STATUS OF THESIS

Title of thesis

SYNTHESIS, CHARACTERIZATION AND TESTING OF GRAPHITIC NANOFIBER FOR HYDROGEN ADSORPTION STUDY

I ______SURIATI SUFIAN ______ (CAPITAL LETTERS)

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

- 1. The thesis becomes the property of UTP
- 2. The IRC of UTP may make copies of the thesis for academic purposes only.
- 3. This thesis is classified as

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for ______ years.

Remarks on disclosure:

Endorsed by

Signature of Author

Permanent address:

8, Lorong Changkat Mewah 3 Taman Changkat Mewah 31000 Batu Gajah, Perak

Date : _____

Signature of Supervisor

Name of Supervisor Assoc. Prof. Dr Suzana Yusup

Date : _____

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor

The undersigned certify that she has read and recommend to the Postgraduate Studies Programme for acceptance, a thesis entitled "Synthesis, Characterization and Testing of Graphitic Nanofibers for Hydrogen Adsorption Study " submitted by Suriati Sufian in fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.).

Date 21 January 2010

Signature: Main Supervisor:

Assoc. Prof. Dr Suzana Yusup

SYNTHESIS, CHARACTERIZATION AND TESTING OF GRAPHITIC NANOFIBER FOR HYDROGEN ADSORPTION STUDY

by

SURIATI SUFIAN

Bachelor of Engineering (Hons) Chemical Process Engineering with Fuel Technology University of Sheffield, UK,1998.

> Master of Engineering (Chemical Engineering) University of Queensland, Australia, 2001.

A DISSERTATION

Submitted to the Postgraduate Studies Program as a Requirement for the

Degree of Doctor of Philosophy (Ph.D.) (Chemical Engineering)

UNIVERSITI TEKNOLOGI PETRONAS BANDAR SERI ISKANDAR, PERAK

JANUARY 2010

Declaration

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degrees at UTP or other institutions.

Signature:		
Name:	SURIATI SUFIAN	<u> </u>
Date:	21 January 2010	•

DEDICATION

This thesis is especially dedicated to my beloved family.....

ACKNOWLEDGEMENTS

In the name of Allah, the Most Beneficent and the Most Merciful. I am indeed grateful to Him for guiding me on the right path and giving me the opportunity to study with strength, endurance and patience to complete this PhD study.

My sincere thank goes to my main supervisor, Assoc. Prof. Dr Suzana Yusup and co-supervisor Assoc. Prof. Dr Azmi Mohd Shariff for their guidance and support. Many thanks to Universiti Teknologi PETRONAS (UTP) for the scholarship and lab facilities, Ministry of Science Technology and Innovation (MOSTI) for the E-science research fund (Project No. 03-02-02-SF0020) as well as Assoc. Prof. Dr Fakhru'l Razi Ahmadun from Universiti Putra Malaysia (UPM) and Dr Gavin Walker from University of Nottingham, UK for giving me an opportunity to do collaboration work.

Not to forget, my gratitude to my research colleagues at UPM and University of Nottingham for helping me in initial lab work as well as the UTP Chemical and Mechanical Eng lab technologists for their kind assistance in samples' characterizations. My appreciation to Dr Shuhaimi Mahadzir (Chemical Engineering Program Head), Assoc. Prof. Dr M Ibrahim A Mutalib (ex-Director of REO), Chemical Engineering colleagues and my friends for their endless moral support. Also thanks to UTP support staff especially Human Resource Management, Finance Fund & Management, Research Enterprise Office and Postgraduate Studies for their co-operation throughout my PhD journey.

Most of all, to my husband Zuhairi Hj Baharudin, who is also finishing his doctoral study, thank you for your unconditional love, sharing pains with me and lightening burdens on me. To my lovely children, 5-year-old Nur Afiqah and 3-year-old Muhammad Syahmi, thank you for adding beautiful colors in my life. May Allah bless and protect them. Special thanks to my mother Hajah Hasnah Hassan, mother in-law Hajah Timah Soman and father Hj Sufian Kulob Ismail for their continuous prayers and encouragement. May Allah bless and reward them. Last but not least, to my late father in-law Allahyarham Hj Baharudin Sidik, may Allah bless his soul in peace and place his soul among the righteous in the Hereafter.

ABSTRACT

This research work focuses on the development of carbon nanomaterial particularly graphitic nanofibers by using chemical vapour deposition method. In addition, the development of catalyst for the synthesis of graphitic nanofibers has been investigated. For optimization of experimental parameters, Taguchi method has been used as the design of experiment. The capacity of the developed materials in hydrogen adsorption is tested at 77 K, 20 bar and 298 K, 100 bar using gravimetric measurement technique.

For graphitic nanofiber (GNF) development, the preliminary experiments show that the most optimum temperature to produce the highest yield for both iron- and nickel-based GNF samples is 600°C. Other controlled parameters are not significant except for C_2H_4/H_2 flow rate in nickel-based GNF samples synthesis where the maximum flow ratio (90/10) provides the highest yield in the reaction. In the GNF development, the modified experiment has improved the GNF yield from 6.4 to 12.1 g/(g_{cat}.hr) in iron-based GNF samples and from 32.9 to 60.2 g/(g_{cat}.hr) in nickel-based GNF samples. In additions, the optimum conditions to synthesize the highest yield of carbon nanotube (CNT) is when CNTs are produced in the reaction time of 40 minutes, H₂ flow rate of 300 ml/min and the catalyst weight of 0.2 g using benzene as the carbon feedstock.

