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CHAPTER 4 

EXPERIMENTAL DESIGN 
 

This chapter concentrates on procedures of SYSID, where, a fully instrumented natural 

gas test facility was designed and constructed. The test rig is designed that allows actual 

data of mass flowrate could be collected from actual coriolis flowmeter manufactured by 

Micro Motion based on three pressures of CNG filling banks: low pressure bank, medium 

pressure bank and high pressure bank. From these experimental data, the significant 

algorithm in this research would be clarified which is the inferential coriolis design.  

 
4.1 Introduction 

In general terms, an identification experiment is performed by exciting the Micro Motion 

coriolis flowmeter (using some sort of step signal such as valve opening) and observing 

its mass flowrate output over a time interval. These signals are recorded in a mass storage 

device such as FieldPoint for subsequent ‘information processing’. The first step in 

parametric estimation method is to determine an appropriate discrete model of the 

coriolis (typically a linear difference equation) based on three approaches: non-recursive, 

recursive and state-space. As a second step, some statistically based method is used to 

estimate the unknown parameters of the coriolis model (the coefficients of the difference 

equation) by using three analyses: optimal order, prediction error and singular values. In 

practice, the estimation for structures and parameters of coriolis model are often done 

iteratively which cover three steps: determining coefficient, stability analysis and 

validation of power series expansion. This means that a tentative structure is chosen and 

the corresponding parameters are estimated. The coriolis model obtained is then tested to 

see whether it is an appropriate representation of the actual coriolis. If this is not the case, 

some more complex order of model structure would be considered i.e., a new structure 

and coefficient would be estimated and validated, until the estimated model corresponds 

to the actual coriolis. The SYSID procedure could be summarized as Figure 4.1. 
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Figure 4.1: Flow chart of SYSID procedures
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4.2 Design of experimental hardware 

The following section discusses the first steps of SYSID methodology i.e., design of 

experimental hardware. Figure 4.2 shows the actual CNG test rig that has been designed 

for CNG metering analysis and refueling control system purposes. There are three main 

sections such as natural gas test rig, data acquisition & controller system using FieldPoint 

and graphical programming using LabVIEW, in which, the test rig itself consists of five 

sub systems such as cascaded storage system, flow metering system, receiver system, 

recycle system and sequencing system. These main components that are required in the 

test rig will be clearly explained to facilitate research work.  

 

 

 
 

Figure 4.2: Natural gas test rig 
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4.2.1 Cascaded storage system 

Figure 4.3 shows a three stage cascade storage system comprising of nine 5000 psig 

rated cylinders arranged in a 4-3-2 arrangement representing the low, medium and high 

pressure configurations. Each cylinder has a capacity of 55 liters at 5000 psig rated 

pressure. The cylinder cascade banks were assembled with motorized ball valves which 

were remotely activated during the testing from the laboratory computer control system.  

 

 

 

 
 
 

Figure 4.3: Cascaded storage system 
 
 
 
 
 
 
 

Lower pressure source Higher pressure source Make-up cylinder Medium pressure source 
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4.2.2 Flow metering system 

Figure 4.4 shows a coriolis flowmeter installed with three types of volumetric flowmeter: 

turbine, vortex and differential flowmeter to measure the flow of gas in the natural gas 

cylinder during the relatively high flow, rapid charging tests. The purpose is to compare 

coriolis metering performance and analyze the various types of natural gas flowmeters.   

 

 

 

 
 
 

Figure 4.4: Flow metering system 
 
 
 
 
 
 
 

Differential flowmeter Turbine flowmeter Vortex flowmeter 
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4.2.3 Receiver system 

Figure 4.5 shows a receiver system that replicates the actual car storage tank or receiver 

tank. It has one 55 liters cylinder tank at the 5000 psig rated pressure equipped with an 

embedded pressure sensor and a load cell to measure the actual filling weight.  

 

 
 

 
 
 

Figure 4.5: Receiver system 
 
 
 
 
 
 
 
 
 
 

Pressure cylinder 

Load cell Pressure sensor Receiver tank 
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4.2.4  Recycle system 

Figure 4.6 shows a recycle system consists of a recycling piping and two compressors 

which are used to recover and recycle the natural gas from the receiver to the cascaded 

storage system. Since a small amount of natural gas from the receiver system is expected 

to be lost during each experiment, the system is equipped with three 55 liters ‘make-up’ 

cylinders, see Figure 4.3, to compensate for the losses. 

 

 

 

 
 
 

Figure 4.6: Recycle system 
 
 
 
 
 
 

Compressor 2 Compressor 1 
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4.2.5 Sequencing system 

The sequencing system sets the low, medium and high pressure at cascaded storage 

system using ball valves. A ball valve is a valve that opens by turning a handle attached 

to a ball inside the valve. The ball has a hole, through the middle, thus when the hole is 

in line with both ends of the valve, the gas flow will take place. When the valve is 

closed, the hole is perpendicular to the ends of the valve, and the gas flow is blocked. If 

the natural gas at the cascaded storage system has reached the set pressure, the balance is 

restored in the temporary cylinders. These arrangements are shown in Figure 4.7. 

 

 

 

 
 
 

Figure 4.7: Sequencing system 
 
 
 

Temporary cylinder Ball valves 
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4.2.6 DAQ & Control System  

The data acquisition and control system for the test rig is designed using a hardware 

known as FieldPoint manufactured by National Instrument [249]. All the signals data sent 

by the sensors and other instrumentations in the test rig are monitored and collected 

remotely from a computer located in a control room via an ethernet connection to the 

FieldPoint. The control system to monitor and control the test rig has been programmed 

using software known as LabVIEW [249]. The program also has been embedded in the 

FieldPoint for reliable distribution and stand-alone deployment. As shown by Figure 4.8, 

there are seven modules used to monitor and control the test rig such as controller 

module, thermocouple module, counter module, digital input module, relay module, 

analog input module and analog output module.  

 

 
 

Figure 4.8: FieldPoint system 
 
To simplify each module installation to the computer, FieldPoint uses automatically 

plug-and-play mechanism to detect and identify via ethernet and TCP/IP connection. 

Further references such as technical specifications, loop diagrams, operating instructions 

and safety guidelines for each module could be reviewed from [249]. Also, Figure 4.9 in 

following section shows the single line diagram to describe connections from sensors to 

channels of input and output (I/O) of the FieldPoint modules. 
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Figure 4.9: Single Line Diagram for natural gas test rig using FieldPoint 
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4.3 Design of LabVIEW program  

The following section discusses the second steps of SYSID procedure i.e., design of 

LabVIEW program. Figure 4.3-Figure 4.7 in previous section has shown five sub systems 

for the test rig such as cascaded storage system, flow metering system, receiver system, 

recycle system and sequencing system, whilst Figure 4.10 in the following section shows 

LabVIEW front panel to monitor and control the natural gas test rig systems.  

 
Since the test rig comprises of five sub systems, the program for LabVIEW front panel 

also would comprise with five other sub programs such as cascaded storage sub program, 

flow metering sub program, receiver sub program, recycle sub program and sequencing 

sub program. The following section provides detail descriptions for each of the sub 

programs. 

 
4.3.1 Cascaded storage subprogram  

As shown by Figure 4.10, the low, medium and high pressure configuration in the 

cascaded storage system is indicated by ‘LOW BANK’, ‘MEDIUM BANK’ and ‘HIGH 

BANK’, respectively. The flow of natural gas to the receiver system is activated by ‘LB’, 

‘MB’ and ‘HB’ toggle switch buttons depending on the requirements. The indicators ‘LB 

VALVE’, ‘MB VALVE’ and ‘HB VALVE’ would change to green color indicating the 

respective valve is activated to allow flow. Please refer Figure 4.11 for LabVIEW 

program of cascaded storage system. 

 
4.3.2 Flow metering subprogram 

Based on Figure 4.10, the flowrate produced by flowmeters in the flow metering system 

is specified by ‘TURBINE’, ‘ORIFICE’, ‘VORTEX’ and ‘CORIOLIS’. The density from 

the actual coriolis flowmeter is shown by ‘DENSITY’, whilst pressure and temperature 

before and after the flow metering system are indicated by ‘PT1’, ‘TT1’ and ‘PT2’, 

‘TT2’, respectively. Please refer Figure 4.12 for LabVIEW program of flow metering 

system. 
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4.3.3 Receiver subprogram 

From Figure 4.10, the actual pressure, temperature, pressure inside the nozzle and actual 

filling weight of the receiver system are indicated by ‘PCYLN’, ‘TCLYN’, ‘PNOZZLE’ 

and ‘LOAD CELL’, respectively.  

 
Whilst, values set at ‘OFFSET-PNOZZLE’ and ‘OFFSET-LOADCELL’ are used to 

compensate with the actual values of pressure inside nozzle and the filling weight of 

receiver cylinder, respectively. Please refer Figure 4.12 for LabVIEW program of 

receiver system. 

 
4.3.4 Recycle subprogram 

As shown by Figure 4.10, the compressors in the recycle system are specified by ‘FMQ-

8-36’ and ‘FMQ-2-36’ which is activated by ‘COMPRESSOR’ toggle switch button, 

whilst the pressure during recycling process and pressure inside the ‘make-up’ cylinders 

is shown by ‘PCOMP’ and ‘PRECYL’, respectively. Notably, the recycling process 

would stop if the pressure inside the receiver tank reaches the ‘PCYLN SETPOINT’ 

value. Please refer Figure 4.13 for LabVIEW program of recycle system. 

  
4.3.5 Sequencing subprogram 

Based on Figure 4.10, the ‘temporary’ cylinders in the sequencing system are specified 

by ‘PSQN’. It is activated by ball valve represented by ‘SQN-EMPTY TANK’ toggle 

switch button. The toggle switch button i.e., ‘MODE’ would determine two types of 

recycling processes i.e., ‘MANUAL’ and ‘AUTO’ recycling.  

 
If ‘MANUAL’ is chosen, pressure values at ‘LOW BANK’, ‘MEDIUM BANK’ and 

‘HIGH BANK’ would be set manually using ‘SQN-LB’, ‘SQN-MB’ and ‘SQN-HB’ 

toggle switch buttons, respectively. Whilst, if ‘AUTO’ is chosen, pressure at ‘LOW 

BANK’, ‘MEDIUM BANK’ and ‘HIGH BANK’ would be activated automatically using 

reference values from ‘Low Bank Setpoint’, ‘Medium Bank Setpoint’ and ‘High Bank 

Setpoint’, respectively. Please refer Figure 4.14 for LabVIEW program of sequencing 

system. 
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Figure 4.10:  LabVIEW front panel to monitor and control the test rig 
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Figure 4.11: LabVIEW sub program for cascaded storage system    

Cascaded storage 
subprogram Channel address 

from FieldPoint 
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Figure 4.12: LabVIEW sub program for flow metering and receiver system 

Flow metering 
subprogram Receiver 

subprogram 
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Figure 4.13: LabVIEW sub program for recycle system 
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Figure 4.14: LabVIEW sub program for sequencing system  

Sequencing 
subprogram 
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4.4 Perform and collect experimental data  

Sections 4.1 to 4.3 have been to describing three main hardwares that are required for 

initiating the SYSID work: natural gas test rig, data acquisition & control system (DAQ) 

using FieldPoint and LabVIEW programs, respectively. The following section discusses 

the third steps of SYSID methodology i.e., perform and collect experimental using 

refueling and recycling process of the test rig.    

