LIST OF FIGURES

Figure 1-1	A schematic drawing of (a) a biological neuron, and (b) a synapse 3
Figure 1-2	(a) McCulloch and Pitts' neuron model, and (b) unit step function 4
Figure 2-1	A schematic representation of CLD17
Figure 2-2	(a) Formation of a composite material from fibers and resin.
	(b) Types of composites20
Figure 2-3	(a) Lamina as basic building entity of laminate, in the form of
	unidirectional and braided. (b) A laminated composite22
Figure 2-4	The x, y, z laminate (global) coordinate system, the x1, x2, x3 ply
	(local) coordinate system and the ply angle θ 23
Figure 2-5	Stacking sequence description of [45 ₃ /0 ₄ /90 ₂ /60] lay-up23
Figure 2-6	Typical constant amplitude cyclic loading waveform and
	its parameters27
Figure 2-7	Fatigue loadings at different load regimes or stress ratio-R
	conditions
Figure 2-8	Typical S-N curves
Figure 2-9	Various S-N curve fits on semi-log plot to fatigue data taken
	from [40]
Figure 2-10	Scatterband in fatigue lives and fatigue strength
Figure 2-11	Projection of <i>S</i> - <i>N</i> curves to form a CLD34
Figure 3-1	NN architectures (a) feed forward with one hidden layer (gray
	colored circles), and (b) recurrent network with hidden neurons35
Figure 3-2	Perceptron neuron with an L-element input vector and hardlimiter
	function
Figure 3-3	The simplified schematic of a neuron model40
Figure 3-4	A single-layer perceptron (a) its schematic (b) its simplified
	schematic41
Figure 3-5	Input vectors of (a) two classes (b) four classes, and (c) eight classes.43
Figure 3-6	A representation of boundary plane in a three-input space44
Figure 3-7	MLP with one hidden layer and multiple output46
Figure 3-8	MLP with one hidden layer and single output47
Figure 3-9	Hyperbolic tangent activation function

Figure 3-10	Logistic activation function
Figure 3-11	Bipolar sigmoid activation function49
Figure 4-1	Flowchart of the NN modeling process
Figure 4-2	A schematic geometry drawing of test specimens of Materials I, II
	and III (a) top view, and (b) side view62
Figure 5-1	The NN training output for Material I with training set of
	R = 0.1 and -2
Figure 5-2	Fatigue life prediction by NN model for testing sets $R = -0.5, -1, -2$
	and 10 using $R = 0.1$ and 0.5 as training set
Figure 5-3	Fatigue life prediction by NN model for testing sets $R = 0.1, -1, -2$
	and 10 using $R = 0.5$ and -0.5 as training set
Figure 5-4	Fatigue life prediction by NN model for testing sets $R = 0.5, -0.5, -1$
	and 10 using $R = 0.1$ and -2 as training set
Figure 5-5	The S-N curves based on experimental data and as predicted by
	the NN model for $R = 0.5$
Figure 5-6	The S-N curves based on experimental data and as predicted by
	the NN model for $R = -0.5$
Figure 5-7	The S-N curves based on experimental data and as predicted by
	the NN model for $R = -1$
Figure 5-8	The S-N curves based on experimental data and as predicted by
	the NN model for $R = 10$
Figure 5-9	Fatigue life prediction by NN model for testing sets $R = 0.7, 0.8$,
	0.9, -1, -2, 10 and -0.5 using $R = 0.1$ and 0.5 as training set
Figure 5-10	Fatigue life prediction by NN model for testing sets $R = 0.5, 0.7$,
	0.8, 0.9, -2, 10 and -0.5 using $R = 0.1$ and -1 as training set
Figure 5-11	Fatigue life prediction by NN model for testing sets $R = 0.5, 0.7$,
	0.8, 0.9, -1, -2 and -0.5 using $R = 0.1$ and 10 as training set
Figure 5-12	The S-N curves based on experimental data and as predicted by
	the NN model for $R = 0.5$
Figure 5-13	The S-N curves based on experimental data and as predicted by
	the NN model for $R = 0.7$ 80
Figure 5-14	The S-N curves based on experimental data and as predicted by
	the NN model for $R = 0.8$
Figure 5-15	The S-N curves based on experimental data and as predicted by

	the NN model for $R = 0.9$
Figure 5-16	The S-N curves based on experimental data and as predicted by
	the NN model for $R = -1$
Figure 5-17	The S-N curves based on experimental data and as predicted by
	the NN model for $R = -2$
Figure 5-18	The S-N curves based on experimental data and as predicted by
	the NN model for $R = -0.5$
Figure 5-19	Fatigue life prediction by NN model for testing sets $R = 0.2$, -0.3,
	-1 and 10 using $R = 0.1$ and -0.1 as training set
Figure 5-20	The S-N curves based on Parametric Constant Life Method and as
	predicted by the NN model for $R = 0.2$
Figure 5-21	The S-N curves based on Parametric Constant Life Method and as
	predicted by the NN model for $R = -0.3$
Figure 5-22	The S-N curves based on Parametric Constant Life Method and as
	predicted by the NN model for $R = -1$
Figure 5-23	The S-N curves based on Parametric Constant Life Method and as
	predicted by the NN model for $R = 10$
Figure 5-24	The evolution of optimization parameter λ during the NN iteration
	for Material I
Figure 5-25	The evolution of regularization parameter α during the NN iteration
	for Material I
Figure 5-26	The evolution of regularization parameter β during the NN iteration
	for Material I
Figure 5-27	The effective number of parameters during the NN iteration for
	Material I
Figure 5-28	The evolution of optimization parameter λ during the NN iteration
	for Material II
Figure 5-29	The evolution of regularization parameter α during the NN iteration
	for Material II
Figure 5-30	The evolution of regularization parameter β during the NN iteration
	for Material II
Figure 5-31	The effective number of parameters during the NN iteration for
	Material II
Figure 5-32	The evolution of optimization parameter λ during the NN iteration

	for Material III	.89
Figure 5-33	The evolution of regularization parameter α during the NN iteration	
	for Material III	.90
Figure 5-34	The evolution of regularization parameter β during the NN iteration	
	for Material III	.90
Figure 5-35	The effective number of parameters during the NN iteration for	
	Material III	.90
Figure 5-36	The sensitivity of the number of hidden nodes on the MSE values	.91