
i

Formal Specification Language for Vehicular Ad-Hoc Networks

STATUS OF THESIS

Title of thesis

I MAYTHEM KAMAL ABBAS

Hereby allow my thesis to be placed at the information Resource Center (IRC) of Universiti

Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. The thesis is classified as:

Confidential

3 Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain for _____ years.

Remarks on Disclosure:

Endorsed by

MAYTHEM KAMAL ABBAS AZWEEN ABDULLAH

Universiti Teknologi PETRONAS Universiti Teknologi PETRONAS

Malaysia. Malaysia.

Date: _________________ Date: _________________

ii

Signature : ________________________________

Main Supervisor : ________________________________

Date : ________________________________

Co-Supervisor : ________________________________

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor (s)

The undersigned certify that they have read, and recomand to the Postgraduate

Studeies Programme for acceptance, a thesis titled “Formal Specification Language

for Vehicular Ad-hoc Networks” submitted by (Maythem Kamal Abbas) for the

fulfillment of the requirements for the degree of Master of Science in Information

Technology.

Date

iii

TITLE PAGE

UNIVERSITI TEKNOLOGI PETRONAS

Formal Specification Language for Vehicular Ad-hoc Networks

By

Maythem Kamal Abbas

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE

INFORMATION TECHNOLOGY

BANDAR SERI ISKANDAR PERAK

APRIL, 2009.

iv

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledge. I also declare that it has not been previously or

concurrently submitted for any other degree at UTP or other institutions.

Signature : ___

Name : ___

Date : ___

v

FORMAL SPECIFICATION LANGAUGE FOR VEHICULAR AD-HOC

NETWORK

Abstract

Vehicular Ad-Hoc Network (VANET) is a form of Mobile Ad-Hoc Network (wireless

Network), originally used to provide safety & comfort for passengers, & currently being

used to establish Dedicated Short Range Communications (DSRC) among near by

Vehicles (V2V Communications) and between vehicles and nearby fixed infrastructure

equipments; Roadside equipments (V2I Communications). VANET was used also to

warn drivers of collision possibilities, road sign alarms, auto-payment at road tolls and

parks. Usually VANET can be found in Intelligent Transportation Systems (ITS).

VANET is the current and near future hot topic for research, that has been

targeted by many researchers to develop some applications and protocols specifically for

the VANET. But a problem facing all VANET researchers is the unavailability of a

formal specification language to specify the VANET systems, protocols, applications and

scenarios proposed by those researchers.

A specification language is a formal language that is used during the systems

design, analysis, and requirements analysis. Using a formal specification language, a

researcher can show “What his system does”, Not How.

As a contribution of our research we have created a formal specification language

for VANET. We made the use of some Romans characters & some basic symbols to

represent VANET Systems & Applications. In addition, we have created some combined

symbols to represent actions and operations of the VANET system and its participating

devices. Our formal specification language covers many of the VANET aspects, and

offers Validity Test and Consistency Test for the systems.

Using our specification language, we have presented three different case studies

based on a VANET system model we have created and put them into the system validity

and consistency tests and showed how to describe a VANET system and its applications

using our formal specification language.

v

FORMAL SPECIFICATION LANGUAGE FOR VEHICULAR AD-HOC

NETWORK

ABSTRAK

Vehicular Ad-Hoc Network (VANET) terhasil dari Mobile Ad-Hoc Network (wireless

Network), pada dasarnya digunakan untuk penyediaan keselamatan dan keselesaan

kepada penunggang, dan pada masa kini ia dipertingkatkan dengan penggunaan

komunikasi jarak dekat (DSRC) di antara kenderaan-kenderaan (V2V Communications)

dan infrastruktur yang berhampiran; kemudahan di tepi jalan((V2I Communications).

VANET juga digunakan untuk memberi amaran kepada pemandu tentang kemungkinan

berlakunya perlanggaran, amaran tanda jalan, pembayaran automatik di tol dan di tempat

meletakkankan kenderaan. Selalunya VANET boleh didapati di ITS (intelligent

transportation Systems).

VANET adalah merupakan topik yang ‘panas’ pada masa kini dalam penyelidikan

dan ia menjadi sasaran kepada penyelidik untuk memperkembangkan beberapa aplikasi

dan protokol khususnya dalam VANET. Tetapi masalah yang dihadapi oleh penyelidik

VANET adalah ketidakmampuan bahasa rasmi yang khusus untuk pengkhususan sistem

VANET, protokol, aplikasi dan senario yang diusulkan oleh penyelidik-penyelidik.

Bahasa khusus adalah bahasa rasmi yang digunakan semasa merekacipta sistem,

analisis, dan keperluan analisis. Penggunaan bahasa rasmi yang khusus, penyelidik boleh

mempamerkan apa yang sistem itu hasilkan, bukannya bagaimana ia dihasilkan.

Sebagai penyumbang kepada penyelidikan, kami telah menghasilkan bahasa

rasmi yang khusus untuk VANET. Kami menggunakan beberapa karakter Romans dan

beberapa simbol asas untuk dipersembahkan kepada sistem VANET dan aplikasi.

Tambahan pula, kami telah menghasilkan beberapa kombinasi simbol untuk aksi terkini

dan operasi sistem VANET serta alat-alat yang terlibat dengannya. Bahasa rasmi khusus

kami meliputi banyak aspek VANET dan menawarkan Ujian Pengesahan and Ujian

Konsistensi untuk sistem.

Dengan menggunakan bahasa khusus kami, kami telah membentangkan tiga

perbezaan kajian kes berdasarkan dari model sistem VANET yang telah terhasil dan

vi

diletakkan ke dalam pengesahan sistem dan ujian konsistensi serta mempamerkan

bagaimana untuk menggambarkan sistem VANET dan aplikasinya menggunakan bahasa

rasmi yang khusus dihasilkan oleh kami.

viii

ACKNOWLEDGEMENTS

First of all, I cannot thank enough to my family for always supporting me in my personal and

academic endeavors. Their relentless encouragement has enabled me to persevere even in

times of duress. As well as, I would like to thank my dear fiancée for her continuous support

to me, that she was my inspirer, always.

I would like to thank my supervisor Dr. Azween Bin Abdullah for his supervision and

guidance throughout the whole work with this thesis. I greatly appreciate his encouragement

to go ahead with my work especially in time of lake of myself confidence.

I would like to thank Dr. Ahmad Kamil Mahmood, for his support and leading as the

head of the computer and Information Science department, UTP. In addition, I’d like to thank

Dr. Etienne Schneider for his friendly advices and helping me to get a source book related to

my work I needed.

Special thanks for all of Dr. Baharum Baharudin, Mr. Low Tan Jung and Dr. Etienne

Schneider for their helpful comments when reviewing my research papers.

My sincere thanks to all the administrative staff in UTP for their assistance. Special

thanks for all of my colleagues under the supervision of Dr. Azween for sharing their

experiences and knowledge with me. Finally, I would like to address my appreciation to all

of my colleagues in CIS department for being brothers and sisters to me.

ix

TABLE OF CONTENTS

STATUS OF THESIS……………………………………………………………………. i

SUPERVISOR APPROVAL…………………………………………………………….. ii

TITLE PAGE……….……….……….……….……….……….……….……….………. iii

DECLARATION……….……….……….……….……….……….……….…………… iv

ABSTRACT……….……….……….……….……….……….……….……….………… v

ABSTRAK……….……….……….……….……….……….……….……….…………. vi

ACKNOWLEDGEMENTS……….……….………..……….……….……….……...... viii

TABLE OF CONTENTS.……….……….……….……….……… ……………………. ix

LIST OF TABLES……………………………………………………………….......... xiii

LIST OF FIGURES……………………………………………………………………. xiv

LIST OF ABREVIATIONS………………...…………………………………………. xiv

CHAPTER ONE: INTRODUCTION………………………………………………….… 1

1.1 VANET ……………………………………………………………………….…… 1

1.2 DSRC…………………………………………………………………………….… 2

1.3 VANET Characteristics…………………………………………………….……… 3

1.4 VANET Communication promises………………………………………………… 4

1.5 DSRC – VANET Applications………………………………………………..…… 4

1.6 VANET Applications……………………………………………….…..…..……… 5

1.7 Formal Specification Language………………………………….………………… 5

1.8 Objective of the Study……………………………….……………………..……… 7

1.9 Motivation………………………………………………………………….….…… 7

1.10 VANET challenges………………………………………………………..……… 8

1.11 Scope of the Study……….………………………………..……………………… 7

1.12 Case Studies…………………………………….…..……………..……………… 9

1.13 Thesis Layout…………………………………………………………….……… 10

1.14 Abbreviations……………………………….…………………………………… 10

CHAPTER TWO: RELATED WORK………………………………………….……… 11

2.1 Literature Review …………………………………………………….………… 11

x

2.1.1 Services through VANET…………………………………….…………... 11

2.1.2 Data Dissemination……………………………………………………..… 12

2.1.3 VANET Modeling & Simulation…………………………………….…… 13

2.1.4 VANET Communication Enhancement.…………..……………………... 13

2.2 VANET Security Issues…………………………………………………………... 14

2.3 State of the Art……………………………………………….…………………… 15

2.4 Related Work Summary……………………………………….……………..…… 16

CHAPTER THREE: METHODOLOGY……………………………….……...….…… 17

3.1 Proposed Used Basic symbols / Notation…………………………………..……17

3.1.1 Device Ability…………………………………………………………..… 17

3.1.2 Device Movement………………………………………………………… 18

3.1.3 Messages exchangeability………………………………………………… 18

3.1.4 Device Internal behavior logic…………………………………….……… 20

3.1.5 Security…………………………………………………………………… 22

3.1.6 Validity Test ……………………………………………………………… 23

3.1.7 Consistency Test…………………………………………………..……… 26

3.1.8 Design and Configuration………………………………………………… 28

3.1.9 Environment description………………………………………………..… 30

3.1.10 Connections description…………………………………………….…… 32

3.2 Layered System Model for VANET Environment & Application Layer

Protocol……………………………………………………………………………... 34

3.2.1 System Devices…………………………………………………………… 35

3.2.2 Assumptions……………………………………………….……………… 41

3.2.3 Devices Communications………………………………………..……….. 41

3.2.4 The Application Layer Protocol Abilities………………………………… 43

3.2.4.1 Remote Speed limit phase…………………………………………... 44

3.2.4.2 Sending a service message to a Layer-3 Device phase……………... 47

3.2.4.3 Getting access from a mobile node into another node phase……….. 52

CHAPTER FOUR: CASE STUDIES…………………………………………………... 70

4.1 Introduction…………………………………………………………………...… 70

xi

4.2 Case study -1: Speed control & Highway monitoring…………………….… 70

4.2.1 Participated devices definitions ………………………………………..… 71

4.2.2 Communications between participating devices…………...……………... 83

4.2.3 Participating messages…………...…………………………………..…… 85

4.2.4 Messages Flow for Case Study-1……………………………………….… 88

4.2.5 A Lower-Level Scenario Specification…………………………………… 90

4.3 Case Study–2: Remote car locating & sending a Service request / Function

message…………………………………………………………………………...… 99

4.3.1 Participated devices definitions ………………………………………… 100

4.3.2 Communications between participated devices……………………….… 101

4.3.3 Participated messages…………………………………………………… 103

4.3.4 The Highest-Level Message flow Specification………………………… 107

4.3.5 Message Flow of Case Study-2…………………………………..……… 107

4.3.6 A Lower-Level Scenario Specification………………………………….. 110

4.4 Case Study – 3: Suspect car instant termination……………………….……… 120

4.4.1 Participated devices definitions ………………………………………… 121

4.4.2 Communications between participated devices………….……………… 124

4.4.3 Participated messages…………………………………………………… 125

4.4.4 Messages Flow of Case Study-3………………………………………… 134

CHAPTER FIVE: RESULTS AND DISCUSSION……………………………...…… 138

5.1 Introduction………………………………………………………..………...… 138

5.2 Case studies Differences……………………………………………….……… 138

5.2.1 Validity test……………………………………………………………… 138

5.2.2 Consistency Test………………………………………………………… 147

5.3 Comparative Study………………………………………………………….… 151

CHAPTER SIX: CONCLUSION AND FUTURE WORK…………………………... 155

6.1 Introduction…………………………………………………………………… 155

6.2 Conclusion………………………………………………………………..…… 155

6.3 Future Work…………………………………………………………………… 156

6.3.1 Tool Development…………………………………………………….… 156

xii

6.3.2 Language Enhancement…………………………………………….…… 156

6.3.3 Application layer protocol enhancement……………………………...… 157

6.3.4 Developing a simulator for VANET systems…………………………… 157

6.3.5 Developing more of VANET applications……………………………… 157

REFERENCES……………………………………………………………………...… 158

BIBLOGRAPHY……………………………………………………………………… 161

REFEREED COPNFERENCES PROCEEDINGS……………..…..………………… 164

xiii

LIST OF TABLES

Table 3.1: Validity Truth Table…………………………………………………..………… 24

Table 3.2: Consistency Truth Table……………………………………………………….... 26

Table 3.3: Layered System Specific functions descriptions …………...……………….... 33

Table 5.1: First Scenario’s Validity Truth Table…………………………..………..…….. 139

Table 5.2: Second Scenario’s Validity Truth Table………………………………..….…... 141

Table 5.3: Op-AB Validity Truth Table…………………………………………………... 143

Table 5.4: Op-CF Validity Truth Table………………………………..………………….. 144

Table 5.5: Op-GH Validity Truth Table…………………………………………………... 145

Table 5.6: Op-IL Validity Truth Table……………………………………………………. 145

Table 5.7: Op-MP Validity Truth Table…………………………………………………... 146

Table 5.8: First Scenario’s Consistency Truth Table……………………………………… 147

Table 5.9: Second Scenario’s Consistency Truth Table……………………………...…… 148

Table 5.10: Op-AB Consistency Truth Table……………………………………………... 149

Table 5.11: Op-CF Consistency Truth Table……………………………………………… 150

Table 5.12: Language Type……………………………………………………………….. 151

Table 5.13: Specification Languages - Application Area………………………………..... 152

Table 5.14: Covered aspects Comparison…………………………………………………. 154

xiv

LIST OF FIGURES

Figure 1.1: VANET Integrated Infrastructure…………………………………………… 1

Figure 1.2: Interface Objects……………………………………………….…………….. 6

Figure 3.1: Validity / Consistency Test Example………………………………………. 23

Figure 3.2: System operational grouping…………………………………………..…… 25

Figure 3.3: Standards Directions………………………………………….…………….. 30

Figure 3.4 – Our proposed Layered system…………………………………………….. 35

Figure 3.5: Remote Speed limit phase Message Flow………………………………….. 44

Figure 3.6: Sending a service message to a Layer-3 Device phase Message Flow…….. 48

Figure 3.7: Getting access from a mobile node into another node phase Message

Flow………………………………………………………………………. 53

Figure 4.1: Case Study 1: Speed Control & High Way Monitoring……………………. 70

Figure 4.2: Coordinator device internal architecture…………………………………… 73

Figure 4.3: Road side equipment internal architecture………………………………..... 77

Figure 4.4 : Vehicle’s VANET Device (VVD)………………………………………… 80

Figure 4.5: Speed Control & High Way Monitoring – messages flow………………… 89

Figure 4.6: Speed Control & High Way Monitoring – messaging algorithm………….. 90

Figure 4.7: Case Study 1 – Scenario setup……………………………………………... 92

Figure 4.8: Speed Control & High Way Monitoring – Vehicle’s Report Creation.……. 98

Figure 4.9: Case Study 2: Remote car locating & sending a service / order message….. 99

Figure 4.10: Remote car locating & sending a Service / Function message – Messages

Flow……………………………………………………………………… 109

Figure 4.11: Speed Control & High Way Monitoring – Messaging Algorithm.……… 110

Figure 4.12: Study Case 2 - Scenario setup…………………………………………… 113

Figure 4.13: Case Study 3: Suspect car instant termination……………………….….. 120

Figure 4.14: Police vehicle’s VANET Device (PVD)………………….……………... 122

Figure 4.15: Suspect car instant termination – messages flow………………………... 136

Figure 4.16: Suspect car instant termination – messages flow – After getting the SVD

Information…………………………………………………………..….. 137

xv

LIST OF ABREVIATIONS

Co_D Coordinator Device

DSRC Dedicated Short Range Communication

GF A set of “Get Functions”

Mtc Message type checker

OBU / OBE On Board Unit / On Board Equipment

PAz Packet Analyzer function

PCr Packet Creator

PFr Packet Forwarder

PSC Propagating a Speed Code

RSU / RSE Road Side Unit / Road Side Equipment

SF A set of “Set Functions”.

SOP Sub-Operation

SQL SQL Query statement Creator

SVSR Sending a Vehicle’s Status Report

V2I Vehicle-To-Infrastructure communication

V2V Vehicle-To-Vehicle communication

VVD Vehicle’s VANET Device

CHAPTER ONE: INTRODUCTION 1

CHAPTER ONE: INTRODUCTION

1.1 VANET

Vehicular Ad-Hoc Network (VANET) is a form of Mobile Ad-Hoc Network (wireless

Network), originally used to provide safety & comfort for vehicle users. Currently it is

being used to establish a dedicated short range of communication (DSRC) among nearby

Vehicles (V2V Communications) and between vehicles and nearby fixed infrastructure

equipment; Roadside equipment (V2I Communications). VANET is also used to warn

drivers from any collision possibilities, road sign alarms, auto-payment at road tolls and

parks. VANET can be usually found at Intelligent Transportation Systems (ITS).[

SCHROTH C., 2006].

The VANET works ideally in an integrated environment which is shown in Figure

1.1.[COPS M., 2006].

Figure 1.1: VANET Integrated Infrastructure

CHAPTER ONE: INTRODUCTION 2

Ad-hoc Networks do not use centralized administration, and do not rely on any

pre-established infrastructure; its nodes rely on each other to keep the network connected.

Although, VANET is not a pure Ad hoc Network since it does rely on a fixed

infrastructure when a V2I communication happens, it uses the DSRC technology to

connect the vehicles with the existing infrastructure.

1.2 DSRC

5.9 GHz DSRC (Dedicated Short Range Communication) is a short to medium range

communication service that supports both Public Safety and Private operations from

roadside to vehicle and from one vehicle to another vehicles communication

environment. DSRC is meant to be a complement to cellular communication by

providing very high data transfer rates in circumstances where, minimizing latency in the

communication link and isolating relatively small communication zones are

important.[LEEARMSTRONG, 2008]

DSRC is a short range radio created to serve as a transportation specific

technology. It can provide a half duplex connection between the participating nodes with

a high bit rate of (6 Mbps) up to (27 Mbps) and a coverage area radius of up to 1000m.

IEEE 802.11p will be based on the standard IEEE 1609 which is a higher layer standard

it is also used as the groundwork for DSRC which defines enhancement to 802.11 which

requires supporting ITS Applications. 802.11p project still in progress and the approved

802.11p amendment is scheduled to be published on December 2007.[IEEE GROUPER,

2008]

CHAPTER ONE: INTRODUCTION 3

1.3 VANET Characteristics

The features of a vehicular ad hoc network are totally different compared to other mobile

ad hoc networks. The unique properties of a VANET has pushed the researchers to make

use of these characteristics to increase network performance. At the same time it can be

considered as challenges. A VANET is fundamentally different [BALON N., (2006)]

from other MANETs:

1. The VANET coverage area diameter is relatively small compared to other

types.

2. Disintegration of the network into smaller segments often occurs. The reason

behind the short life for the link in a VANET is because of the high speed

mobility of the vehicles which might reach up to 200 km/h. In order to

lengthen the life time of a link, we should increase the transmission power of

the vehicles antennas, which on the other hand will decrease the throughput of

the network.

3. A VANET rapidly changes into some predictable topology, because vehicle

movements are limited by the road itself. The high mobility of vehicles cause

the topology to change frequently and due to that the existence time of a

communication link between two vehicles is short.

4. A VANET sparks up many unique security challenges.

5. Since VANET is using DSRC technology, it has low transmission latency,

about 50ms when the vehicle’s speed is at 120 Km/h.

CHAPTER ONE: INTRODUCTION 4

1.4 VANET Communication promises

VANET communication promises a lot of services and easiness for the drivers, these

promises resides within the following:

1- VANET promises safer roads

2- VANET promises more efficient driving

3- VANET promises more fun driving

4- VANET promises easier maintenance of the vehicles

1.5 DSRC – VANET Applications

Many researches were done to create applications based on the usage of DSRC. The

VANET applications of DSRC are categorized into four classes: [BALON N., (2006)]

• Vehicle-to-Vehicle applications.

• Vehicle-to-Infrastructure applications

• Vehicle-to-Home applications.

• Routing Based applications.

Each of the above four application categories can be further categorized into safety and

non-safety applications.

CHAPTER ONE: INTRODUCTION 5

1.6 VANET Applications

There are many applications and others are still to be created for the Vehicular networks

to satisfy all the VANET promises. These applications are categorized into:

1- E-safety applications

(e.g.; turn left assistant, urgent situation vehicle approaching warning, vehicle

safety examination, stolen vehicles tracing, rail accident warning, etc.)

2- Traffic management applications

(e.g.; Highway merges assistant, electronic toll payment, hazardous material

shipment, etc.)

3- Enhanced driver comfort

(e.g.; Download or update road maps, instant messaging between vehicles, hot

spot notification, parking spot locator, etc.)

4- Maintenance

(e.g.; notice on safety recall, just in time repair notification, etc.)

1.7 Formal Specification Language

Formal Specification is a strict description of a system, describing the details needed by

the system to perform its job properly. The formal specification language is the set of

notations and rules used to write the formal specification for the system.

The main use of the formal specification language is to describe any system

mathematically and then apply different scenarios on it to reveal any inconsistency,

incompleteness, or ambiguity in the system’s operation.

Formal methods are still hard to scale up for large systems. So the system is

disintegrated into smaller sub-systems which interact with each other through interfaces

to do the main system’s job. The layer VANET Model has many devices which work

individually. Each of them has its own interfaces to interact with other devices around.

Each device is considered as the sub-systems.

CHAPTER ONE: INTRODUCTION 6

Figure 1.2 shows a system which has been decomposed into three smaller Sub-

Systems, A, B, and C. Each Sub-System has at least one interface which interacts with

the surrounding Sub-Systems. The interface has two functions that control its operation,

those are; MtC (Message Type Checker) and Pfr (Packet forwarder). The function of MtC

is to be responsible for the incoming data stream whereas the Pfr is responsible for the

outgoing data. For more details about both of MtC and Pfr, refer to chapter 3.

Figure 1.2: Interface Objects

The scopes of the formal methods are limited. They are not well suited to specify

and analysis use interface and user interaction. However, our language does solve the

user interaction problem as we will see later on this report.

The major benefits of formal methods are in reducing the number of faults in the

systems. As a result, critical systems engineering is the main spot of formal methods

applicability. The usage of formal methods is presumably cost-effective because high

system failure costs can be avoided.

The main benefits of using the formal specification are; it obliges a

comprehensive analysis of system’s requirements, incompleteness and inconsistencies

Sub-System-B

Sub-System-C

Sub-System-A

Interface
Objects

MtC: Message Type Checker
Pfr: Packet Forwarder

CHAPTER ONE: INTRODUCTION 7

can be discovered and resolved. It is true that there are larger costs to be spent up front

and efforts are exhausted in developing the specification for a system. However,

implementation and validation costs must be compacted as the specification process

reduces errors and vagueness in the requirements.

1.8 Problem Statement

Three problems we have specified and we are going to focus on in this thesis,

those are:

1- There is no common formal specification language for VANET researchers to

use so they specify their systems.

2- There is no Mini Model of VANET Environment to be used by researchers as

part of their test bed.

3- There is no suggested scheme to control and located vehicles remotely via

VANET.

1.9 Objective of the Study

The main objective is creating a formal specification language that can be used for

describing VANET aspects theoretically and specify by proving VANET’s System and

their applications. The second objective is creating a layered system that can be used to

model VANET environment for case studies scenarios. Finally outline an application

layer protocol on a layered system to deliver services to and access the remote mobile

nodes.

CHAPTER ONE: INTRODUCTION 8

1.10 Motivation

Car manufacturers are about to take a quantum leap in terms of enhancing driving safety

but they are waiting for new technologies and applications to be created and be

experimented before they could use with their products. Our proposed model of layered

VANET system and the Application layer protocol can be an important as well as a

unique part of that future leap. In the meantime, our proposed VANET specification

language can be used by those going for work during that future period of time on related

researches to present and prove the consistency and the completeness of their ideas and

theories to reveal an ambiguity, incompleteness and inconsistency in them.