 
4.4.1 Process flow of natural gas test rig 

The P&ID diagram shown in Figure 4.15 comprises of storage cylinders horizontally 

stacked in metal frame, panel mounted dispenser, slow-filled compressor, gas piping, 

electrical control and data acquisition system. It has been equipped with adequate 

instrumentation system for purpose of analyzing flow measurement of natural gas and 

sufficient capacity to weigh the NGV cylinder and gas. As can be observed from the 

figure, materials or equipments are presented by tag numbers. These tag numbers will be 

defined individually in the process explanation and can be referred from Table 4.1. There 

are 4 types of flowmeters installed in the dispensing system which are coriolis B310, 

turbine B320, differential pressure B330 and vortex B340 with coriolis flowmeter acting 

as the reference flowmeter. At any time, only coriolis and any one of the three 

flowmeters could be used. Data from all flowmeters are electronically retrieved and 

stored in a data acquisition system YC01. The recycle system is to recover and recycle 

the natural gas from car storage into the supply storage system. The system consists of 

two timed-filled compressors B470 and B480. It is expected a small amount of natural 

gas from car storage will be lost during each experiment trial. Thus, the system is 

equipped with make-up cylinders B270 to compensate for the losses. The supply storage 

system consists of nine 55 liters cylindrical tanks altogether with maximum pressure at 

3600 psig (at 70 °C) and they are all placed in one rack. These tanks are sub-divided into 

three different bank systems, low bank (LB) B280, medium bank (MB) B290 and high 

bank (HB) B300. LB, MB and HB systems have 4, 3 and 2 cylindrical tanks respectively.   

All of these tanks have the same pressure of 3600 psig when they are fully occupied by 

natural gas. What differentiate these tanks are their functions and number of tanks. From 

the P&ID diagram, the refueling and recycling process is described in following section. 
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Figure 4.15 Process and Instrumentation Diagram (P&ID) of CNG test rig 
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Table 4.1: Tag numbers of natural gas test rig 

 

 

 

 

ITEM DESCRIPTION QUANTITY MATERIAL/SPECIFICATION 
B010 VALVE, BALL 3 PARKER P/N: HPB6S8A 
B020 VALVE, BALL 8 PARKER P/N: HPB6S8FF 
B030 VALVE, BALL 2 KITZ BRASS 150PSIG MAWP 
B040 VALVE, BALL 1 SWAGELOK P/N: SS-63TS8 
B050 VALVE, BALL 3 SWAGELOK P/N: SS-33VF4 
B060 VALVE, BALL 1 SWAGELOK P/N: SS-83KS8 
B070 VALVE, BALL 1 OASIS P/N: BV506-NT 
B075 VALVE, BALL 4 PARKER P/N: 4A-B2LJ2-SSP 
B080 VALVE, BALL PNEUMATIC 3 PARKER P/N: 8A-B8LJ2-SSP-62AC-3 
B090 VALVE, BALL PNEUMATIC 2 PARKER P/N: 8F-B8LJ2-SSP-62AC-3 
B100 VALVE, CHECK 3 PARKER P/N: 8A-C8L-1-SS 
B110 VALVE, CHECK 3 SWAGELOK P/N: SS-CHS16-1 
B120 VALVE, CHECK 2 SWAGELOK P/N: SS-CHS4-1 
B130 VALVE, CHECK 4 PARKER P/N: 4A-C4L-1-SS 
B140 VALVE, NEEDLE 1 AGCO-P/N: H5RIC-22 
B150 VALVE, NEEDLE 1 SWAGELOK P/N: SS-1RS4 
B160 VALVE, NEEDLE 3 PARKER P/N: 4A-V4LN-SS 
B170 VALVE, RELIEF 1 SWAGELOK P/N: SS-4R3A1 SET @ 3750PSIG 
B180 VALVE, RELIEF 3 SWAGELOK P/N: SS-4R3A SET @ 3950PSIG 
B185 VALVE, RELIEF 1 SWAGELOK P/N: SS-RL4M8F8 SET @ 100PSIG 
B190 VALVE, REGULATOR 1 JORDAN P/N: JHR Cv=0.6 SET @ 150PSIG 
B200 VALVE, REGULATOR 1 JORDAN P/N: JHR Cv=0.6 SET @ 30 PSIG 
B210 VALVE, REGULATOR 1 JORDAN P/N: MARK608 5/16” OR SET @ 7” H2O 
B220 VALVE, REGULATOR 1 JORDAN P/N: MARK608 5/16” OR SET @ 35” H2O 
B230 HOSE, FLEXIBLE 1 SWAGELOK P/N: SS-NGS6-NN-120X 
B240 HOSE, FLEXIBLE 1 PARKER P/N: 5CNG0101-16-16-16-120 
B250 NOZZLE 1 SWAGELOK P/N: SS-83XKF4 
B260 CYLINDER, NGV 1 EKC 1x55LWC 3600PSIG 
B270 CYLINDER, NGV 1 EKC 3x55LWC 3600PSIG 
B280 CYLINDER, NGV 1 EKC 4x55LWC 3600PSIG LOW BANK 
B290 CYLINDER, NGV 1 EKC 3x55LWC 3600PSIG MEDIUM BANK 
B300 CYLINDER, NGV 1 EKC 2x55LWC 3600PSIG HIGH BANK 
B310 FLOW, SENSOR CORIOLIS 1 MICROMOTION P/N: CNG050S239NCAZEZZZ 
B320 FLOW, SENSOR TURBINE 1 HOFFER P/N: 3/ 4x3 /4-25-CB-1RPR-MS-CE 
B330 FLOW, SENSOR ORIFICE 1 ENDRESS + HAUSER P/N: DN25 PN250 
B340 FLOW, SENSOR VORTEX 1 ENDRESS + HAUSER P/N: 70HS25-D0D20B100 
B350 FLOW, TRANSMITTER CORIOLIS 1 MICROMOTION P/N: 2700I11BBFEZZZ 
B360 FLOW, TRANSMITTER TURBINE 1 HOFFER P/N: HIT2A-3-B-C-X-FX 
B370 FLOW, TRANSMITTER ORIFICE 1 ENDRESS + HAUSER P/N: PMD235-MB588EM3C 
B380 FLOW, TRANSMITTER VORTEX 1 ENDRESS + HAUSER P/N: 70HS25-D0D20B1B100 
B390 PRESSURE, TRANSMITTER 3 ENDRESS + HAUSER P/N: PMP731-I33Z1M21X1 
B400 PRESSURE, TRANSMITTER 2 MURPHY P/N: PXMS-6000 
B410 PRESSURE, TRANSMITTER 5 MURPHY P/N: PXMS-5000 
B420 PRESSURE, GAUGE 1 SWAGELOK  
B430 PRESSURE, GAUGE 4 SWAGELOK 
B440 PRESSURE, GAUGE 2 ASHCROFT 2-1/2” DIAL 0-60” H2O 
B450 TEMPERATURE, TRANSMITTER 3 ENDRESS + HAUSER P/N: TMT162-E21231AAA 
B460 LOAD CELL 1 METTLER TOLEDO EX APPROVED, 0-150KG 
B470 COMPRESSOR, TIME FILLED 1 FUEL MAKER P/N: FMQ-2-36 
B480 COMPRESSOR, TIME FILLED 1 FUEL MAKER P/N: FMQ-8-36 
YC-01 DISPENSER REGISTER 1 KRAUS P/N: 09 N28AGUCGMS-D 
YC-02 DATA ACQUISITION SYSTEM 1 NATIONAL INSTRUMENTS FIELDPOINT 
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4.4.2 Refueling and recycling process of natural gas test rig 

To dispense natural gas to vehicle tank B260, nozzle B250 is connected to receptacle that 

is located at the cylinder’s neck. After that, the switch on display panel is turned to ‘ON’ 

position. Next, the nozzle valve B250 is turned to 180 degree to ‘ON’ position. When the 

dispensing occurs, the B240 hose should not be connected to the vehicle tank. The hose 

is only connected to B070 and B110 valves when recycling system is operated. The 

pressure, temperature and mass of natural gas are measured using transmitters B390, 

B450, and B460 as shown in the diagram. These transmitters will then send input signal 

to the data acquisition system YC01. Figure 4.16 shows procedures for refueling natural 

gas using the test rig.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Nozzle is pushed into receptacle 
located at cylinder neck. A ‘click’ sound 
should be heard. 

(b) Switch located on display panel is 
turned to ‘ON’ position. 
 

(c) Nozzle valve is turned 180 degree to 
‘ON’ position. Gas will then flow to 
cylinder. 

(d) When filling has completed, turn nozzle 
valve is turned back to ‘OFF’ position. 
Nozzle is uncoupled from receptacle by 
pulling blue collar. 

Figure 4.16: Procedure of refueling CNG using test rig  

B250 



 
 
CHAPTER 4       EXPERIMENTAL DESIGN                     103 

  

 
After the refueling process, recycling system is used to empty the vehicle cylinder B260 

by transferring the gas to the storage cylinders B280, B290 and B300. This is done via 

timed-filled compressor that has inlet and discharge pressure of 1.25 psig and 3600 psig 

respectively. Once empty, the compressor B470 or B480 will stop before the next 

sampling process could take place. To operate the recycling system, flexible hose B240 

is connected to temporary storage tank B270. One end of high pressure flexible hose is 

coupled to ball valve B070 located at bottom neck of the vehicle tank B260 while the 

other end is connected to inlet of check valve B110. After that, both valves B070 and 

B060 are turned to ‘ON’ position. Natural gas will flow to the temporary storage tanks 

B270 before it is stored back to low bank B280, medium bank B290 and high bank B300 

until all pressures approach the pressure value set at control systemYC01. Figure 4.17 

shows procedures for recycling the natural gas using the test rig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) One end of high pressure flexible hose 
is coupled to car cylinder bottom neck. 
 

(b) The other end of flexible hose is 
coupled to inlet of regulator. 
 

(c) The valve located at car cylinder 
bottom neck is turned to ‘ON’ position. 
 

(d) The valve on regulator inlet is turned 
to ‘ON’ position. The gas would flow to 
recycling tank until the flow is 
stabilized. 

Figure 4.17: Procedure of recycling CNG using test rig 

B070 
B110 

B060 
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4.4.3 Collecting experimental data from natural gas test rig 

From the refueling and recycling process of CNG, the experimental procedures to collect 

the input and output data from actual coriolis would be described. As shown by Figure 

4.15, the natural gas will flow through coriolis flowmeter B310 and send the measured 

value to data acquisition system YC01 using pressure transmitter B350. These filling 

processes are controlled by solenoid valves which get input signal from YC01.  

 
Figure 4.18 in following section shows results of LabVIEW user interface application at 

the initial condition before collecting experimental data. Initially, low bank B280, 

medium bank B290 and high bank B300 are set at 3600 psig; whilst the receiver tank 

B260 is set at empty where ≈  20 psig.   

 
Next, Figure 4.19 shows when ball valve B080 of low bank B280 is opened, gas would 

flow from low bank B280, through flexible hose B230 and nozzle B250, into the receiver 

tank B260 to develop lower pressure difference. The gas flows due to differential 

pressure between the tanks and will continue to flow until pressure in the receiver tank 

B260 approach the pressure in the low bank B280.  

 
Then, Figure 4.20 shows when ball valve B080 of medium bank B290 is opened, the 

flow will switch to medium bank B290 to continue refueling until pressure in the 

receiver tank B260 approach the pressure in the medium bank B290.  

 
Lastly, Figure 4.21 shows when ball valve B080 of high bank B300 is opened, the flow 

will switch to high bank B300 to perform the same task until the vehicle tank B260 

reaches its maximum capacity ≈  3000 psig. Coriolis flowmeter is generally regarded as a 

master flowmeter because it offers greatest accuracy and reliability under the exacting 

measurement conditions for determining mass of Compressed Natural Gas (CNG) 

compared to turbine B320, differential pressure B330 and vortex B340. Since the 

flowmeters are installed parallel to each other, the natural gas flows only through any one 

of these flowmeters. By following all these procedures, data from coriolis B350, receiver 

pressure B390 and load cells B460 are sent to FieldPoint for SYSID analysis. The next 

section shows the analysis of experimental data stored in the FieldPoint. 
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Figure 4.18: Initial condition 
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Initially, all valves are closed (as shown in the red circle). Low bank, medium bank 
and high bank are set at 3600 psig, whilst receiver tank is set at 20 psig. 