The sample characterization using scanning electron microscope (SEM) and field emission scanning electron microscope (FESEM) has found that the average diameter size of CNTs varies from 90 to 210 nm and GNF varies from 100 to 200 nm. The use of transmission electron microscope (TEM) has proved that all CNTs are consist of multiwall nanotubes (MWNTs) while GNFs comprises of platelet and herringbone structures. Further characterization was done using Raman spectroscopy to obtain the purity of the sample by determining the relative value of amorphous carbon over graphite and the degree of graphitization. For the purpose of hydrogen adsorption study, the specific BET surface area of each sample is determined by surface area analyzer. The specific BET surface area of developed CNTs and GNFs are in the range of 51 to $121 \text{ m}^2/\text{g}$ and 60 to $293 \text{ m}^2/\text{g}$, respectively.

For hydrogen adsorption studies at 77 K and 20 bar conditions, the capacities using the developed GNFs are found to be between 0.58–0.64 wt% while at 150 bar, the weight percentage of the adsorbed hydrogen using GNFs is ranging from 0.06–0.30 wt% and at 100 bar, the capacities ranging from 0.07–0.27 wt%. The method used for adsorption studies focused on gravimetric measurement technique because of its high accuracy and less amount of sample is required as an adsorbent as compared with the conventional method that is the volumetric measurement.

The experimental results also show that it is quite complex to realize the target of 6.5 wt% set by Department of Energy, USA either at 77 K or 298 K. Improvements in the development of CNTs and GNFs for hydrogen storage is a challenging task. Controlling the pore size distribution to be less than 1 nm and the micropore volume to be sufficient in enabling more hydrogen molecules to be stored are among the challenges. The presence of more open pores rather than close pores and tube encapsulation is very crucial.

ABSTRAK

Kerja penyelidikan ini memfokuskan pada penghasilan karbon nanobahan terutama nanofiber grafit (GNF) dengan menggunakan kaedah enapan wap kimia. Tambahan pula, penghasilan mangkin untuk sintesis GNF juga diselidiki. Untuk pengoptimuman parameter eksperimen, kaedah Taguchi telah digunakan sebagai reka bentuk eksperimen. Kapisiti penghasilan bahan untuk penjerapan hidrogen telah diuji pada 77 K, 20 bar dan 298 K, 100 bar dengan menggunakan teknik pengukuran melalui gravimetri.

Untuk penghasilan GNF, peringkat awal eksperimen menunjukkan suhu yang paling optimum untuk memperolehi pengeluaran yang tinggi untuk kedua-dua sample GNF yang dihasilkan berdasarkan besi dan nikel (sebagai mangkin) ialah 600°C. Kawalan parameter-parameter yang lain adalah tidak penting kecuali kadar aliran CH₄/H₂ dalam sintesis sample GNF berdasarkan nikel di mana kadar aliran maksimum (90/10) menghasilkan pengeluaran tertinggi dalam tindakbalas tersebut. Dalam penghasilan GNF, pengubahsuaian eksperimen telah meningkatkan pengeluaran GNF daripada 6.4 kepada 12.1 g/(g_{mangkin}.j) untuk sampel GNF berdasarkan nikel. Tambahan, keadaan yang optimum untuk mensintesis pengeluaran nanotiub karbon (CNT) yang tinggi ialah apabila CNT dihasilkan dalam masa tindakbalas selama 40 minit, kadar aliran hydrogen sebanyak 300 ml/min dan jisim mangkin sejumlah 0.2 g dengan menggunakan benzin sebagai sumber karbon.

Pencirian sampel menggunakan mikroskop imbasan electron (SEM) dan mikroskop imbasan electron medan pencahayaan (FESEM) menunjukkan bahawa purata saiz diameter CNT ialah di antara 90 hingga 210 nm manakala untuk GNF ialah di antara 100-200 nm. Penggunaan mikroskop pancaran electron (TEM) menunjukkan bahawa semua CNT mengandungi nanotiub berbilang dinding (MWNT) manakala GNF terdiri daripada struktur tersusun (*platelet/stacked*) dan struktur tulang ikan (*herringbone/fishbone*). Pencirian selanjutnya dijalankan menggunakan spektroskopi Raman untuk memperolehi ketulenan sampel dengan mengira nilai relatif karbon amorfus kepada grafit dan tahap grafitisasi. Untuk

tujuan pengkajian penjerapan hidrogen, luas permukaan BET tertentu untuk setiap sampel dinilaikan oleh penganalisa luas permukaan. Luas permukaan BET tertentu untuk CNT dan GNF adalah masing-masing dalam lingkungan 51 hingga 121 m²/g dan 60 hingga 293 m²/g.

Untuk kajian penjerapan hydrogen pada keadaan 77 K dan 20 bar, kapasiti yang terhasil dengan menggunakan GNF yang dihasilkan didapati terhasil di antara 0.58–0.64 wt% manakala pada 150 bar, peratus berat hidrogen yang terjerap dalam GNF adalah di antara 0.06–0.30 wt% dan pada 100 bar, kapasiti tersebut adalah di antara 0.07–0.27 wt%. Kaedah kajian penjerapan memfokuskan kepada teknik pengukuran melalui gravimetri kerana kejituan pengukuran adalah tinggi dan sedikit sampel diperlukan berbanding dengan kaedah lama yang terdahulu iaitu pengukuran melalui isipadu.