The main incentive behind creating a formal specification language and the layered

model system for VANET environment is needed by the researchers who are going to

work on VANET area during the future leap. Hence the inducement after lining out the

application layer protocol is to draw a starter line for creating a common protocol which

can be used on VANET environment and also to create more applications based on the

protocol.

1.11 VANET challenges

VANET challenges can be listed as:

1- Devices Communication efficiency with High Mobility

2- Packet Delivery ratio

3- Routing reliability – Dynamically changing network Topology map

4- Dead-lock management

5- High traffic management

6- Participated devices Coverage Area & Energy

7- Communication Events Synchronization

CHAPTER ONE: INTRODUCTION 9

1.12 Scope of the Study

VANET has many aspects that need to be plunged into and also to find the solutions. In

order to do so, we need to have a specification language to describe the solutions.

VANET aspects can be listed as:

1- Nodes Mobility (Node’s movement direction, speed, …etc)

2- Nodes Visibility

3- Nodes Abilities

4- Security

a. Authentication & key management

b. Privacy

c. Trust & Revocation

d. Secure positioning

5- Messages Delivery/exchanging

6- Environment description (Nodes positions, environment limitations, …etc)

7- Data Dissemination

8- Routing

Our proposed specification language covered many of the VANET aspects (listed

above) except some such as routing and security (Only the simple Authentication & key

management have been covered).

Our proposed layered system contains N number of layers, which can be grouped

into three groups:

- Coordination group

- Distribution group

- Host group

CHAPTER ONE: INTRODUCTION 10

Each layer has its own features and devices to operate at. Our proposed system

hires 25 different messages to implement its functions. (See Chapter-3)

1.13 Case Studies

We have implemented three case studies (See Chapter-4) in our system to show its

abilities and at the same time, we highlighted that they would be specified using our

specification language. These case studies are listed:

- Vehicles Speed control on highway

- Stolen car locating & remotely stop it.

- Fast ending for police car chasing.

1.14 Thesis Layout

This report consists of 6 chapters, the first two chapters explain some general concepts of

VANET and Formal Specification Languages, and also tell the state of the art. Chapter 3

describes our methodology to design the proposed layered system Model and the

application of layered protocol and illustrates our proposed specification language and

how to make use of it. Chapter 4 describes mathematically (using our proposed

specification language shown in chapter 3) three case studies. Chapter 5 discusses the

validity and the consistency test for the three case studies and depicts three comparisons

between our formal specification language and other languages. Chapter 6 concludes the

whole report and indicates what hereafter work can be done.

CHAPTER TWO: RELATED WORK 11

CHAPTER 2: RELATED WORK

2.1 Literature Review

With the latest inventions in wireless technologies, automobile manufacturers are about

to take an enormous step to enhance the driving safety and comfort by allowing vehicles

to talk with each other along with the roadside equipment infrastructure explicitly

Vehicular Ad-hoc Networks or VANET[FARKAS C. 2007]. In order that, many projects

are in progress aiming for more safe highways.

2.1.1 Services through VANET

A project was conducted (September 2007) by three computer scientists at University of

South Carolina, The title of the project was: “Application Level Protocol for Accident

reconstruction in VANETs”, which was aiming to investigate the possibilities of

leveraging inter-vehicle communications within VANET framework. This is to analyze

the crash data for accurate accident reconstruction, collecting data after an accident

happens, which will help in solving out the problem but not saving the lives. The

National science Foundation in South Carolina (NFS) sponsored the project which costs

about $838,000 [FARKAS C. 2007].

Two French motorway companies; SAFESPOT and CVIS (Cooperative Vehicle-

Infrastructure Systems) with different participants of the ITS business are involved in

projects related to infrastructure/vehicle communication. SAFESPOT had started in

February 2006 to develop a project which was mainly aimed to understand and assess,

trough test in real condition. It was also to identify the potential of the cooperative

approach in terms of transport safety improvement, which had addressed 12 problems

that can be solved through this project. This project has cost about € 38 Million and is

expected to be completed in four years time. Moreover, about 51 partners from 12

different European countries had supported this project.[FREMONT G., 2007]

CHAPTER TWO: RELATED WORK 12

The CVIS had started a project in February 2006. FP6 Integrated Project was

aimed to develop and experiment new technologies which allowed road vehicles to

communicate with other roadside infrastructure. Based on real-time road and traffic

information, many novel applications can be produced. The consequence will increase

road safety and efficiency, and reduce the environmental impact. Sixty-one partners from

12 countries had cooperated to work and sponsor this project which costed about € 41

Million. They had planned to finish it within 4 years time. [FREMONT G., 2007]

In [SONG H., 2008], some researchers have proposed a sensor-network-based

security system for vehicles. This would detect unauthenticated movement and keep track

of the stolen vehicles while alarming a near by base station by sending warning messages

to the security office at that parking lot. However, it has some limitations especially with

the extreme case of the none-existence of neighbors although a sensor has tried its

maximum level of power.

2.1.2 Data Dissemination

In [BAUMANN R., 2004], a research project was done in 2004 titled as: “Engineering

and simulation of mobile ad-hoc routing protocols for VANET on highways and in

cities”, which was aiming at creating two new broadcasting mechanisms for VANET

networks. It was suggested to minimize the number of broadcasting messages and to get

more stable routes: the Secure Ring Broadcasting (SRB) and the Directed Route Node

Selection (DRNS). This will help to speed up the communication within VANET

environment.

Also there was a master’s project aiming to improve the broadcasting in VANET

Environment, which was done in 2006 at University of Michigan, “Increasing Broadcast

Reliability in Vehicular Ad-Hoc Networks”. Basically they proposed a new technique to

improve the reception rate of broadcast messages by a dynamic adjustment for the

contention window size done by the VANET nodes. The size of adjustment is based on

the number of successfully received packets per the last few seconds.[BALON N.,

(2006)]

CHAPTER TWO: RELATED WORK 13

There were many researches done on Information Dissemination within VANET

environment. Some of them were very beneficial and successful, while others were not

studied in detail. An example of Information Dissemination project is; “Optimizing

Dissemination of Alarm Messages in Vehicular Ad-Hoc Networks (VANET)”; which

was done in 2004 at the University of Avignon – France. In that project, mainly they

proposed a scheme for alarm messages dissemination of accidents to warn other vehicles

about the accident in a more efficient way by restricting rebroadcast to only special

nodes, named “relays”.[ABDERRAHIM B., 2004]

2.1.3 VANET Modeling & Simulation

In [SOMMER C., et.al, 2008], some researchers have created an integrated tool for

graphical modeling. A bidirectional coupling of network simulation, road traffic micro

simulation, and also a comprehensive library that can be used for communication

networks (using OMNET++ simulator).

2.1.4 VANET Communication Enhancement

Vehicular networks are highly mobile and often disconnected therefore the multi-hop

data delivery in VANET environment is so complex. Hence many researchers targeted

this complexity to solve and find efficient suggestions to jump over those complexities.

In [ZHAO J., 2006], a group of researchers proposed a bunch of data delivery protocols

which are outperforming the existing solutions (at that time) in terms of packet delivery

ratio, data packet delay, and protocol overhead.

Due to the vehicle’s high speed and the limitation of the access point’s coverage

area, getting an IP address from a DHCP (Dynamic Host configuration Protocol) might

not be guaranteed. This might consume up to 100 percent of the vehicle’s available

connection time. So In [ARNOLD T., 2008], an IP address passing protocol was

suggested to reduce the overhead of obtaining an IP address to under one-tenth of a

second (Without modifying either DHCP or Address Passing (AP) software).

CHAPTER TWO: RELATED WORK 14

In [BYCHKOVSKY V., 2006], a group of researchers targeting the Internet

access service from vehicles, tried to prove that unplanned network service can provide

reasonable performance to network clients moving in vehicles at vehicular speeds.

Finally they found some measurement results which can improve transport protocols in

VANET networks.

In [ZHAO J., 2008], a scheme was proposed to extend the service range of

roadside access points, which allow drive-thru vehicles to maintain high throughput

within an extended coverage range, by using a vehicle-to-vehicle reply scheme.

From the personal point of view, Vehicle-To-Vehicle based services are

inefficient especially with standalone vehicle scenarios. For example, a single vehicle on

a highway would like to send a message to a faraway vehicle while there are no vehicles

between them to relay and deliver the message then they will never be able to contact

each other. While Vehicle-To-Infrastructure based services can be more efficient because

the services are guaranteed to be provided by the Road Side Equipments (RSEs) all the

way long. So that we need to develop and improve protocols and services for the V2I

communication based applications. However, we still need the V2V connections to

provide either different types of services or to serve as a redundancy or a supportive

solution for the infrastructure.

2.2 VANET Security Issues

VANET environment is very vulnerable to hacking attempts, which will result in disaster

if it happened. For that reason; robust security architecture should be created to protect

VANET environment and its members from such disasters. With the intention of creating

such robust architecture, it should cover the list of requirements below:

- Vehicles Privacy

- V2V & V2I Authentication

- Trust and revocation

CHAPTER TWO: RELATED WORK 15

2.3 State of the Art

VANET is a fast-moving research area which attracts the intention of diverse people

from both academia and industrial background so as to make different workshops and

conferences in the direction of promoting communication amid them for advance further

research interests and actions to enable new transportation services and products, e.g.,

advanced traffic management, vehicle control, safety control, and networking and

information services for users on the road.

Moreover, many of major automotive companies have also explicated an attention

to sponsor or to participate in VANET researches, such as:

- Routing protocols for active safety in VANET.

- Challenges of V2V and V2I wireless communication.

- Wireless technology usage within cars.

- Propagation issues.

- Security issues in VANET and trustworthy networking

- Service applications Infotainment, content distribution, internet access, etc.

- Traffic management, vehicle control, and safety related applications for ITS

systems.

- Wireless Connection Quality-Of-Service in ITS systems.

- Vehicular network performance modeling and analysis, network flow &

congestion control, Architecture & communication Protocols, Medium Access

Control and Routing Protocols.

- Mobility management and intersystem handovers

- Simulation models and test-beds for VANET

- Implementation and field tests of VANET Systems

- Potential modifications needed to improve the DSRC standard.

- Incentive, cooperation, and reputation systems.

CHAPTER TWO: RELATED WORK 16

2.4 Related Work Summary

According to our literature review, none of the researchers have created a common

specification language for VANET. If we have to have a look at [BLUM J., 2004],

[FARKAS C. 2007], [SOMMER C., 2008], [ZHAO J., 2008], [GUEMARI L., 2001],

[BALON N., (2006)], [BAUMANN R., 2004], [SCHROTH C., 2006], and [LARSSON

T., 1998], all of them have worked on VANET Projects or related to VANET, but none

of them has specified the system or the application created. Instead of that, they just

jumped into the simulation part by using couple of simulators such as Ns2, OMNeT++,

or OPNeT, with the help of programming languages such as C++. This means they have

almost involved in the implementation phase of a system development, and this what we

(Researchers) would like to avoid because if an error occurred then fixing it would cost

much more than what it does when we discover the error at the formal specification

phase. The reason for not using a formal specification language by the researchers is the

inexistence of any formal specification language precisely created to represent VANET

systems. Many formal specification languages have been created for other purposes

rather than specifying VANET systems. For example, LOTOS (Language of Temporal

Ordering Specifications), CASL (Common Algebraic Specification Language), Larch (a

set of languages), Z Notations (Zermelo-Frankel Specification language) and many

others, all of those languages are for specifying different types of computer systems, but

none of them is able to specify VANET systems, and that is because of the unique

features for VANET systems. Refer to section 5.3 for more detailed comparison between

our language and more than other 12 formal specification languages.

In the next chapter we are going to illustrate the three methodologies we followed

to achieve our three objectives.

CHAPTER THREE: METHODOLOGY 17

CHAPTER 3: METHODOLOGY

In this section, we are going to demonstrate the methodology we have used to create our

Formal Specification Language. Then we will show how to use and how effective is the

language that we have created by showing some VANET system examples which we

have created to solve the message delivery via VANET by referring to its abilities in high

speed driving & hard highway monitoring problems, stolen car locating problem, and

long police car chasing problem.

3.1 Proposed Used Basic symbols / Notation

Our specification language consists of symbols and notations which are categorized into

six groups. Each group can be used to show or present different aspect; Device Ability

(DA), Device Movement (DM), Messages Exchangeability (ME), Device Internal

Behavior (IB) logic, Security (Sc), and Design & Configuration (D&C) rules. In the next

subsections, we will describe each category and its symbols.

3.1.1 Device Ability

The following symbols can be used to express the abilities of a device:

A B A can reach B, while B can NOT.

A B both of A & B can reach each other.

A Ξ B A controls B – A has the jurisdiction over B

A θ B A sees B

CHAPTER THREE: METHODOLOGY 18

3.1.2 Device Movement

The following symbols can be used to illustrate the movement of the mobile nodes with

the system (To show scenarios):

A ► B A moves to/reaches/towards area B

A ◄ B A moves away from B

A ▲ B A speeds up within area B

A ▼ B A slow down within area B

A ⌂ B A stops within B

A A U-turns

A ╬ A reaches an intersection

A ╦ Reaches a T-Blocked road

A A Turns-Right/South

A A Turns- Left/North

A ~ (x,y) A is moving from Lane-x to Lane-y

3.1.3 Messages exchangeability

The following notations can be used to show the message flow between the system’s

devices:

A ~x> B A sends a message type-x to B

A ~~> B A forwards the incoming message into B

A ~x○ B A Propagates a message type-x to layer-B

A ○x~ B From area A, many devices are sending message type-x to Device B

A ○~~ B From area A, many devices are sending different messages of

different types to Device B

A <x~ B A receives back a reply message type-x from B

Mtx-1 Waiting for a reply message (Type-x Message)

CHAPTER THREE: METHODOLOGY 19

To define the message of a system:

MtX: Source, Destination, Message_Flow_Type , <<message_Fields>>

Where:

Source: The source device that creates this kind of messages.

Destination: The destination device that receives and reacts to such message type.

Message_Flow_Type: The packet type as attributes (e.g.; Multicast, Unicast,

Broadcast, Multi-hop, Single hope)

Message_Fields: all the data fields of that message type in an ordered sequence.

In case there is more than one probability of source or destination devices, then we

list the devices in one field by separating them by or sign “ | ”, as following:

MtX: Source-1 | source-2 |…. | Source-n, Destination-1 | … Destination-n,

Message_Flow_Type , <<message_Fields>>

Where 0 < n < ∞.

To express a message at different layers:

<X> An Application layer packet of type X.

[X] A Network layer packet of type X.

For any block of algorithm can be presented as follow:

Label: <Label>

<Body>

CHAPTER THREE: METHODOLOGY 20

Example:

Label: Block-A

Statement 1

Statement 2

…etc.

To call any block, we can just write the key word Lbl: followed by the label name.

Example:

Lbl: Block-A

3.1.4 Device Internal behavior logic

The following notations and expressions can be used to show how exactly the internal

behavior for the devices is:

F1 F2 Function-1 Sparks / Calls Function-2

F1(_, X) ≈> O(Y) , (X) Function 1 forwards value X as an input to O (where O is

a Device or a Function) to get Y as the output from O.

SQL(a, b, c,…) ≈> X insert a record into table X

SQL(a, b, c,…) <≈ X Get a record values (a,b,c,…) by SQL Query from table X

on the Database server.

Gf (Output),(input) [<≈ souce]

Gf (x, y, z,...),() <≈ A Or Gf (x, y, z,...) <≈ A Means: Get (x,y,z,…) by

Get_function from A. Where A can be a register or a table.

CHAPTER THREE: METHODOLOGY 21

Both of the following two lines mean: Get n values by Get_function from the user

interface of device X, then assign these values into (x,y,z,…), respectively. Where n is a

positive integer number. No input.

Gf (x, y, z,...),() <≈ X_Int

Or

Gf (x, y, z,...) <≈ X_Int

Meanwhile the following line means: Get the output of the Get_function of table

Y when sending the values (a, b, c,…), and assign the result to variable X.

Gf (X), (a, b, c,…) <≈ Y

The following is a list of some basic comparative operators, mathematical and

logic operations:

A Vs. B Compare A with B

< Less than

> Greater than

= Equal

! Not

& And

| Or

(A & B & …) C, D if (A & B) then C & D

(A & B & …) ! C if Not (A & B & …) then C

CHAPTER THREE: METHODOLOGY 22

3.1.5 Security

The following symbols concern the systems security but have a note that we did not

cover all the security aspects, these notations can be used to show a symbol

authentication between devices:

A Ŧ B A trusts B without authentication or already authenticated

A <Ŧ> B A and B trust each other without authentication or already authenticated

A Ŧ Bk A trusts B with authentication Key (k)

A <Ŧ> Bk A trusts B with authentication Key (k), while B trusts A without a Key.

Ag <Ŧ> Bk A trusts B with authentication Key (k) and B trusts A with

authentication Key (g).

A !Ŧ B A Does NOT trust B

A !<Ŧ> B A and B do not trust each other.

A <!Ŧ> B A does not trust B, while B trusts A.

A <Ŧ!> B A trusts B, while B does not trust A.

CHAPTER THREE: METHODOLOGY 23

3.1.6 Validity Test

The formal specification language will be used to prove any system or scenario is valid.

This validity test will make sure that all operations are valid by proving that all of their

steps are valid. See the following example figure:

Figure 3.1: Validity / Consistency Test Example

We have come out with a system that has three devices (D1, D2, D3). The main aim of

this system is sending a signal message X from D1 and receiving a reply message

(Message Y) for that signal. For validating the system, we need to validate its main

operation. This can be done by starting the validation from the least operations going up.

In other words, a whole system’s operation can be divided into smaller groups of sub-

operations; each group has a set of sequenced mini operations. Each of these mini

operations can be divided into smaller units depending on the system’s complexity.

In Figure 3.1, there are two sub-operations; Green Operation and Red Operation,

which will composite the main operation. These two operations themselves are

compounded by more sub-operations (Op.1 through Op.6). These are assumed to be the

lowest level operations to be validated.

D1 D2 D3

Op. 1
Op. 2

Op. 3

Green Operation: Delivering Message X from D1 to D3
Op. 1: D1 is Sending Message X
Op. 2: D2 is Processing/ Forwarding Message X
Op. 3: D3 is Receiving Message X

Red Operation: Delivering Message Y from D3 to D1
Op. 4: D3 is Creating / Sending Message Y
Op. 5: D2 is Processing / Forwarding Message Y
Op. 6: D1 is Receiving Message Y

Op. 6
Op. 5

Op. 4

CHAPTER THREE: METHODOLOGY 24

According to logic, the validity rule is; “A set of sentences are considered valid,

if and only if there is no line in the system’s operation truth table having all of its

statements are True while the conclusion is False.”. Thus we have to go through the

entire truth table and check all the lines whether there is or not a line that breaks the

validity rule. Refer Table 3.1, the first line; the Op.1, Op.2, and Op.3 are True and their

conclusions (Message X was delivered) was true as well, then the Green operation is

valid. In the meantime, the Red Operation is valid as well for the same reason. Finally,

since both of the Operations are valid, then the whole system is valid, but not quite yet,

we have to check the rest of the lines in the truth table to make sure there is no such line

that breaks the validity rule. See the following sentences to understand how each lines of

the truth table were constructed:

Green Operation Validityx = !(!Msg_X_Delivered & Op.1 & Op.2 & Op.3)

Red Operation Validityx = !(!Msg_Y_Delivered & Op.4 & Op.5 & Op.6)

Whole System validityx= Green_Operation_Validityx & Red_Operation_Validityx

Where x is an integer, 0 < x < ∞, the number of the case (One line in the

truth table).

Table 3.1: Validity Truth Table (NOT ALL CASES)

Op.1 Op.2 Op.3
Msg X

Delivered

Green Op.

Validity
Op.4 Op.5 Op.6

Msg Y

Delivered

Red Op.

Validity
Validity

T T T T T T T T T T T

T F F F T F F F F T T

T T T T T T T T F F F

For the second line in Table 3.1, it cannot be considered as the validity measurement

because there is at least one false statement (Op.2 is False and caused the faultiness for

the rest of the sentences). For third line in the truth table, the Green Operations are valid

because all of the sentences and the conclusion are True, while for the Red Operation, all

the statements are true but the conclusion for some reason is false, that would cause the

Invalidity for the whole system.

CHAPTER THREE: METHODOLOGY 25

V
alid

ity
an

d
C

o
nsistency

T
est

F
low

A whole system operation would be divided into levels of groups as shown in Figure 3.2

below. Each level is a group of its units, e.g. the lowest level represents groups of steps,

and the second lowest level has groups of algorithms. Each level’s unit is a set of the

units of the lower level. For example, Algorithm is a set of steps, and a sub-operation is a

set of algorithms and so on. Both of the validity and the consistency tests start from the

least level going up.

Figure 3.2: System operational grouping

The following set of equations is applicable on each pair of levels in Figure 3.2,

when each level’s unit is a WHOLE to the lower level:

OpVa1 = !(Low-Op.1 & Low-Op.2 & … & Low-Op.n & !Conclusion)

Where:

OpVa1: Operation_a (e.g. Green Operation) Validity with the first set of

parameters, where OpVa is a set of n of the Lower level operations

(Low-Op), where n is a positive integer number 0 < n < ∞.

OpVam: Operation_a (e.g. Green Operation) Validity with the n’th set of

parameters, where m is a positive integer number 0 < m < ∞.

CHAPTER THREE: METHODOLOGY 26

Whole System Validity1 (WSV1)= OpVa1 & OpVb1 & … & OpVn1

Where:

Whole System Validity1: the whole system validity (at a level) with the first

set of the parameters.

The final result for the validity test is:

WSVT = WSV1 & WSV2 & … & WSVn

Where:

WSVT: The final result for the whole system validity, (T) for Total.

n: is a positive integer number, 0 < n < ∞.

3.1.7 Consistency Test

In order to prove that any system or scenario is consistent then we have to make sure that

there is at least one full line in the system truth table that all of its operations and the

conclusion are true.

According to logic, the consistency rule is; “A set of sentences are considered

consistent, if and only if there is at least one line in the system’s operation truth table

having all of its statements and the conclusion True.”

In Table 3.2, we can see the first line satisfies the consistency rule then we can

conclude that the whole system is consistent.

Table 3.2: Consistency Truth Table (NOT ALL CASES)

Op.1 Op.2 Op.3
Msg X

Delivered

Green Op.

Consistency
Op.4 Op.5 Op.6

Msg Y

Delivered

Red Op.

Consistency
Consistency

T T T T T T T T T T T

T F F F - F F F F - -

T T T T T T T T F F -

CHAPTER THREE: METHODOLOGY 27

If we have a look to at the third line, we find all the operations are True just like

the first line but the conclusion is False, this means there are two ways for the system to

implement and to achieve the same goal at two different sets of parameters. The system

passed the consistency test with the first set of the parameters but failed with the seconds

set. To find the consistency of a Whole-Operation, we have to make sure that all the sub-

Operations are Consistent. See the following equation:

CTx = Op.1 & Op.2 & … & Op.n & Conclusion

Where:

CTX: Consistency Test for the Whole-Operation X

There are some systems which have both compulsory and optional operations.

Therefore the consistency test should be repeated at least twice with two different cases

to make sure that the system is consistent with such a scenario. The tests will be applied

as the following:

- First time we apply it on the system without considering the optional operation

groups.

- Secondly, we apply the test on the system with considering the first group of the

optional operation.

- The whole system consistency test will be repeated depends on the number of

the Optional operations groups, see the following:

Number of the CTs = Number of the Optional Operations Groups + 1

Where the value (one) added refers to the first test when we apply the test on the

system (Compulsory Operations only) without considering any of the optional operations.

CHAPTER THREE: METHODOLOGY 28

Now the consistency test final result will be found from:

Whole system consistency = CT1 | CT2 | … | CTn

Where:

CT1: Consistency Test for the system with the first set of parameters

n: is a positive integer number, 0 < n < ∞.

And the consistency probability (robustness) can be found by:

Consistency Probability = (Number of Successful Tests / Total Number of the

Tests) * 100 %

3.1.8 Design and Configuration

In order to show the design of a system and set its devices configuration, first, we need to

show the architecture entities and the internal relations between all the entities of the

participated devices. Then explain each of them, by showing the setup of the whole

system (how entities can be related/connected to each other). Finally we will display the

configuration of the devices. For that purpose we can use the following syntaxes:

Let A = Device-a

A = {set of components}

A set of components can be any set of hardware components, functions, and/or

properties.

