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ABSTRACT 

This research work focuses on the development of carbon nanomaterial 

particularly graphitic nanofibers by using chemical vapour deposition method. In 

addition, the development of catalyst for the synthesis of graphitic nanofibers has 

been investigated. For optimization of experimental parameters, Taguchi method has 

been used as the design of experiment. The capacity of the developed materials in 

hydrogen adsorption is tested at 77 K, 20 bar and 298 K, 100 bar using gravimetric 

measurement technique. 

For graphitic nanofiber (GNF) development, the preliminary experiments show 

that the most optimum temperature to produce the highest yield for both iron- and 

nickel-based GNF samples is 600°C. Other controlled parameters are not significant 

except for C2H4/H2 flow rate in nickel-based GNF samples synthesis where the 

maximum flow ratio (90/10) provides the highest yield in the reaction. In the GNF 

development, the modified experiment has improved the GNF yield from 6.4 to 12.1 

g/(gcat.hr) in iron-based GNF samples and from 32.9 to 60.2 g/(gcat⋅hr) in nickel-

based GNF samples. In additions, the optimum conditions to synthesize the highest 

yield of carbon nanotube (CNT) is when CNTs are produced in the reaction time of 

40 minutes, H2 flow rate of 300 ml/min and the catalyst weight of 0.2 g using 

benzene as the carbon feedstock. 

The sample characterization using scanning electron microscope (SEM) and 

field emission scanning electron microscope (FESEM) has found that the average 

diameter size of CNTs varies from 90 to 210 nm and GNF varies from 100 to 200 

nm. The use of transmission electron microscope (TEM) has proved that all CNTs 

are consist of multiwall nanotubes (MWNTs) while GNFs comprises of platelet and 

herringbone structures. Further characterization was done using Raman spectroscopy 

to obtain the purity of the sample by determining the relative value of amorphous 

carbon over graphite and the degree of graphitization. For the purpose of hydrogen 

adsorption study, the specific BET surface area of each sample is determined by 

surface area analyzer. The specific BET surface area of developed CNTs and GNFs 

are in the range of 51 to 121 m2/g and 60 to 293 m2/g, respectively. 
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For hydrogen adsorption studies at 77 K and 20 bar conditions, the capacities 

using the developed GNFs are found to be between 0.58–0.64 wt% while at 150 bar, 

the weight percentage of the adsorbed hydrogen using GNFs is ranging from        

0.06–0.30 wt% and at 100 bar, the capacities ranging from 0.07–0.27 wt%.             

The method used for adsorption studies focused on gravimetric measurement 

technique because of its high accuracy and less amount of sample is required as an 

adsorbent as compared with the conventional method that is the volumetric 

measurement. 

The experimental results also show that it is quite complex to realize the target 

of 6.5 wt% set by Department of Energy, USA either at 77 K or 298 K. 

Improvements in the development of CNTs and GNFs for hydrogen storage is a 

challenging task. Controlling the pore size distribution to be less than 1 nm and the 

micropore volume to be sufficient in enabling more hydrogen molecules to be stored 

are among the challenges. The presence of more open pores rather than close pores 

and tube encapsulation is very crucial. 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

ABSTRAK 

Kerja penyelidikan ini memfokuskan pada penghasilan karbon nanobahan 

terutama nanofiber grafit (GNF) dengan menggunakan kaedah enapan wap kimia. 

Tambahan pula, penghasilan mangkin untuk sintesis GNF juga diselidiki. Untuk 

pengoptimuman parameter eksperimen, kaedah Taguchi telah digunakan sebagai 

reka bentuk eksperimen. Kapisiti penghasilan bahan untuk penjerapan hidrogen 

telah diuji pada 77 K, 20 bar dan 298 K, 100 bar dengan menggunakan teknik 

pengukuran melalui gravimetri. 