 



 
 

CHAPTER 4       EXPERIMENTAL DESIGN                     64 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Low bank refueling 
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When LB valve is activated (change to green color) natural gas would flow 
from low bank to receiver tank to develop lower pressure difference. 
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Figure 4.20: Medium bank refueling 

When MB valve is activated, natural gas would flow from medium 
bank to receiver tank to develop medium pressure difference. 
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Figure 4.21: High bank refueling 
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When HB valve is activated, natural gas would flow from high bank 
to receiver tank to develop higher pressure difference. 
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4.4.4 Analyzing experimental data using LabVIEW  

Figure 4.22 shows a sample of data taken from the FieldPoint. Please refer Table 4.2 for 

type of data in each column. 

 
Table 4.2:  Types of data taken from FieldPoint 

Column Signal Unit Types of data 
1 date month / day / year Date of acquisition 
2 time hour / minute /second Time of acquisition 
3 PB1 psi Pressure at low bank 
4 PB2 psi Pressure at medium bank 
5 PB3 psi Pressure at high bank 
6 COMP psi Pressure at compressor 
7 RECYL psi Pressure at recycle tank –(make-up cylinder) 
8 PT1 psi Pressure before flowmeter metering system 
9 PT2 psi Pressure after flowmeter metering system 
10 PCYLN psi Pressure at receiver tank 
11 TT1 °C Temperature before flowmeter metering system 
12 TT2 °C Temperature after flowmeter metering system 
13 TCYLND °C Temperature at receiver tank 
14 Orifice m3/hr Volumetric flowrate from orifice flowmeter 
15 Vortex m3/hr Volumetric flowrate from vortex flowmeter 
16 Turbine m3/day Volumetric flowrate from turbine flowmeter 
17 PSQN psi Pressure at sequential tank 
18 PNOZZLE psi Pressure at nozzle 
19 Coriolis kg/minute Mass flowrate of CNG from coriolis flowmeter 
20 Density kg/m3 Density of CNG from coriolis flowmeter 
21 Load Cell kg Mass of CNG from load cell 

 

 
Figure 4.22: Sample of data

 Raw data 
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However, not all the data in Table 4.2 would be used to analyze the refueling process 

described from Figure 4.18-4.21, respectively. The only data that would be used are 

‘Coriolis’, ‘PCYLN’ and ‘Load Cell’ data which represent mass flowrate measured by 

coriolis flowmeter, pressure inside receiver and total mass measured by load cell, 

respectively. Based on sample data shown in Figure 4.22, the data are modified as shown 

in Figure 4.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notably, sequence 0 to 1 at column 0 is added manually to simulate the step input signal 

which represents closing and opening condition of low bank (LB), medium bank (MB) 

and high bank valves, respectively. However, no modifications are made to Column 1 

and 2 which are data for ‘Coriolis’ and ‘PCYLN’, whilst, column 3 is new set of data to 

accumulate mass measured by load cell at each sampling time. The accumulated mass is 

developed by accumulating difference of ‘Load Cell’ at each row.  

 
In following section, Figure 4.24 and Figure 4.25 are the LabVIEW front panel and 

LabVIEW program to convert modified data in Figure 4.23 to readable graphs such as 

valve opening, coriolis mass flowrate (CMF), receiver pressure and load cell, 

respectively.   

Figure 4.23: Modification of data 

  Column 0:  
  Valve opening 

  Column 1:  
  Coriolis mass flowrate 

  Column 2:  
  Receiver pressure 

  Column 3:  
  Load cell 
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Medium bank Low bank High bank

Directory to access 
the sample data  

Medium bank Low bank High bank

Figure 4.24: Sample of data is converted to readable graphs 

Figure 4.25: LabVIEW program to convert sample of data to readable graphs
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Based on Figure 4.24, there are four types of graphs such as valve opening graph, coriolis 

mass flowrate (CMF) graph, receiver pressure graph and load cell graph for describing 

three process of refueling CNG: low bank refueling, medium bank refueling and high 

bank refueling which is separated using dashed line, respectively.  

 

At first, when the low bank valve is opened, the valve opening graph is represented by a 

step function (which increases from 0 to 1), whilst the coriolis mass flowrate has 

increased from 0 kg/min to approximately 17 kg/min and dropped back to 0 kg/min back 

after 150 seconds. During this time range, the receiver pressure and load cell have 

increased approximately from 0 to 2500 psig and 0 to 7 kg, respectively.  

 

Then, when the medium bank valve is opened, the valve opening graph is represented by 

a second step function, whilst the coriolis mass flowrate has increased again from 0 

kg/min to approximately 13 kg/min and dropped back to 0 kg/min back after 350 

seconds. During this time range, the receiver pressure and load cell have increased 

approximately from 2500 to 3000 psig and 7 to 9 kg, respectively.  

 

Lastly, when the high bank valve is opened, the valve opening graph could be represented 

by the third step function, whilst the coriolis mass flowrate has increased again from 0 

kg/min to approximately 5 kg/min and dropped back to 0 kg/min back after 400 seconds. 

During this time range, the receiver pressure and load cell have increased approximately 

from 3000 to 3300 psig and 9 to 9.6 kg, respectively.  

 

This section has shown LabVIEW program to convert experimental data from FieldPoint 

to informative and representable graphs such as valve opening, coriolis mass flowrate 

(CMF), receiver pressure and load cell graphs, respectively. As shown by Figure 4.24, 

there are three types of refueling regions that have been developed such as low bank, 

medium bank and high bank refueling region. The suitable region to be selected as input 

and output data for SYSID would be described in the following section. 
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4.4.5 Selecting input and output data for SYSID 

As mentioned in the introduction section, the input and output signals for identifying 

coriolis flowmeter are the step function and output signals from the system itself, in 

which, it is the valve opening and the coriolis mass flowrate (CMF) signals as shown in 

Figure 4.26 and Figure 4.27, respectively. Notably, at the low bank region, mass flowrate 

values are greater than zero if compared to mass flowrate at medium and high bank 

region. Therefore, only CMF data at low bank region could be selected for identification 

work (which is represented in red dashed line).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the selected input and output data at low bank region, the discrete model of coriolis 

mass flowrate (CMF) would be determined based on three SYSID approaches such as 

non recursive, recursive and state space approach. The respective LabVIEW programs for 

each approach are shown in following section by Figure 4.28 to 4.30.   

Selected region  

Figure 4.26: Input data for SYSID

Figure 4.27: Output data for SYSID

 
Only data at low bank 
region is selected for 
SYSID work.   
 
Most of data at medium 
and high bank regions are 
approaching to zero 
compared to low bank   
 
If data chosen are closed to 
zero, the SYSID prediction 
would be inaccurate. 

Notably, the signal of 
valve opening is 
equivalent to step 
function. 

High bank  Medium bank Low bank  

Selected region  

High bank  Medium bank  Low bank  
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Subprogram to determine 
unknown coefficients  

Subprogram to determine 
optimal structure  

Subprogram to 
determine stability  

Subprogram to determine 
discrete function   

Subprogram to determine 
difference between SYSID 
model and actual coriolis    

Figure 4.28: LabVIEW program to determine discrete model of CMF using non-recursive approach
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Subprogram to determine 
prediction error  

Figure 4.29: LabVIEW program to determine discrete model of CMF using recursive approach

Subprogram to determine 
unknown coefficients  

Subprogram to 
determine stability  

Subprogram to determine 
discrete function   

Subprogram to determine 
difference between SYSID 
model and actual coriolis    
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Subprogram to determine 
unknown coefficients  

Subprogram to determine 
model order  

Subprogram to 
determine stability  

Subprogram to determine 
discrete function   

Subprogram to determine 
difference between state space 
model and actual coriolis    

Figure 4.30: LabVIEW program to determine discrete model of CMF using state space approach
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4.5 Determine discrete model of coriolis mass flowrate (CMF)  

The following section discusses the forth steps of SYSID methodology i.e., determine 

discrete model of coriolis mass flowrate (CMF) using LabVIEW. Figure 4.28-4.30 shown 

in previous section are the LabVIEW programs to determine discrete model of CMF, 

whilst Figure 4.31-4.33 shown in following section are the LabVIEW front panels for 

non recursive, recursive and state space approach, respectively.  

 
Based on Figure 4.31-4.33, the front panels for non recursive, recursive and state space 

are differentiated by three parts such as ‘optimal structure’ part, ‘prediction error’ part 

and ‘optimal order’ part, respectively. In following section, LabVIEW front panel of non 

recursive is shown for describing the ‘optimal order’ part. 

 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.31: LabVIEW front panel to determine discrete model of CMF using non-recursive approach

‘Optical 
structure’ 
part 

‘Coefficients’ 
part 

‘Stability’ 
part 

‘Difference’ 
part 
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Based on Figure 4.31, the non recursive approach would determine discrete model for 

CMF based on optimal structure analysis. The optimal structure analysis would determine 

suitable number of delays and suitable number of orders for )(),(),(),(),( qFqDqCqBqA  

equations. As mentioned in Chapter 2, number of delays and number of order are chosen 

based on the minimum percentage of prediction error shown by Akaike’s Information 

Criterion (AIC), Akaike’s Final Prediction Error Criterion (FPE), and Minimum Data 

Length Criterion (MDL). In following section, LabVIEW front panel of recursive 

approach is shown for describing the ‘prediction error’ part. 

 

 
 

 
Based on Figure 4.32, the recursive approach would determine discrete model for CMF 

based on prediction error analysis. The prediction error analysis would determine the 

amplitude of difference error and the average of difference error between the predicted 

model and the actual coriolis which is displayed on ‘prediction error’ part.   

 

‘Prediction 
error’ part 

‘Coefficients’ 
part 

‘Stability’ 
part 

‘Difference’ 
part 

Figure 4.32: LabVIEW front panel to determine discrete model of CMF using recursive approach
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If the error is higher, the recursive program would decrease the prediction error until it is 

minimized to zero error, or any minimum error specified by the user. In the following 

section, the LabVIEW front panel of state space approach is shown for describing the 

‘optimal order’ part. 

 
 
 
Based on Figure 4.33, the state space approach would determine discrete model for CMF 

based on optimal order analysis. The optimal order analysis would determine a suitable 

order for dimension of state vector  )(nx   based on minimum number of singular values. 

As mentioned in Chapter 3, the dimension of state vector )(nx  is important for 

determining the system matrix A i.e., in which, the only setting that needs to be analyzed 

for the state space model.  

 
Notably, from Figure 4.31-4.33, there are three similar parts in each front panels such as 

‘coefficients’ part, ‘stability’ part and ‘difference’ part which are discussed in following 

section.  

Figure 4.33: LabVIEW front panel to determine discrete model of CMF using state space approach

‘Optimal 
order’ part 

‘Coefficients’ 
part 

‘Stability’ 
part 

‘Difference’ 
part 
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The ‘coefficients’ part shown in Figure 4.31 and Figure 4.32 display the unknown 

coefficients in polynomial form which are the unknown coefficients in 

)(),(),(),(),( qFqDqCqBqA  functions, whilst the ‘coefficients’ part shown in Figure 

4.33 displays the unknown coefficients in state space form which is in DCBA ,,,  

matrices. Since, the number of delays and the number of orders predicted by non 

recursive approach are already optimal, the same number of delays and the same number 

of orders would be used in the recursive approach. The number of delays would be 

highlighted by value ‘0’. Delays are indication for a lapse of time before results from 

model of coriolis mass flowrate (CMF) equals results from the actual coriolis. Notably, 

the number of orders in non recursive and recursive approach is equivalent to number of 

unknown coefficients in )(),(),(),(),( qFqDqCqBqA  functions. 