Or if we want to talk about a group of devices or devices clustering, then:

Let Aa = Group (a) of Device-A

To set the properties of device Ax values:

Ax_Property: < Propert Value >

(e.g.; Ax_ID: Rsq56)

CHAPTER THREE: METHODOLOGY 29

To show the ports of each device, we can present them as a set of ports:

Let SP = {Set of Ports}

(e.g.; SP= {P1, P2, …})

To set the configuration of each port:

Px_Property: < Property Value >

e.g.; P1_IP: < Ip address >

P1_MAC: < MAC address >

To show the functions of each device, we can present them as a set of functions:

Let SF = {Set Of Functions}

e.g; SF = {F1, F2,…}

Then show a brief explanation about each of the functions listed in the set, we can

use one of the two methods; the first is by using a plain text to describe the function:

Let F1: <Plain Text Description>

e.g.; FMtc: Checks the type of the incoming message & decides the destiny of the

incoming message.

Or we can use the second method, which tells what kind of inputs should be given

to the function, and what kind of outputs we expect of that function:

Let F1: I(List of Input Parameters), O(List of Outputs)

Where ‘I’ stands for “Input”

And ‘O’ stands for “Output”

e.g.; FMtc:I(incoming message), O(incoming Message’s Data, next function code)

CHAPTER THREE: METHODOLOGY 30

Finally, to write the body of any function, all we have to do is follow the

function’s header through the steps which combine the function’s body included within

two brackets. See bellow:

Let F1: I(List of Input Parameters), O(List of Outputs)

{

Step 1

Step 2

…. Step n

}

Where: F1 is a function that has n of steps, 0 < n < ∞.

3.1.9 Environment description

We can use these symbols to describe the scenario’s roads directions, their status

(Crowded, Terminated,…etc.) and the position of the vehicles on the road (over which

lane the vehicle is, or to which direction it will go). See Figure 3.3.

Let RN: Northern Road (towards the North)

RS: Southern Road (towards the South)

RE: Eastern Road (towards the East)

RW: Western Road (towards the West)

Figure 3.3: Standards Directions

We can combine two directional symbols to show the rest of the directions, as bellow:

RSE: South-East Road

RNE: North-East Road

RSW: South-West Road

RNW: North-West Road

To specify the instant lane the vehicle is over, we can specify it by adding the

Symbol (Lx) to the Road direction, see bellow:

N

E
N

W
E

S
E

SE

NE

SW

NW

CHAPTER THREE: METHODOLOGY 31

Let RNL1: Northern Road – LANE 1

RNL2: Northern Road – LANE 2

… and So on.

Moreover for the right- hand side driver’s road system, lanes counting starts from

the left side of the road. e.g.; For Malaysia, lane 1 is the one on the left of the road, while

Lane n (Where n is a number 0 < n < ∞) is the one on the right side of the road.

For the left-hand side driver’s road systems, lanes counting starts from the right

side of the road. e.g.; For Iraq, lane 1 is the one on the right side of the road, while Lane n

(where n is a number 0 < n < ∞) is the one on the left side of the road.

To specify the features for road, we just add the feature keyword to the Road

name, as bellow:

Let RN_feature-keyword = <Value-Of-The-Feature>

Example:

Let RN_Allowed_Speed = 70 Km/h

Let RSE_Crowded = True

Let RNW_Terminated = False

To tell on which road the vehicle is, we use:

A --: Rx Means: Vehicle A is driving on Road Rx. The symbol (--) was derived

from the shape of the street lining. And the second part (:) was derived from Traffic light

stops.

CHAPTER THREE: METHODOLOGY 32

And to tell how big the coverage area of the device is, we use:

Let A Ø <m> Means: The Coverage radius of device-A is m, where m is a

positive integer number represents the radius in Meters.

To tell how far is the device from another, we use:

Let A ○-○ B: <m> The distance between device-A and device-B is m, where m

is a positive integer number represents the distance in Meters.

To tell the Three-Dimensional position of an object or another device with reference to a

device, we use:

Let A –xyz B: <#x> <#y> <#z> with reference to Device-A, Device/Object-B

is located at position <#x> <#y> <#z>, where #x, #y, #z are three numbers refer to the

Axis-position.

3.1.10 Connections description

To illustrate the type of connection between two devices, we use:

A >--< B: <Value>

Where Value is the connection type (e.g., Wired, Wireless, Wi-Fi, …etc.)

We can use one of the many options given to show the connection between devices

which is then separated by Comma:

B >--< A: <Value_1>, <Value_2>,…, or <Value_n>

Where: 0 < n < ∞.

We might need to tell about the status of the connection at a specific moment (e.g.;

Active, Inactive, Listening,…etc.) then we use this sentence:

A >--< B_Status: <Value_1>

CHAPTER THREE: METHODOLOGY 33

For the description of connection at the system definition we might want to tell the

range of status for values that can be taken by the connection which is being used:

A >--< B_RStatus: <Value_1>, <Value_2>,…, or <Value_n>

Where: 0 < n < ∞.

For any other property of the connection that we want to illustrate, we can follow this

sentence:

A >--< B_<Property_Keyword>: <Value>

Example:

A >--< B_<Bandwidth >: 1 Mb

In the next sections we are going to illustrate the details of each category and its

combined notations by showing how to use them. In order to do that, we will show some

examples depending on a layered system model which we designed to solve the message

delivery among the participated devices within a VANET environment. Therefore, the

first next section we will use to illustrate the proposed layered system model. Then we

carry out with the details of the categories.

CHAPTER THREE: METHODOLOGY 34

3.2 Layered System Model for VANET Environment & Application Layer Protocol

In this section, we illustrate our proposed layered system and formally specify the

messages exchanged within its algorithms using our own logic notations (Refer Section

3.1).

Table 3.3: Layered System Specific functions description

Mtc
Is a function that checks the Message type (Mt) & decides the destiny of the

incoming message.

PAz
Is the incoming packet analyzer function, it analyses the packet according to the

packet type.

SF Is a set of “Set functions”.

GF Is a set of “Get functions”.

SQL
Is the function that creates SQL statements, their type (Query or Setting type)

depends on the Mtc function’s output.

PFr Is a function that is responsible of forwarding packets to ports.

PCr
Is a function used to create Packets, their type (Unicast / Broadcast, speed code or

searching packets) depends also on the output of the Mtc function.

Our layered model was derived from the Object Oriented Programming (OOP) Idea

when each class has many objects those would get the functions and the features from

that parent class in addition to their unique functions and features. So we have mapped

the OOP idea to fit the VANET environment and create a Model that has many layers

(each layer just like a Class), each has some features and functions those to inherit to the

devices (objects) operate at that specific layer. Each device has functions and interfaces

to communicate and interact among the devices. See [BOOCH G., 1994].

Our system has N number of layers but for the example purpose we are showing three

layers with four devices we have specified, see Figure 3.4, the three layers are.

1- Layer one: Co-ordination layer (L1)

2- Layer two: Distribution Layer (L2)

3- Layer three: Host Layer (L3)

CHAPTER THREE: METHODOLOGY 35

Figure 3.4 – Our proposed Layered system

3.2.1 System Devices

Each layer has its own n number of devices to work in. Each of those devices has its own

functions, tables, number of ports, variables (registers that keep the configuration in). For

further description of the device, we can list its components as a set, and then describe

each component separately as a sub-set of other components and so on. See the following

device descriptions:

1- Layer 1 Devices (α):

Using our Specification language words set to describe the layer α:

Let α = {αA, αB, …, αn} // Layer- α has n number of devices

Where:

αA: L1 Device-A

αB: L1 Device-B

n: a number, where 0 < n < ∞

CHAPTER THREE: METHODOLOGY 36

Now to describe each device of layer-α that has its own components, we have to

use a set of rules by listing its components:

Let αA = { αAF, αAT, αAP} // Leyer α Device-A has three major components

Where:

αAF: L1 Device-A Functions

αAT: L1 Device-A Tables

αAP: L1 Device-A Ports

Finally, we have to describe each component in each device by saying:

And let:

αAF = { αMtc, αPaz, αSf, αGf, αSQL, αPcr, αPfr, *** MORE FUNCTIONS***}

// the above sentence lists the functions set of the αA device. The list might be

extended into a longer one depending on the device design (This is what ***

MORE FUNCTIONS*** refers to). See Table 3.1 to know the duty of each of

the functions in the list.

αAT = {αSpc[a][b], αSMT[c][d], αVT[e][f], αSCT[g][h], ToR[i][j]}

// the above sentence lists the tables set of the αA device.

αAP = {αP1, αP2} // Tells the set of ports in device the αA.

Finally, we combine all of the sets to present the device as one single set as shown

below:

αA = { αMtc, αPaz, αSf, αGf, αSQL, αPcr, αPfr, αSpc[a][b], αSMT[c][d], αVT[e][f], αSCT[g][h],

αToR[i][j], αP1, αP2}

CHAPTER THREE: METHODOLOGY 37

2- Layer 2 Devices (β):

We repeat the same procedure with layer-β:

Let β = {βA, βB, …, βn} // Layer-β has n number of devices

Where:

βA: L2 Device-A

βB: L2 Device-B

n: a number, where 0 < n < ∞

Let βA = { βAF, βAT, βAV, βAP}

Where:

βA: L2 Device-A

βAF: L2 Device-A Functions

βAT: L2 Device-A Tables

βAV: L2 Device-A Variables

βAP: L2 Device-A Ports

And Let:

βAF = { βMtc, βPaz, βSf, βGf, βPcr, βPfr, *** MORE FUNCTIONS***}

// The above sentence lists the functions set of the βA device. The list might be

extended into a longer one depending on the device design (This is what ***

MORE FUNCTIONS*** refers to). Refer Table 3.1 to know the duty of each of

the functions in the list.

βAT = {βVT[e][f], βSCT[g][h]}

// the above sentence lists the tables set of the βA device.

βAV = {βSpc, βRsq}

CHAPTER THREE: METHODOLOGY 38

// the above sentence lists the registers set of the βA device. These registers keep the

device configuration values in it.

βAP = {βP1, βP2, βP3} // Display the set of ports in device the βA.

By combining all the previous sets together in one single set we get:

βA = { βMtc, βPaz, βSf, βGf, βPcr, βPfr, βVT[e][f], βSCT[g][h], βSpc, βRsq, βP1, βP2, βP3}

3- Layer 3 Devices (Γ):

Using our Specification language words set to describe the layer Γ:

Let Γ = { ΓA,ΓB, …, Γn} // Layer- Γ has n of number devices

Where:

ΓA: L1 Device-A

ΓB: L1 Device-B

n: a number, where 0 < n < ∞

In layer-Γ, we got two devices, so we present them separately:

For device-A of layer3 (ΓA):

Let ΓA = { ΓAF, ΓAT, ΓAP}

Where:

ΓA: L3 Device-A

ΓAF: L3 Device-A Functions

ΓAT: L3 Device-A Tables

ΓAP: L3 Device-A Ports

And Let:

ΓAF = { ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr, ΓPfr, *** MORE FUNCTIONS***}

// the above sentence lists the functions set of the ΓA device. The list might be

extended into a longer one depending on the device design (This is what ***

CHAPTER THREE: METHODOLOGY 39

MORE FUNCTIONS*** refers to). See Table 3.1 to know the duty of each of

the functions in the list.

ΓAT = {ΓRT[e][f], ΓST[g][h]}

// the above sentence lists the tables set of the ΓA device.

ΓAP = {ΓP1, ΓP2} } // Tells the set of ports in device the ΓA.

Then:

ΓA = { ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr, ΓPfr, ΓRT[e][f], ΓST[g][h], ΓP1, ΓP2}

For device-B of layer3:

Let ΓB = { ΓBF, ΓBT, ΓBV, ΓBP}

Where:

ΓB: L3 Device-B

ΓBF: L3 Device-B Functions

ΓBT: L3 Device-B Tables

ΓBV: L3 Device-B Variables

ΓBP: L3 Device-B Ports

And Let:

ΓBF = {ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr, ΓPfr, *** MORE FUNCTIONS***}

// the above sentence lists the functions set of the ΓB device. The list might be

extended into a longer one depending on the device design (This is what ***

MORE FUNCTIONS*** refers to). See Table 3.1 to know the duty of each of

the functions in the list.

ΓBT = {ΓRT[e][f]}

// the above sentence lists the tables set of the ΓB device.

CHAPTER THREE: METHODOLOGY 40

ΓBV = {ΓSCT_Flag}

// the above sentence lists the registers set of the ΓB device. These registers keep the

device configuration values in it.

ΓBP = {ΓP1} // Tells the set of ports in device the ΓB.

Then:

ΓB = {ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr , ΓPfr, ΓRT[e][f], ΓSCT_Flag, ΓP1}

3.2.2 Assumptions

- All connections are assumed to be Bi-Directional & existent connections when

ever needed.

- An existent Routing Protocol has already been configured by the system

administrator.

- The connection between α & β devices is assumed to be existing 24 hours a day

for 7 days a week.

CHAPTER THREE: METHODOLOGY 41

3.2.3 Devices Communications

- The connections between α & β devices can be wired, wireless or any other

communication media type, however the connection between β & Γ devices

should be wireless.

α >--< β: Wire, Wireless, or others

Β >--< Γ: Wireless

- Connection between β & Γ devices can be Active or Inactive connections.

- ΓB can have only one active connection, either with ΓA or βA devices.

- β devices can communicate with each other.

- α – To – β – To - β connections supposed to have IP/MAC address filters to

prevent any hacking attempts. Hence, with the existence of such filters, the

trustiness between the devices does not need for the authentication any more. The

sentence below shows that device α and β trust each other completely without the

need for an authentication key. Please notice that our Specification language, so

far, doesn’t support the full specification notations and the rules for the security

aspect.

α <Ŧ> β

and:

βx <Ŧ> βx+1

- β – To - Γ – To – β connections should be secured using some kind of

authentication process. The sentence below shows that device β trusts device Γ

with an authentication key k, while device Γ trusts device β with the

authentication ket g.

βg <Ŧ> Γk

- Layer-1 devices can communicate with Layer-2’s & Layer-2 devices can

communicate with Layer-1 devices when required:

αA βA

- At the same time, Layer-1 devices have a full control on Layer-2 & Layer-3

devices:

αA Ξ βA

CHAPTER THREE: METHODOLOGY 42

And:

αA Ξ Γx

- Layer-2 devices are connected to each other so they can reach each other:

βAx βAy

- Layer-2 Devices can reach Layer-3 devices when required and Layer-3 devices

can reach layer-2 devices:

βA Γx

- So, Layer-1 Devices can reach Layer-3’s only through layer-2 devices.

αA βA Γx

- Layer-3 device-B, has limited abilities compares to Layer-1 Device-A, ΓB can

reach layer-2 devices only, while ΓA can reach Layer-2 devices as well as Layer-3

devices.

ΓB βA

While:

ΓA βA

And:

ΓA ΓB

- As well as, Layer-3 Device-A can control Layer-3 device-B:

ΓA Ξ ΓB

CHAPTER THREE: METHODOLOGY 43

3.2.4 The Application Layer Protocol Abilities

Our proposed protocol has the following abilities:

- Issuing & delivering orders to remote nodes.

- Receiving and saving reports from remote nodes.

- Issuing & delivering services to remote nodes.

- Locating a remote node.

- Provide secured access to devices.

In the next sections, we show the abilities of our protocol through showing its 24

messages abilities and categorize them as how they interact with each other as three

phases.

CHAPTER THREE: METHODOLOGY 44

3.2.4.1 Remote Speed limit phase

These are the messages in remote speed limit phase:

1- Issuing Speed code Message

2- Broadcast Speed Code Message

3- Issue/send L1 Node status report

4- Unicast L1 Node status report

FIGURE 3.5: Remote Speed limit phase Message Flow

Starting by Message 1, a layer-1 device-A generates and sends a speed code to a

layer-2 device that will forward the same message type (MtQ) into the next Layer-2

device and broadcast the contents of the incoming message in MtR to Layer-3 devices

(Message 3).

When a layer-3 device-A receives the MtR, it starts to create and sends out a

message that has the device’s status at that moment (Message 4 - MtS) to the Layer-2

device which in turn will uncast the status report to the layer-1 device (Message 5 - MtT).

Let’s illustrate the system’s abilities to limit the speed of remote vehicles in

details:

ΓXαX βX

MtQ

MtR

MtS

MtTF
lo

w
D

ir
ec

ti
o

n

CHAPTER THREE: METHODOLOGY 45

1- Issuing Speed code Message

When Layer-2 Device-A receives a message, it checks its type to decide what and how

would it be analyzed:

αA ~Q> βAx: <MtQ, #Hp, #SpC>

Let IMsg = <MtQ, #Hp, #SpC>

Where: IMsg: Incoming Message

Let NMsg1= <MtQ, #Hp-1, #SpC>

Where: NMsg1 = New Message-1

βMtc (IMsg) βPaz (#Hp, #SpC) , βPcr(NMsg1)

βPcr βPfr (NMsg1, βP3)

When the Mtc function finds out that the incoming message type is MtQ, it will

call Paz function to start analyzing the rest of the message as (#Hp, #SpC), as well as,

Mtc will call Pfr function to forward the message to the next Layer-2 device-A.

2- Broadcast Speed Code Message

After Layer-2 device analyzes the incoming message into its values, Paz would sparks

Pcr function to create a new message typed-R (MtR) that will be propagated to Layer-3

Devices (Γ) through port-2 (βP2) by βPfr function:

βA ~R> ΓB: <MtR, Rsq(βAx), #SpC>

Let NMsg2 = βPcr (MtR, Rsq(βAx), #SpC)

Where: NMsg2 = New Message-2

βPcr βPFr(NMsg2, βP2)

CHAPTER THREE: METHODOLOGY 46

3- Issue/send L1 Node status report

When a layer-3 Device-B receives the propagated message, it will first try to identify the

message type by using ΓMtc:

ΓB ~S> βA: <MtS, CR>

Let IMsg = <MtR, Rsq(βAx), #SpC>

Where: IMsg: Incoming Message

Now, Mtc’s function is to recognize the message type as MtR, it will call Paz

function to analyze the rest of the incoming message as (Rsq(βAx), #SpC):

Let NMsg3 = <MtS, CR>

ΓMtc (IMsg) ΓPaz (Rsq(βAx), #SpC) , ΓPcr(NMsg3)

ΓA will keep the information of the incoming message source device in RT table:

(Rsq(βAx), RSE_IP) ≈> ΓRT[][]

As we can see, Mtc sparked Pcr function to create a message type-S that contains the

report (CR) that will be unicasted to the RSE that is currently in touch with (this can be

found in RT table).

ΓPcr ΓPfr(NMsg3, ΓP1)

4- Unicast L1 Node status report

After receiving an incoming message by a Layer-2 Device-A and recognized its type as

MtS, its Mtc function will call Paz to analyze the rest of the message as (CR), and saves a

copy of that report in its VT. Then creates a unicast message that includes the report and

the RSE’s Rsq.

CHAPTER THREE: METHODOLOGY 47

βA ~T> αA: <MtT, CR, Rsq>

Let IMsg = <MtS,CR>

Let NMsg4 = <MtT, CR, Rsq>

βMtc (IMsg) βPaz (CR), βPcr(NMsg4)

(CR) ≈> βVT[e][f]

βPcr βPfr(NMsg4)

Now, a layer-1 Device-A receives a message, its Mtc function will adopt that

message up to recognize its type. After recognizing the type is S, the Mtc function will

sparks Paz to read the next bits of the incoming message as the report and where does it

come from (CR,Rsq).

Let IMsg = <MtS, CR>

αMtc (IMsg) αPaz (CR)

Now, the report is ready to be saved into database:

αPaz αSQL(CR, Rsq) ≈> αVT[e][f]

3.2.4.2 Sending a service message to a Layer-3 Device phase

First of all, a manual human interaction should be done by the system administrator to

query the details of the Layer-1 device from its own VT table. However, if could not find

them then try to query the central DB. By assuming the data were found and the layer-3

Device still within the coverage of Layer-3 Device-A. Then using the following

messages, we can approach the Layer-3 Device and deliver a service message to:

1- Sending a service Message

2- Broadcast the service Message

3- Sending a Reply of the service

4- Unicast the Reply of the service to Layer-1 Device-A

CHAPTER THREE: METHODOLOGY 48

FIGURE 3.6: Sending a service message to a Layer-3 Device phase Message Flow

By sending the service message (MtU) to a layer-2 device-A, the last will

broadcast it to all Layer-2 devices (MtV) and forward it to the next Layer-2 devices.

When a layer-3 device receives that service message, it will apply the service and reply

the application result (Successful, not successful, or some other predefined value). The

reply can reach from Layer-3 device to layer-1’s, through two messages; the first will

deliver the reply from Layer-3 to layer-2 device (MtW), while the second is (MtX) which

will be unicasted by layer-2 device to Layer-1’s.

Let’s illustrate the abilities of the layered system at the Sending a service message

to a Layer-3 Device phase in more detailed explanation:

ΓXαX βX

MtU

MtV

MtW

MtXF
lo

w
D

ir
ec

ti
o

n

CHAPTER THREE: METHODOLOGY 49

1- Sending a service Message

When Layer-2 Device-A receives a message, it checks its type to decide what how would

it be analyzed:

αA ~U> βA: <MtU, Hp, SPN#, Value, XXX >

Let IMsg = <MtU, Hp, SPN#, Value, XXX >

Where: IMsg: Incoming Message

Let NMsg1= <MtV, SPN#, Value, XXX>

Where: NMsg1 = New Message-1

βMtc (IMsg) βPaz (Hp, SPN#, Value, XXX) , βPcr(NMsg1)

βPcr βPfr (NMsg1, βP3)

When its Mtc function finds out that the incoming message’s type is MtU. It will

call Paz function to start analyzing the rest of the message as (Hp, SPN#, Value, XXX),

where XXX can be a useful information for the required service, as well as, Mtc will call

Pfr function to forward the message to the next Layer-2 device.

2- Broadcast the service Message

After Layer-2 device analyzes the incoming message into its values, Paz will sparks Pcr

function to create a new message typed-V (MtV) that will be propagated to Layer-3

Devices (Γ) through port-2 (βP2) by βPfr function:

βA ~V> ΓB: <MtV, SPN#, Value, XXX>

Let NMsg2 = βPcr(MtV, SPN#, Value, XXX)

Where: NMsg2 = New Message-2

βPcr βPFr(NMsg2, βP2)

CHAPTER THREE: METHODOLOGY 50

3- Sending a Reply of a service

When a layer-3 Device-B receives the propagated message, it will first try to identify the

message type by using ΓMtc.

ΓB ~W> βA: <MtW, SPN#, Value>

Let IMsg =<MtV, SPN#, Value, XXX>

Where: IMsg: Incoming Message

Now, Mtc’s function is to recognize the message type as MtV, it will call Paz’s

function to analyze the rest of the incoming message as (SPN#, Value, XXX):

Let NMsg3 = <MtW, SPN#, Value>

ΓMtc (IMsg) ΓPaz (SPN#, Value, XXX), ΓPcr(NMsg3)

ΓPaz ΓFX

Where ΓFX is any service function

After the service implementation has been done, an output of that function will

appear; that will be presented by a value that could be successful, unsuccessful, or any

other predefined value. This value will be inserted into an MtW message and sent

through Port 1 of Layet-3 Device-A to the RSE (Currently in touch with).

ΓPcr ΓPfr(NMsg3, ΓP1)

CHAPTER THREE: METHODOLOGY 51

4- Unicast the Reply of a service to Layer-1 Device-A

After receiving an incoming message by a Layer-2 Device-A, and recognizing its type as

MtW, its Mtc function will call Paz to analyze the rest of the message as (Rsq, SPN#,

Value). Then create a unicast message (MtX) which includes the service reply, Layer-3

device ID, and the RSE’s Rsq this message is unicasted from, to the layer-1 Device-A.

βA ~X> αA: <MtX, Rsq, SPN#, Value>

Let IMsg = <MtW, SPN#, Value>

Let NMsg4 = <MtX, Rsq, SPN#, Value>

βMtc (IMsg) βPaz (Rsq, SPN#, Value), βPcr(NMsg4)

βPcr βPfr(NMsg4, βP1)

Now, a layer-1 Device-A receives a message, its Mtc function will adopt that

message up to recognize its type. After finding the type is X, the Mtc function will sparks

Paz to read the next bits of the incoming message as the service reply and where does it

come from (Rsq, SPN#, Value).

Let IMsg = <MtX, Rsq, SPN#, Value>

αMtc (IMsg) αPaz (Rsq, SPN#, Value)

CHAPTER THREE: METHODOLOGY 52

3.2.4.3 Getting access from a mobile node into another node phase

This phase starts by the user of Layer-3 device-A inputs an ID of a layer-3 Device-B

through its user interface and send a request message to a layer-2 Device-A. It tries to get

the full information of that device-B before it can get access to it.