Keputusan ujikaji menunjukkan bahawa adalah sukar untuk merealisasikan sasaran iaitu 6.5 wt% seperti yang telah ditetapkan oleh Jabatan Tenaga, Amerika Syarikat sama ada pada 77 K atau 298 K. Pengubahsuaian penghasilan CNT dan GNF untuk penyimpanan hidrogen adalah satu tugas yang mencabar. Pengawalan taburan saiz liang untuk kurang daripada 1 nm dan keberkesanan isipadu liang mikro untuk menyimpan molekul hidrogen adalah sebahagian daripada cabaran-cabaran tersebut. Kehadiran lebih banyak liang terbuka berbanding liang tertutup dan enkapsulasi tiub adalah sangat genting.

Incompliance the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Suriati Sufian, 2010 Institute of Technology PETRONAS Sdn Bhd All rights reserved

TABLE OF CONTENTS

STATUS	OF TH	ESIS	i
APPROVAL PAGEii			ii
TITLE PAGE			iii
DECLARATION iv			
DEDICA	TION		v
ACKNOV	WLEDC	JEMENTS	vi
ABSTRA	CT		vii
COPYRIC	GHT PA	AGE	xi
TABLE (OF CON	ITENTS	xii
LIST OF	TABLE	2S	xvii
LIST OF	FIGUR	ES	xix
NOMEN	CLATU	RE	xxvii
СНАРТЕ	ER 1 IN	TRODUCTION	1
1.1	Fossil	fuels: Benefits and current problems	1
1.2	Hydro	ogen economy	4
1.3	The ac	dvantages of hydrogen economy	6
	1.3.1	Elimination of the use of carbon-based fossil fuels	6
	1.3.2	Elimination of greenhouse gases	7
	1.3.3	Derivation from diverse domestic resources	7
	1.3.4	Elimination of economy dependence	7
1.4	Hydro	gen: mass energy density vs. volumetric energy density	7
1.5	Hydro	gen storage and the technological hurdles	9
	1.5.1	Weight and Volume	11
	1.5.2	Efficiency	11
	1.5.3	Durability	11
	1.5.4	Refueling Time	11
	1.5.5	Cost	11
	1.5.6	Codes and Standards	12
	1.5.7	Life cycle and Efficiency analysis	12
1.6	Pro an	d Cons in different types of hydrogen storage	12
	1.6.1	Compressed hydrogen	13
	1.6.2	Glass microspeheres	14
	1.6.3	Liquid hydrogen	14
	1.6.4	Physical adsorption	15
	1.6.5	Chemical absorption	15
	1.6.6	Chemical reaction	16
1.7	Hydro	gen storage in GNF	16
1.8	Summ	nary	18
1.9	Proble	em statement	19
	1.10	Aim and objectives	19
	1.10.1	Main aim	19
1 1 1	1.10.2	Specific objectives	20
1.11	Scope	of study	20

CHAPTI	ER 2 LITERATURE REVIEW	21
2.1	Introduction	21
2.2	Nanoporous material	21
2.3	Carbon nanomaterial	22
	2.3.1 Bonding structure of carbon atom	23
	2.3.2 Bonding structure of CNTs	24
2.4	Types of carbon nanostructures	24
	2.4.1 Single wall nanotube	25
	2.4.2 Multiwall nanotube	27
	2.4.3 Graphitic nanofibers	29
2.5	Preparation of CNTs and GNFs	30
2.6	Carbon vaporization method	31
	2.6.1 Electric arc discharge	31
	2.6.2 Laser ablation	32
	2.6.3 Solar furnace	33
2.7	Catalytic chemical vapor deposition	33
	2.7.1 Heterogeneous process	34
	2.7.2 Homogeneous process	35
2.8	The advantages and disadvantages of catalytic CVD	36
2.9	Comparison of the three main techniques	37
	2.10 Mechanism of growth in CVD	38
	2.10.1 Growth of CNTs	38
	2.10.2 Growth of GNFs	40
2.11	CNT and GNF engineering: Parameters involved	42
	2.11.1 Catalyst	42
	2.11.2 Reactant gases including carbon feedstock	42
	2.11.3 Reaction temperature	43
	2.11.4 Reaction time	43
2.12	Properties of CNT and GNF	44
	2.12.1 Surface area	45
	2.12.2 Electrical conductivity	45
	2.12.3 Thermal conductivity and expansion	46
	2.12.4 Chemical reactivity	46
	2.12.5 Mechanical strength and elasticity	46
	2.12.6 Optical activity	47
	2.12.7 Field emission	47
	2.12.8 High aspect ratio	47
	2.12.9 Adsorbent	48
2.13	Potential applications	48
2.14	Methods of adsorption measurement	49
2.15	Summary	54
CHAPTI	ER 3 THEORY OF EXPERIMENTAL AND ANALYTICAL	
<u> </u>	TECHNIQUES	55
3.1	Introduction	55
3.2	Design of experiment: Taguchi Method	55
3.3	Analysis of variance	59