 
From the coefficients values, polynomial functions would be developed and represented 

in two equations: zeroes-poles equation and difference equation. Since, FieldPoint uses 

sampling time of 1 second, both equations would be displayed in discrete form in which, 

Z-transformation with sampling period of 1 second. Based on discrete Z-transformation, 

the zeroes-poles equation would provide stability for the predicted models of CMF which 

is shown in the ‘stability’ part, whilst the difference equation would provide the predicted 

values of CMF which is calculated using power series expansion method. As described in 

Chapter 2, the power series expansion method is an infinite series of predicted values of 

CMF but in the discrete form. Please refer Chapter 2 for details explanations on power 

series expansion method. The series of predicted values would be accumulated and would 

be compared with the final mass measured by actual coriolis. Results of comparison 

would be displayed in ‘difference’ part of LabVIEW front panels.  

 
This section has discussed LabVIEW program and LabVIEW front panel to develop 

discrete model of coriolis mass flowrate (CMF) using non-recursive, recursive and state 

space approach. As shown in Figure 4.31-4.33, there are five SYSID parametric models 

and one state space model that need to be tested such as GL, ARX, ARMAX, OE and BJ. 

Figure 4.34-4.38 in following section shows the analyses of SYSID parametric models 

after tested using the first approach i.e., non recursive approach.  
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4.5.1 Analyses of non recursive approach 

Figure 4.34 shows the discrete model for coriolis mass flowrate developed using General 

Linear (GL) model. From the ‘optimal structure’ part, criterions FPE, AIC and MDL 

have shown that model dimension ‘9’ has the smallest prediction error compared to other 

model dimensions. In this section, the FPE, AIC and MDL are represented by red, blue 

and green color, respectively. 

 
The model dimension ‘9’ is given by total sum of each order, FDCBA ++++ ,  

(1+3+1+2+2 = 9) which equals to number of order and number of unknown coefficients 

in  )(),(),(),(),( qFqDqCqBqA  equations. 

 
The delays shown is ‘1’ which is highlighted by one ‘0’ in the ‘coefficient’ part.  

 

 
Figure 4.34: Discrete model of CMF using GL model
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Based on Figure 4.34, the order and the unknown coefficients in polynomial function are  

    
19582.01)( −−= qqA                                                        (4.1) 

321 1474.39006.100453.14)( −−− −−= qqqqB                  (4.2) 
17299.01)( −−= qqC          (4.3) 

21 1017.05903.01)( −− −−= qqqD        (4.4) 
21 0033.01544.01)( −− −+= qqqF        (4.5) 

 
Whilst, the zeroes-poles function could be represented as  

 

)1735.0)(9583.0)(0192.0(
)2241.0)(0002.1(0453.14

+−−
+−
zzz

zz       (4.6) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is boundedly stable. In this section, the zeroes and poles 

are represented by red and green color, respectively.   

 
The difference equation for the model could be represented as 

 

0032.01513.08339.0
1474.39006.100453.14

23

2

+−−
−−
zzz

zz        (4.7) 

 
From the ‘difference’ part, the total mass measured by actual coriolis and GL models are 

7.2897 kg and 5.8051 kg, respectively, whilst the difference is 1.4846 kg. Since, the GL 

model produces smaller difference, the graph developed by GL model overlaps the graph 

developed by actual coriolis, with a minor difference.  

 

In this section, all developed models and actual coriolis are represented using red and 

white color, respectively. The following section discusses the second analysis of SYSID 

parametric models i.e., the Autoregressive Exogeneous Input (ARX) model. 
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Figure 4.35 shows the discrete model for coriolis mass flowrate developed using 

Autoregressive Exogeneous Input (ARX) model. From the ‘optimal structure’ part, 

criterions FPE and MDL have shown that model dimension ‘4’ has the smallest 

prediction error, whilst criterion AIC has shown that model dimension ‘5’ has the 

smallest prediction error compared to other model dimensions. Since model dimension 

‘4’ is smaller than model dimension ‘5’, it is chosen to be the most optimal structure for 

ARX.  

 
The model dimension ‘4’ is given by total sum of each order, BA+ , (1+3 = 4) which 

equals to number of order and number of unknown coefficients in  )(),( qBqA  equations. 

 
The delays shown is ‘1’ which is highlighted by one ‘0’ in the ‘coefficient’ part.  

 

 

Figure 4.35: Discrete model of CMF using ARX model
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Based on Figure 4.35, the order and the unknown coefficients in polynomial function are  

 
19584.01)( −−= qqA          (4.8) 

321 0834.13851.124677.13)( −−− −−= qqqqB       (4.9) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9584.0(
)0804.0)(1(4677.13

2 −
+−

zz
zz       (4.10) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is boundedly stable.  

 
The difference equation for the model could be represented as 

 

23

2

9584.0
0834.13851.124677.13

zz
zz

−
−−      (4.11) 

 

From the ‘difference’ part, the total mass measured by actual coriolis and ARX models 

are 7.2897 kg and 5.7760 kg, respectively, whilst the difference is 1.5137 kg. Since, the 

ARX model produces smaller difference, the graph developed by ARX model overlaps 

the graph developed by actual coriolis, with a minor difference.  

 

The following section discusses the third analysis of SYSID parametric models i.e., the 

Autoregressive Moving Average with Exogeneous Input (ARMAX) model. 
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Figure 4.36 shows the discrete model for coriolis mass flowrate using Autoregressive 

Moving Average with Exogeneous Input (ARMAX) model. From the ‘optimal structure’ 

part, criterions FPE, AIC and MDL have shown that model dimension ‘5’ has the 

smallest prediction error compared to other model dimensions.  

 
The model dimension ‘5’ is given by total sum of each order, CBA ++ ,  (1+3+1 = 5) 

which equals to number of order and number of unknown coefficients in  

)(),(),( qCqBqA  equations. 

 
The delays shown is ‘3’ which is highlighted by three ‘0’ in the ‘coefficient’ part.  

 

 
 

 
Figure 4.36: Discrete model of CMF using ARMAX model
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Based on Figure 4.36, the order and the unknown coefficients in polynomial function are  

 
19581.01)( −−= qqA        (4.12) 

543 0405.01532.01120.0)( −−− −−−= qqqqB     (4.13) 
10236.01)( −−= qqC        (4.14) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9581.0(
)3583.0)(0101.1(1120.0

4 −
−−−

zz
zz      (4.15) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is stable.  

 
The difference equation for the model could be represented as 

 

0032.01513.08339.0
1474.39006.100453.14

23

2

+−−
−−
zzz

zz      (4.16) 

 

From the ‘difference’ part, the total mass measured by actual coriolis and ARMAX 

models are 7.2897 kg and 0.0196 kg, respectively, whilst the difference is 7.2702 kg. 

Since, the ARMAX model produces bigger difference, the graph developed by ARMAX 

model doesn’t overlap the graph developed by actual coriolis.  

 

The following section discusses the fourth analysis of SYSID parametric models i.e., the 

Output Error (OE) model. 
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Figure 4.37 shows the discrete model for coriolis mass flowrate using Output Error (OE) 

model. From the ‘optimal structure’ part, criterions FPE, AIC and MDL have shown that 

model dimension ‘7’ has the smallest prediction error compared to other model 

dimensions.  

 
The model dimension ‘7’ is given by total sum of each order, FB + ,  (6+1 = 7) which 

equals to number of order and number of unknown coefficients in  )(),( qFqB  equations. 

 
The delays shown is ‘5’ which is highlighted by five ‘0’ in the ‘coefficient’ part.  

 

 
 

 
 
 
 
 
 
 
 

Figure 4.37: Discrete model of CMF using OE model
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Based on Figure 4.37, the order and the unknown coefficients in polynomial function are  

 
1098765 0012.00721.00273.00301.01036.00350.0)( −−−−−− −−−++−= qqqqqqqB     (4.17) 

19584.01)( −−= qqF        (4.18) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9584.0(
)6569.01185.1)(0829.3)(0165.0)(0094.1(035.0

9

2

−
++−+−−

zz
zzzzz    (4.19) 

 
As shown from the ‘stability’ part, one of the zeroes is located outside from the unit 

circle which is at 3.0829. This indicates that the developed model is not stable.  

 
The difference equation for the model could be represented as 

 

910

2345

9584.0
0012.00721.00273.00301.01036.0035.0

zz
zzzzz

−

−−−++−    (4.20) 

 
From the ‘difference’ part, the total mass measured by actual coriolis and OE models are 

7.2897 kg and -0.0423 kg, respectively, whilst the difference is 7.3321 kg. Since, the OE 

model produces bigger difference, the graph developed by OE model doesn’t overlap the 

graph developed by actual coriolis.  

 
The following section discusses the fifth analysis of SYSID parametric models i.e., the 

Box-Jenkins (BJ) model. 
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Figure 4.38 shows the discrete model for coriolis mass flowrate using Box-Jenkins (BJ) 

model. From the ‘optimal structure’ part, criterions FPE, AIC and MDL have shown that 

model dimension ‘9’ has the smallest prediction error compared to other model 

dimensions.  

 
The model dimension ‘9’ is given by total sum of each order,  FDCB +++ ,   

(4+3+1+1 = 9) which equals to number of order and number of unknown coefficients in  

)(),(),(),( qFqDqCqB  equations. 

 
The delays shown is ‘4’ which is highlighted by four ‘0’ in the ‘coefficient’ part.  

 

 
 

 

 

 

 

Figure 4.38: Discrete model of CMF using BJ model
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Based on Figure 4.38, the order and the unknown coefficients in polynomial function are  

 
7654 0711.01033.00726.00409.0)( −−−− −+−= qqqqqB    (4.21) 

321 0239.00139.00689.01)( −−− −−+= qqqqC         (4.22) 
19741.01)( −−= qqD         (4.23) 
19436.01)( −−= qqF         (4.24) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9436.0(
)7473.17816.0)(9948.0(0409.0

6

2

−

+−−

zz
zzz      (4.25) 

 
As shown from the ‘stability’ part, two of the zeroes are located outside from the unit 

circle which is 0.48 ±   j1.25. This indicates that the developed model is not stable.  

 
The difference equation for the model could be represented as 

 

67

23

9436.0
0711.01033.00726.00409.0

zz
zzz

−

−+−
     (4.26) 

 

From the ‘difference’ part, the total mass measured by actual coriolis and BJ models are 

7.2897 kg and 0.0449 kg, respectively, whilst the difference is 7.2449 kg. Since, the BJ 

model produces bigger difference, the graph developed by BJ model doesn’t overlap the 

graph developed by actual coriolis.  

 

Figure 4.34-4.38 in this section has shown the LabVIEW front panels to develop the 

discrete model for coriolis mass flowrate (CMF) based on the first approach which is 

non-recursive approach. Figure 4.39-4.43 in following section shows the analyses of 

SYSID parametric models after tested using the second approach i.e., recursive approach. 
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4.5.2 Analyses of recursive approach 

Figure 4.39 shows the discrete model for coriolis mass flowrate developed using General 

Linear (GL) model. The model order used for FDCBA ,,,,  polynomials are 1, 3, 1, 2, 2, 

whilst the delay order used is 1, which are equal to model order and delay order predicted 

by GL model in non recursive section.  

 

From the ‘prediction error’ part, the maximum error achieved is equal to 7, whilst the 

minimum error achieved is equal to 0. The average prediction error is equal to 0.0407. 

 

The delay order ‘1’ is highlighted by one ‘0’ in the ‘coefficient’ part.  

 

 
 

 

 

 

Figure 4.39: Discrete model of CMF using GL model
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Based on Figure 4.39, the order and the unknown coefficients in polynomial function are  

 
19570.01)( −−= qqA        (4.27) 

321 9991.14700.35204.5)( −−− −−= qqqqB     (4.28) 
16405.01)( −+= qqC        (4.29) 

21 1191.02827.01)( −− −+= qqqD      (4.30) 
21 0263.03362.01)( −− ++= qqqF      (4.31) 

 
Whilst, the zeroes-poles function could be represented as  

 

)1244.0)(957.0)(2118.0(
)3646.0)(9932.0(5204.5

+−+
+−
zzz

zz      (4.32) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is stable. In this section, the zeroes and poles are 

represented by red and green color, respectively.   

