respect to each criterion in the questionnaire as:               

5 = Outstanding, 4 = Good, 3 = Satisfactory, 2 = Poor, and 1 = Unsatisfactory. 

Table C.1 CDST evaluation questionnaire 

No. Evaluation Criteria 5 4 3 2 1 

1 All the steps in conceptual design process are covered in a 

comprehensive manner 

     

2 The program acknowledges input      

3 The program supports decision making by helping the users 

generate ideas, obtain necessary information, and evaluate 

alternatives  

     

4 The user, not the program, controls the decision making      

5 The organization of the user interface is clear, logical, and 

effective, making it easy for the intended user to understand 

     

6 The user can easily start and exit the program      

7 The program is reliable in normal use. Software is bug free      

8 Using the program contributes to the user’s creativity by 

initiating ideas 

     

9 The program can be a useful resource in academia to teach 

conceptual design process 

     

10 The program can be used as means to preserve experts 

knowledge for future use 

     

11 The structure of the program demonstrates that conceptual 

design can be computer assisted 

     

12 The program achieves its purpose      
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