3.4	Neuro-fuzzy system	61
3.5	Adsorption Studies	62
	3.5.1 Principles of adsorption	63
	3.5.2 Porosity	64
	3.5.3 Types of adsorption isotherms	66
3.6	Intelligent gravimetric analyzer	69
3.7	Magnetic Suspension Balance	69
	3.7.1 Experimental set up	70
	3.7.2 Theory and procedure of MSB	71
3.8	Electron Microscope	74
	3.8.1 Scanning electron microscope	75
	3.8.2 Transmission electron microscope	76
3.9	Raman spectroscopy	77
3.10	X-ray diffractometer	79
3.11	Summary	81
CHAPTI	ER 4 METHODOLOGY	82
4.1	Introduction	82
4.2	Synthesis of graphitic nanofiber	82
	4.2.1 Catalyst preparation	83
	4.2.2 Chemical vapor deposition: Preliminary experiment	85
	4.2.3 Chemical vapor deposition: Modified experiment	88
4.3	Synthesis of carbon nanotube	92
	4.3.1 Optimization of CNT experimental conditions	92
	4.3.2 Experimental setup	94
	4.3.3 FC-CVD Procedure	95
4.4	Characterization and analysis of developed CNT and GNF	96
	4.4.1 Raman spectroscopy	96
	4.4.2 X-ray diffraction	96
	4.4.3 Surface area analyzer	97
	4.4.4 Scanning electron microscope	97
	4.4.5 Transmission electron microscope	97
	4.4.6 Gas pycnometer	98
4.5	Gravimetric measurement of hydrogen adsorption	98
	4.5.1 Hydrogen adsorption at low temperature	98
	4.5.2 Hydrogen adsorption at high pressure	100
4.6	Hydrogen adsorption simulation	102
4.7	Summary	104
CHAPTI	ER 5 DEVELOPMENT AND INVESTIGATION OF GRAPHITIC	
	NANOFIBERS	105
5.1	Introduction	105
5.2	Catalyst study	106
	5.2.1 XRD analysis	107
	5.2.2 Catalyst crystal size determination	111
	5.2.3 Raman spectra analysis	114
	5.2.4 TEM morphology	116

	5.2.5	Reaction yield of the catalyst	117
5.3	Hetero	geneous process in GNF	120
5.4	Prelim	inary of experimental set up	120
	5.4.1	Reaction yield from the preliminary experiment	121
5.5	Modifi	cation of experimental set up	125
	5.5.1	Hydrogen calibration	126
5.6	X-ray	diffraction study	132
	5.6.1	XRD analysis of preliminary experiment	133
	5.6.2	XRD analysis of modified experiment	140
5.7	Raman	a spectroscopy study	146
5.8	Micros	scopy study	150
	5.8.1	SEM analysis	151
	5.8.2	TEM analysis	154
	5.8.3	Selected area electron diffraction	158
	5.8.4	Growth Mechanism	161
	5.8.5	Corrugated carbon nanofibers in the GNF growth	163
	5.8.6	GNF diameter size distribution	166
5.9	Nitrog	en adsorption study	174
5.10	Pore si	ze distribution	17/8
5.11	Compa	arison studies with developed carbon nanotubes	181
	5.11.1	Homogeneous process in carbon nanotubes	181
	5.11.2	The reaction yield	102
	5.11.5	Y ray diffraction study	103
	5 11 5	A-ray unnaction study Paman spectroscopy study	104
	5 11 6	TEM analysis	187
	5 11 7	SEM analysis	107
	5 11 8	Nitrogen adsorption study	197
5 12	Summ	arv	199
0.112	5.12.1	Synthesis of catalyst for GNF development	199
	5.12.2	Synthesis of GNF in preliminary experiment	200
	5.12.1	Synthesis of GNF in modified experiment	200
	5.12.2	Synthesis of CNTs	202
CHAPTE	R 6 DE	EVELOPMENT AND PREDICTION OF HYDROGEN	
	ISC	OTHERM DATA	204
6.1	Introdu	action	204
6.2	Hydrog	gen isotherm: experimental data	204
	6.2.1	Hydrogen adsorption measurement using intelligent gravimetr	ic
		analyzer (IGA)	205
	6.2.2	Hyrogen adsorption measurement using magnetic suspension	•••
<i>c</i> 2		balance (MSB)	207
6.3	Hydrog	gen isotherm: prediction data	213
	0.3.1	Hydrogen adsorption isotherm at // K	213
	0.3.2	Hydrogen adsorption isotherm at 298 K	213
6 1	0.3.3	Ausorption active site	$\frac{21}{210}$
0.4	Summ	ary	219

CHAPT	CHAPTER 7 CONCLUSION AND FUTURE WORK 222		
7.1	Contributions	222	
7.2	Final conclusion	225	
7.3	Future work	225	
REFER	ENCES	227	
APPEN	DICES	246	
Appendi	x A	246	
Appendi	x B	250	
Appendi	x C	256	
Appendi	x D	259	
Appendix E		262	
Appendix F 2		263	