 
The difference equation for the model could be represented as 

 

0252.02954.06208.0
9991.147.35204.5

23

2

−−−

−−

zzz
zz

     (4.33) 

 

From the ‘difference’ part, the total mass measured by actual coriolis and GL models are 

7.2897 kg and 7.1534 kg, respectively, whilst the difference is 0.1364 kg. Since, the GL 

model produces smaller difference, the graph developed by GL model overlaps the graph 

developed by actual coriolis, with a minor difference.  

 

In this section, all developed models and actual coriolis are represented using red and 

white color, respectively. The following section discusses the second analysis of SYSID 

parametric models i.e., the Autoregressive Exogeneous Input (ARX) model. 
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Figure 4.40 shows the discrete model for coriolis mass flowrate developed using 

Autoregressive Exogeneous Input (ARX) model. The model order used for BA,  

polynomials are 1, 3  whilst the delay order used is 1, which are equal to model order and 

delay order predicted by ARX model in non recursive section.  

 

From the ‘prediction error’ part, the maximum error achieved is equal to 7, whilst the 

minimum error achieved is equal to 0. The average prediction error is equal to 0.0546. 

 

The delay order ‘1’ is highlighted by one ‘0’ in the ‘coefficient’ part.  

 

 
 

 

 

 

 

Figure 4.40: Discrete model of CMF using ARX model
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Based on Figure 4.40, the order and the unknown coefficients in polynomial function are  

 
19645.01)( −−= qqA        (4.34) 

321 4794.02646.67675.6)( −−− −−= qqqqB     (4.35) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9645.0(
)0711.0)(9968.0(7675.6

2 −

+−

zz
zz

     (4.36) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is stable.  

 
The difference equation for the model could be represented as 

 

23

2

9645.0
4794.02646.67675.6

zz
zz

−

−−      (4.37) 

 

From the ‘difference’ part, the total mass measured by actual coriolis and ARX models 

are 7.2897 kg and 7.1069 kg, respectively, whilst the difference is 0.1829 kg. Since, the 

ARX models produces smaller difference, the graph developed by ARX model overlaps 

the graph developed by actual coriolis, with a minor difference.  

 

The following section discusses the third analysis of SYSID parametric models i.e., the 

Autoregressive Moving Average with Exogeneous Input (ARMAX) model. 
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Figure 4.41 shows the discrete model for coriolis mass flowrate developed using 

Autoregressive Moving Average with Exogeneous Input (ARMAX) model. The model 

order used for CBA ,,  polynomials are 1, 3, 1 whilst the delay order used is 3, which are 

equal to model order and delay order predicted by ARMAX model in non recursive 

section.  

 

From the ‘prediction error’ part, the maximum error achieved is equal to 12, whilst the 

minimum error achieved is equal to 0. The average prediction error is equal to 0.0614. 

 

The delay order ‘3’ is highlighted by three ‘0’ in the ‘coefficient’ part.  

 

 
 

 

 

 

Figure 4.41: Discrete model of CMF using ARMAX model
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Based on Figure 4.41, the order and the unknown coefficients in polynomial function are  

 
19522.01)( −−= qqA        (4.38) 

543 1019.05486.06698.0)( −−− −−= qqqqB     (4.39) 
13873.01)( −−= qqC        (4.40) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9522.0(
)156.0)(975.0(6698.0

4 −

+−

zz
zz

     (4.41) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is boundedly stable.  

 
The difference equation for the model could be represented as 

 

45

2

9522.0
1019.05486.06698.0

zz
zz

−

−−
     (4.42) 

 
From the ‘difference’ part, the total mass measured by actual coriolis and ARMAX 

models are 7.2897 kg and 7.0842 kg, respectively, whilst the difference is 0.2056 kg. 

Since, the ARMAX model produces smaller difference, the graph developed by ARMAX 

model overlaps the graph developed by actual coriolis, with a minor difference.  

 
The following section discusses the fourth analysis of SYSID parametric models i.e., the 

Output Error (OE) model. 

 

 

 

 

 

 



 
 
CHAPTER 4       EXPERIMENTAL DESIGN                     137 

  

 
Figure 4.42 shows the discrete model for coriolis mass flowrate developed using Output 

Error (OE) model. The model order used for FB,  polynomials are 6, 1 whilst the delay 

order used is 5, which are equal to model order and delay order predicted by OE model in 

non recursive section.  

 

From the ‘prediction error’ part, the maximum error achieved is equal to 14, whilst the 

minimum error achieved is equal to 0. The average prediction error is equal to 1.3033. 

 

The delay order ‘5’ is highlighted by five ‘0’ in the ‘coefficient’ part.  

 

 
 

 

 

 

 

Figure 4.42: Discrete model of CMF using OE model
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Based on Figure 4.42, the order and the unknown coefficients in polynomial function are  

 
1098765 9480.66230.47156.13376.03420.83899.7)( −−−−−− +−−+−= qqqqqqB    (4.43)  

19999.01)( −−= qqF        (4.44) 

 
Whilst, the zeroes-poles function could be represented as  

 

)1(
)9401.00999.0)(1225.1)(8923.0)(9985.0(3899.7

9

2

−

++−+−

zz
zzzzz

    (4.45) 

 
As shown from the ‘stability’ part, one of the zeroes is located outside from the unit 

circle which is at 1.1225. This indicates that the developed model is not stable.  

 
The difference equation for the model could be represented as 

 

910

2345

1
948.6623.47155.13376.0342.83899.7

zz
zzzzz

−

+−−+−
    (4.46) 

 
From the ‘difference’ part, the total mass measured by actual coriolis and OE models are 

7.2897 kg and 2.9238 kg, respectively, whilst the difference is 4.3659 kg. Since, the OE 

model produces bigger difference, the graph developed by OE model doesn’t overlap the 

graph developed by actual coriolis.  

 
The following section discusses the fifth analysis of SYSID parametric models i.e., the 

Box Jenkins (BJ) model. 
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Figure 4.43 shows the discrete model for coriolis mass flowrate developed using Box 

Jenkins (BJ) model. The model order used for FDCB ,,,  polynomials are 4, 3, 1, 1 whilst 

the delay order used is 4, which are equal to model order and delay order predicted by OE 

model in non recursive section.  

 

From the ‘prediction error’ part, the maximum error achieved is equal to 12, whilst the 

minimum error achieved is equal to 0. The average prediction error is equal to 0.0691. 

 

The delay order ‘4’ is highlighted by four ‘0’ in the ‘coefficient’ part.  

 

 
 

 

 

 

 

Figure 4.43: Discrete model of CMF using BJ model
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Based on Figure 4.43, the order and the unknown coefficients in polynomial function are  

 
7654 6287.34813.61228.27302.0)( −−−− +−+= qqqqqB    (4.47) 

321 0628.00747.01900.01)( −−− −++= qqqqC     (4.48) 
19602.01)( −−= qqD         (4.49) 
19962.01)( −−= qqF         (4.50) 

 
Whilst, the zeroes-poles function could be represented as  

 

)9962.0(
)0106.10105.2)(9175.4(7302.0

6

2

−

+−+

zz
zzz

     (4.51) 

 
As shown from the ‘stability’ part, one of the zeroes is located outside from the unit 

circle which is at -4.9175. This indicates that the developed model is not stable.  

 
The difference equation for the model could be represented as 

 

67

23

9962.0
6287.34813.61228.27302.0

zz
zzz

−

+−+
     (4.52) 

 
From the ‘difference’ part, the total mass measured by actual coriolis and BJ models are 

7.2897 kg and 7.0584 kg, respectively, whilst the difference is 0.2313 kg. Since, the BJ 

model produces smaller difference, the graph developed by BJ model overlaps the graph 

developed by actual coriolis, with a minor difference.  

 
Figure 4.39-4.43 in this section has shown the LabVIEW front panels to develop the 

discrete model for coriolis mass flowrate (CMF) based on the second approach which is 

non-recursive approach. Figure 4.44 in following section shows the analysis of SYSID 

model after tested using the third approach i.e., state space approach. 
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4.5.3 Analysis of state space approach 

Figure 4.44 shows the discrete model for coriolis mass flowrate developed using the state 

space (SS) model. From the ‘optimal order’ part, the maximum singular value is equal to 

180 which is located at order of 0, whilst the minimum singular values is equal to 0 

which is located at order of 2, 3, 4, 5, 6, 7, 8 and 9.  

 

The order would determine the minimum dimension of state vector )(nx  which would 

determine the number of unknown coefficients in matrix, A. As shown by the optimal 

order graph, order 0 and order 1 would be the impossible dimension, whilst order 3, 4, 5, 

6, 7, 8 and 9 would increase the unknown coefficients to be determined in matrix, A.  

 

Therefore, the possible option is order of 2 which is indicated by the first minimum 

singular values. This is also known as optimal order for dimension of state vector, )(nx   

which is mentioned in Chapter 3.      

 

 
Figure 4.44: Discrete model of CMF using state space model
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Based on Figure 4.44, the order and the unknown coefficients in system matrices are  

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0798.06939.0
09579.0

A  ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
0039.2
1141.0

B  

 
[ ]7755.80503.7 −=C  [ ]0=D      (4.53) 

 

Whilst, the zeroes-poles function could be represented as  

 

)0798.0)(9579.0(
)1(7805.16

−−
−

zz
z

       (4.54) 

 
As shown from the ‘stability’ part, all zeroes and poles are inside the unit circle which 

indicates the developed model is stable. In this section, the zeroes and poles are 

represented by red and green color, respectively.   

 
The difference equation for the model could be represented as 

 

0764.00377.1
7804.167805.16

2 +−

−

zz
z

        (4.55) 

 
From the ‘difference’ part, the total mass measured by actual coriolis and state space 

models are 7.2897 kg and 7.2232 kg, respectively, whilst the difference is 0.0665 kg. 

Since, the state space model produces smaller difference, the graph developed by state 

space model overlaps the graph developed by actual coriolis, with a minor difference. 

The state space model and actual coriolis are represented using red and white color, 

respectively. 

 
This section has shown the LabVIEW front panels to develop the discrete model for 

coriolis mass flowrate (CMF) based on third approach which is the state space approach. 