The following are the messages used in the phase of getting access from a mobile

node into another mobile node:

1- Access Authentication Request (MtB-1)

2- Reply - Access Authentication Request

3- Layer-3 Device-A info. Request (MtD-1)

4- Reply – Layer-3 Device-A info. Request (MtC, MtF)

5- Copy of Layer-3 Device-A info

6- Layer-3 Device-A info. Request (MtD-1)

7- Layer-3 Device-B SPN# info Request (MtH-1)

8- Reply - Layer-3 Device-B SPN# info Request (MtG)

9- Layer-3 Device-B SPN# info Request (MtJ-1)

10- Reply – Layer-3 Device-B SPN# info Request (MtK, MtI)

11- Layer-3 Device-B SPN# info Request

12- Copy of Layer-3 Device-B SPN#’s info

13- Access Request & Speed information (MtP-1)

14- PID availability enquiry (MtO-1)

15- Reply - PID availability enquiry (MtN)

16- Reply for Access request (MtM)

CHAPTER THREE: METHODOLOGY 53

FIGURE 3.7: Getting access from a mobile node into another node phase Message Flow

By sending an Access Authentication request message (MtA) to a layer-2 device-

A, it will check for the existence of the source node (which is Layer-3 Device-A) in its

SCT Table. If the data exists, then it will reply with a positive Access authentication

reply (MtB). Otherwise, it will try to ask for those data from the two previous layer-2

devices (MtC), which will reply with a positive reply message if the requested data is

exist in the SCT table of any of them (MtD). If it is not found, then it will send a request

to the Layer-1 Device-A (MtF) asking for the same information, that will also check for

the availability for that information. If it has been found, it will unicast it (MtD) to the

layer-2 device-A which first start with the query, while a negative reply will be issued in

case of the none existence.

When the (destination) layer-2 device-A receives the MtD message, it will unicast

it to the Layer-3 device-A (which asked for the information) and forwards a copy of those

information (MtE) to the next ten layer-2 devices to guarantee the information delivery to

people who have requested for layer-2 device. In case of receiving the requested data by

L2DA, it will grant the access for the layer-3 Device-A, so now it can read from / write to

ΓXαB βX

MtA

MtF

MtD

MtB

F
lo

w
D

ir
ec

ti
o

n

αA βX-2

MtC

MtG

MtK

MtJ

MtH

MtI

MtM

MtN

MtO

MtP

CHAPTER THREE: METHODOLOGY 54

L2DA. According to L3DA, it might need to get information for another L3DB so it can

get access to the last, which can query the L2DA (MtG) to get from them.

The same sequence will be repeated after looking at L3DB’s information, but this

time L2DA searches in its ST table, the messages are different, and the result reply will

be (MtH) sent to the L3DA.

Finally, assume that L3DA has gotten the information of the other L3DB, now it

can try to authenticate into that device (MtM) using these information. L3DB will check

the trustworthy of the source node of MtM message by asking the L2DA (MtN). Lastly, it

will look for a match of the node’s ID in its SCT table. Once it has been found, then it

will reply through a positive MtO to the L3DB, which consequently sends out a unicast

of positive reply to the L3DA telling that now it can read from / write on it.

Let’s illustrate the abilities of the layered system at getting access from a mobile

node into another node phase in detailed manner:

CHAPTER THREE: METHODOLOGY 55

1- Access Authentication Request (MtB-1)

Message type-A is a created by ΓA and sent to βA as a unicast message.

When βA receives the message, it checks the type to decide what how would it be

analyzed:

ΓA ~A> βA: <MtA, PID, Pswd>

Let IMsg = <MtA, PID, Pswd>

Where: IMsg: Incoming Message

Let NMsg1= <MtB, Value>

Where: NMsg1 = New Message-1

Let NMsg2 = <MtC, PID, Pswd, Rsq(x), Hp>

Where: NMsg2 = New Message-2

βMtc (IMsg) βPaz (PID, Pswd) (PIDS, PswdS) <≈ βSCT

Where PIDS: PID Value stored in the SCT table

PswdS: The stored Pswd value in SCT

PID Vs. PIDS & Pswd Vs. PswdS βPcr(NMsg1) βPfr (NMsg1, βP2)

PID Vs. PIDS & Pswd Vs. PswdS ! βPcr(-NMsg1), βPcr(NMsg2)

Where: “ -NMsg “ means Negative New Message

βPcr(-NMsg1) βPfr (-NMsg1, βP2)

βPcr(NMsg2) βPfr (NMsg2, βP1)

When the Mtc function finds out that the incoming message’s type is MtA. It will

call Paz function to start analyzing the rest of the message as (PID, Pswd). At the same

time, it looks for the PIDS & PswdS in the SCT table. If it has been found, then it will

compare PID with PIDS and Pswd with PswdS. If they matched, then βA will create a

positive reply message (MtB) and forward it to port to as a unicast message to ΓA. If the

values are not matching to each other, then a negative MtB message will be sent to ΓA.

CHAPTER THREE: METHODOLOGY 56

While in case of none existence of PID’s information in the SCT Table, βA will

create a query message (MtC) and forward it to the two previous Layer-2 devices by

asking them for those missed information, probably, those information are exists in the

first previous βDevice.

2- Reply - Access Authentication Request

There are four different types of MtB messages to be sent by layer-2 devices and be

received by layer-3 devices. When the last layer receives the message it will check the

type of the message, this would be done by Mtc.

ΓA <B~ βA: <MtB, Value>

Let IMsg =<MtB, Value>

Where: IMsg: Incoming Message

Let NMsg1= <MtG, PID, SPN#>

Where: NMsg1 = New Message-1

ΓMtc (IMsg) ΓPaz (Value)

After Mtc has discovered the message type, it will call Paz function to analyze the

rest of the incoming message as (Value):

(Value=0) ΓPcr(NMsg1) ΓPfr (NMsg1, ΓP1)

(Value=1) A text Message appears on the user interface “Access Denied! wrong

Password”

(Value=2) A text Message appears on the user interface “Waiting …!”

(Value=3) A text Message appears on the user interface “Access Denied! Invalid

PID’s Info.”

CHAPTER THREE: METHODOLOGY 57

3- Layer-3 Device-A info. Request (MtD-1)

In case of none existence of PID’s information in the SCT table of the Layer-2 device, it

will call for the help of the two previous layer-2 devices to find out the information in

their own SCT tables:

βA ~C> βA-1/2: <MtC, PID, Pswd, Rsq(x), Hp>

Let IMsg =<MtC, PID, Pswd, Rsq(x), Hp>

Where: IMsg: Incoming Message

And Let Hp = 2

Let NMsg1= <MtC, PID, Pswd, Rsq(x), Hp-1>

Where: NMsg1 = New Message-1

Let NMsg2= <MtF, PID, Pswd, Rsq(x)>

Where: NMsg2 = New Message-2

Let NMsg3= <MtD, Value, PID’s info>

Where: NMsg3 = New Message-3

βMtc (IMsg) βPaz (PID, Pswd, Rsq(x), Hp) (PIDS, PswdS) <≈ βSCT

Where PIDS: PID Value stored in the SCT table

PswdS: The stored Pswd value in SCT

PID Vs. PIDS & Pswd Vs. PswdS βPcr(NMsg3) βPfr (NMsg3, βP1)

PID Vs. PIDS & Pswd Vs. PswdS & Hp=0 ! βPcr(-NMsg1) βPfr (-NMsg1, βP3)

PID Vs. PIDS & Pswd Vs. PswdS & Hp!=0 ! βPcr(NMsg2) βPfr (NMsg2, βP3)

Where: “-NMsg“ means Negative New Message

CHAPTER THREE: METHODOLOGY 58

4- Reply – Layer-3 Device-A info. Request (MtC, MtF)

When a message type-D is sent by βA-1/2 or αA to βA, it will be issued as a unicast

message, that its value will be forwarded as the unicast message (MtB) to the Layer-3

device-A (ΓA) that carries the PID as its ID.

βA <D~ βA-1/2 or αA: <MtD, Value, PID’s info>

Let IMsg= <MtD, Value, PID’s info>

Where: IMsg = Incoming message

Let NMsg1=<MtB, Value>

Where: NMsg1 = New Message-1

Let NMsg2=<MtE, Hp, PID’s info>

Where: NMsg2 = New Message-2

Hp = 10

βMtc (IMsg) βPaz (Value, PID’s info)

βPcr(NMsg1) βPfr (NMsg1, βP2)

(Value = 0) βPcr(NMsg2) βPfr (NMsg2, βP1)

CHAPTER THREE: METHODOLOGY 59

5- Copy of Layer-3 Device-A info

When a layer-2 device-A receives a positive Message type-D (that has the PID

information), it will forward a copy of those information to the next ten layer-2 Devices

as a MtE with Hp value of 10.

βA ~E> βA+1/10: <MtE, Hp, PID’s info>

Let IMsg= <MtE, Hp, PID’s info>

Where: IMsg = Incoming message

Hp = 10

Let NMsg1=<MtE, Hp-1, PID’s info>

Where: NMsg1 = New Message-1

Let NMsg2=<MtB, Value>

Where: NMsg2 = New Message-2

βMtc (IMsg) βPaz (Hp, PID’s info) (PID’s info) ≈> βSCT

and (Hp-1 > 0) βPcr (NMsg1) βPfr (NMsg1, βP3)

βPcr (NMsg2) βPfr (NMsg2, βP2)

CHAPTER THREE: METHODOLOGY 60

6- Layer-3 Device-A info. Request (MtD-1)

When a layer-1 device-A receives the MtF message, it will analyze it into its prime fields

looking for the PID identification whether its information are missed and requested. So

Layer-1 Device-A will look for it in its SCT table. If it has been found, then it will issue a

MtD message and unicast it to the RSE(Rsq). On the other hand, if it has not been found,

then it will query the Database server storage.

βA-2 ~F> αA: <MtF, PID, Pswd, Rsq(x)>

Let IMsg= <MtF, PID, Pswd, Rsq(x)>

Where: IMsg = Incoming message

Let NMsg1=<MtD, Value, PID’s info, Rsq(x)>

Where: NMsg1 = New Message-1

Let NMsg2=(Database Server Query) ** QUERY FROM THE SQL SERVER**

Where: NMsg2 = New Message-2

αMtc (IMsg) αPaz (PID, Pswd, Rsq(x)) (PID’s info) <≈ αSCT

found: αPcr (NMsg1) αPfr (NMsg1, αP1)

not found: αPcr (NMsg2) αPfr (NMsg2, αP2)

CHAPTER THREE: METHODOLOGY 61

7- Layer-3 Device-B SPN# info Request (MtH-1)

When the layer-3 device-A receives a positive reply (+MtB) to access a layer-2 device-A,

it will create an information request message (MtG) asking for the full set of Node’s

(numbered SPN#) information and waits for the reply (MtH).

When the MtG message reaches the layer-2 device-A, it will be analyzed by the

Mtc & Paz functions respectively. Layer-2-device-A looks for the requested information

(using SPN# value) in its VT table. If it has been found, it will reply by a positive MtH

reply. If it has not been found, then the device tries to ask the two previous layer-2

devices for those information (MtI).

ΓA ~G> βA: <MtG, PID, SPN#>

Let IMsg= <MtG, PID, SPN#>

Where: IMsg = Incoming message

Let NMsg1= <MtH, Value, Node SPN#’s info>

Where: NMsg1 = New Message-1

Let NMsg2= <MtI, PID, SPN#, Rsq(x), Hp)

Where: NMsg2 = New Message-2

Hp = 2

βMtc (IMsg) βPaz (PID, SPN#) (SPN#’s info) <≈ βVT

((SPN#’s info) <≈ βVT) βPcr (NMsg1) βPfr (NMsg1, βP2)

((SPN#’s info) <≈ βVT) ! βPcr (NMsg2) βPfr (NMsg2, βP1)

CHAPTER THREE: METHODOLOGY 62

8- Reply - Layer-3 Device-B SPN# info Request (MtG)

MtH is a service reply message sent by the layer-2 device-A and received by the layer-3

device-A, responding to the MtG’s service request message.

When MtH reaches the layer-3 device-A, it will pass through Mtc and Paz

functions to be analyzed into its prime fields values. MtH might be a positive reply or a

negative:

ΓA <H~ βA: <MtH, Value, Node SPN#’s info>

Let IMsg = <MtH, Value, Node SPN#’s info>

Where: IMsg: Incoming Message

Let NMsg1= <MtM, PID, SPN#’s info, Opt, SPc>

Where: NMsg1 = New Message-1

ΓMtc (IMsg) ΓPaz (Value, Node SPN#’s info)

After Mtc discovers the message type, it will call Paz function to analyze the rest

of the incoming message as (Value, Node SPN#’s info):

(Value=0) ΓPcr(NMsg1) ΓPfr (NMsg1, ΓP2)

And (Node SPN#’s info) ≈> ΓST

(Value=1) A text Message appears on the user interface “Access Denied! wrong

Password”

(Value=2) A text Message appears on the user interface “Waiting …!”

(Value=3) A text Message appears on the user interface “Access Denied! Invalid

SPN#’s Info.”

CHAPTER THREE: METHODOLOGY 63

9- Layer-3 Device-B SPN# info Request (MtJ-1)

In case of none existence of SPN#’s information in a VT table of the Layer-2 device, it

will call for the help of the two previous layer-2 devices to find out the information in

their own VT tables:

βA ~I> βA-1/2: <MtI, PID, SPN#, Rsq(x), Hp>

Let IMsg =<MtI, PID, SPN#, Rsq(x), Hp>

Where: IMsg: Incoming Message

Hp = 2

Let NMsg1= <MtI, PID, SPN#, Rsq(x), Hp-1>

Where: NMsg1 = New Message-1

Let NMsg2= <MtK, PID, SPN#, Rsq(x)>

Where: NMsg2 = New Message-2

Let NMsg3= <MtJ, Value, PID, Car SPN#’s info>

Where: NMsg3 = New Message-3

βMtc (IMsg) βPaz (PID, SPN#, Rsq(x), Hp) (SPN#’s info.) <≈ βVT

((SPN#’s info.) <≈ βVT) βPcr(NMsg3) βPfr (NMsg3, βP1)

PID Vs. PIDS & Pswd Vs. PswdS & Hp=0 ! βPcr(-NMsg1) βPfr (-NMsg1, βP3)

PID Vs. PIDS & Pswd Vs. PswdS & Hp!=0 ! βPcr(NMsg2) βPfr (NMsg2, βP3)

Where: “-NMsg“ means Negative New Message

CHAPTER THREE: METHODOLOGY 64

10- Reply – Layer-3 Device-B SPN# info Request (MtK, MtI)

When a message type-J sent by βA-1/2 or αA to βA, it will be issued as the unicast message,

that its value will be forwarded as the unicast message (MtH) to the Layer-3 device-A

(ΓA) that carries the PID as its ID.

βA <J~ βA-1/2 or αA: <MtJ, Value, PID, Car SPN#’s info>

Let IMsg= <MtJ, Value, PID, Node SPN#’s info>

Where: IMsg = Incoming message

Let NMsg1=<MtH, Value, Node SPN#’s info>

Where: NMsg1 = New Message-1

Let NMsg2= <MtL, Hp, SPN#’s info>

Where: NMsg2 = New Message-2

Hp = 10

βMtc (IMsg) βPaz (Value, PID, Node SPN#’s info)

βPcr(NMsg1) βPfr (NMsg1, βP2)

(Value = 0) βPcr(NMsg2) βPfr (NMsg2, βP1)

11- Layer-3 Device-B SPN# info Request

When the layer-1 device-A receives a MtK message, it will analyze it into its prime fields

looking for the SPN# number that its information are missed and requested. Therefore

Layer-1 Device-A will look for it in its VT table. If it has been found then, it will issue

the MtJ message and unicast it to the RSE(Rsq). Meanwhile if it has not been found, then

it will query the Database server storage.

βA-2 ~K> αA: <MtK, PID, SPN#, Rsq(x)>

Let IMsg= <MtK, PID, SPN#, Rsq(x)>

Where: IMsg = Incoming message

CHAPTER THREE: METHODOLOGY 65

Let NMsg1= <MtJ, Value, PID, Node SPN#’s info>

Where: NMsg1 = New Message-1

Let NMsg2=(Database Server Query) ***** Standard SQL Sentence*****

Where: NMsg2 = New Message-2 ** QUERY FROM THE SQL SERVER**

αMtc (IMsg) αPaz (PID, SPN#, Rsq(x)) (SPN#’s info) <≈ αVT

(SPN#’s info) <≈ αVT αPcr (NMsg1) αPfr (NMsg1, αP1)

(SPN#’s info) <≈ αVT ! αPcr (NMsg2) αPfr (NMsg2, αP2)

12- Copy of Layer-3 Device-B SPN#’s info

When the layer-2 device-A receives a positive Message type-J (that has the SPN#’s

information), it will forward a copy of these information to the next ten layer-2 Devices

as a MtL with Hp value of 10.

βA ~L> βA-1/10: <MtL, Hp, SPN#’s info>

Let IMsg = <MtL, Hp, SPN#’s info>

Where: IMsg = Incoming message

Hp = 10

Let NMsg1 = <MtL, Hp-1, SPN#’s info>

Where: NMsg1 = New Message-1

Let NMsg2 = <MtH, Value, Node SPN#’s info>

Where: NMsg2 = New Message-2

βMtc (IMsg) βPaz (Hp, SPN#’s info) (SPN#’s info) ≈> βVT

and (Hp-1 > 0) βPcr (NMsg1) βPfr (NMsg1, βP1)

βPcr (NMsg2) βPfr (NMsg2, βP2)

CHAPTER THREE: METHODOLOGY 66

13- Access Request & Speed information (MtP-1)

When the layer-3 device-A receives a MtH message with a value of zero, it means this

message has the required information to access the other layer-3 deives-B. However, it

should ask for the permission to get that access (MtM).

ΓA ~M> ΓB: <MtM, PID, SPN#’s info, Opt, SPc>

Let IMsg = <MtM, PID, SPN#’s info, Opt, SPc>

Where: IMsg = Incoming message

Hp = 10

Let NMsg1 = <MtN, PID>

Where: NMsg1 = New Message-1

Let NMsg2 = <MtP, Value>

Where: NMsg2 = New Message-2

ΓMtc (IMsg) ΓPaz (Hp, PID, SPN#’s info, Opt, SPc) (SPN#s info) <≈ ΓSCT

Where: SPN#s info: stored SPN# information in the node’s registers

(SPN#’s info Vs. SPN#s info) ΓPcr (NMsg1) ΓPfr (NMsg1, ΓP1)

(SPN#’s info Vs. SPN#s info) ! ΓPcr (NMsg2) ΓPfr (NMsg2, ΓP2)

When Value of NMsg2 = 2

CHAPTER THREE: METHODOLOGY 67

14- PID availability enquiry (MtO-1)

MtN message is a validation message, it checks whether a PID node is exist or not (is it a

real PID node, or a fake one). So, when the layer-2 device-A receives the MtN message,

it analyzes and start looking for a PID match in its SCT table. If the match was found,

then it will reply with a positive MtO message to the requester node. If it was not found

then it will send a negative MtO reply.

ΓB ~N> βA: <MtN, PID>

Let IMsg = <MtN, PID>

Where: IMsg = Incoming message

Let NMsg1 = <MtO, Value>

Where: NMsg1 = New Message-1

βMtc (IMsg) βPaz (PID) (PIDs) <≈ βSCT

Where: PIDs: a PID Match stored in the node’s SCT Table.

(PID Vs.PIDs) βPcr (NMsg1) βPfr (NMsg1, βP2)

When Value of the NMsg1= 0

(PID Vs.PIDs) βPcr (NMsg1) βPfr (NMsg1, βP2)

When Value of the NMsg1= 1

CHAPTER THREE: METHODOLOGY 68

15- Reply - PID availability enquiry (MtN)

When the layer-3 device-B receives a positive MtO reply message from a layer-2 device-

A, it means that PID node is a valid one and it can trust it.

ΓB <O~ βA: <MtO, Value>

Let IMsg = <MtO, Value>

Where: IMsg = Incoming message

Let NMsg1 = <MtP, Value>

Where: NMsg1 = New Message-1

ΓMtc (IMsg) ΓPaz (Value) ΓPcr (NMsg1) ΓPfr (NMsg1, ΓP1)

16- Reply for Access request (MtM)

Finally, when the Layer-3 device-A receives a positive reply from another layer-3 device-

A, it means access is granted by the other side to access it. However, if it is a negative

reply, then it means the access was denied by the other side.

ΓA <P~ ΓB: <MtP, Value>

Let IMsg = <MtP, Value>

Where: IMsg = Incoming message

Let NMsg1 = <MtM, PID, SPN#’s info, Opt, SPc>

Where: NMsg1 = New Message-1

(Value=0) ΓPcr(NMsg1) ΓPfr (NMsg1, ΓP1)

(Value=1) A text Message appears on the user interface “Access Denied! Invalid

PID’s Info.”

(Value=2) A text Message appears on the user interface “Access Denied! wrong

Password”

CHAPTER THREE: METHODOLOGY 69

Now, after showing the design of our proposed system using our specification language

and the abilities of both of them, in the next chapter we are going to show some case

studies done on our system using the same formal specification language that we have

proposed.

CHAPTER FOUR: CASE STUDIES 70

CHAPTER 4: CASE STUDIES

4.1 Introduction

Using our Formal Specification Language, we are going to disclose three case studies;

Speed control & Highway monitoring, Remote car locating & sending a Service

request / Function message, and the last case is on Suspect car instant termination. Then

we formalize their designs, and show how they work with some scenarios then we prove

their validity and consistency.

Each case studies in this chapter can be laid out by describing it with flowcharts

and algorithms (except for the third case study), then we set up the case study devices and

their configuration using our specification language and show the scenario description on

each cases. Finally, we apply the validity and consistency tests on each case study

separately using the formal specification language that we have created.

4.2 Case study -1: Speed control & Highway monitoring

For the first case study “Speed Control & High Way Monitoring”, See Figure 4.1, we got

Figure 4.1: Case Study 1: Speed Control & High Way Monitoring

CHAPTER FOUR: CASE STUDIES 71

a Highway of two sides, the one on the right is going north while the other is going the

opposite way. Each of the two ways has two lanes. The allowed speed on the right road is

60 Km/h, while 70 Km/h is the allowed speed for the left road.

On each side of the road there is a set of Equipment (Road side Equipment), those

are connected to each other and have connected to an administrative device (Coordinator

device) which has the ability to reach and access any of those Road side equipments

(RSEs), as well as the vehicles’ devices (VVD).

In this scenario, the coordinator device officer inputs the allowed speed on the

road he is responsible about as a number (in our scenario, the number should be 60 for

the right road; The right car driver is allowed to drive at the maximum of 60 Km/h, not

more than that). This will be converted into an equivalent code which will be forwarded

to the RSE devices that will propagate the code to the vehicles within its coverage area.

If the right side was driving at a higher speed more than 60 Km/h, then the

vehicle’s communication device will receive the code propagated by the RSEs. It will

convert it into an analog signal that controls the vehicle’s speed to reduce its speed and

peaks at 60 km/h not more than that.

To present this scenario mathematically, we use our formal specification language

to define each device and the connection type between them and their configuration.

Finally we show how exactly the messaging processes between the devices.

4.2.1 Participated devices definitions

In this scenario, three devices are participating in; these are; Coordination device (which

is the master of everything happening on the road it’s responsible for), Road Side

Equipment (which has forwarded and propagated the messages between the coordinator

and vehicle devices.) Vehicles VANET Devices which resides inside the vehicles, its job

is to receive the messages propagated by the RSE and translate it to take the right

required action.

CHAPTER FOUR: CASE STUDIES 72

For the coordinator device, it has three contents; they are; set of functions, set of

table, and set of ports. The set of functions contain seven different functions; αMtc (checks

the type of the incoming message and decides the destiny of the carried data), αPaz

(Analyzes the incoming data stream according to the message type into usable data), αSf

(Sets some values as required), αGf (Get some values for some functions when required),

αSQL (Creates SQL syntaxes), αPcr (Creates different messages types as required), αPfr

(Forwards the messages to the required ports). A set of tables composes of 4 tables; SMT

(Speeds Mapping table), VT (lists all the vehicles instantly r within the coverage area of

the system and those were in since the last X hour(s), where X is a number (0 < X < ∞)),

SCT (Lists all the cars those were reported as suspect cars), ToR (Lists the IDs of all the

road side units under the responsibility of the coordinator device). Finally, the set of the

coordinator device ports, which has two main ports; P1 & P2. P1 (Port one, which

connects the coordinator device to the first road side unit on the highway it’s responsible

to manage). On the other side we have P2 (Port two, which connects the coordinator

device to a database server).