LIST OF TABLES

Table 1.1	Malaysian major export products 2007-2008 (Matrade, 2008)2
Table 1.2	Commercial energy demand by sector 2000-2010 (Economic Plan Unit, 2006)
Table 1.3	Heating values of comparative fuels (Lanz, 2001)
Table 1.4	DoE hydrogen storage target by year 2010 and 2015 (Freedom car and fuel partnership, 2005)
Table 2.1	Comparison among CVD, laser ablation and arc discharge (Daenen et al., 2003; Eklund, 2006)
Table 2.2	Summary of the developed carbon nanostuctures
Table 2.3	Applications of GNFs
Table 2.4	Applications of CNTs
Table 2.5	The advantages and disadvantages of volumetric and gravimetric measurements (Keller & Staudt, 2005)
Table 2.6	Summary of hydrogen storage capacity using carbon as adsorbent 52
Table 3.1	Basic properties of physisorption and chemisorption (Fletcher, 2008; Roque-Malherbe, 2007)
Table 3.2	Seven crystal systems (Moeck, 2004)
Table 4.1	Parameters and levels used to synthesize Fe_2O_3 and NiO catalyst 83
Table 4.2	L ₉ orthogonal array for synthesis of Fe2O3 and NiO catalyst
Table 4.3	Parameters and levels used in synthesis of graphitic nanofibers86
Table 4.4	Parameter design for preliminary GNF synthesis using L ₉ OA86
Table 4.5	Parameters design for modified GNF synthesis using Fe ₂ O ₃ catalyst. 88
Table 4.6	Parameters design for modified GNF synthesis using NiO catalyst 89
Table 4.7	Parameters and levels used in the synthesis of CNTs
Table 4.8	L ₉ orthogonal array for CNT synthesis
Table 5.1	Average crystal size of Fe ₂ O ₃ and NiO at different reaction conditions 112
Table 5.2	The average yield of Fe ₂ O ₃ and NiO at different conditions
Table 5.3	Average yield of samples FG and NG in preliminary experiment 122
Table 5.4	Average yield of samples LFe and LNi as well as percentage of yield increased as compared to preliminary experiments
Table 5.5	Raman spectra bands of GNF in preliminary experiment 148
Table 5.6	Raman spectra bands of GNF in modified experiment 150
Table 5.7	Approximation value of reaction yield of the produced CNT at different conditions

Table 5.8	Raman spectra bands of CNTs 201
Table 5.9	Comparison studies of GNF yield
Table 6.1	Number of adsorption active sites in hydrogen adsorption onto GNF 219
Table 6.2	Comparison studies of hydrogen adsorption at 77 K 220
Table 6.3	Comparison studies of hydrogen adsorption at 298 K 221

LIST OF FIGURES

Figure 1.1	The components of hydrogen economy system (Cleveland, 2004)6
Figure 1.2	Mass energy density of fuels (Tzimas et al., 2003)
Figure 1.3	Volumetric energy density of typical types of fuel (Tzimas et al., 2003)9
Figure 1.4	Relative volume needed for hydrogen storage to achieve more than 300 miles (Hydrogen.gov, 2009)10
Figure 1.5	Types of hydrogen storage13
Figure 1.6	Theortical capacities for different hydrogen storage methods excluding ancillaries (Async, 2002)18
Figure 2.1	Structure of nanotube in single graphite layer (Bhushan, 2004)25
Figure 2.2	Three different ways of rolling a sheet of carbon atoms where depending on the direction the sheet is rolled into, three different patterns are emerged as (a)zigzag, (b)armchair and (c)chiral (Fischer, 2006)
Figure 2.3	MWNT consists of several SWNTS with regularly increasing diameters (Ahwahnee Technology, 2004)27
Figure 2.4	MWNT structure consists of (a)concentric MWNT; (b)herringbone MWNT or graphitic nanofibre (GNF); (c)bamboo-concentric MWNT; and (d)bamboo-herringbone MWNT (P. M. Ajayan, 1997; Bhushan, 2004)
Figure 2.5	GNF structures that are (a)platelet and (b)herringbone structures29
Figure 2.6	Classification of CVD techniques
Figure 2.7	Laser ablation (Daenen et al., 2003)32
Figure 2.8	Solar experimental chamber (Bhushan, 2004)
Figure 2.9	Experimental set up used for CCVD (Journet & Bernier, 1998)34
Figure 2.10	(a)Base and (b)tip growth mechanisms of CNTs (Daenen et al., 2003)
Figure 2.11	Key steps in growth process of graphitic nanofibers40
Figure 2.12	GNFs generated from catalyst surface to form (a)platelet and (b)herringbone structures (Rodriguez et al., 1995)41
Figure 3.1	Molecular situation of adsorption system (Keller & Staudt, 2005)63
Figure 3.2	Various types of pores: blind (B), open (O), interconnected (I), through (T), closed (C), and also roughness (R) in a cross-section of an example of solid adsorbent (Rouquerol et al., 1999)
Figure 3.3	Various shapes of pores like (a)slit, (b)cylindrical, (c)ink bottle, and (d)wedges