Table 4.3 in following section shows table of comparison for all discrete models of CMF 

that have been developed using non recursive, recursive and state space approach. The 

purpose of the comparison is to choose a stable discrete model of CMF that has minimum 

difference of error compared to actual coriolis. 
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Table 4.3: Table of comparison for discrete model of coriolis mass flowrate (CMF) developed by non-recursive, recursive and state-space approach

 
Type 

 
Model 

 
Zeroes-poles equation 

 
Difference equation 

 
Stability 

Difference of total mass 
between discrete model of 
CMF and actual coriolis  

(kg) 
 
GL 

 

)1735.0)(9583.0)(0192.0(
)2241.0)(0002.1(0453.14

+−−
+−
zzz

zz  

 

 

0032.01513.08339.0
1474.39006.100453.14

23

2

+−−

−−

zzz
zz  

 
Stable 

 
1.48461 

 
ARX 

 

)9584.0(
)0804.0)(1(4677.13

2 −

+−

zz
zz

  

23

2

9584.0
0834.13851.124677.13

zz
zz

−

−−  
 

Stable 
 

1.51374 

 
ARMAX 

 

)9581.0(
)3583.0)(0101.1(112.0

4 −

−−−

zz
zz

  

45

2

9581.0
0405.01532.0112.0

zz
zz

−

−+−  
 

Stable 
 

7.27015 

 
OE 

 

)9584.0(
)6569.01185.1)(0829.3)(0165.0)(0094.1(035.0

9

2

−

++−+−−

zz
zzzzz

  

910

2345

9584.0
0012.00721.00273.00301.01036.0035.0

zz
zzzzz

−

−−−++−  
 

Not Stable 
 

7.33206 

 
 
 
 
 
 
 
Non-
recursive 

 
BJ 

 

)9436.0(
)7473.17816.0)(9948.0(0409.0

6

2

−

+−−

zz
zzz

 
 

67

23

9436.0
0711.01033.00726.00409.0

zz
zzz

−

−+−
  

Not stable 
 

7.24487 

 
GL 

 

)01244)(957.0)(2118.0(
)3646.0)(9932.0(5204.5

+−+
+−
zzz

zz   

0252.02954.06208.0
9991.147.35204.5

23

2

−−−

−−

zzz
zz  

 
Stable 

 
0.13635 

 
ARX 

 

)9645.0(
)0711.0)(9968.0(7675.6

2 −

+−

zz
zz

  

23

2

9645.0
4794.02646.67675.6

zz
zz

−

−−  
 

Stable 
 

0.18287 

 
ARMAX 

 

)9522.0(
)156.0)(975.0(6698.0

4 −

+−

zz
zz   

45

2

9522.0
1019.05486.06698.0

zz
zz

−

−−  
 

Stable 
 

0.20557 

 
OE 

 

)1(
)9401.00999.0)(1225.1)(8923.0)(9985.0(3899.7

9

2

−

++−+−

zz
zzzzz

  

910

2345

1
948.6623.47155.13376.0342.83899.7

zz
zzzzz

−

+−−+−  
 

Not stable 
 

4.36590 

 
 
 
 
 
 
Recursive 

 
BJ 

 

)9962.0(
)0106.10105.2)(9175.4(7302.0

6

2

−

+−+

zz
zzz

  

67

23

9962.0
6287.34813.61228.27302.0

zz
zzz

−

+−+  
 

Not stable 
 

0.23134 

 
State-space 

 

)0798.0)(9579.0(
)1(7805.16

−−
−

zz
z  

 

0764.00377.1
7804.167805.16

2 +−

−

zz
z   

Stable 
 

0.06654 
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4.5.4 Analysis of comparison for discrete model of CMF 

Based on Table 4.3, a comparison is made based on stability and difference of total mass 

between coriolis mass flowrate (CMF) models and actual coriolis. For the non recursive 

models, GL, ARX, ARMAX, look stable, but OE and BJ model are not. Whilst, from the 

difference point of view, only GL model could present the actual coriolis accurately in 

which the minimum difference produced by GL is 1.4846 kg, respectively. For the 

recursive models, GL, ARX, ARMAX are considered stable, but OE and BJ are not. 

Whilst, from the difference point of view, only GL model could present the actual 

coriolis in which the minimum difference is 0.1364 kg. However, if difference from GL 

model is compared with difference from state space model, the minimum difference is the 

state space model in which the minimum difference is 0.0665 kg, respectively. 

 
Since the difference is compared at final mass of measurement, further analysis is needed 

to compare discrete values of coriolis mass flowrate (CMF) models at each sampling 

time. For that reason, a method known as power series expansion is used to calculate the 

discrete values of CMF models which are non recursive, recursive and state space 

models, respectively. Please refer Chapter 3 for detail descriptions on power series 

expansion. The following calculation shows a typical example using state space model.  

 16.7805z-1 +17.4132z-2 +16.7877z-3 +16.0903z-4 + . . . . . .  

z3-2.0377z2 +1.1141z-0.0764 16.7805z2 -16.7804z     
 16.7805z2 -34.1936z +18.6952 -1.2820z-1   

  17.4132z -18.6952 +1.2820z-1   
  17.4132z -35.4829 +19.4000z-1 -1.3304z-2  

   16.7877 -18.1180z-1 +1.3304z-2  
   16.7877 34.2083z-1 +18.7032z-2 -1.2826z-3 

    16.0903z-1 -17.3728z-2 +1.2826z-3 
 
Notably, an infinite series of discrete CMF values could be predicted at the quotient part 

or from the result of the division. In view of the fact that power series expansion is 

lengthy and consumes more time, a better option is to develop a computer program to 

generate the infinite series of discrete CMF values based on power series expansion 

algorithm. Figure 4.45-4.46 in following section shows a MATLAB Simulink program to 

calculate the power series expansion and sample of discrete values that have been 

generated for non recursive, recursive and state space models, respectively.    
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Figure 4.45 shows a MATLAB Simulink program to calculate the power series expansion 

using difference equations of non recursive, recursive and state space models. Results of 

discrete coriolis mass flowrate (CMF) values are stored in ‘simout1’ variable which are 

shown in following section as Figure 4.46, respectively.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.45: MATLAB Simulink program to calculate discrete CMF values 

Series of discrete 
CMF values 

Graph of power 
series expansion 

Difference equations from 
non recursive models 

Difference equations from 
recursive models 

Difference equations from 
state space models 
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Figure 4.46 shows discrete coriolis mass flowrate (CMF) values which are generated by 

the ‘simout1’ variable from the MATLAB Simulink program, whilst, Table 4.4 shows 

type of discrete CMF values for non recursive, recursive and state space models at each 

column, respectively.  
Table 4.4:  Types of discrete values at each column  

Column Type of discrete values 
1 Non recursive GL model 
2 Non recursive ARX model 
3 Non recursive ARMAX model 
4 Non recursive OE model 
5 Non recursive BJ model 
6 Recursive GL model 
7 Recursive ARX model 
8 Recursive ARMAX model 
8 Recursive OE model 

10 Recursive BJ model 
11 State space model 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.46: Discrete values generated from MATLAB Simulink program  

Discrete 
values  
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Based on Figure 4.46, a comparison is made with coriolis data chosen at the low bank 

refueling region (similar data used in section 4.5.1-4.5.3) to determine discrete model of 

coriolis mass flowrate (CMF). Figure 4.47 shows a comparison of sample data between 

Figure 4.46 and coriolis data at low bank refueling region, respectively. 

 

 
 

 
Notably, there are sequences of zeroes at initial stage of the sample data which indicate 

delays of measurements. By removing such delays and plotting back the data in graph, a 

comparison could be made at each sampling time. Figure 4.48 in following section shows 

graph of comparison between all CMF models and actual coriolis at each sampling time, 

respectively.      

Figure 4.47: Sample of data to compare CMF values and actual coriolis  

Data for actual coriolis 
selected from low bank 
refueling region 

Data from 
Figure 4.46  
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Figure 4.48 shows graph of comparison between coriolis mass flowrate (CMF) models 

and actual coriolis, respectively. Notably, there are two models that follow actual coriolis 

which are non recursive ARX and state space model. However, at each sampling time, 

only state space model could follow actual coriolis with a minimum difference of error.  
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The analysis has shown that potential for state-space model to provide a more complete 

representation for actual coriolis as compared to other CMF models. As proposed by 

[249], this is due to its identification procedure i.e., N4SID algorithm does not involve in 

nonlinear optimization and hence the estimation reaches a solution regardless of the 

initial guess. By comparison, the parameter settings for the state-space model are simpler 

because it only involves selection of the appropriate order or the number of states model. 

The order can come from prior knowledge of the system or from the singular values of 

the information matrix, A . Since, the state space model is stable and produces minimum 

difference of error; it would represent the actual flowmeter system tested in this research, 

in which, the Micro Motion flowmeter. Based on the difference equation of state space 

model, the following section would discuss on developing inferential coriolis algorithm. 

Figure 4.48: Graphs of comparison between all CMF models and actual coriolis  

Only graph developed by state space model follows 
graph developed by actual coriolis with a minimum 
difference of error 
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4.6 Develop algorithm for inferential coriolis model 

The following section discusses the final steps of SYSID methodology i.e., develop 

algorithm for inferential coriolis model. Theoretically, the algorithm is made by finding a 

suitable trend line for non linear curve developed by discrete values of state space model 

and sensors values from the test rig, respectively. The trend line and non linear curve 

could be illustrated using a conceptual curve as shown in Figure 4.49, respectively. 

 

  

 

 

 

 

 

 

 
 

 

 

 
From the trend line, a relationship function could be designed based on R-squared (R2) 

analysis. A trend line is actually a graphic representation of trends for data series, whilst 

the R-squared value is an indicator from 0 to 1 that reveals how closely the estimated 

values for the trend line correspond to the non linear curve. A trend line is most reliable 

when its R-squared value is equal or closer to 1 i.e., also known as coefficient of 

determination. Therefore, an assumption could be made that, if the trend line is 

‘completely’ reliable, then the R-squared value would be equal to 1, which means the 

formula of the trend line is equal to a straight line curve i.e., cmxy += . The value of y  

and x  assumed here would present an equation or an inferential value for mass flowrate 

and sensor as an input, respectively. Whilst, m  and c  are slope and interception value 

also known as inferential coriolis parameters. The following section would discuss on 

inferential coriolis parameters based on various types of trend lines.  

Figure 4.49: Trend line and conceptual curve
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4.6.1 Designing trend line  

In this research, equation of trend line, R-squared value and inferential coriolis 

parameters would be developed using a trend line program available in Microsoft Excel 

2002 software. Figure 4.50 shows part of the trend line program which could be divided 

into two parts: option of trend lines and type of trend lines, respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

Based on Figure 4.50, the option of trend line is to display the equation of trend line and 

the R-squared value, whilst type of trend lines is to select type of trend analysis such as 

linear, logarithmic, polynomial, power, exponential or moving average analysis, 

respectively. Since, logarithmic, power and exponential could not analyze negative 

trends, only linear and polynomial would be used in designing the trend lines, whilst, 

moving average is not applied here because it only presents a sequence of averages 

computed from parts of data series.  

 
The following section discusses on designing trend line based on data stored in the 

FieldPoint as shown by Figure 4.22 and Table 4.2, respectively. Based on Table 4.2, there 

are 19 sensors in the test rig, but only pressure and temperature sensors at receiver and 

flow metering systems (PCYLN, TCYLN, PT, TT) could be used in designing trend line 

since the sensors give direct measurement to CNG refueling process.  

 

Figure 4.50: Trend line
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Figure 4.51 shows an example of nonlinear curve for pressure sensor at receiver system 

(PCYLN) known as ‘SS-PCYLN’. The curve is developed using pressure difference at 

receiver and discrete values from state space (SS) as x-axis and y-axis, respectively. In 

this design, the linear and polynomial trend lines are represented in red and green color, 

respectively.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.5: R-squared value for SS-PCYLN 
Trend line Equation R-squared 
Polynomial 115.01827.00002.0 2 ++−= xxy  0.9567 

Linear 1902.01637.0 += xy  0.9553 

 

From Table 4.5, since both R-squared values are closed to 1, it shows that both trend 

lines have ‘completely’ reliable relationships with PCYLN sensor and state space model. 

Further analysis on trend line relationship is discussed using temperature sensor at 

receiver system (TCYLN). 

 

 

Figure 4.51: Non linear curve and trend lines for SS-PCYLN
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Figure 4.52 shows an example of nonlinear curve for temperature sensor at receiver 

system (PCYLN) known as ‘SS-TCYLN’. The curve is developed using temperature 

difference at receiver and discrete values from state space (SS) as x-axis and y-axis, 

respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.6: R-squared value for SS-TCYLN 
Trend line Equation R-squared 
Polynomial 6301.1257.5808.183 2 ++−= xxy  0.0641 

Linear 1292.232.23 += xy  0.046 

 

From Table 4.6, since both R-squared values are closed to zero, it shows that both trend 

lines have non reliable relationships with TCYLN sensor and state space model. Further 

analysis on trend line relationship is discussed using pressure sensor at inlet of the flow 

metering system (PT1). 