CHAPTER FOUR: CASE STUDIES 73

Figure 4.2: Coordinator device internal architecture

Let αA = { αAF, αAT, αAP, αA_INT}

Where:

αA : Coordinator device (Co_D)

αAF: Co_D’s Functions

αAT: Co_D’s Tables

αAP: Co_D’s Ports

αA_INT: Co_D’s User Interface

CHAPTER FOUR: CASE STUDIES 74

And let:

αAF = { αMtc, αPaz, αSf, αGf, αSQL, αPcr, αPfr}

Where:

αMtc: Message type checker function

αPaz: Packet / Massage Analyzer

αSf: set of SET functions

αGf: Set of GET Functions

αSQL: SQL syntax creator function

αPcr: Packet / Message Creator

αPfr: Packet / Message forwarder (specifies to which port)

And Let:

αAT = {αSMT[c][d], αVT[e][f], αSCT[g][h], αToR[i][j]}

Where:

αSMT[c][d]: Speed Mapping table, maps speeds as numbers into its equivalent

code. It has c of rows and d of columns, where both of c and d are

positive integers.

αVT[e][f]: Table of all the vehicles access the coverage area for the last x

hour(s). Where x is a number (0 < x < ∞). It has e of rows and f of

columns, where both of e and f are positive integers.

αSCT[g][h]: Contains the full information about Special vehicles table instantly

within the coverage area. It has g of rows and h of columns, where

both of g and h are positive integers.

αToR[i][j]: a Table contains the full information about the RSEs, those are under

the coordinator device responsibility. It has i of rows and j of

columns, where both of i and j are positive integers.

CHAPTER FOUR: CASE STUDIES 75

αAP = {αP1, αP2}

Where:

αP1: The first port of Co_D device, connected to the first RSE.

αP2: The second port of Co_D device, connected to a database server.

Then:

αA = { αMtc, αPaz, αSf, αGf, αSQL, αPcr, αPfr, αSMT[c][d], αVT[e][f], αSCT[g][h], αToR[i][j],

αP1, αP2}

αA_Features:

αA_Mobile = False // The Co_D is not a mobile device

αA_SQL_Server = True // The Co_D has the ability to query an SQL

server directly

αA_User_Interface = True // The Co_D device can be managed by a user

interface

αA_initialize_Operations = True // The Co_D has the ability to start

messaging other devices.

αA_Info = True // Co_D can be considered as an information center, that

because it’s connected to a database server which

stores the information in its storage.

αA_Routing = True, <Routing Protocol(s) used> // Co_D has the routing

ability by using the protocols listed <Routing Protocol(s) used>.

CHAPTER FOUR: CASE STUDIES 76

For the Road side Equipment (RSE), it has 4 main contents; Set of Functions, Set

of Tables, Some registers, and set of ports.

The functions set contains six different functions; βMtc (checks the type of the

incoming message and decides the destiny of the carried data), βPaz (Analyzes the

incoming data stream according to the message type into usable data), βSf (Sets some

values as required), βGf (Get some values for some functions when required), βPcr

(Creates different messages types as required), βPfr (Forwards the messages to the

required ports). The set of tables has 2 members; VT (lists all the vehicles instantly r

within the coverage area of the system and the ones were in since the last X hour(s),

where X is a number (0 < X < ∞)), SCT (Lists all the cars those were reported as suspect

cars). The set of registers has two members, these are; Speed code register (which keeps

the last speed code received from the coordinator device to propagate to the vehicles

within its coverage) and Road Side Equipment ID register (which keeps the configuration

information of the RSE), and finally, the set of the RSE ports, which has three main

ports; P1, P2, & P3. P1 (Port one, this is connected to the next RSE), P2 (Port 2, this is

the propagation port, it propagates the messages received from the coordinator device to

the vehicles, as well as, it receives messages from the vehicles to be forwarded to the

Co_D), P3 (Port 3, Connected to Co_D or to the previous RSE).

CHAPTER FOUR: CASE STUDIES 77

Figure 4.3: Road side equipment internal architecture

Let βA = { βAF, βAT, βAV, βAP}

Where:

βA: Road Side Equipment (RSE)

βAF: RSE’s Functions

βAT: RSE’s Tables

βAV: RSE’s Variables

βAP: RSE’s Ports

CHAPTER FOUR: CASE STUDIES 78

And Let:

βAF = { βMtc, βPaz, βSf, βGf, βPcr, βPfr}

Where:

βMtc: Message type checker function

βPaz: Packet / Massage Analyzer

βSf: set of SET functions

βGf: Set of GET Functions

βPcr: Packet / Message Creator

βPfr: Packet / Message forwarder (specifies to which port)

And Let:

βAT = {βVT[e][f], βSCT[g][h]}

Where:

βVT[e][f]: Table of all the vehicles access the coverage area for the last x

hour(s). Where x is a number (0 < x < ∞). It has e of rows and f of

columns, where both of e and f are positive integers.

βSCT[g][h]: Contains the full information about Special vehicles table

instantly within the coverage area. It has g of rows and h of columns,

where both of g and h are positive integers.

And Let:

βAV = {βSpc, βRsq}

Where:

βSpc: A register keeps the current allowed speed to be driven at on the

road.

βRsq: A register keep the configuration of the RSE (e.g., its ID, IP, …).

CHAPTER FOUR: CASE STUDIES 79

And Let:

βAP = {βP1, βP2, βP3}

Where:

βP1: The first port of an RSE device, connected to the next RSE.

βP2: The second port of an RSE device, it’s the junction point between the

vehicles and the system infrastructure.

βP3: The third port of an RSE device, connected to the previous RSE or To

the Co_D.

Then:

βA = { βMtc, βPaz, βSf, βGf, βPcr, βPfr, βVT[e][f], βSCT[g][h], βSpc, βRsq, βP1, βP2, βP3}

βA_Features:

βA_Mobile = False // An RSE is not a mobile device

βA_SQL_Server = False // The RSE does not have the ability to query an

SQL server directly, but it can reach the

database server through Co_D

βA_User_Interface = False // The RSE device does not have a user interface

to be managed by.

βA_initialize_Operations = False // The RSE does not have the ability to start

messaging other devices, it’s just a

forwarder.

βA_Info = True // The RSE can be considered as an information center, that

because it stores information of other devices. But it

doesn’t have the full information of the SQL server, RSE

stores the information for the last x hour(s), where 0 < x

< ∞.

βA_Routing = True, <Routing Protocol(s) used> // Co_D has the routing ability

by using the protocols listed

<Routing Protocol(s) used>.

CHAPTER FOUR: CASE STUDIES 80

For the Vehicle’s VANET Device (VVD), it has 4 main contents; Set of

Functions, Set of Tables, Some registers, and set of ports.

The functions set contains six different functions; ΓMtc (checks the type of the

incoming message and decides the destiny of the carried data), ΓPaz (Analyzes the

incoming data stream according to the message type into usable data), ΓSf (Sets some

values as required), ΓGf (Get some values for some functions when required), ΓPcr

(Creates different messages types as required), ΓPfr (Forwards the messages to the

required ports). The set of tables has one member; RT (lists all the RSEs instantly

receiving messages from), SCT (Lists all the cars those were reported as suspect cars).

The set of registers has one member, that is; SCT_Flag (indicates this vehicles is

considered as a suspected vehicle), and finally, the set of the Vehicle’s VANET Device

ports, which has one main port; P1 (Port one, Connected to one of the RSEs or to a police

vehicle).

Figure 4.4 : Vehicle’s VANET Device (VVD)

CHAPTER FOUR: CASE STUDIES 81

Let ΓB = { ΓBF, ΓBT, ΓBV, ΓBP, ΓBDAC}

Where:

ΓB: Vehicle’s VANET Device (VVD)

ΓBF: VVD’s Functions

ΓBT: VVD’s Tables

ΓBV: VVD’s Variables

ΓBP: VVD’s Ports

ΓBDAC: VVD’s Digital to Analog Converter (attached device)

And Let:

ΓBF = {ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr, ΓPfr, Car_Ping() , Speed_Limit(SpC), Car_Stop()}

Where:

ΓMtc: Message type checker function

ΓPaz: Packet / Massage Analyzer

ΓSf: set of SET functions

ΓGf: Set of GET Functions

ΓPcr: Packet / Message Creator

ΓPfr: Packet / Message forwarder (specifies to which port)

Car_Ping():a functions can be used to spark the car to report its status

Speed_Limit(SpC): a function to limit the speed of the vehicle to the

required speed (SpC).

Car_Stop(): a function to stop the car.

And Let:

ΓBT = {ΓRT[e][f]}

Where:

ΓRT[e][f]: lists all the RSEs instantly receiving messages from. It has e of

rows and f of columns, where both of e and f are positive integers.

CHAPTER FOUR: CASE STUDIES 82

And Let:

ΓBV = {ΓSCT_Flag, ΓFI, ΓII }

Where:

ΓSCT_Flag: A flag register that indicates the suspicion of the vehicle.

ΓFI: A register that keeps the vehicle’s Fixed Information

ΓII: A register that keeps the vehicle’s Instant Information

And Let:

ΓBP = {ΓP1}

Where:

ΓP1: The connection port of device ΓB, connected to the active RSE.

Then:

ΓB = {ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr , ΓPfr, Car_Ping() , Speed_Limit(SpC), Car_Stop(),

ΓRT[e][f], ΓSCT_Flag, ΓP1}

ΓB_Features:

ΓB_Mobile =True // A VVD is a mobile device

ΓB_SQL_Server = False // The VVD does not have the ability to query an

SQL server directly, but it can reach the

database server through RSE from the Co_D.

ΓB_User_Interface = True // The VVD device has a user interface to be

managed by.

ΓB_initialize_Operations = False // The VVD does not have the ability to start

messaging other devices; it’s just a

receiver and a replier.

ΓB_Info = False // The VVD can not be considered as an information center.

ΓB_Routing =False // Co_D has the routing ability by using the protocols

listed <Routing Protocol(s) used>.

CHAPTER FOUR: CASE STUDIES 83

4.2.2 Communications between participating devices

- Connections between Co_D and RSE devices can be with wire, wireless or any

other communication media type. Meanwhile connection between RSE & VVD

devices should be wireless.

αA >--< βA: Wire, Wireless, or others

βA >--< ΓB: Wireless

- Connections between Co_D-To-RSE & between RSE-To-RSE devices should be

available 24 hours a day for 7 days a week.

αA >--< βA_Availibility: 24/7

βAx >--< βAx+1_Availibility: 24/7

- Connection between RSE & VVD devices can be Active or In-Active

connections.

βA >--< ΓB_RStatus: Active or Inactive

- VVD can have only one active connection with one RSE device at a time.

ΓB >--< βA_RStatus: Active

- RSE devices can communicate each other.

βA βA

- Co_D – To – RSE – To - RSE connections supposed to have IP/MAC address

filters to prevent any hacking attempts. As a result of that, we do not need for

authentication between Co_D & RSE, or between RSE and another.

ΓB >--< βA_IPFilter = True

ΓB >--< βA_MACFilter = True

αA <Ŧ> βA

βAx <Ŧ> βAx+1

CHAPTER FOUR: CASE STUDIES 84

- RSE – To - VVD – To – RSE connections should be secured using some kind of

authentication process.

βA
g <Ŧ> ΓB

k

- Co_D can communicate RSE & RSE devices can communicate Co_D devices

when required:

αA βA

- So, Co_D can reach VVD devices only through RSE devices on the side of the

highway.

αA βA ΓB

- At the same time, Co_D devices have a full control on RSE & VVD devices:

αA Ξ βA , ΓA

- RSEs are connected to each other so they can reach each other:

βAx βAy

CHAPTER FOUR: CASE STUDIES 85

4.2.3 Participating messages

In this scenario, four messages are needed to implement the full procedure of the

experiment, these are; MtQ (Speed Code Message), MtR (Last Destination - Speed Code

Message), MtS (Mobile node’s report), and MtT (Last Destination - Mobile node’s

report).

MtQ: αA | βAx-1, βAx, MU, <MtQ, Hp, SpC>

Where:

- MtQ – Message type Code (10001) - Speed Code Message

- MU: Multi-hop Unicast

- Hp – Hop count

- SpC – Speed Code

MtR: βA,ΓB , SB, <MtR, Rsq, SpC>

Where:

- MtR – Message Type (10010) - Last Destination - Speed Code Message

- SB: Single-hop Broadcast

- Spc – Speed Code

- RSq – RSE Sequence of which is propagating the received Speed code

message.

MtS: ΓB, βA, SU, <MtS, CR>

Where:

- Mt - Message Type (10011) - Mobile node’s report

- SU: Single-Hop Unicast

- CR – Car’s Report

CHAPTER FOUR: CASE STUDIES 86

MtT: βA, αA, MU, <MtT, CR, Rsq>

Where:

- MtT - Message Type (10100) - Last Destination - Mobile node’s report

- MU: Multi-hop Unicast

- CR – Car’s Report

- RSq – RSE’s sequence Number of which the vehicle lies within its coverage

area.

On the other hand, still user of the system needs more detailed information about

the messages. Hence we need to create what is called Messages Cards, which will tell

every detail about the messages. These cards should be attached as an appendix with the

formal specification for the system we are describing, but we are going to show them

here.

1- Message type-Q Definition Card

Message Name: MtQ Message ID: M#17
Description: Speed Code Message

Packet Type: Multi-Hop-Unicast
Source: αA or βx-1 Destination: βx

Message length: 3 (Fields)
Message Fields: M#17, Hp, SpC

Details:
 Hp – Decides how many β Device after the first β device should receive

this message.

CHAPTER FOUR: CASE STUDIES 87

2- Message type-R Definition Card

3- Message type-S Definition Card

4- Message type-T Definition Card

Message Name: MtR Message ID: M#18
Description: Last Destination - Speed Code Message

Packet Type: Broadcast
Source: βA Destination: Γ

Message length: 3 (Fields)
Message Fields: M#18, Rsq, SpC

Details:
 Rsq – Tells the Γ receiver device this is the ID for the βA device which sent

this message.

Message Name: MtS Message ID: M#19
Description: Mobile node’s report

Packet Type: Unicast
Source: Γ Destination: βA

Message length: 2 (Fields)
Message Fields: M#19, CR

Details:
 None.

Message Name: MtT Message ID: M#20
Description: Last Destination - Mobile node’s report

Packet Type: Unicast
Source: βA Destination: αA

Message length: 3 (Fields)
Message Fields: M#20, CR, Rsq

Details:
 None.

CHAPTER FOUR: CASE STUDIES 88

4.2.4 Messages Flow for Case Study-1
Figure 4.5 illustrates the four messages flow between the participated devices starting by

the Co_D sends the allowed speed code out as Multi-Hop Unicast to the RSE that carries

the ID: x (RSE(x)), that message type is MtQ which will travel through all the RSE

devices between the two of them. When the RSE(x), it analyzes the MtQ message to get

the carried information (SpC - Speed Code), encapsulate the information within an MtQ

message type and propagates it to all the mobile VVDs within its coverage area.

For any VVD, when receiving an MtR message is the spark to do two major

operations; the first is applying the comparison between the current vehicle’s speed and

the incoming speed code, if the last is less than the instant vehicles speed, then it will

limits the vehicle’s speed to peak at the incoming speed. The second operation is to start

creating an instant report about the vehicle’s status at that moment, encapsulate it by an

MtS message type and unicast it to the active RSE at that moment. The RSE will unicast

the MtS message to the Co_D which will analyze & keep a copy of that vehicle’s report

in its database. See Figure 4.6 which shows the flow chart for the whole operation

starting by the Co_D sends out an MtQ message till the speed code been received by the

vehicle.

The Figure 4.6 shows more details about what is going on inside each device

when it receives a specific message, how will the message been processed by that

device’s functions, how those devices functions are making the use of the data carried by

the incoming message, and what actions will be taken as a result of the incoming

message.

CHAPTER FOUR: CASE STUDIES 89

Figure 4.5: Speed Control & High Way Monitoring – messages flow

Legend

ToR Table_of_RSEs
VT

Vehicles_Table.
SMT Speed_Mappping_Table

Speed Code Msg.
Car’s Report

RSE(x) Sequence ID for the
current RSE.

RSE(x-1) Sequence ID for the
first previous RSEs.

Speed Code Message - MtR

Car’s Report - MtS

RSE (x)

RSE (x-1)

MtQ

Co_D

VVD

VT

VT

VT

RT

MtT

MtQMtT

SMT

ToR

CHAPTER FOUR: CASE STUDIES 90

4.2.5 A Lower-Level Scenario Specification

Figure 4.6: Speed Control & High Way Monitoring – messaging algorithm

Start

Pcr (MtQ, Hp, SpC)

Get SpC from
mappingTable

Get SpN, Hp, Rsq from the user
interface

Mtc

Paz

If (Hp >0)

Pfr for
broadcasting to

Port 2

Pcr
(MtQ, Hp, Spc)

Pfr to port 1

Hp = Hp-1

Next
RSEVVD

Pfr to port 1
Co_D

RSE

Pcr
(MtR, Rsq, Spc)

Y

N

RSE/
Next
RSE

Co_D: Coordinator Device
RSE: Road Side Equipment
VVD: Vehicle’s VANET

Device
SpN: Speed Number
SpC: Speed Code
Hp: Hop Count
Rsq: RSE’s ID
Pcr: Packet Creator
Pfr: Packet forwarder
Mtc: Message type checker
Paz: Packet analyzer

CHAPTER FOUR: CASE STUDIES 91

Figure 4.6.Continue: Speed Control & High Way Monitoring – messaging algorithm

Let’s assume that we have the two highways shown before in Figure 4.1, the

allowed speed on the right side is 60Km/h, so the Co_D administrator enters, through the

Co_D interface; the allowed speed as a number, the Rsq (RSE’s ID) that specifies which

RSE the message should be started to propagate the vehicles from the opposite lane, and

the number of hops, this number tells how many RSEs after the first one should receive

the allowed speed message to propagate. See the following Scenario initial setup:

Let αA1 = Co_D1

αA1_P1_IP: 192.168.100.1/30

Let βA1 = RSE1

βA1P = {P1, P2, P3}

P1_IP: 192.168.100.3/30

P2_IP: 192.168.1.1/24

P2_DHCP: True – Full range

P3_IP: 192.168.100.2/30

VVD

Keep Rsq & it’s IP &
Sequence ID in VVD’s Cache
MEMEORY (Tables of RSEs)
for future use

Speed
Control

H/W

DAC

Mtc

Paz

Start
Car

Report
CreationSpC

SpN

VVD: Vehicle’s VANET
Device

SpN: Speed Number
SpC: Speed Code
Rsq: RSE’s ID
Mtc: Message type checker
Paz: Packet analyzer
DAC: Digital to Analog

converter

CHAPTER FOUR: CASE STUDIES 92

Figure 4.7: Case Study 1 – Scenario setup

Let βA2 = RSE2

βA2P = {P1, P2, P3}

P1_IP: 192.168.100.5/30

P2_IP: 192.168.2.1/24

P2_DHCP: True – Full range

P3_IP: 192.168.100.4/30

Let RN1_Allowed_Speed: 60Km/h

Let RS1_Allowed_Speed: 70Km/h

CHAPTER FOUR: CASE STUDIES 93

Let βA3 = RSE3

βA3P = {P1, P2, P3}

P1_IP: NULL

P2_IP: 192.168.3.1/24

P2_DHCP: True – Full range

P3_IP: 192.168.100.6/30

Let ΓB1 = VVD 1

ΓB1P = {P1}

P1_IP: 192.168.2.5/24

ΓB1 --: RN1

ΓB1◄ RSE1

ΓB1_Speed: 110 Km/h

ΓB1► RSE3

αGf (SPN, Rsq, Hp) <≈ αA1_Int

After the administrator enters those 3 values, they would be forwarded to the

functions of Co_D to be processed. The first value named the SpN (Speed Number) will

be mapped (by the Get_SpC function) into its equivalent code SpC (Speed Code), that

can be found in the SMT (Speed Mapping Table). In other words, Co_D would forward

the SpN to the Get_SpC of the SMT Table. The second value entered by the administrator

is the Rsq value which will be useful to get the IP address of the RSE device that Co_D

should unicast the MtQ message to, that IP can be found in ToR (Table of RSEs), and

this can be done by forwarding the Rsq to the Get_RSEIP function of the ToR Table that

will get the equivalent RSE IP.

αGf (SPc),(SPN) <≈ αA1_SMT

αGet_RSEIP (RseIP) , (Rsq) <≈ αA1_ToR

CHAPTER FOUR: CASE STUDIES 94

Now the Co_D has two values; Hp, and the SpC, these will be forwarded to the

Pcr function to create an MtQ message and forward it to the Pfr function that would

encapsulate it within a packet that has the RSE IP as its destination IP, and then forward

it to Port 1 of the Co_D device.

αPcr (<MtQ>) , (Hp, SpC) αPfr ([MtQ]) , (<MtQ>, RseIPA1, P1)

Where RseIPA1: The Ip address for RSE1

αA1 ~Q> βA1

The MtQ message on the network as a data stream flow, a group of ones and

zeros, traveling from RSE to another till it reaches the destination one, there it will be

processed. When the destination RSE receives the data stream, it checks the first bits of

that data stream to check the type of the incoming message, and this is done by the Mtc

(Message Type Checker) function.

After specifying the message type, Mtc function forwards the rest of the

message’s data fields (which still as data stream only) to the Paz (Packet Analyzer)

function, this will analyze the data stream into specific data values to make the use of

them. So for the MtQ message, it will be analyzed and understood as 2 fields; Hp, and

Spc, respectively.

RSE checks the value of the incoming Hp whether it is equal to zero and not to

decide what to do with the incoming data. If Hp more than Zero, then it will propagate

the SpC within an MtR message to the vehicles through port 2, as well as, it would

forward through port one a copy of the SpC by an MtQ message it creates after

decreasing the Hp by 1. While if Hp equals to Zero, then it would not forward the SpC to

the next RSE, just keeps propagating MtR messages through port 2 to the vehicles within

its coverage area.

CHAPTER FOUR: CASE STUDIES 95

βA1 <Q~ αA1

βMtc (MtQ , <_data>) , (<DATA>) βPaz (MtQ, Hp, SpC) , (MtQ, <_data>)

Where: <DATA> is the full incoming data stream

<_data> is the rest of the unanalyzed data of the incoming stream.

βPcr (<MtR>) , (Rsq , SpC) βPfr ([MtR]) , (<MtR> , P2)

βA1 ~R○ ΓB1

(Hp > 0) Pcr (<MtQ>) , (Hp-1 , SpC) Pfr ([MtQ]) , (<MtQ> , RseIPA2, P1)

Where RseIPA2: The Ip address for RSE2

βA1 ~Q> βA2

Now a vehicle receives an MtR message, it analyzes it and understands it as Rsq

& SpC fields. The Rsq tells from which RSE device the packet came, which will be kept

and the RSE’s IP in the RT (Table of RSEs). The SpC value will be sent to a Digital to

Analog converter to get the analog equivalent for it, which is SpN. SpN will be sent to

the speed controller to limit the maximum peak the car can reach. And finally as a result

or receiving the MtR message, the vehicle will start creating an instant vehicle status

report. See Figure 4.8.

ΓB1 ○R~ βA1

ΓMtc (MtR , <_data>) , (<DATA>) ΓPaz (MtR, Rsq, SpC) , (MtR, <_data>)

SQL (Rsq, RseIP) ≈> ΓB1_RT

ΓB1DAC (SpN) , (SpC)

The car’s report (CR) consists of two parts, fixed information and instant

information. The fixed information contains the device & vehicles information such as

it’s registration ID for the car, Engine ID,…etc. while the instant information has the

instantaneous status of the vehicle at the moment of the report creation.

CHAPTER FOUR: CASE STUDIES 96

Figure 4.8 shows the flow chart of the operation starting from the vehicle‘s report

creation till it has been saved into the database. The report creation sparks by receiving

the MtR message by the VVD which will put both of the fixed information and the

instant status information within an MtS message type frame and unicast it to the current

active RSE connection. The IP for the destination RSE can be found in the Table of RSEs

(RT).