Figure 3.4	Classification of pores
Figure 3.5	Types of adsorption isotherm (Fletcher, 2008; Nackos, 2006)67
Figure 3.6	Magnetic suspension balance (Keller & Staudt, 2005)71
Figure 3.7	Result example of a blank measurement (Rubotherm GmbH, 2005).72
Figure 3.8	Result example of a buoyancy measurement (Rubotherm GmbH, 2005)73
Figure 3.9	Signals from specimen in SEM (Klesel, 2006)75
Figure 3.10	Schematic of selected area electron diffraction (SAED) patterns of (a)multiwall nanotubes, (b)platelet; and (c)herringbone crystal structures
Figure 3.11	Process of resonance Raman scattering (Smith et al., 2005)78
Figure 3.12	A unit cell of a cubic lattice (Bruker AXS, 2001)80
Figure 4.1	Schematic diagram of the initial experimental setup
Figure 4.2	Preliminary experimental setup of thermal CVD87
Figure 4.3	Schematic diagram of the modified experimental setup90
Figure 4.4	Modified experimental setup of the thermal CVD91
Figure 4.5	Schematic diagram of FC-CVD system95
Figure 4.6	Experimental set up of FC-CVD system in the lab95
Figure 4.7	Intelligent gravimetric analyzer
Figure 4.8	Magnetic suspension balance100
Figure 4.9	Flowchart of Neuro-fuzzy system design approach103
Figure 5.1	XRD patterns of Fe ₂ O ₃ at calcination temperature of 300°C107
Figure 5.2	XRD patterns of Fe ₂ O ₃ at calcination temperature of 400°C 108
Figure 5.3	XRD patterns of Fe ₂ O ₃ at calcination temperature of 500°C108
Figure 5.4	Miller indices of α -Fe2O3 correspond to the diffraction peaks109
Figure 5.5	XRD patterns of NiO at calcination temperature of 300°C109
Figure 5.6	XRD patterns of NiO at calcination temperature of 400°C110
Figure 5.7	XRD patterns of NiO at calcination temperature of 500°C110
Figure 5.8	Miller indices of α -Fe ₂ O ₃ correspond to the diffraction peaks111
Figure 5.9	The effect of (a)temperature, (b)time and (c)salt weight on the catalyst size
Figure 5.10	Raman spectra of Fe ₂ O ₃ and the inset picture shows the molecular arrangement

Figure 5.11	Raman spectra of NiO and the inset picture shows the molecular arrangement
Figure 5.12	TEM images with magnification of 100,000X show a significant change of Fe_2O_3 particles size that calcined at (a)low; and (b)high temperatures
Figure 5.13	TEM images with magnification of 165,000X show a significant change of NiO particles size that calcined at (a)low; and (b)high temperatures
Figure 5.14	The effect of temperature, time and salt weight on the reaction yield119
Figure 5.15	The effect of (a)reaction time, (b) C_2H_4/H_2 flow rate; and (c)temperature on the samples FG yield123
Figure 5.16	The effect of (a)reaction time, $(b)C_2H_4/H_2$ flow rate and (c)temperature on the samples NG yield123
Figure 5.17	Interaction severity index of GNF yields in (a)samples FG and (b)samples NG124
Figure 5.18	Interaction between reaction time and C_2H_4/H_2 flow rate125
Figure 5.19	Hydrogen flow rate reading with respect of the flowmeter scale of the modified experimental set up
Figure 5.20	(a)The ceramic boat contained developed GNFs is taken out from the tube reactor; and (b)the developed GNFs are produced along the ceramic boat
Figure 5.21	The effect of (a)reaction time, (b) C_2H_4/H_2 flow rate and (c)temperature on the samples LFe yield129
Figure 5.22	The effect of (a)reaction time, (b) C_2H_4/H_2 flow rate and (c)temperature on the samples LNi yield130
Figure 5.23	Interaction severity index of GNF yields in (a)samples LFe and (b)samples LNi
Figure 5.24	Interaction between (a)reaction time and C_2H_4/H_2 flow rate in samples LFe reaction yield and (b) C_2H_4/H_2 flow rate and reaction temperature in samples LNi reaction yield
Figure 5.25	XRD pattern of GNF with Fe_2O_3 as the catalyst132
Figure 5.26	XRD pattern of GNF with NiO as the catalyst
Figure 5.27	Comparison of XRD patterns of samples FG based on reaction time
Figure 5.28	Comparison of XRD patterns of samples NG based on reaction time

Figure 5.29	Comparison of XRD patterns of samples FG based on C ₂ H ₄ /H ₂ flow rate
Figure 5.30	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Figure 5.31	Comparison of XRD patterns of samples FG based on temperature138
Figure 5.32	Comparison of XRD patterns of samples NG based on reaction temperature
Figure 5.33	Comparison of XRD patterns of sample LFes based on reaction time
Figure 5.34	Comparison of XRD patterns of samples LNi based on reaction time
Figure 5.35	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Figure 5.36	$\label{eq:comparison} Comparison of XRD patterns of samples LNi based on C_2H_4/H_2 \\ flow rate143$
Figure 5.37	Comparison of XRD patterns of samples LFe based on reaction temperature
Figure 5.38	Comparison of XRD patterns of samples LNi based on reaction temperature
Figure 5.39	Raman spectra of samples FG based on reaction temperature 146
Figure 5.40	Raman spectra of samples NG based on reaction temperature 147
Figure 5.41	Raman spectra of samples LFe based on reaction temperature 149
Figure 5.42	Raman spectra of samples LNi based on reaction temperature 149
Figure 5.43	SEM images show the significant difference between iron-based catalysts GNF (sample 2FG) at (a)low magnification of 5000X; (b)high magnification of 20000X and nickel-based catalysts GNF (sample 8NG) at (c)low magnification of 5861X; (d)high magnification of 23443X
Figure 5.44	GNFs can be (a)partially developed at 500°C and 2 hours as in L1Fe or; (b)fully developed at 700°C and 4 hours as in L7Fe152
Figure 5.45	The FESEM imaging shows (a)platelet structure in L_3Fe ; and (b)herringbone structure in L4Ni
Figure 5.46	Some samples exist in almost consistent diameter size of GNFs as in samples (a)L8Fe and (b)L1Ni, while others exist in different diameter sizes of GNFs as in samples (c)L9Fe and (d)L6Ni153
Figure 5.47	TEM images showing sample L4Fe with (a) herringbone and (b) platelet structures; as well as (c)sample L1N with hollow GNF platelet structure