 
 
 
 

Figure 4.52: Non linear curve and trend lines for SS-TCYLN
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Figure 4.53 shows an example of nonlinear curve for pressure sensor at inlet of flow 

metering system (PT1) known as ‘SS-PT1’. The curve is developed using inlet pressure 

difference and discrete values from state space (SS) as x-axis and y-axis, respectively.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.53: Non linear curve and trend lines for SS-PT1 
 

Table 4.7: R-squared value for SS-PT1 
Trend line Equation R-squared 
Polynomial 3217.20049.0107 26 +−×= − xxy  0.0805 

Linear 2987.20076.0 += xy  0.0735 

 
 
From Table 4.7, since both R-squared values are closed to zero, it shows that both trend 

lines have non reliable relationships with PT1 sensor and state space model. Further 

analysis on trend line relationship is discussed using temperature sensor at inlet of the 

flow metering system (TT1). 
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Figure 4.54 shows an example of nonlinear curve for temperature sensor at inlet of flow 

metering system (PT1) known as ‘SS-TT1’. The curve is developed using inlet 

temperature difference and discrete values from state space (SS) as x-axis and y-axis, 

respectively.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.54: Non linear curve and trend lines for SS-TT1 

 
Table 4.8: R-squared value for SS-TT1 

Trend line Equation R-squared 
Polynomial 305.1536.49873.93 2 +−−= xxy  0.1356 

Linear 6651.1361.27 +−= xy  0.1272 

 

From Table 4.8, since both R-squared values are closed to zero, it shows that both trend 

lines have non reliable relationships with TT1 sensor and state space model. Further 

analysis on trend line equation is discussed using pressure sensor at outlet of the flow 

metering system (PT2). 
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Figure 4.55 shows an example of nonlinear curve for pressure sensor at outlet of flow 

metering system (PT2) known as ‘SS-PT2’. The curve is developed using outlet pressure 

difference and discrete values from state space (SS) as x-axis and y-axis, respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.55: Non linear curve and trend lines for SS-PT2 
 

Table 4.9: R-squared value for SS-PT2 
Trend line Equation R-squared 
Polynomial 3522.20052.0107 26 +−×= − xxy  0.0791 

Linear 3251.20075.0 += xy  0.0727 

 

From Table 4.9, since both R-squared values are closed to zero, it shows that both trend 

lines have non reliable relationships with PT2 sensor and state space model. Further 

analysis on trend line equation is discussed using temperature sensor at outlet of the flow 

metering system (TT2). 
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Figure 4.56 shows an example of nonlinear curve for temperature sensor at outlet of flow 

metering system (TT2) known as ‘SS-TT2’. The curve is developed using outlet 

temperature difference and discrete values from state space (SS) as x-axis and y-axis, 

respectively.  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.56: Non linear curve and trend lines for SS-TT2 

 
Table 4.10: R-squared value for SS-TT2 

Trend line Equation R-squared 
Polynomial 346.1753.5548.104 2 +−−= xxy  0.2342 

Linear 791.1514.26 +−= xy  0.2058 

 

From Table 4.10, since both R-squared values are closed to zero, it shows that both trend 

lines have non reliable relationships with TT2 sensor and state space model. From this 

section, a table of comparison is made in following section to determine a suitable trend 

line for inferential coriolis equation and respective sensor input. 
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4.6.2 Identifying trend line  

Table 4.11 shows table of comparison for R-squared values based on Figure 4.51-4.56 

which are ‘SS-PCYLN’, ‘SS-TCYLN’, ‘SS-PT1’, ’SS-TT1’, ‘SS-PT2’ and ‘SS-TT2’ i.e., 

non linear curve and trend line for determining inferential coriolis equation, respectively. 

 
Table 4.11: Table of comparison for R-squared value  

  Sensor 
  PCYLN TCYLN PT1 TT1 PT2 TT2 

 
Linear 0.9533 0.046 0.0735 0.1272 0.0727 0.2058 
 
Polynomial 0.9567 0.0641 0.0805 0.1356 0.0791 0.2342 

T
re

nd
 li

ne
 

 
AVERAGE 0.9550 0.0551 0.0770 0.1314 0.0759 0.2200 

 
 
Based on Table 4.11, the smallest R-squared value is 0.046 which is represented by linear 

trend line, whilst the highest R-squared value is 0.9567 which is represented by 

polynomial trend line. Since the highest R-squared value is produced by the polynomial 

trend line, the respective equation is chosen to represent inferential coriolis equation, 

whilst the suitable sensor to be used is PCYLN sensor. As mentioned earlier, the values 

of  y ,  x   and other constants are values for inferential value of mass flowrate, sensor 

input and inferential coriolis parameters, respectively. Notice that, the average of R-

squared value developed by the PCYLN sensor is closer to 1, which is 0.9550. The value 

reveals how closely the sensor corresponds to inferential coriolis measurement.  

 
In this section, a suitable trend line for inferential coriolis equation has been identified 

which is polynomial trend line. Further analysis is discussed in following section to 

identify suitable order of the polynomial trend line. 
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Figure 4.57 shows a 2nd order polynomial trend line for Figure 4.51. When, the order is 

increased to 2nd order, the equation of polynomial trend line is changed to  

115.01827.00002.0 2 ++−= xxy , whilst the R-squared value is equal to 0.9567. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.57: Non linear curve for SS-PCLYN using 2nd order polynomial trend line 

 
Table 4.12: R-squared value for 2nd order polynomial trend line 

Trend line Equation R-squared 
Polynomial 115.01827.00002.0 2 ++−= xxy  0.9567 

 

Based on Figure 4.57, both curves overlap when pressure difference is less than 20 psig, 

and separate when the pressure difference is between 20 to 40 psig, whilst, the major 

break occurs when the pressure difference is between 40 to 80 psig. The observation 

shows the polynomial trend line is accurate if pressure difference is less than 20 psig. 

Further analysis is made by increasing the polynomial trend line to 3rd order.  
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Figure 4.58 shows a 3rd order polynomial trend line for Figure 4.51. When, the order is 

increased to 3rd order, the equation of polynomial trend line is changed to 

0137.02324.00019.0101 235 ++−×= − xxxy , whilst the R-squared value has increased to 

0.9589.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.58: Non linear curve for SS-PCLYN using 3rd order polynomial trend line 

 
Table 4.13: R-squared value for 3rd order polynomial trend line 

Trend line Equation R-squared 
Polynomial 0137.02324.00019.0101 235 ++−×= − xxxy  0.9589 

 

Based on Figure 4.58, both curves overlap when pressure difference is less than 20 psig, 

and separate when the pressure difference is between 20 to 40 psig, whilst, no major 

break occurs when the pressure difference is greater than 40 psig. The observation shows 

the polynomial trend line is accurate at all range of pressure differences, except at 

pressure difference 20 to 40 psig. Further analysis is made by increasing the polynomial 

trend line to 4th order.  
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Figure 4.59 shows a 4th order polynomial trend line for Figure 4.51. When the order is 

increased to 4th order, the equation of polynomial trend line is changed to 

0256.02235.00013.0102106 23648 +++×+×= −− xxxxy , whilst the R-squared value has 

maintained at 0.9589.   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.59: Non linear curve for SS-PCLYN using 4th order polynomial trend line 

 
Table 4.14: R-squared value for 4th order polynomial trend line 

Trend line Equation R-squared 
Polynomial 0256.02235.00013.0102106 23648 +++×+×= −− xxxxy  0.9589 

 

Based on Figure 4.59, a similar description as shown in Figure 4.58 could be observed. 

Since the R-squared has maintained at similar value, the accuracy is similar to 3rd order 

polynomial trend line. Further observation is made by investigating the polynomial trend 

line using 5th and 6th order.   
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Figure 4.60 shows a 5th order polynomial trend line for Figure 4.51. When the order is 

increased to 5th order, the equation of polynomial trend line is changed to 

0303.02181.00007.0102103101 2354759 ++−×−×+×−= −−− xxxxxy , whilst the R-

squared value has maintained to 0.9589. It shows the performance is similar as Figure 

4.58 although higher order is tested.  
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Figure 4.60: Non linear curve for SS-PCLYN using 5th order polynomial trend line 

 
Table 4.15: R-squared value for 5th order polynomial trend line 

Trend line Equation R-squared 
Polynomial 0303.02181.00007.0102103101 2354759 ++−×−×+×−= −−− xxxxxy  0.9589 

 
From Figure 4.60, there are two red circles shown. The circles are defined as abnormal 

pulses in the measurement which also appear at similar locations in Figure 4.57-4.59. The 

phenomenon is defined as an outlier or unexpected events due to temporary sensor failure 

which could not be removed although higher order is used [30]. Please refer Figure 4.61 

for higher order such as the 6th order.   
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Figure 4.61 shows a 6th order polynomial trend line for Figure 4.51. When the order is 

increased to 6th order, the equation of polynomial trend line is changed to 

0261.02245.00017.0103107108103 2354759611 ++−×+×−×+×−= −−−− xxxxxxy , whilst 

the R-squared value still maintains at value 0.9589. Notice that, the outlier still occurs 

although 6th order is used. Since it affects the accuracy of polynomial trend line, the 

observation shows the outlier must be filtered manually from the sample data. Please 

refer appendix I for example of Visual Basic program to remove outlier. 
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Figure 4.61: Non linear curve for SS-PCLYN using 6th order polynomial trend line 

 
Table 4.16: R-squared value for 6th order polynomial trend line 

Trend line Equation R-squared 
Polynomial 0261.02245.00017.0103107108103 2354759611 ++−×+×−×+×−= −−−− xxxxxxy  0.9589 

 
In this section, various orders of polynomial trend lines have been investigated from 2nd 

to 6th order. Based on these order, a table of comparison is made in following section to 

determine a suitable order for inferential coriolis equation. 
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4.6.3 Finalizing trend line    

Table 4.17 shows table of comparison to determine suitable order for inferential coriolis 

equation using polynomial trend line in Figure 4.57-4.61, respectively. 

 
Table 4.17: R-squared value for 2nd to 6th order polynomial trend line 

Order Equation R2  
2 115.01827.00002.0 2 ++−= xxy  0.9567 

3 0137.02324.00019.0101 235 ++−×= − xxxy  0.9589 

4 0256.02235.00013.0102106 23648 +++×+×= −− xxxxy  0.9589 

5 0303.02181.00007.0102103101 2354759 ++−×−×+×−= −−− xxxxxy  0.9589 

6 0261.02245.00017.0103107108103 2354759611 ++−×+×−×+×−= −−−− xxxxxxy  0.9589 

AVERAGE 0.9585 
 

When the order increases from 2nd to 3rd order, the R-squared value would also increase 

from 0.9567 to 0.9589, respectively. The smallest R-squared value is equal to 0.9567 

which is represented by 2nd order polynomial trend line, whilst the highest R-squared 

value is equal to 0.9589 which is represented by 3rd to 6th order polynomial trend lines, 

respectively. When 3rd order is used, the R-squared value would maintain at value of 

0.9589 although higher order is used. This indicates the suitable order for the polynomial 

trend line is the 3rd order since it has the highest R-squared value with minimum order of 

coefficients. Whilst, from the average point of view, it shows the R-squared value has 

improved from 0.9550 (shown in Table 4.11) to 0.9585, if 3rd order is applied.  