Let CR = {FI , II}

Where:

CR: Car’s Report

FI: Fixed information

II: Instant Information

ΓGf (FI , II) <≈ ΓFI, ΓII

ΓPcr (<MtS>), (FI , II) ΓPfr ([MtS]), (<MtS> , P1)

// To get the IP address of the Rse currently has an active connection with the Vehicle

ΓGet_RSEIP (RseIP), (*) <≈ ΓB1_RT

Where:

*: means the active connection RSE

ΓB1 ~S> βA1

CHAPTER FOUR: CASE STUDIES 97

When an RSE receives an MtS message, it would analyze message and would get

the CR to keep a copy of it in the RSE’s VT table and to insert it into an MtT message

frame and unicast it to the Co_D.

βA1 <S~ ΓB1

βMtc (MtS , <_data>) , (<DATA>) βPaz (MtS, Hp, SpC) , (MtS, <_data>)

βPcr (<MtR>) , (Rsq , SpC) βPfr ([MtR]) , (<MtR> , P2)

βPcr (<MtT>) , (CR, Rsq) βPfr ([MtT]) , (<MtT> , P3)

βA1 ~T> αA1

Finally, the Co_D receives the vehicle’s report and immediately it will create a

SQL syntax which will be forwarded to the Database server. The purpose is to keep a

copy of that CR and the RSE’s ID for that it was sent from, in the database server’s

storage.

αA1 <T~ βA1

αSQL (CR,Rsq) ≈> αA1_VT

αSQL (<SQL_Ins_Stmnt>), (CR, Rsq) αPfr ([SQL_Ins_Msg]), (<SQL_Ins_stmnt>)

Where:

SQL_Insert_stmnt: SQL statement to insert a record into a table.

CHAPTER FOUR: CASE STUDIES 98

Figure 4.8: Speed Control & High Way Monitoring – Vehicle’s Report Creation

Start Car
Report

Creation
Co_D: Coordinator Device
RSE: Road Side Equipment
VVD: Vehicle’s VANET

Device
CR: Car Report
Rsq: RSE’s ID
Pcr: Packet Creator
Pfr: Packet forwarder
Mtc: Message type checker
Paz: Packet analyzer
RT: Table of RSEs
VT: Vehicles Table

RES

Mtc

Pcr (MtS, CR)

Pfr message to port 1

Pcr (MtT, CR, Rsq)

Pfr Message to Port 3

Get Rsq & RSE’s IP/ID
from Table of RSEs (RT)

Get both Fixed & instant
info from the black box

RSE

Co_D

VVD

RSE

Paz

Insert a CR Record
into VT table

SQL (CR, Rsq)

Forward SQL syntax to
local port 1

DB
Server

Mtc

PAz

Co_D

CHAPTER FOUR: CASE STUDIES 99

4.3 Case Study–2: Remote car locating & sending a Service request / Function
message

As for the Second case study “Remote car locating & sending a service / order message”,

See Figure 4.9, we got a Highway of two sides, the one on the right is going north while

the other is going the opposite way. Each of the two ways has two lanes.

Figure 4.9: Case Study 2: Remote car locating & sending a service / order message

On the side of each road there is a set of Equipments (Road side Equipments),

those are connected to each other and have connected to an administrative device

(Coordinator device) that has the ability to reach and access any of those Road side

equipments (RSEs) as well as the vehicles’ devices (VVD).

In this scenario, assume that someone has reported to a police station or to any

Coordinator office, that his car (The Yellow in Figure 4.9) was stolen, providing them the

details of his car (Some of the fixed information of his vehicle’s device - VVD) so they

can locate the car.

CHAPTER FOUR: CASE STUDIES 100

In order to locate the car, the coordinator device officer uses some of the information

provided by the victim to find the car either by looking in the common database for the

last report received from the car or broadcast a Car_Ping message within a specific

system on a specific highway. So the car will declare about itself by reporting its status to

the coordinator device. The last solution which can be used only if the victim is sure that

his car is still on the same road (within the coverage of the system).

The first solution is the most efficient in case that the time of the accident was

unknown because the victim will not be able to know whether his vehicle still on the

same road or passed already.

After locating the car, the coordinator device officer would send a Unicast

function message to the car to stop it or just to limit its speed or do any other functions.

To present this scenario mathematically, we use our formal specification language

to define each device and the connection type between them and their configuration.

Finally we show how exactly the messaging between the devices.

4.3.1 Participated devices definitions

In this scenario, three devices are participating in; these are; Coordination device (which

is the master of everything happening on the road that it’s responsible about), Road Side

Equipment (Which is forwarding and propagating the messages between the coordinator

and vehicle devices), and Vehicles VANET Devices (these resides inside the vehicles, its

job is to receive the messages propagated by the RSE and translate it to take the right

required action). All of the three devices details, are just the same as the ones used in the

first case study.

CHAPTER FOUR: CASE STUDIES 101

4.3.2 Communications between participated devices

- Connections between Co_D & RSE devices can be wire, wireless or any other

communication media type, while Connection between RSE & VVD devices

should be wireless.

αA >--< βA: Wire, Wireless, or others

βA >--< ΓB: Wireless

- Connections between Co_D-To-RSE & between RSE-To-RSE devices should be

available 24 hours a day for 7 days a week.

αA >--< βA_Availibility: 24/7

βAx >--< βAx+1_Availibility: 24/7

- Connection between RSE & VVD devices can be Active or In-Active

connections.

βA >--< ΓB_RStatus: Active or Inactive

- VVD can have only one active connection with one RSE device at a time.

ΓB >--< βA_RStatus: Active

- RSE devices can communicate each other.

βA βA

- Co_D – To – RSE – To - RSE connections supposed to have IP/MAC address

filters to prevent any hacking attempts. As a result of that, we do not need for

authentication between Co_D & RSE, or between RSE and another.

ΓB >--< βA_IPFilter = True

ΓB >--< βA_MACFilter = True

αA <Ŧ> βA

βAx <Ŧ> βAx+1

CHAPTER FOUR: CASE STUDIES 102

- RSE – To - VVD – To – RSE connections should be secured using some kind of

authentication process.

βA
g <Ŧ> ΓB

k

- Co_D can communicate RSE & RSE devices can communicate Co_D devices

when required:

αA βA

- So, Co_D can reach VVD devices only through RSE devices on the side of the

highway.

αA βA ΓB

- At the same time, Co_D devices have a full control on RSE & VVD devices:

αA Ξ βA , ΓA

- RSEs are connected to each other so they can reach each other:

βAx βAy

CHAPTER FOUR: CASE STUDIES 103

4.3.3 Participated messages

In this scenario, four messages are needed to implement the full procedure of the

experiment, these are; MtU (Function Message), MtV (Last Destination - Function

Message), MtW (Reply – Function Message), and MtX (Last Destination - Reply –

Function Message).

MtU: αA | βAx-1 , βAx , MU, < MtU, Hp, SPN#, Value, XXX >

Where:

- MtU – Message type Code (10101) - Function Message

- MU: Multi-hop Unicast

- Hp – Hop count

- SPN# – Only the stolen car’s Plate number

- Value:

- Value = 0 run function “Stop_Car”

- Value = 1 XXX represents the SpC.

- Value = 2 Run function “Ping_Car”

- Value = x For more functions

- XXX: see Value = 1.

MtV: βA,ΓB , SU, < MtV, SPN#, Value, XXX >

Where:

- MtV – Message type Code (10110) - Last Destination - Function Message

- SB: Single-hop Broadcast

- SPN# - Stolen car’s Plate number

- Value:

- Value = 0 run function “Stop_Car”

- Value = 1 XXX represents the SpC.

- Value = 2 Run function “Ping_Car”

- Value >= x For more functions

- XXX: see Value = 1.

CHAPTER FOUR: CASE STUDIES 104

MtW: ΓB, βA, SU, < MtW, SPN#, Value >

Where:

- MtW - Message Type (10111) - Reply – Function Message

- SU: Single-Hop Unicast

- SPN# - Stolen car’s Plate number

- Value:

- Value = 0 function “Stop_Car” was done successfully

- Value = 1 Access was denied. It’s the negative answer to any

service.

- Value = 2 Positive Reply - function “Ping_Car”

- Value = x Reply for other functions

MtX: βA, αA, SU, < MtX, Rsq, SPN#, Value >

Where:

- MtX - Message Type (11000) - Last Destination - Reply – Function Message

- SU: Single-hop Unicast

- Rsq – the RSE’s sequence which directly received the reply from the VVD

- SPN# - Stolen car’s Plate number

- Value:

- Value = 0 function “Stop_Car” was done successfully

- Value = 1 Access was denied.

- Value = 2 Positive Reply - function “Ping_Car”

- Value = x Reply for other functions

CHAPTER FOUR: CASE STUDIES 105

For more details about the used messages in this scenario, we write the following

Messages Cards, these will tell every detail about the messages. These cards should be

attached as an appendix with the formal specification for the system we describe.

However we are going to show them here.

1- Message type-U Definition Card

2- Message type-V Definition Card

Message Name: MtU Message ID: M#22
Description: Function Message

Packet Type: Multi-Hop-Unicast
Source: αA Destination: βA

Reply: MtX
Message length: 5 (Fields)
Message Fields: M#21, Hp, SPN#, Value, XXX

Details:
 Its meaning depends on the Value:

 Value = 0 run function “Stop_Node”
 Value = 1 XXX represents the SpC.
 Value = 2 Run function “Ping_Node”
 Value = x For more functions

Message Name: MtV Message ID: M#23
Description: Last Destination - Function Message

Packet Type: Single-Hop Unicast
Source: βA Destination: Γ

Reply: MtW
Message length: 4 (Fields)
Message Fields: M#22, SPN#, Value, XXX

Details:
 Its meaning depends on the Value:

 Value = 0 run function “Stop_Node”
 Value = 1 XXX represents the SpC.
 Value = 2 Run function “Ping_Node”
 Value = x For more functions

CHAPTER FOUR: CASE STUDIES 106

3- Message type-W Definition Card

4- Message type-X Definition Card

Message Name: MtW Message ID: M#24
Description: Reply to MtV – Last Destination - Function Message

Packet Type: Single-Hop Unicast
Source: Γ Destination: βA

Message length: 3 (Fields)
Message Fields: M#23, SPN#, Value

Details:
 Its meaning depends on the Value:

 Value = 0 function “Stop_Node” was done successfully
 Value = 1 Access was denied. It’s the negative answer to any

service.
 Value = 2 Positive Reply - function “Ping_Node”
 Value = x Reply for other functions

Message Name: MtX Message ID: M#25
Description: Reply to MtU – Function Message

Packet Type: Single-Hop Unicast
Source: βA Destination: αA

Message length: 4 (Fields)
Message Fields: M#24, Rsq, SPN#, Value

Details:
 Its meaning depends on the Value:

 Value = 0 function “Stop_Node” was done successfully
 Value = 1 Access was denied. It’s the negative answer to any

service.
 Value = 2 Positive Reply - function “Ping_Node”
 Value = x Reply for other functions

CHAPTER FOUR: CASE STUDIES 107

4.3.4 The Highest-Level Message flow Specification

Let’s specify the scenario at the highest level (Black-Boxes Level).

αA1 ~U> βAx // Co_D sends a Function message to RSE that carries the ID x.

βAx ~V> ΓB1 // RSE(x) passes the Function message to the Required vehicle-1.

ΓB1⌂ βAx // Vehicle-1 Stops within the coverage area of βAx.

ΓB1 ~W> βAx // Vehicle-1 replies the status of the function implementation to the

instant active RSE.

βAx ~X> αA1 // RSE forwards the function implementation results report to

Co_D.

Till now, we expressed and showed the highest level specification for the

scenario. Now let’s show how exactly the messages are being exchanged among the

different devices and illustrate how they been analyzed inside each device.

4.3.5 Message Flow of Case Study-2

Figure 4.10 illustrates the stage after finding the location of stolen car’s from the Co_D’s

database or the common database. It shows the four messages flow between the

participated devices starting by the Co_D sends out the function message with a value of

Zero (Stop_Car) as a Multi-Hop Unicast to the RSE that carries the ID: x (RSE(x)), that

message type is MtU which will travel through all the RSE devices between the two of

them. When the RSE(x) receives an incoming message, it analyzes that message to find

its type is MtU then get the carried information (Car’s ID & Value) , encapsulates the

information within an MtV message type and unicast it to the stolen car within its

coverage area.

When the stolen car receives a MtV message with the value zero, two major

operations will be sparked; the first operation will be calling the function Stop_Car which

will reduce the car’s speed till it stops completely then the vehicle will start to create a

reply message telling whether the Car_Stop function was done successfully (Value = 0)

or not (Value = 1), encapsulates it by an MtW message type and unicast it to the active

CHAPTER FOUR: CASE STUDIES 108

RSE at that moment. The RSE will unicast the MtW message contents (as MtX) to the

Co_D which will analyze the incoming MtX message and prints the reply message result

on the user interface. See Figure 4.11 which shows the flow chart for the whole operation

starting by the Co_D sends out an MtU message till the function message been received

by the vehicle. The second sparked operation is creating a vehicle report and unicast it to

the active RSE. The seconds operation can be seen in case study-1 Figure 4.8.

The Figure 4.11 shows more details about what is going on inside each device

when it receives a specific message, how will the message been processed by that

device’s functions, how those devices functions are making the use of the data carried by

the incoming message, and what actions will be taken as a result of the incoming

message.

CHAPTER FOUR: CASE STUDIES 109

Figure 4.10: Remote car locating & sending a Service / Function message – Messages

Flow

Legend

VT Vehicles_Table.
RT RSEs_Table
ToR Table_of_RSEs

Speed code Message
Reply

RSE(x) Sequence ID for the
current RSE.

RSE(x-1) Sequence ID for
the first previous RSEs.

MtV – Speed code U-Message

MtW – Reply - Speed Code Message

RSE (x)

RSE (x-1)

MtU

Co_D

VVD

VT

VT

VT

RT

MtX

MtUMtX

ToR

CHAPTER FOUR: CASE STUDIES 110

4.3.6 A Lower-Level Scenario Specification

Figure 4.11: Speed Control & High Way Monitoring – Messaging Algorithm

Start

Pcr (MtU, Hp, SPN#, Value, XXX)

Get Hp,SPN#, and Value from the
user interface

Mtc

Paz

If (Hp >0)

Pfr to Port 2 -
for Unicasting

Pcr
(MtU, Hp, SPN#, Value, XXX)

Pfr to port 1

Hp = Hp-1

Next
RSE

VVD

Pfr to port 1
Co_D

RSE

Pcr
(MtV, SPN#, Value, XXX)

Y

N

RSE/
Next
RSE

Co_D: Coordinator Device
RSE: Road Side Equipment
VVD: Vehicle’s VANET

Device
SpN: Speed Number
SpC: Speed Code
Hp: Hop Count
Rsq: RSE’s ID
Pcr: Packet Creator
Pfr: Packet forwarder
Mtc: Message type checker
Paz: Packet analyzer

CHAPTER FOUR: CASE STUDIES 111

Figure 4.11.Continue 1: Speed Control & High Way Monitoring – Messaging

Algorithm

VVD

Car_Stop ()

Mtc

Paz

Start
Car

Report
Creation

VVD: Vehicle’s VANET
Device

SPN#: Incoming Vehicle Info
CSPN: Current Vehicle’s Info
Rsq: RSE’s ID
Mtc: Message type checker
Paz: Packet analyzer

If
(Value = 0)

Y

NOthers

Successful?

Y

N

If
(SPN# = CSPN)

Y

N

Pcr
(MtW, SPN#, Value = 0)

Pfr to Port 1

RSE

Pcr
(MtW, SPN#, Value = 1)

UNSUC

UNSUC

CHAPTER FOUR: CASE STUDIES 112

Figure 4.11.Continue 2: Speed Control & High Way Monitoring – messaging algorithm

Let’s assume that we have the two highways shown before in Figure 4.9, the

allowed speed on the right side is 60Km/h, so the Co_D administrator enters, through the

Co_D interface; the allowed speed as a number, the Rsq (RSE’s ID) that specifies which

RSE the message should be start propagated to vehicles from, and the number of hops,

this number tells how many RSEs after the first one should receive the allowed speed

message to propagate. See the following Scenario initial setup:

RSE: Road Side Equipment
Co_D: Coordinator Device
SPN#: Incoming Vehicle Info
Rsq: RSE’s ID
Mtc: Message type checker
Paz: Packet analyzer

RES

Mtc

Pcr (MtX, Rsq, SPN#, Value)

Pfr Message to Port 3

RSE

Co_D

Paz

Mtc

PAz

Co_D

Print on User Interface
“Function “Car_Stop”
was done successfully”

Print on User Interface
“Access was denied.”

If
(Value = 0)

YN

CHAPTER FOUR: CASE STUDIES 113

Let αA1 = Co_D1

αA1_P1_IP: 192.168.100.1/30

Let βA1 = RSE1

βA1P = {P1, P2, P3}

P1_IP: 192.168.100.3/30

P2_IP: 192.168.1.1/24

P2_DHCP: True – Full range

P3_IP: 192.168.100.2/30

Let βA2 = RSE2

βA2P = {P1, P2, P3}

P1_IP: 192.168.100.5/30

P2_IP: 192.168.2.1/24

P2_DHCP: True – Full range

P3_IP: 192.168.100.4/30

Figure 4.12: Study Case 2 - Scenario setup

CHAPTER FOUR: CASE STUDIES 114

Let RN1_Allowed_Speed: 60Km/h

Let RS1_Allowed_Speed: 70Km/h

Let βA3 = RSE3

βA3P = {P1, P2, P3}

P1_IP: NULL

P2_IP: 192.168.3.1/24

P2_DHCP: True – Full range

P3_IP: 192.168.100.6/30

Let ΓB1 = VVD 1 // The stolen car

ΓB1P = {P1}

P1_IP: 192.168.2.5/24

ΓB1 --: RN1

ΓB1◄ RSE2

ΓB1_Speed: 50 Km/h

ΓB1► RSE3

The Scenario starts when a car’s owner declares to any Co_D office that his car

was stolen and provides the office with his car information such as his vehicle’s plate

number, his VVD’s serial number, …etc.

The Co_D administrator starts looking for the car in his Co_D’s native tables to

check whether the car is within his system’s coverage or not. If not, then he sends a query

to the common database asking for the current location or the last report was received

from the stolen car.

After specifying under which system coverage the stolen car is, the administrator

and the car’s owner decide to stop the car remotely. The administrator enters 4 entries

into the Co_D device through its interface:

αGf (SPN#, Rsq, Hp, value) <≈ αA1_Int

CHAPTER FOUR: CASE STUDIES 115

After the administrator enters those 4 values, they will be forwarded to the

Co_D’s internal functions to be processed. The first value SPN# (Stolen car Plate

Number) can be any of the car’s information other than the plate number. The second

value entered by the administrator is the Rsq value which will be useful to get the IP

address of the RSE device that Co_D should unicast the MtU message to, that IP can be

found in the native table ToR (Table of RSEs) or in one ToR table of another Co_D

device, and this can be done by forwarding the Rsq to the Get_RSEIP function of the

ToR Table that will get the equivalent RSE IP.

In case the RSE resides within the responsibility of the same requester Co_D:

αA_Get_RSEIP (RseIP) , (Rsq) <≈ αA_ToR

While, if the RSE resides under the responsibility of a system other than the

requester’s, then we have to mention the requester’s ID and the requested from ID.

αA1_Get_RSEIP (RseIP) , (Rsq) <≈ αAx_ToR

The third input is the operation option value; this will decide what kind of

operation is requested to be done. In MtU message type, if Value = 0 then the desired

operation is to stop the car, and this what we are going to do, stop the stolen car remotely.

But if we want to limit the car’s speed only, then the administrator should use the value 1

and enter the required speed as well.

Now the Co_D has three values; Hp, SPN#, and the Operation option Value, these

would be forwarded to the Pcr function to create an MtU message and forward it to the

Pfr function that would encapsulate it within a packet that has the RSE IP as its

destination IP, and then forward it to Port 1 of the Co_D device.

CHAPTER FOUR: CASE STUDIES 116

αPcr (<MtU>) , (Hp, SPN#, Value) αPfr ([MtU]) , (<MtU>, RseIPAx, P1)

Where

RseIPAx: The Ip address for RSE under which’s coverage area the stolen car is

under.

αA1 ~U> βAx

The MtU message on the network as a data stream flow, a group of ones and

zeros, with the help of the routing protocols used in the VANET network, traveling from

RSE to another till it reaches the destination one, there it will be processed. When the

destination RSE receives the data stream, it checks the first bits of that data stream to

check the type of the incoming message, and this is done by the Mtc (Message Type

Checker) function.

After specifying the message type, Mtc function forwards the rest of the

message’s data fields (which still as data stream only) to the Paz (Packet Analyzer)

function, this will analyze the data stream into specific data values to make the use of

them. So for the MtU message, it will be analyzed and understood as 4 fields; Hp, and

SPN#, Value, and XXX respectively. XXX is a value which’s type depends on the

operation option value. In our scenario, the value will be equal to zero (Stop the car) so

XXX’s value will be NULL (No need for it). But if we want to limit the car’s speed, then

the administrator needs to give the required speed, which will be represented by XXX.

RSE checks the value of the incoming Hp whether it’s equal to zero or not to

decide what to do with the incoming data. If Hp more than Zero, then it would

encapsulate the SPN# and the value within an MtV message, get’s the IP of the stolen

vehicle by mapping the SPN# into its equivalent IP (from its native VT) and starts

unicating to the stolen vehicle through port 2, as well as, it would forward through port

one a copy of the incoming MtU message after decreasing the Hp by 1 to the next RSE,

and this to make sure that the message would reach the required vehicle. While if Hp

equals to Zero, then it would not forward anything to the next RSE, just keeps unicasting

the MtV messages through port 2 to the vehicle hopping it’s still within its coverage area.

CHAPTER FOUR: CASE STUDIES 117

βAx <U~ αA1

βMtc (MtU , <_data>) , (<DATA>) βPaz (MtU, Hp, SPN#, Value, XXX) , (MtU,

<_data>)

Where: <DATA> is the full incoming data stream

<_data> is the rest of the unanalyzed data of the incoming stream.

βPcr (<MtV>) , (SPN#, Value, XXX) βPfr ([MtV]) , (<MtV> , P2)

βAx ~V> ΓB1

(Hp > 0) Pcr (<MtU>) , (Hp-1, SPN#, Value, XXX) Pfr ([MtU]) , (<MtU> ,

RseIPAx, P1)

Where RseIPAx: The Ip address for the RSE which has the last the report received

from the stolen vehicle

βAx ~U> βAx+1

Now a vehicle receives an MtV message, it analyzes it and understands it as

SPN#, Value, XXX fields. The vehicle’s VANET device would compare the incoming

SPN# value (carried by the MtV message) with its own (they probably the same but just

for double check), if they are equal, then it would read the rest of the incoming data and

check for the next field, The Value, if Value = 0 then it would start creating an instant

vehicle status report and send it back to the Co_D, See Figure 4.8 in case study 1, and

call the Car_Stop Function to stop the car.

In case the incoming SPN# information are not matching the vehicle’s, or the

Car_Stop function wasn’t successfully done (For some failure reason), then the vehicle’s

VANET Device would start to create a negative reply (MtW message with a Value of 1)

and send it to the current active RSE. Other wise it would send a positive reply (MtW

message with a Value of 0) to the current active RSE.

CHAPTER FOUR: CASE STUDIES 118

ΓB1 <V~ βAx

ΓMtc (MtV , <_data>) , (<DATA>) ΓPaz (MtV, SPN#, Value, XXX) , (MtV,

<_data>)

Let CSPN# = The Stolen Vehicle Information (ΓB1)

(SPN# = CSPN#) (Value = 0) Label: Start Car Report Creation,

Car_Stop()

(Car_Stop()) Pcr (<MtW>) , (SPN#, Value = 0) Pfr ([MtW]) , (<MtW> ,

RseIPAx, P1)

!(Car_Stop()) Label: UNSUC

(SPN# = CSPN#) !(Value = 0) Label: Others

!(SPN# = CSPN#) Label: UNSUC

Label: UNSUC

Pcr (<MtW>) , (SPN#, Value = 1) Pfr ([MtW]) , (<MtW> , RseIPAx, P1)

// To get the IP address of the Rse which currently has an active connection with the

Vehicle:

ΓGet_RSEIP (RseIP), (*) <≈ ΓB1_RT

Where:

*: means the active connection RSE

ΓB1 ~W> βAx

CHAPTER FOUR: CASE STUDIES 119

When an RSE receives an MtW message, it would analyze the message and

would encapsulate the values: Rsq, SPN#, and the operation status reply value within an

MtX message frame and unicast it to the Co_D.