Figure 5.48	Bright field TEM images of (a)sample 8FG at 500°C, (b)sample 2FG at 600°C; and (c)sample 7FG at 700°C155
Figure 5.49	Bright field TEM images of (a)sample 1NG at 500°C, (b)sample 4NG at 600°C; and (c)sample 5NG at 700°C156
Figure 5.50	Bright field TEM images of (a)sample L1Fe at 500°C, (b)sample L ₉ Fe at 600°C; and (c)sample L ₅ Fe at 700°C157
Figure 5.51	Bright field TEM images of (a)sample L1Ni at 500°C, (b)sample L4Ni at 600°C; and (c)sample L7Ni at 700°C158
Figure 5.52	Various GNF structures that is (a) coiled in L4Fe, (b)spring in L4Fe; and (c)regular helical in 6FG158
Figure 5.53	The bright field TEM of GNF (a)platelet structure with its (b)corresponding SAED pattern; and (c)herringbone structures with its (d)corresponding SAED pattern
Figure 5.54	The bright field TEM of encapsulated GNF (a)platelet structure with its (b)corresponding SAED pattern; and (c)herringbone structures with its (d)corresponding SAED pattern
Figure 5.55	SEM image shows the tip growth of Sample 3NG on NiO catalyst in three directions
Figure 5.56	TEM image shows the tip growth of 4FG on Fe ₂ O ₃ catalyst (the dark spot) in two directions
Figure 5.57	Formation of corrugated shape of CNF164
Figure 5.58	Both GNFs (labeled as 'Y') and C-CNFs (labeled as 'X') are produced in samples produced during (a)preliminary experiment; and (b)modified experiment
Figure 5.59	More C-CNFs at different sizes formed in (a)1NG sample (more than 100 nm); and (b)L5Ni sample (less than 100 nm) 165
Figure 5.60	Both thin tubular fiber (labeled as 'A') and corrugated fiber (labeled as 'B') are produced in sample 7FG165
Figure 5.61	The diameter size distribution of samples (a)1FG, (b)2FG, (c)3FG and (d)4FG at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.62	The diameter size distribution of samples (a)5FG, (b)6FG, (c)7FG, (d)8FG and (e)9FG at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.63	The diameter size distribution of samples (a)1NG, (b)2NG, (c)3NG, (d)4NG, (e)5NG and (f)6NG at different reaction time, C_2H_4/H_2 flow rate and reaction temperature

Figure 5.64	The diameter size distribution of samples (a)7NG, (b)8NG and (c)9NG at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.65	The diameter size distribution of saples (a) L_1Fe , (b) L_2Fe , (c) L_3Fe and (d) L_4Fe at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.66	The diameter size distribution of samples (a)L ₅ Fe, (b)L6Fe, (c)L7Fe, (d)L8Fe and (e)L ₉ Fe at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.67	The diameter size distribution of samples (a) L_1Ni , (b) L_2Ni , (c) L_3Ni and (d) L_4Ni at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.68	The diameter size distribution of samples (a)L5Ni, (b)L6Ni, (c)L ₇ Ni, (d)L ₈ Ni and (e)L ₉ Ni at different reaction time, C_2H_4/H_2 flow rate and reaction temperature
Figure 5.69	N ₂ isotherm at 77 K with adsorption-desorption hysteresis of sample 4NG175
Figure 5.70	N_2 isotherm at 77 K with adsorption-desorption hysteresis of sample 9FG. $\hfill 175$
Figure 5.71	The effect of reaction time, C_2H_4/H_2 flow rate and temperature on the specific BET surface area of samples FG 176
Figure 5.72	The effect of reaction time, C_2H_4/H_2 flow rate and temperature on the specific BET surface area of samples NG177
Figure 5.73	The effect of reaction time, C_2H_4/H_2 flow rate and temperature on the specific BET surface area of samples LFe177
Figure 5.74	The effect of reaction time, C_2H_4/H_2 flow rate and temperature on BET surface area of samples LNi
Figure 5.75	Pore size distribution of samples (a)iron-based GNF; and (b)nickel- based GNF in preliminary experiment
Figure 5.76	Pore size distribution of samples (a)iron-based GNF; and (b)nickel- based GNF in modified experiment
Figure 5.77	Diffraction line of (0 0 2) corresponds to the graphite crystallite184
Figure 5.78	The <i>G</i> band of Raman spectra in sample 5R has more intensity that <i>D</i> band as compared with sample 1R186
Figure 5.79	HRTEM images of (a)good crystallization of MWNT with thickness wall 5 nm in sample 6R; and (b)internal tube defect of MWNT in sample 1P as highlighted in the dashed circle line
Figure 5.80	MWNTs with (a)varies sizes of long tubes; (b)spring shape; (c)regular helical shape; and (d)coiled shape tubes