 
Section 4.6.2 has been to selecting 3rd order polynomial trend line for representing 

inferential coriolis equation. In following section, a similar procedure would be applied to 

determine the final inferential coriolis equation based on five samples of data sets that 

have been filtered from outlier values. During this work, there are numerous experiments 

and data sets that have been evaluated which affect final elements of inferential coriolis 

formula. However, the selected evaluations cases presented here represent the main issue 

on designing the accurate inferential coriolis equation that relates to the Micro Motion 

coriolis flowmeter.    
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Figure 4.62 shows a 3rd order polynomial trend line using the first sample of data sets. It 

is found that the equation of polynomial trend line is equal to  

1053.02592.00023.0101 235 ++−×= − xxxy , whilst the R-squared value has improved to 

0.9946.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.62: 3rd order polynomial trend line for first sample of data sets 

 
Table 4.18: R-squared value of 3rd order polynomial trend line for first sample of data sets 

Trend line Equation R-squared 
Polynomial 1053.02592.00023.0101 235 ++−×= − xxxy  0.9946 

 

Based on Figure 4.62, major break occurs when the pressure difference is between 0 to 

20 psig, whilst minor breaks occurs when the pressure difference is between 20 to 60 

psig.  However, both curves overlap each other when the pressure difference is between 

60 to 120 psig. Based on this observation, it indicates that the inferential coriolis 

measurement is applicable if the pressure difference is between 60 to 120 psig. Further 

analysis is made using the second sample data. 
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Figure 4.63 shows a 3rd order polynomial trend line using the second sample of data sets. 

It is found that the equation of polynomial trend line is equal to  

0144.02629.0002.0101 235 −+−×= − xxxy , whilst the R-squared value is equal to 

0.9714.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.63: 3rd order polynomial trend line for second sample of data sets 

 
Table 4.19: R-squared value of 3rd order polynomial trend line for second sample of data sets 

Trend line Equation R-squared 
Polynomial 0144.02629.0002.0101 235 −+−×= − xxxy  0.9714 

 
Based on Figure 4.63, major break occurs when the pressure difference is between 0 to 

20 psig, whilst minor break occurs when the pressure difference is between 20 to 80 psig.  

However, major break occurs again when the pressure difference is between 80 to 120 

psig. Based on this observation, it indicates that the inferential coriolis measurement is 

applicable if the pressure difference is between 20 to 80 psig. Further analysis is made 

using the third sample data. 
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Figure 4.64 shows a 3rd order polynomial trend line using the third sample of data sets. It 

is found that the equation of polynomial trend line is equal to  

1372.02696.00024.0101 235 −+−×= − xxxy , whilst the R-squared value has improved to 

0.9949.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.64: 3rd order polynomial trend line for third sample of data sets 

 
Table 4.20: R-squared value of 3rd order polynomial trend line for third sample of data sets 

Trend line Equation R-squared 
Polynomial 1372.02696.00024.0101 235 −+−×= − xxxy  0.9949 

 

Based on Figure 4.64, major break occurs when the pressure difference is between 0 to 

20 psig, whilst both curves overlap each other when the pressure difference is between 20 

to 80 psig. However, only a minor break occurs when the pressure difference is between 

80 to 120 psig. Based on this observation, it indicates that the inferential coriolis 

measurement is applicable if the pressure difference is between 20 to 120 psig. Further 

analysis is made using the forth sample data. 
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Figure 4.65 shows a 3rd order polynomial trend line using the forth sample of data sets. It 

is found that the equation of polynomial trend line is equal to  

365.03746.00049.0103 235 ++−×= − xxxy , whilst the R-squared value is equal to 

0.9699.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.65: 3rd order polynomial trend line for forth sample of data sets 

 
Table 4.21: R-squared value of 3rd order polynomial trend line for forth sample of data sets 

Trend line Equation R-squared 
Polynomial 1372.02696.00024.0101 235 −+−×= − xxxy  0.9949 

 

Based on Figure 4.65, major break occurs when the pressure difference is between 0 to 

20 psig, 20 to 60 psig, and 60 to 120 psig, respectively. Based on this observation, it 

indicates that the forth sample of data sets is not applicable for inferential coriolis 

measurement. Further analysis is made using the fifth sample data. 
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Figure 4.66 shows a 3rd order polynomial trend line using the fifth sample of data sets. It 

is found that the equation of polynomial trend line is equal to  

1131.03419.00043.0103 235 −+−×= − xxxy , whilst the R-squared value is equal to 

0.9907.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.66: 3rd order polynomial trend line for fifth sample of data sets 

 
Table 4.22: R-squared value of 3rd order polynomial trend line for fifth sample of data sets 

Trend line Equation R-squared 
Polynomial 1131.03419.00043.0103 235 −+−×= − xxxy  0.9907 

 

Based on figure 4.66, minor break occurs when the pressure difference is between 0 to 20 

psig, whilst major break occurs when the pressure difference is between 20 to 60 psig and 

60 to 120 psig. Based on this observation, it indicates that the inferential coriolis 

measurement is applicable if the pressure difference is between 0 to 20 psig.  In this 

section, five sample of data sets have been tested using a 3rd order polynomial trend line, 

whilst, in following section, the suitable inferential coriolis equation would be chosen.  
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4.6.4 Implementing trend line    

Table 4.23 shows table of comparison to determine the highest R-squared value for 3rd 

order polynomial trend line discussed in Figure 4.62-4.66, respectively. 

 
Table 4.23: R-squared value using 3rd order polynomial trend line 

Sample Equation R2  
1 1053.02592.00023.0101 235 ++−×= − xxxy  0.9946 

2 0144.02629.0002.0101 235 −+−×= − xxxy  0.9714 

3 1372.02696.00024.0101 235 −+−×= − xxxy  0.9949 

4 365.03746.00049.0103 235 ++−×= − xxxy  0.9699 

5 1131.03419.00043.0103 235 −+−×= − xxxy  0.9907 

AVERAGE 0.9843 
 
 

From Table 4.23, the smallest R-squared value is 0.9699 which is represented by  

1131.03419.00043.0103 235 −+−×= − xxxy , whilst the highest R-squared value is 

0.9949 which is represented by 1372.02696.00024.0101 235 −+−×= − xxxy , 

respectively. From the average point of view, it shows the R-squared value has improved 

from 0.9585 (shown in Table 4.17) and 0.9550 (shown in Table 4.11), to 0.9843 if outlier 

have been filtered from the sample data. Since the highest R-squared value is detected 

from the third sample, the suitable equation for inferential coriolis is 

 
    1372.02696.00024.0101 235 −+−×= − xxxy     (4.56) 

 
Based on this equation, a LabVIEW program for inferential coriolis is developed using 

FieldPoint. Since the third sample has the highest R-squared value, the respective 

equation is embedded in the FieldPoint and tested on the test rig. Please refer Figure 

4.67-4.71 for sample of inferential coriolis programs using polynomial equations shown 

in Table 4.23. 
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PCYLN sensor 

Micro Motion sensor Condition rules 

Figure 4.67: Inferential coriolis program based on  1053.02592.00023.0101 235 ++−×= − xxxy

1053.02592.00023.0101 235 ++−×= − xxxy  
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Figure 4.68: Inferential coriolis program based on  0144.02629.0002.0101 235 −+−×= − xxxy

PCYLN sensor 

Micro Motion sensor Condition rules 

0144.02629.0002.0101 235 −+−×= − xxxy  
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Figure 4.69: Inferential coriolis program based on  1372.02696.00024.0101 235 −+−×= − xxxy

PCYLN sensor 

Micro Motion sensor Condition rules 

1372.02696.00024.0101 235 −+−×= − xxxy  
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Figure 4.70: Inferential coriolis program based on  365.03746.00049.0103 235 ++−×= − xxxy  

PCYLN sensor Micro Motion sensor Condition rules 

365.03746.00049.0103 235 ++−×= − xxxy
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PCYLN sensor 

Figure 4.71: Inferential coriolis program based on  1131.03419.00043.0103 235 −+−×= − xxxy

Micro Motion sensor Condition rules 
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1131.03419.00043.0103 235 −+−×= − xxxy  
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Figure 4.72 and 4.73 are examples of LabVIEW front panels to display results of mass 

flowrate measurement from LabVIEW programs shown in Figure 4.67-4.71, respectively. 

Figure 4.72 shows a typical result for single bank refueling such as the low bank, whilst 

Figure 4.73 shows a typical result for three banks refueling such as the low bank, medium 

bank and high bank refueling, respectively. Please refer to Figure 4.24 for details 

descriptions on single and three banks refueling. Based on Figure 4.72 and 4.73, there are 

two graphs shown: mass flowrate graph from actual coriolis flowmeter and mass flowrate 

graph from inferential coriolis, represented in white and red color, respectively. Notice 

that, the graph developed by inferential coriolis follows the trend developed by actual 

coriolis although there are outlier occurrences. Based on this observation, some condition 

rules are added in the inferential coriolis program to filter unexpected occurrence values 

and to ensure total mass measured by inferential coriolis are within the limit of 

permissible error. The following section discusses on practical implementation of 

inferential coriolis using FieldPoint.  

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.72: Mass flowrate measurement for single bank refueling  

Figure 4.73: Mass flowrate measurement using three banks refueling 

Outlier occurrence in 

single bank refueling 

Outlier occurrence in 

three banks refueling 
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4.6.5 Practical implementation 

Figure 4.74 is the final prototype for inferential coriolis. Based on Figure 4.74, the 

prototype could be divided into two parts: pressure sensor and FieldPoint system. The 

pressure sensor is from Endress-Hauser with pressure rating from 0 to 5000 psig, whilst 

the FieldPoint is from National Instruments, but is smaller than the one shown in Figure 

4.8.  

 

 

 
 

Figure 4.74: Prototype for inferential coriolis 
 

 

 

 

 

Pressure sensor FieldPoint 
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Figure 4.75 are the components for the FieldPoint such as 4 modules backplane, 1 

controller module, 8 channels digital input module, 8 channels relay module and 8 

channels analog input module. The LabVIEW program developed in Figure 4.69 is the 

inferential coriolis program embedded in the FieldPoint, whilst the LabVIEW front 

panels discussed in Figure 4.72-4.73 is the monitoring program to observe the inferential 

coriolis performance. In this section, prototype of inferential coriolis has been discussed, 

whilst, in following section, single line diagram for the FieldPoint is presented. 

 

 

 

 
 

 

Figure 4.75: Components for inferential coriolis using FieldPoint   
 

 

 

Pressure sensor 

4 module backplane 

Digital input, relay and analog input modules 

Controller module 
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Figure 4.76 shows the single line diagram for FieldPoint system shown in Figure 4.75 

respectively. Based on the figure, there are three sensors connected to analog input 

module which are PCYLN (pressure at receiver), coriolis flowmeter (Micro Motion 

flowmeter) and load cell signals. From the sensors, the mass flowrate from CNG 

refueling is measured since the total mass accumulated in the receiver tank is the 

performance measure to be compared with load cell measurement. From the figure also, 

there are three relay signals connected to relay module which are signals to open and 

close the solenoid valves for low bank, medium bank and high bank refueling. Different 

CNG flows and pressures could also be developed by switching the valves automatically, 

from the low bank to medium bank or high bank source. In this section, single line 

diagram for the inferential coriolis using FieldPoint has been discussed. The details 

descriptions on result of performance measure as compared to Micro Motion and load 

cell is discussed in the next chapter.     
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Figure 4.76: Single line diagram for inferential coriolis using FieldPoint   
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4.7 Summary 

An experimental test rig designed for the SYSID modeling of the inferential coriolis 

includes three main parts: the natural gas test rig, the data acquisition & control system 

using FieldPoint, and the LabVIEW user interface application. The test rig is designed to 

be flexible i.e., the experimental data could be collected from various conditions using 

wide variety of initial pressures as required in the simulations and filling condition of an 

actual coriolis flowmeter. Since different mathematical theories and algorithms are 

required for SYSID, LabVIEW program is designed to simulate and analyze each model, 

where the state-space model is found to provide a realistic representation of (Coriolis 

Mass Flowrate) CMF system compares to other parametric models. A relationship 

between power series expansion of the estimated state-space model and the receiver 

pressure formed the function of the proclaimed inferential coriolis.  

 

The next chapter illustrates with several examples the use of this inferential coriolis to 

measure the mass flowrate of CNG under different scenarios that are depending on the 

initial pressure of the receiver tanks, and to compare its performance over the actual 

coriolis meter manufactured by the Micro Motion.  