βAx <W~ ΓB1

βMtc (MtW , <_data>) , (<DATA>) βPaz (MtW, SPN#, Value) , (MtW, <_data>)

βPcr (<MtX>) , (Rsq, SPN#, Value) βPfr ([MtX]) , (<MtX> , P3)

βAx ~T> αA1

Finally, the Co_D receives the unicast MtX message and analyze it its fields to

get the Operation status reply (Value). If Value equals to Zero, then it would print a

message on its user interface screen “From <SPN#>; Function ‘Car_Stop’ was done

successfully.” While if the value was equal to one, then the message that would be shown

on the user interface screen is “From <SPN#> Access was denied.”

αA1 <T~ βAx

αMtc (MtX , <_data>) , (<DATA>) αPaz (MtX, Rsq, SPN#, Value) , (MtX, <_data>)

(Value = 0) αPrint (“From <SPN#>; Function ‘Car_Stop’ was done successfully.”)

!(Value = 0) αPrint (“From <SPN#> Access was denied.”)

CHAPTER FOUR: CASE STUDIES 120

4.4 Case Study – 3: Suspect car instant termination

For the third case study “Suspect car instant termination”, See Figure 4.13, we got a

Highway of two sides, the one on the right is going north while the other is going the

opposite way. Each of the two ways has two lanes.

Figure 4.13: Case Study 3: Suspect car instant termination

On the side of each road there is a set of Equipments (Road side Equipments),

those are connected to each other and have connected to an administrative device

(Coordinator device) that has the ability to reach and access any of those Road side

equipments (RSEs) as well as the vehicles’ devices (VVD).

In this scenario, assume that we have a suspected car (The Yellow in Figure 4.13),

the police want to stop that suspect vehicle peacefully by accessing the suspect’s VVD

and passes an order to stop it. The suspect’s VVD needs some credentials to be accessed

another device. That information can be gotten from the RSE instantly the suspect’s VVD

within coverage area.

CHAPTER FOUR: CASE STUDIES 121

To present this scenario mathematically, we use our formal specification language

to define each device and the connection type between them and their configuration.

Finally we show how exactly the messaging between the devices.

4.4.1 Participated devices definitions

In this scenario, four devices are participating in; they are; Coordination device (which is

the master of everything happening on the road that it’s responsible about), Road Side

Equipment (Which is forwarding and propagating the messages between the coordinator

and vehicle devices), and Vehicles VANET Devices (these resides inside the vehicles, its

job is to receive the messages propagated by the RSE and translate it to take the right

required action). These were the same devices used in the last two case studies, while in

this case study we have an additional device that is called Police vehicle’s VANET

Device (which is located inside any police car and has some administration abilities).

For the first three devices details, we illustrated in the first case study. For the

Police vehicle’s VANET Device (PVD), it has 4 main contents; Set of Functions, Set of

Tables, Some registers, and set of ports. The functions set contains six different

functions; ΓMtc (checks the type of the incoming message and decides the destiny of the

carried data), ΓPaz (Analyzes the incoming data stream according to the message type into

usable data), ΓSf (Sets some values as required), ΓGf (Get some values for some functions

when required), ΓPcr (Creates different messages types as required), ΓPfr (Forwards the

messages to the required ports). The set of tables has one member; RT (lists all the RSEs

instantly receiving messages from), SCT (Lists all the cars those were reported as suspect

cars). The set of registers has one member, that is; SCT_Flag (indicates this vehicles is

considered as a suspected vehicle), and finally, the set of the Vehicle’s VANET Device

ports, which has one main port; P1 (Port one, Connected to one of the RSEs or to a police

vehicle).

CHAPTER FOUR: CASE STUDIES 122

Figure 4.14 : Police vehicle’s VANET Device (PVD)

Let ΓA = { ΓAF, ΓAT, ΓAV, ΓAP, ΓADAC}

Where:

ΓA: Police vehicle’s VANET Device (PVD)

ΓAF: PVD’s Functions

ΓAT: PVD’s Tables

ΓAV: PVD’s Variables

ΓAP: PVD’s Ports

ΓADAC: PVD’s Digital to Analog Converter (attached device)

And Let:

ΓAF = { ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr, ΓPfr, Car_Ping(),Speed_Limit(SpC), Car_Stop()}

Where:

ΓMtc: Message type checker function

ΓPaz: Packet / Massage Analyzer

ΓSf: set of SET functions

ΓGf: Set of GET Functions

ΓPcr: Packet / Message Creator

ΓPfr: Packet / Message forwarder (specifies to which port)

Car_Ping():a functions can be used to spark the car to report its status

CHAPTER FOUR: CASE STUDIES 123

Speed_Limit(SpC): a function to limit the speed of the vehicle to the required

speed (SpC).

Car_Stop(): a function to stop the car.

ΓAT = {ΓRT[e][f], ΓST[g][h]}

Where:

ΓRT[e][f]: lists all the RSEs instantly receiving messages from. It has e of

rows and f of columns, where both of e and f are positive integers.

ΓST[g][h]: List all the suspected cars. It has g of rows and h of columns,

where both of g and h are positive integers.

ΓAV= { ΓSCT_Flag, ΓFI, ΓII}

Where:

ΓSCT_Flag: A flag register that indicates the suspicion of the vehicle.

ΓFI: A register that keeps the vehicle’s Fixed Information

ΓII: A register that keeps the vehicle’s Instant Information

ΓAP = {ΓP1, ΓP2}

Where:

ΓP1: The first connection port of device ΓA, connected to the active RSE.

ΓP2: The second connection port of device ΓA, connects to another Γ

devices.

Then:

ΓA = { ΓMtc, ΓPaz, ΓSf, ΓGf, ΓPcr, ΓPfr, Car_Ping(),Speed_Limit(SpC), Car_Stop(),

ΓRT[e][f], ΓST[g][h], ΓSCT_Flag, ΓFI, ΓII, ΓP1, ΓP2}

CHAPTER FOUR: CASE STUDIES 124

ΓA_Features:

ΓA_Mobile =True // A PVD is a mobile device

ΓA_SQL_Server = False // The PVD does not have the ability to query an

SQL server directly, but it can reach the

database server through RSE and the Co_D.

ΓA_User_Interface = True // The PVD device has a user interface to be

managed by.

ΓA_initialize_Operations =True // The PVD does not have the ability to start

messaging other devices; it’s just a

receiver and a replier.

ΓA_Info =True // The PVD can be considered as an information center.

ΓA_Routing =True // PVD has the routing ability by using the protocols

listed <Routing Protocol(s) used>.

4.4.2 Communications between participated devices

In addition to the communications illustrated in the previous case studies, we got

some more of them to explain regarding to the PVD device.

- Connection between RSE & PVD devices can be Active or In-Active connections.

βA >--< ΓA_RStatus: Active or Inactive

- PVD can have more than one active connection; one with an RSE device, and

another with any other device (In our scenario, this connection would be with a

VVD).

ΓA >--< βA_RStatus: Active

ΓA >--< X_RStatus: Active or Inactive

Where: X is any device or any layer.

CHAPTER FOUR: CASE STUDIES 125

- RSE – To - PVD – To – RSE connections should be secured using some kind of

authentication process.

βA
g <Ŧ> ΓA

k

- PVD– To - VVD – To – PVD connections should be secured using some kind of

authentication process.

ΓB
g <Ŧ> ΓA

k

- PVD devices can have a full control on VVD devices:

ΓA Ξ ΓB

4.4.3 Participated messages

In this scenario, sixteen messages are needed to implement the full procedure of the

experiment, these are; MtA(Access Authentication Request), MtB(Reply - Access

Authentication Request), MtC(PVD info. Request From RSE), MtD(Reply – PVD info.

Request (MtC, MtF)), MtE(Copy of PVD info), MtF(PVD info. Request From Co_D),

MtG(Car SPN# info Request), MtH(Reply - Car SPN# info Request (MtG)), MtI(Car

SPN# info Request – RSE from RSE), MtJ(Reply – Car SPN# info Request (MtK, MtI)),

MtK(Car SPN# info Request from Co_D), MtL(Copy of SPN#’s info), MtM(PVD – to –

SVD Access Request & Speed information), MtN(PID availability enquiry), MtO(Reply -

PID availability enquiry), MtP(Reply - PVD–To–SVD Access Request & Speed

information).

For more details about the used messages in this scenario, we write the following

Messages Cards, these would tell every detail about the messages. These cards should be

attached as an appendix with the formal specification for the system we are describing.

But we are going to show them here.

CHAPTER FOUR: CASE STUDIES 126

1- Message type-A Definition Card

2- Message type-B Definition Card

Message Name: MtB Message ID: M#02
Description: Reply to MtA – Access Authentication Request

Packet Type: Unicast
Source: βA Destination: ΓA

Reply: None
Message length: 2 (Fields)
Message Fields: M#02, Value

Details:
Its meaning depends on the Value:
 Value = 0 Access Permitted
 Value = 1 Access Denied – Wrong Password
 Value = 2 Waiting – PID’s info was not found in Special_cars_Table

(Asking Two previous β devices for the info, Sending MtC).
 Value = 3 Access Denied – Invalid PID’s info.

Message Name: MtA Message ID: M#01
Description: Access Authentication Request

Packet Type: Unicast
Source: ΓA Destination: βA

Reply: MtB
Message length: 3 (Fields)
Message Fields: M#01, PID, Pswd

Details:
 Created and being sent by ΓA when it wants to access any device on β

Layer.

CHAPTER FOUR: CASE STUDIES 127

3- Message type-C Definition Card

4- Message type-D Definition Card

Message Name: MtC Message ID: M#03
Description: Advanced - ΓA Information Request

Packet Type: Multi-Hop-Unicast
Source: βAx Destination: βx-1/2

Reply: MtD
Message length: 5 (Fields)
Message Fields: M#03, PID, Pswd, Rsq(x), Hp

Details:
 Created by βA Device and being sent to the two previous β devices asking

them for PID’s information in case of none existence in βA SCT table.

Message Name: MtD Message ID: M#04
Description: - Reply to MtC – PVD information Request

- Reply to MtF – PVD information Request

Packet Type: Unicast
Source: αA or βx-1/2 Destination: βAz

Message length: 3 (Fields)
Message Fields: M#04, Value, PID’s info

Details:
Its meaning depends on the Value:
 Value = 0 Information found, read next bits as (PID’s info)
 Value = 1 Information found, BUT Access Denied
 Value = 2 No information were found in Special_Cars_Table

 When a β device receives an MtD reply with values (MtD, 0, PID’s info),
then it would send MtB to Γ & sends a copy of the PID’s info to the next
10 β devices (MtE).

CHAPTER FOUR: CASE STUDIES 128

5- Message type-E Definition Card

6- Message type-F Definition Card

Message Name: MtE Message ID: M#05
Description: Copy of PVD’s information

Packet Type: Multi-hop-Unicast
Source: βAx Destination: βx+1/10

Message length: 3 (Fields)
Message Fields: M#05, Hp, PID’s info

Details:
 Being sparked and created when a βA device receives a positive MtD reply

holding the PID’s information. MtE would be sent to the next ten β
devices.

Message Name: MtF Message ID: M#06
Description: ΓA information Request

Packet Type: Unicast
Source: βx-2 Destination: αA

Reply: MtD
Message length: 4 (Fields)
Message Fields: M#06, PID, Pswd, Rsq(x)

Details:
 In case of none existence of PID’s (ΓA) info in βx-1/2’s SCT table, then the

last would send an MtF request message to αA asking for those
information.

CHAPTER FOUR: CASE STUDIES 129

7- Message type-G Definition Card

8- Message type-H Definition Card

Message Name: MtG Message ID: M#07
Description: Mobile Node SPN# info Request

Packet Type: Unicast
Source: ΓA Destination: βA

Reply: MtH
Message length: 3 (Fields)
Message Fields: M#07, PID, SPN#

Details:
 PID requests full information for the mobile node SPN#.

Message Name: MtH Message ID: M#08
Description: Reply to MtG - mobile node SPN# info Request

Packet Type: Unicast
Source: βA Destination: ΓA

Message length: 3 (Fields)
Message Fields: M#08, Value, SPN#’s info

Details:
Its meaning depends on the Value:
 Value = 0 Mobile node SPN# info found, read it from Mobile node SPN#’s

info field.
 Value = 1 Waiting – SPN# was not found in Vehicles_Table (asking two

previous β devices for Mobile node (Γ Device) SPN#’s info, sending MtI)
 Value = 2 Mobile node SPN#’s info invalid.

CHAPTER FOUR: CASE STUDIES 130

9- Message type-I Definition Card

10- Message type-J Definition Card

Message Name: MtI Message ID: M#09
Description: Advanced - Mobile node SPN# info Request

Packet Type: Multi-Hop-Unicast
Source: βAx Destination: βx-1/2

Reply: MtJ
Message length: 5 (Fields)
Message Fields: M#10, PID, SPN#, Hp, Rsq(x)

Details:
 This message will be created by βAx in the case of none existence of the

mobile node SPN#’s information in its VT table, asking the two previous β
devices to look in their VT tables.

Message Name: MtJ Message ID: M#10
Description: - Reply to MtI – Advanced - Mobile node SPN# info Request

- Reply to MtK – Last resort - Mobile node SPN# info Request

Packet Type: Unicast
Source: αA or βx-1/2 Destination: βAx

Message length: 4 (Fields)
Message Fields: M#10, Value, PID, Mobile node SPN#’s info

Details:
 Its meaning depends on the Value:
 Value = 0 Information found, read next bits as (Rsq(x), Car SPN#’s info)
 Value = 1 Waiting - No information were found in VT table
 Value = 2 SPN#’s info. Are invalid.

CHAPTER FOUR: CASE STUDIES 131

11- Message type-K Definition Card

12- Message type-L Definition Card

Message Name: MtK Message ID: M#11
Description: Last resort - Mobile node SPN# info Request

Packet Type: Unicast
Source: βx-2 Destination: αA

Message length: 4 (Fields)
Message Fields: M#11, PID, SPN#, Rsq(x)

Details:
 This message will be created by βx-2 in the case of none existence of the

mobile node SPN#’s information in its VT table, asking αA to look in its
own VT table & the common database storage.

Message Name: MtL Message ID: M#12
Description: Copy of SPN#’s info

Packet Type: Multi-Hop-Unicast
Source: βAx Destination: βx+1/10

Message length: 3 (Fields)
Message Fields: M#12, Hp, SPN#’s info

Details:
 None.

CHAPTER FOUR: CASE STUDIES 132

13- Message type-M Definition Card

14- Message type-N Definition Card

Message Name: MtM Message ID: M#13
Description: Γ-Γ Access Request & a Service

Packet Type: Unicast
Source: ΓA Destination: ΓB

Reply: MtP
Message length: 5 (Fields)
Message Fields: M#13, PID, SPN#’s info, Opt, SPc

Details:
 Its meaning depends on the Opt (Option), which is a value that decides

whether to run a specific operation or receives a speed code.
 Opt = # Any other specific services

Message Name: MtN Message ID: M#14
Description: PID (ΓA) availability enquiry

Packet Type: Unicast
Source: ΓB Destination: βA

Reply: MtO
Message length: 2 (Fields)
Message Fields: M#14, PID

Details:
 None.

CHAPTER FOUR: CASE STUDIES 133

15- Message type-O Definition Card

16- Message type-P Definition Card

Message Name: MtO Message ID: M#15
Description: Reply to MtN - PID (ΓA) availability enquiry

Packet Type: Unicast
Source: βA Destination: ΓB

Message length: 2 (Fields)
Message Fields: M#15, Value

Details:
 Its meaning depends on the Value:
 Value = 0 PID available in SCT Table
 Value = 1 PID invalid

Message Name: MtP Message ID: M#16
Description: Reply to MtM - Γ-Γ Access Request & a service

Packet Type: Unicast
Source: ΓB Destination: ΓA

Message length: 2 (Fields)
Message Fields: M#16, Value

Details:
 Its meaning depends on the Value:
 Value = 0 Operation has done successfully
 Value = 1 Access Denied – PID Invalid
 Value = 2 Access Denied – SPN#’s info doesn’t match the sent

information.

NOTE:- According to the limitation of the thesis pages number, in the next sections

we are not going to show the scenario’s lower level specification using our language.

CHAPTER FOUR: CASE STUDIES 134

4.4.4 Messages Flow of Case Study-3

Figure 4.15 illustrates the whole operation when a police vehicle PVD-1 suspects the

vehicle SVD-1 and would like to stop it. PVD-1 sends a message of type A (MtA) to the

current RSE asking for the permission to access the database of that RSE to look for the

full information of that suspected car. MtA has the Police car ID (PID) and the password

(Pswd) for accessing the RSE. When the RSE receives the MtA message, it would

analyze it and check whether it carries the correct password or not, if it’s the correct

password then it would check of the PID availability in its own SCT, if a match found

there then it would reply with a positive MtB (Value = 0). Otherwise a Waiting MtB

message (Value = 2) would be issued and sent back to the PVD-1 while creating and

passing an MtC message to the two previous RSEs asking them for the PVD’s

Information. If any of them has those information, then it would send them within an

MtD message to the Original RSE that will recheck to make sure the 2 PIDs are matching

then would unicast a positive MtB to the PVD-1. But, if both of the two previous RSEs

do not have that information, then the second previous RSE would create and send a

unicast message (MtF) to the Co_D asking for that information. The reply to the MtF

message would be and MtD message unicasted to the original RSE (Rse(x)).

Now PVD-1 got authenticated into the RSE, so now it can access and query the

tables of that RSE. The police man inside PVD-1 uses the user-interface to enter the

Suspected car’s Plate Number (SPN#) and send an MtG message to the RSE to look for

the full details for that suspected car to access it and stop it.

So the RSE receives that query message and start looking for the SPN# match in

its own VT table. If a match found, then it will enclose the full information of that SPN

within an MtH message then send it back to the PVD to make the use of it. While in case

of missing the match, the RSE would try to get that information from the two previous

RSEs or from the Co_D (as the last resort) using the query messages MtI and MtK

respectively and it would get the reply within an MtJ message.

Supposedly by now, PVD-1 has the full information of SVD-1 so it can use them

to authenticate into and access the suspected car and terminates it to just limit its speed.

For our scenario purpose, the PVD-1 would stop SVD-1.

CHAPTER FOUR: CASE STUDIES 135

All that will be started when the PVD-1 receives a positive MtH message that

carries the full information of the SVD-1. The police car will create an MtM message and

unicast it to the suspected car. MtM message has the required service option (in our case

study Opt = 0 which means Stop_the_car) that will not been implemented till the

authentication process takes place.

The authentication process has two stages. The first stage is done by sending a

query message (MtN) to the RSE asking for the validity of the police car that holds the

PID, the MtM message came from. If the PID was a valid, then a positive MtO reply

message would be created inside the RSE and unicasted back to SVD-1.

Here the second stage starts, a matching operation between the incoming SPN’s

information (came within the MtM message) and the SVD’s. if they are matched, then the

authentication is approved, SCT_Flag set into 1 (Which means now the SVD-1 is

officially a suspected car), Stop_Car Function been called and finally a reply message

MtP would be sent to the PVD-1 telling the result of the MtM request sent earlier.

CHAPTER FOUR: CASE STUDIES 136

Figure 4.15: Suspect car instant termination – messages flow

Legend

ST Suspects_Table
VT Vehicles_Table.
SCT Special_Cars_Table.

Access Rqst.
Suspect car’s info
Rqst.
Reply To Access
Rqst.
Reply to Suspect
Car’s info Rqst.

RSE(x) Sequence ID for the
current RSE.

RSE(x-1/2) Sequence ID for
the first or the second
previous RSEs.
+/-Mt? : Positive/Negative
Reply

Access Authentication Request - MtA

Reply - MtB

If MtB ==0, then MtG

Reply - MtH

RSE (x)

RSE (x-1)

RSE (x-2)

MtC

MtC

MtF+-MtD

+-MtD

+MtD

RSE (x-3)

Co_D

PVD

MtI

MtI

MtK
+-MtJ

+-MtJ

+MtJ

VT

SCT

VT

SCT

VT

SCT

VT

SCT

ST

MtE

MtL

CHAPTER FOUR: CASE STUDIES 137

Figure 4.16: Suspect car instant termination – messages flow – After getting the SVD

information

SVD

PVD

MtN PID Availibility Enquiry

MtO - Reply PID Availibility Enquiry

MtPMtM

(MtH, 0, SPN#’s Info)

RSE (x)

VT

SCT

ST

CHAPTER FIVE: RESULTS & DISCUSSION 138

CHAPTER 5: RESULTS AND DISCUSSION

5.1 Introduction

In the previous chapter we’ve shown three case studies with three different scenarios

using our formal specification language. Mathematically using our language, we have

described the layered system used as the VANET Environment Model and showed each

of the system’s devices architectures and its sets of operations, components, and

relations.

5.2 Case studies Differences

By looking to the three case studies in chapter Four, each of them is different from the

other, but they all were applied on the same system hardware. So we have 3 different

applications work on the same hardware.

In this section, we are going to show both of the validity and the consistency tests

on each of the three case studies. The first two case studies, their tests might look similar

but they are not, that we followed two different approaches to apply the test on.

5.2.1 Validity test

The first case study has four main steps to be done:

αA1 ~Q> βA1 …(1) // Co_D sends a Speed code message to RSE that carries the ID x.

βA1 ~R○ ΓB1 …(2) // RSE(x) passes the Speed Code message to the Required vehicle-1.

ΓB1 ~S> βA1 …(3) // Vehicle-1 replies with the vehicle’s instant status report to the instant

active RSE.

βA1 ~T> αA1 …(4) // RSE forwards the vehicle’s instant status report to Co_D.

CHAPTER FIVE: RESULTS & DISCUSSION 139

We can divide the whole operation into two sub-operations; propagating a speed

code, and sending a vehicle’s status report, and then we check for their validity and

consistency separately. Or we can just consider all the four steps shown above as on

operation with one conclusion because this scenario is simple. But we will illustrate the

first way.

The first two steps are under the first sub-operation; Propagating a Speed Code

(PSC) and their conclusion should be:

ΓB1○R~ βA1 …(12)

While the second two steps (3 and 4) reside under the second sub-operation;

Sending a Vehicle’s Status Report (SVSR), which’s conclusion should be:

αA1 <T~ βA1 …(34)

Table 5.1: First Scenario’s Validity Truth Table

Possibilities (1) (2) (12)
PSC

Validity
(3) (4) (34)

SVSR

Validity
Validity

1 F F F T F F F T -

0 F T F T F T F T -

1 T F F T T F F T -

1 T T T T T T T T T

By looking at the possibility flag column in the truth table above, the second line

is impossible to happen, so we can exclude it from the testing. The reason behind the

impossibility of the second line is because our system is a sequential system, then

Operation (1) is False which makes Operation (2) impossible to be True. All the

impossible lines would be excluded from the validity test.

There are some lines are possible to happen but can be excluded from the validity

test because they are not related to the validity proof. The first and the third lines are not

related to the validity proof because they do not satisfy the first part of the validity rule

which is saying “A set of sentences are considered Valid, if and only if there is no line in

CHAPTER FIVE: RESULTS & DISCUSSION 140

the system’s operation truth table having all of its statements are True while the

conclusion is False.”. So only one line left for the validity test process to check on, that is

the forth.

Assuming that all the connections and messaging were done properly with no

problems occurred then according to the validity test:

Sub-Operation Validity = !(Op.1 & Op.2 & … & Op.n & !Conclusion)

SOP validity = !((1) & (2) & !(12))

= !(T & T & !(T))

= !(F) = T

SVSR Validity = !(!(34) & (3) & (4))

= !(!(T) & T & T)

= !(F) = T

Whole System Validity = OpVa1 & OpVb1 & … & OpVn1

Whole System validity = SOP Validity & SVSR Validity

= T & T = T

Then we conclude that the system is valid with such a scenario.

For the second scenario, it has four main steps to be done:

αA1 ~U> βAx …(1) // Co_D sends a Function message to RSE that carries the ID x.

βAx ~V> ΓB1 …(2) // RSE(x) passes the Function message to the Required vehicle-1.

ΓB1 ~W> βAx …(3) // Vehicle-1 replies the status of the function implementation to the instant

active RSE.

βAx ~X> αA1 …(4) // RSE forwards the function implementation results report to Co_D.

CHAPTER FIVE: RESULTS & DISCUSSION 141

Because this scenario is simple, We are going to Not divide the whole operation

into two sub-operations then check their validity and consistency, as we did in case study

One. We are going to consider there are four operations and one conclusion that would

be:

ΓB1⌂ βAx …(1234) // Vehicle-1 Stops within the coverage area of βAx.