Figure 5.81	Comparison between thin hollow core with many multiwalls (A) and thick hollow core with few multiwalls (B)
Figure 5.82	Carbon nano-anion is observed in CNT development189
Figure 5.83	A HRTEM image shows the occurrence of several catalyst inclusions (dark area) in the growing nanotubes and the inset magnifies the catalyst confined in the tube
Figure 5.84	HRTEM image of MWNT with an inset image of FFT view190
Figure 5.85	Diameter size distribution and average size of samples 1R, 2R and 3R
Figure 5.86	Diameter size distribution and average size of samples 4R, 5R and 6R193
Figure 5.87	Diameter size distribution and average size of samples 7R, 8R and 9R
Figure 5.88	SEM images of Sample 1R to 6R at a magnification of 10000X195
Figure 5.89	SEM images of Sample 7R to 9R at a magnification of 10000X196
Figure 5.90	Isotherm curve of N ₂ adsorption onto CNT sample at 77 K198
Figure 5.91	The effect of reaction time, hydrogen flow rate and amount of catalyst on the specific BET surface area199
Figure 6.1	Hydrogen adsorption-desorption hysteresis of (a)iron-based; and (b) nickel-based GNFs at 77 K using IGA 205
Figure 6.2	Comparison of hydrogen uptake using developed GNFs and commercial SWNT at 77 K206
Figure 6.3	Hydrogen adsorption-desorption hysteresis of (a) iron-based; and (b) nickel-based GNFs at 298 K and 150 bar using MSB 208
Figure 6.4	Comparison of hydrogen uptake using developed GNFs at 298 K at different micropore area (m2/g) and micropore volume (cm^3/g)210
Figure 6.5	Hydrogen adsorption-desorption hysteresis of samples (a)L6Ni; (b)4NG; (c)L7Fe; and (d)L5Fe at 298 K and 100 bar using MSB with filled symbols as adsorption and open symbols as desorption 211
Figure 6.6	Comparison of hydrogen uptake using developed GNFs at 298 K at different BET specific surface area (m^2/g) 212
Figure 6.7	Stepped isotherm curve corresponds to hydrogen molecules adsorbed onto the carbon surface
Figure 6.8	Model development of hydrogen isotherm at 77 K using Neuro- fuzzy at surface areas of 248 and 407 m^2/g (filled symbols) as well as model validation of hydrogen isotherm at surface area of 293 m^2/g (open symbols)

Figure 6.9	Model development of hydrogen isotherm at 298 K using Neuro- fuzzy at surface areas of 110 and 250 m^2/g (filled symbols) as well
	as model validation of hydrogen isotherm at surface areas of 147 and 293 m^2/g (open symbols)217
Figure 6.10	A linear plot of $1/q$ versus $1/P_i$ to obtain number of adsorption active site

Nomenclature

AC Activated carbon

ANOVA Analysis of variance

- bc-MWNT Bamboo concentric multiwall nanotube
 - BET Brunauer-Emmett-Teller
- bh-MWNT Bamboo herringbone multiwall nanotube

CCD Charged couple device

C-CNFs Corrugated carbon nanofibers

CCVD Catalytic chemical vapor deposition

c-MWNT Concentric multiwall nanotube

CNF Carbon nanofiber

- CNO Carbon nano-onion
- CNT Carbon nanotube
- CVD Chemical vapour deposition
- CW Continuous wave
- DFT Density functional theory
- DoE Department of Energy (of USA)
- DOE Design of experiment
- DWNT Double-wall nanotube
 - EM Electron microscope
 - EOS Equation of state
- ESEM Environmental scanning electron microscope
- FC-CVD Floating catalyst chemical vapor deposition

FDW Fuzzy Design Wizard

- FESEM Field emission scanning electron microscope
 - FET Field-effect-transistor
 - FFT Fast Fourier Transform
- FWHM Full width at half maximum
 - GDP Gross domestic product
 - GHP Hydrophilic polypropylene membrane
- GmbH Gesellschaft mit beschränkter Haftung (a legal entity in Germany)
 - GNF Graphitic nanofiber
- HHV Higher heating value
- h-MWNT Herringbone concentric multiwall nanotube

HRTEM High-resolution transmittion electron microscopy

- HT High temperature
- ICDD International Centre for Diffraction Data
 - IGA Intelligent gravimetric analyzer
 - IR Infra-red
- IUPAC International Union Pure and Applied Chemistry
- JCPDS Joint Committee on Powder Diffraction Standards
- LCVD Laser-assisted thermal chemical vapour deposition
- LHV Lower heating value
- LNG Liquefied natural gas
- LO Longitudinal optical
- MARE Mean absolute relative error

- MSB Magnetic suspension balance
- MSD Mean-squared deviation
- MWNT Multiwalled nanotube
 - *n*, *m* Topological characterization of a nanotube by the chiral vector *nm*, where and span the graphite lattice
 - NCD Nanocrystalline diamond
- NGCC Natural gas combined cycle
- NGV Natural gas vehicle
- NIST National Institute of Standards and Technology
- OA Orthogonal array
- PEM Proton exchange memberane
- PETRONAS Petroliam Nasional Berhad
 - PSD Pore size distribution
 - QC Quality characteristic
 - RBM Radial breathing mode
 - RE Renewable energy
 - SAED Selected area electron diffraction
 - SEM Scanning electron microscope
 - SET Single electron tunneling
 - SI Severity index
 - SNR Signal-to-noise ratio
 - SPM Scanning probe microscopy (includes STM, AFM, etc.)
 - SREP Small Renewable Energy Power Programme
 - SWNT Single walled nanotubes
 - TEM Transmission electron microscopy
 - TGA Thermogravimetric analysis
 - TISO Two-Input-Single-Output
 - TO Transverse optical
 - UHV Ultra high vacuum
 - UV Ultra violet
 - VOC Volatile organic compound
 - VPSEM Variable pressure scanning electron microscope
 - VSEM Virtual scanning electron microscope
 - XRD X-ray diffraction