Untuk penghasilan GNF, peringkat awal eksperimen menunjukkan suhu yang 

paling optimum untuk memperolehi pengeluaran yang tinggi untuk kedua-dua 

sample GNF yang dihasilkan berdasarkan besi dan nikel (sebagai mangkin) ialah 

600°C. Kawalan parameter-parameter yang lain adalah tidak penting kecuali kadar 

aliran CH4/H2 dalam sintesis sample GNF berdasarkan nikel di mana kadar aliran 

maksimum (90/10) menghasilkan pengeluaran tertinggi dalam tindakbalas tersebut. 

Dalam penghasilan GNF, pengubahsuaian eksperimen telah meningkatkan 

pengeluaran GNF daripada 6.4 kepada 12.1 g/(gmangkin.j) untuk sampel GNF 

berdasarkan besi dan daripada 32.9 hingga 60.2 g/(gmangkin⋅j) untuk sampel GNF 

berdasarkan nikel. Tambahan, keadaan yang optimum untuk mensintesis 

pengeluaran nanotiub karbon (CNT) yang tinggi ialah apabila CNT dihasilkan dalam 

masa tindakbalas selama 40 minit, kadar aliran hydrogen sebanyak 300 ml/min dan 

jisim mangkin sejumlah 0.2 g dengan menggunakan benzin sebagai sumber karbon. 

Pencirian sampel menggunakan mikroskop imbasan electron (SEM) dan 

mikroskop imbasan electron medan pencahayaan (FESEM) menunjukkan bahawa 

purata saiz diameter CNT ialah di antara 90 hingga 210 nm manakala untuk GNF 

ialah di antara 100-200 nm. Penggunaan mikroskop pancaran electron (TEM) 

menunjukkan bahawa semua CNT mengandungi nanotiub berbilang dinding 

(MWNT) manakala GNF terdiri daripada struktur tersusun (platelet/stacked) dan 

struktur tulang ikan (herringbone/fishbone). Pencirian selanjutnya dijalankan 

menggunakan spektroskopi Raman untuk memperolehi ketulenan sampel dengan 

mengira nilai relatif karbon amorfus kepada grafit dan tahap grafitisasi. Untuk 
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tujuan pengkajian penjerapan hidrogen, luas permukaan BET tertentu untuk setiap 

sampel dinilaikan oleh penganalisa luas permukaan. Luas permukaan BET tertentu 

untuk CNT dan GNF adalah masing-masing dalam lingkungan 51 hingga 121 m2/g 

dan 60 hingga 293 m2/g. 

Untuk kajian penjerapan hydrogen pada keadaan 77 K dan 20 bar, kapasiti yang 

terhasil dengan menggunakan GNF yang dihasilkan didapati terhasil di antara         

0.58–0.64 wt% manakala pada 150 bar, peratus berat hidrogen yang terjerap dalam 

GNF adalah di antara 0.06–0.30 wt% dan pada 100 bar, kapasiti tersebut adalah di 

antara 0.07–0.27 wt%. Kaedah kajian penjerapan memfokuskan kepada teknik 

pengukuran melalui gravimetri kerana kejituan pengukuran adalah tinggi dan sedikit 

sampel diperlukan berbanding dengan kaedah lama yang terdahulu iaitu pengukuran 

melalui isipadu. 

Keputusan ujikaji menunjukkan bahawa adalah sukar untuk merealisasikan 

sasaran iaitu 6.5 wt% seperti yang telah ditetapkan oleh Jabatan Tenaga, Amerika 

Syarikat sama ada pada 77 K atau 298 K. Pengubahsuaian penghasilan CNT dan 

GNF untuk penyimpanan hidrogen adalah satu tugas yang mencabar. Pengawalan 

taburan saiz liang untuk kurang daripada 1 nm dan keberkesanan isipadu liang mikro 

untuk menyimpan molekul hidrogen adalah sebahagian daripada cabaran-cabaran 

tersebut. Kehadiran lebih banyak liang terbuka berbanding liang tertutup dan 

enkapsulasi tiub adalah sangat genting. 
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