Table 5.2: Second Scenario’s Validity Truth Table

No. Possibilities (1) (2) (3) (4) (1234) Validity

1 1 F F F F F -

2 0 F F F T F -

3 0 F F T F F -

4 0 F F T T F -

5 0 F T F F F -

6 0 F T F T F -

7 0 F T T F F -

8 0 F T T T F -

9 1 T F F F F -

10 0 T F F T F -

11 0 T F T F F -

12 0 T F T T F -

13 1 T T F F F -

14 0 T T F T F -

15 1 T T T F F -

16 1 T T T T T T

By looking at the possibilities flag column in the truth table above, we can see

that only 5 lines are possible to happen, those are: 1, 9, 13, 15, & 16. So we can exclude

all the others from the validity testing.

There are some lines are possible to happen but can be excluded from the validity

test because they are not related to the validity proof. Only line 16 is related to the

validity test because it satisfies the first part of the validity rule.

CHAPTER FIVE: RESULTS & DISCUSSION 142

By assuming that all the connections and messaging were done properly with no

problems occurred then according to the validity test:

Operation Validity = !(Op.1 & Op.2 & … & Op.n & !Conclusion)

Operation Validity = !((1) & (2) & (3) & (4) & !(1234))

= !(T & T & T & T & !(T))

= !(F) = T

Then we conclude that the system is valid with such a scenario.

For the last scenario is a bit complex, so that we have divided it into sixteen steps:

ΓB1 ~A> βAx …(1) // Police vehicle sends an Access Authentication Request to the RSE device.

βAx ~B> ΓB1 …(2) // A reply to the message MtA

βAx ~C> βAx-1 …(3) // RSE requests the PVD information from the previous RSE

βAy ~D> βAx …(4a) // A reply from an RSE to Message MtC.

αA ~D> βAy …(4b) // A reply from a Co_D to Message MtF.

βAx ~E> βAx+1 …(5) // RSE sends a copy of the PVD information to the next RSE.

βAx-2 ~F> αA …(6) // RSE requests the PVD information from the Co_D

ΓB1 ~G> βAx …(7) // Police vehicle sends a Mobile Node information Request to the RSE.

βAx ~H> ΓB1 …(8) // A reply to message MtG

βAx ~I> βAx-1 …(9) // RSE requests the Mobile Node information from the previous RSE

βAy ~J> βAx …(10a) // A reply from an RSE to Message MtI .

αA ~J> βAx …(10b) // A reply from a Co_D to Message MtK.

βAx-2 ~K> αA …(11) // RSE requests the Mobile Node information from the Co_D

βAx ~L> βAx+1 …(12) // RSE sends a copy of the Mobile Node information to the next RSE

ΓB1 ~M> ΓA1 …(13) // A PVD sends a request to a mobile Node to Access it

ΓA1 ~N> βAx …(14) // A Mobile Node try to validate a PVD in an RSE’s Tables

βAx ~O> ΓA1 …(15) // A Reply from an RSE to a Mobile Node for the MtN request

ΓA1 ~P> ΓB1 …(16) // A Reply from a Mobile Node to a police vehicle for the MtM request

CHAPTER FIVE: RESULTS & DISCUSSION 143

The Black steps are compulsory while the red steps are optional. So we have

divided the whole operation into Five Sub-Operations; Op-AB, Op-CF, Op-GH, Op-IL,

& Op-MP. Each group will have a separated validity test then we do the ANDING for

their results to get the whole system’s validity test result. The conclusions for each Sub-

operation as follows:

- Conclusion for Op-AB is:

ΓB1 <B~ βAx …(12)

- Conclsion for Op-CF is:

βAx <D~ βAy …(36)

- Conclsion for Op-GH is:

ΓB1 <H~ βAx …(78)

- Conclsion for Op-IL is:

βAx+1 <L~ βAx …(912)

- Conclsion for Op-MP is:

ΓB1 <P~ ΓA1 …(1316)

The Red steps are optional with respect to the whole operation, so the system

might still be working if there is a problem appeared with any of them, but for the

validity test all of the operations, the compulsory and the optional should be valid.

Let’s assume that all the sub-operations are valid except the Op.CF was invalid

because its conclusion was False when all of its steps were done completely and flagged

as True, then we will get the following truth tables of the system:

Table 5.3: Op-AB Validity Truth Table

Possibilities (1) (2) (12)
Op-AB

Validity

1 F F F -

0 F T F -

1 T F F -

1 T T T T

CHAPTER FIVE: RESULTS & DISCUSSION 144

Table 5.4: Op-CF Validity Truth Table

Possibilities (3) (4a) (4b) (5) (6) (36)
Op-CF

Validity

1 F F F F F F -

0 F F F F T F -

0 F F F T F F -

0 F F F T T F -

0 F F T F F F -

0 F F T F T F -

0 F F T T F F -

0 F F T T T F -

0 F T F F F F -

0 F T F F T F -

0 F T F T F F -

0 F T F T T F -

0 F T T F F F -

0 F T T F T F -

0 F T T T F F -

0 F T T T T T -

1 T F F F F F -

0 T F F F T F -

0 T F F T F F -

0 T F F T T F -

0 T F T F F F -

0 T F T F T F -

0 T F T T F F -

0 T F T T T F -

1 T T F F F F -

0 T T F F T F -

0 T T F T F F -

0 T T F T T F -

1 T T T F F F -

0 T T T F T F -

1 T T T T F F -

1 T T T T T F F

CHAPTER FIVE: RESULTS & DISCUSSION 145

Table 5.5: Op-GH Validity Truth Table

Table 5.6: Op-IL Validity Truth Table

Possibilities (9) (10a) (10b) (11) (12) (912)
Op-IL

Validity

1 F F F F F F -

0 F F F F T F -

0 F F F T F F -

0 F F F T T F -

0 F F T F F F -

0 F F T F T F -

0 F F T T F F -

0 F F T T T F -

0 F T F F F F -

0 F T F F T F -

0 F T F T F F -

0 F T F T T F -

0 F T T F F F -

0 F T T F T F -

0 F T T T F F -

0 F T T T T T -

1 T F F F F F -

0 T F F F T F -

0 T F F T F F -

0 T F F T T F -

0 T F T F F F -

0 T F T F T F -

0 T F T T F F -

0 T F T T T F -

1 T T F F F F -

0 T T F F T F -

0 T T F T F F -

0 T T F T T F -

1 T T T F F F -

0 T T T F T F -

1 T T T T F F -

Possibilities (7) (8) (78)
Op-GH

Validity

1 F F F -

0 F T F -

1 T F F -

1 T T T T

CHAPTER FIVE: RESULTS & DISCUSSION 146

1 T T T T T T T

Table 5.7: Op-MP Validity Truth Table

Possibilities (13) (14) (15) (16) (1316)
Op_MP

Validity

1 F F F F F -

0 F F F T F -

0 F F T F F -

0 F F T T F -

0 F T F F F -

0 F T F T F -

0 F T T F F -

0 F T T T F -

1 T F F F F -

0 T F F T F -

0 T F T F F -

0 T F T T F -

1 T T F F F -

0 T T F T F -

1 T T T F F -

1 T T T T T T

Although, four sub-operations are valid and only one optional operation is invalid,

the whole system is considered invalid according to the following equation:

Whole System Validity = Op.AB & Op.CF & Op.GH & Op.IL & Op.MP

= T & F & T & T & T

= F

When implemented, the specification language tool should show where exactly

the invalidity reason is.

CHAPTER FIVE: RESULTS & DISCUSSION 147

5.2.2 Consistency Test

Table 5.8 shows the truth table for the layered system working with the Speed control &

Highway monitoring scenario, the first case Study.

What we are looking for in the consistency truth table, “is there any line has

all the operations steps True and the conclusion is True as well?”, In other words,

we are looking for at least one bridge to move from the input side to the required

output side.

Table 5.8: Consistency Truth Table

Possibilities (1) (2) (12)
PSC

Consistency
(3) (4) (34)

SVSR

Consistency
Consistency

1 F F F T F F F T F

0 F T F T F T F T -

1 T F F T T F F T F

1 T T T T T T T T T

The forth line satisfies the consistency rule but let’s see the following equation:

CTx = Op.1 & Op.2 & … & Op.n & Conclusion

CTPSC4 = (1) & (2) & (12)

= T & T & T = T

CTSVSR4 = (3) & (4) & (34)

= T & T & T = T

CT4 = CT PSC & CTSVSR

= T & T = T

CHAPTER FIVE: RESULTS & DISCUSSION 148

As long as there is at least one True Consistency Test then no need to care about

the rest of the tests, see below:

Whole system consistency = CT1 | CT2 | … | CTn

= - | - | - | T = T

Then we conclude that the system is consistent.

Table 5.9 shows the truth table for the layered system working with the second

scenario; Remote car locating & sending a Service request / Function message scenario.

Table 5.9: Consistency Truth Table

Possibilities (1) (2) (3) (4) (1234) Consistency

1 F F F F F -

0 F F F T F -

0 F F T F F -

0 F F T T F -

0 F T F F F -

0 F T F T F -

0 F T T F F -

0 F T T T F -

1 T F F F F -

0 T F F T F -

0 T F T F F -

0 T F T T F -

1 T T F F F -

0 T T F T F -

1 T T T F F -

1 T T T T T T

The forth line satisfies the consistency rule but let’s see the following equation:

CTx = Op.1 & Op.2 & … & Op.n & Conclusion

CTAll = (1) & (2) & (3) & (4) & (1234)

= T & T & T & T & T = T

CHAPTER FIVE: RESULTS & DISCUSSION 149

As long as there is at least one True Consistency Test then no need to care about

the rest of the tests, see below:

Whole system consistency = CT1 | CT2 | … | CTn

= - | T = T

Then we conclude that the system is consistent with the second scenario as well.

For the third case, there are many possibilities for the consistency to be taken care

of, that because it has compulsory and optional operations, so the consistency test should

be repeated at least twice with two different cases to make sure that the:

- First test will be applied on the system considering the compulsory operations;

Op.AB, Op.GH, and Op.MP.

- Second test we apply it on the system with considering Op.AB, Op.CF, Op.GH,

and Op.MP. The parameters we use here should make the use of Op.CF.

- Finally, we apply the test on the system with the existence of all the operations;

Op.AB, Op.CF, Op.GH, Op.IL, and Op.MP. the parameters we use here should

make the use of Op.IL.

Let’s assume that the first test was done and found the system was consistent.

While when the second test was applied, at the Op.CF a problem appeared when sending

a reply message from an RSE to another because of (For Example) wrong routing

information or incorrect message interpretation. Then we get the following truth tables:

Table 5.10: Op-AB Consistency Truth Table

Possibilities (1) (2) (12)
Op-AB

Consistency

1 F F F -

0 F T F -

1 T F F -

1 T T T T

CHAPTER FIVE: RESULTS & DISCUSSION 150

Table 5.11: Op-CF Consistency Truth Table

Possibilities (3) (4a) (4b) (5) (6) (36)
Op-CF

Consistency

1 F F F F F F -

0 F F F F T F -

0 F F F T F F -

0 F F F T T F -

0 F F T F F F -

0 F F T F T F -

0 F F T T F F -

0 F F T T T F -

0 F T F F F F -

0 F T F F T F -

0 F T F T F F -

0 F T F T T F -

0 F T T F F F -

0 F T T F T F -

0 F T T T F F -

0 F T T T T T -

1 T F F F F F -

0 T F F F T F -

0 T F F T F F -

0 T F F T T F -

0 T F T F F F -

0 T F T F T F -

0 T F T T F F -

0 T F T T T F -

1 T T F F F F -

0 T T F F T F -

0 T T F T F F -

0 T T F T T F -

1 T T T F F F -

0 T T T F T F -

1 T T T T F F -

1 T F T T T F F

CHAPTER FIVE: RESULTS & DISCUSSION 151

Accordingly, the following operations will never come up, so the second

consistency test result will be negative. By assuming for the same reason the third

consistency test fails. According to the following rule:

Whole system consistency = CT1 | CT2 | CT3

= T | F | F

= T

The system still consistent but with a low robustness measure, one third, see
below:

Consistency Probability = (Number of Successful Tests / Total Number of the Tests) * 100 %

= (1 / 3) * 100 % = 33%

5.3 Comparative Study

Our formal specification language is written using the algebraic approach, which means,

a system can be described in terms of operations and relationships between them. See

Table 5.12 which we made to compare other specification languages into ours regarding

the Type of the language.

Table 5.12: Language Type

Language Language Type

Our SL Hybrid Systems Algebraic-Based & Scenario-Based

LOTOS Temporal-Ordering-Based

CASL First order Logic Based

CSP Process Algebra Based

Alloy First order Logic Based

Larch Sequential System Algebraic-Based

mCRL2 Process Algebra & Abstract Equational data Types Based

VDM Sequential System Model-Based

Z Notation Sequential System Model-Based

CHAPTER FIVE: RESULTS & DISCUSSION 152

B Sequential System Model-Based

SPIN Model-Based

OBJ Sequential System Algebraic-Based

Petri Nets Concurrent System Model-Based

Our language is a formal specification language written to specify precisely

VANET Systems and applications. But it can specify other types of Networks such as

Infrastructures Networks, Mobile Networks, and Sensors Networks. Table 5.13 shows a

comparison between the different specification languages application areas.

Table 5.13: Application Area

Language Application Area

Our SL VANET & Networked systems

LOTOS Protocol Specification

CASL General Purpose

CSP Interaction of Concurrent System

Alloy Software Systems Expressing

Larch Computing Systems

mCRL2 Concurrent Discrete Event Systems Description

RSL Grid-Resource Discovery

RAISE Software Development

VDM Computer-Based Systems Development

Z Notation Computing Systems Modeling and Describing

B Development of Computer Software

SPIN distributed software systems

OBJ Computer Software Systems

Petri Nets Discrete Distributed Systems

CHAPTER FIVE: RESULTS & DISCUSSION 153

As we have mentioned before, our formal specification language is written to

specify precisely VANET Systems and applications. According to our survey and

literature review no other formal specification was created to specify VANET aspects. So

if we would like to compare other Specification languages to our language regarding the

covered VANET aspects, then ours provides a set of notations and rules those cover some

additional aspects (VANET related), these aspects are: (See Table 5.14.)

 Device Ability - DA

 Device Movement - DM

 Messages exchangeability - ME

 Device Internal Behavior logic - IB

 Security - Sc

 Validity Test - VT

 Consistency Test - CT

 Design and Configuration – D&C

 VANET Environment Description - ED

 Connections Description - CD

CHAPTER FIVE: RESULTS & DISCUSSION 154

Table 5.14: Covered aspects Comparison, √: Completely Covered, P√: Partially Covered

Language DA DM ME IB Sc VT CT D&C ED CD

Our SL √ √ √ √ P√ √ √ √ √ √

LOTOS √ √ √ √ √ P√

CASL √ √ √ √

CSP √ √ √ √ √ P√

Alloy √ √ √ √

Larch √ √ √ √ P√

mCRL2 √ √ √ √ √ √

RSL √ √ √

RAISE √ √ √

VDM √ √ √ √

Z √ √ √ √ P√

B √ √ √ √ √

SPIN √ √ √ √ √

OBJ √ √ P√

Petri Nets √ √ √ √

The last point we would like to mention, but not the least, formal specification

languages have a limitation that they are not well suited to deal with the user interaction,

while our language plan is to create an answer file for each user interface. That file has all

the answering information required from the user to enter. This file should be filled by

the researcher who is using our language and should be changed according to the scenario

purpose.

CHAPTER SIX: CONCLUSION AND FUTURE WORK 155

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Introduction

In this chapter some final remarks on the comparison results in chapter Five. To begin,

section 6.2 describes the results of the project. In addition, section 6.3 gives some

directions for future research into the area of vehicular Ad-hoc Networks.

6.2 Conclusion

We started this project aiming to accomplish three Objectives; those are Creating a

formal specification language precisely for VANET systems, creating a layered model for

VANET systems, and outlining an application layer protocol for Service delivery to

remote nodes. In chapter 3 we have explained in details the creation of our specification

language and defined all the notations and the rules of the language. Then we described

the layered system using our specification language and illustrated the protocol abilities

through showing its messages abilities.

If we get back to Table 5.13 we would find that our language is the only one

among the rest in the table, covers the application area of VANET systems. Our formal

specification language, mainly we have created it to specify and proof the validity and

verification of the VANET systems and their applications. VANET compares to other

network types, has special needs such as high mobility, High level of security, and High

bandwidth, so it needs a special language that can describe all those different aspects. The

aspects covered by our language are VANET specific but at the same time it can be used

to describe some other network types such as Infrastructures networks, Mobile nodes

Networks, and Sensors Networks.

VANET has the two types of systems; Sequential and Concurrent Systems as

well, so that, in Table 5.12 we can see our specification language was described as a

Hybrid Systems specification language. On the same table, we showed that our language

is Algebraic-Based & Scenario-Based because it was written according to the Algebraic

approach and can be used based on Scenarios.

CHAPTER SIX: CONCLUSION AND FUTURE WORK 156

Our specification language covers many of the VANET aspects; those were not

covered all by any other specification language as we can see in Table 5.14.

6.3 Future Work

Many further works can be added to the specification language or to the layered system

model or to its application layer protocol.

6.3.1 Tool Development

A tool for our language is needed to be developed so other researchers who work on

VANET systems and applications development can use to present their work and

simulate it and prove its validity and consistency.

We have created the language notations set, rules set, and two proofing tests.

What needed is a GUI tool supported with a text editor that provides the ability to print

our language symbols and interprets them. Our language uses many Non-ASCII

notations. The GUI tool’s text editor should provide the ability to print those notations.

6.3.2 Language Enhancement

As we mentioned before, our specification language precisely specify VANET systems

and their applications and it covers many aspects of the VANET area but no all of them.

For example, the security aspect is a very important requirement in VANET systems

because if a successful hacking attack could happen on any VANET system, it might lead

to a disaster, so that we always need a robust security system besides the VANET system.

Some more notations are needed in the security aspect to cover.

Our language provides two kinds of tests, Validity test & Consistency test, the

first is to tell whether or not a system is available for a specific application or not and the

opposite way. The consistency test tells how reliable a system is with some scenarios or

an application or the other way back. Many other tests or algorithms can be added to the

current language to make it more efficient to deal with faults and errors trying to refine

the system by auto-fix them or just to show where and what the error is and gives some

suggestions on how to fix that error.

CHAPTER SIX: CONCLUSION AND FUTURE WORK 157

6.3.3 Application layer protocol enhancement

The motivation for lining out the application layer protocol was to draw a starter line for

creating a common protocol can be used on VANET environment and to push researchers

to create more applications based on this protocol. So more works can be done to enhance

and develop the protocol, such as, creating more multi-purpose messages, those can be

used by different applications for different purposes.

6.3.4 Developing a simulator for VANET systems

Using our layered system model combined with the specifications language notations

(instead of using programming language) we can create a model based simulator engine

for VANET systems. There would be icons refer to different layers devices, a user can

click and drag the icon of a device and put it on the simulator’s design board, when

double click the device icon, its built-in functions would appear and the user can create

more functions for that device using our language notations.

The simulator would have an extension to design printable VANET systems

figures. This extension would offer many views of the system. The lower level we show,

the more details of the system would be shown.

6.3.5 Developing more of VANET applications

Based on our application layer protocol and the VANET environment model, many

applications can be inspired from and be developed. For example, a punishment fine

delivery system that will provide kind of mailing system between the central police

station of a city and the vehicles within that city.

REFERENCES 158

REFERENCES

ABDERRAHIM B., 2004, University of Avignon – France, “Optimizing Dissemination

of Alarm Messages in Vehicular Ad-Hoc Networks (VANET)”.

ARNOLD T., 2008, WYATT L., ZHAO J. and CAO G. “IP Address Passing for

VANET,” IEEE International Conference on Pervasive

Computing and Communications (Percom), 2008.

BALON N., (2006). University of Michigan, Master’s thesis “Increasing Broadcast

Reliability In Vehicular Ad-Hoc Networks”.

BAUMANN R., 2004. ETH Zurich, Master’s Thesis in Computer Science; “Vehicular

Ad hoc Networks (VANET) - Engineering and simulation of

mobile ad hoc routing protocols for VANET on highways and in

cities”.

BLUM J., 2004, ESKANDARIAN A., and HOFFMAN L. J., Challenges of intervehicle

ad hoc networks. IEEE Trans. Intelligent Transportation

Systems.

BOOCH G., 1994. Book: “Object-Oriented Analysis and Design with Applications (2nd

Edition) (The Benjamin/Cummings Series in Object-Oriented

Software Engineering)”, ISBN 0-8053-5340-2.

BYCHKOVSKY V., 2006, B. Hull, A. Miu, H. Balakrishnan, “A Measurement study of

Vehicles Internet Access Using In Situ Wi-Fi Networks,” ACM

MOBICOM 2006.

REFERENCES 159

COPS M., 2006. Program Manager, Vehicle Infrastructure Integration Consortium, VII

Strategy for Safety and Mobility Program, Sept 29 2006.

FARKAS C. 2007, KOPYLOVA Y. University of South Carolina, Master’s Proposal;

“Application Level Protocol for Accident Reconstruction in

VANETs”.

FREMONT G., 2007, BOYER T. – ASF. Report; “A co-operative vehicle / infrastructure

system to improve road transport safety and provide accurate in-

vehicle information - The SAFESPOT & CVIS projects”,

ASECAP 2007 Annual congress.

GUEMARI L., 2001. Master Thesis, Institute National desTelecommunicatoins, "An

OPNeT Model implementation for Ad-hoc On Demand Distance

Vector Routing Protocol".

IEEE GROUPER, 2008. Official IEEE 802.11 Working group project Timelines:

http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.

htm, Accessed before June 2008.

LARSSON T., 1998, HEDMAN N (1998). Master Thesis in Lulea University of

Technology, "Routing Protocols in Wireless Ad-hoc Networks -

A Simulation Study".

LEEARMSTRONG, 2008. Arm Strong consulting, Inc. web site:

http://www.leearmstrong.com/DSRC/DSRCHomeset.htm,

Accessed before June 2008.

REFERENCES 160

SOMMER C., 2008, DIETRICH I., DRESSLER F.,DULZ W., GERMAN R. “A Tool

chain for UML-Based Modeling and simulation of VANET

Scenarios wityh Realistic Mobility Models”, Mobihoc 2008.

SOMMERVILLE I., 2007. Book: “Software Engineering”, Eighth Edition.

SONG H., 2008, ZHU S. and CAO G. "SVATS: A Sensor-network-based Vehicle Anti-

theft System“, IEEE INFOCOM mini-conference, 2008.

SCHROTH C., 2006, STRASSBERGER M., EIGNER R., EICHLER S. (2006). "A

Framework for Network Utility Maximization in VANETs". In:

Proceedings of the 3rd ACM International Workshop on

Vehicular Ad Hoc Networks (VANET) : ACM SIGMOBILE,

2006.- 3rd ACM International Workshop on Vehicular Ad Hoc

Networks (VANET).- Los Angeles, USA, p. 2

TIDMAN P., 1999, and KAHANE H., Book: ”Logic and Philosophy – A Modren
Introduction”.

ZHAO J., 2006, and CAO G. (2006). “VADD: Vehicle-Assisted Data Delivery in

Vehicular Ad Hoc Networks”, IEEE INFOCOM, April 2006.

ZHAO J., 2008, ARNOLD T., ZHANG Y., and CAO G. (2008). “Extending Drive-thru

Data access by Vehicle-to-Vehicle Reply,” ACM International

Workshop on Vehicular Ad Hoc Network (VANET), 2008.

BIBLOGRAPHY 161

BIBLOGRAPHY

ABUELELA M., 2008, OLARIU S., and WEIGLE C. M. Department of Computer

Science, Old Dominion University, IEEE Publ;ications, “NOTICE:

An Architecture for the Notification of Traffic Incidents”.

ARIB, 2005. Association of Radio Industries and Bussiness (ARIB), Japan. Global

Standards Collaboration (GSC), France. “Study of a DSRC Basic

Application Interface to Extend Application in Vehicles.”

CHOUDHARY G., 2007. Department of Computer Science, Old Dominion University,

Master’s Project Final Report, “Providing VANET Security through

Position Verification”

FESTAG A., 2008, NOECKER G., STRASSBERGER M., LUBKE A., BOCHOW B.,

TORRENT-MORENO M., SCHNAUFER S., EIGNER R.,

CATRINESCU C., and KUNISCH J.. Proceedings of 5’th

International Workshop on Intelligent Transportation (WIT). “’NOW

– Network On Wheels’: Project Objectives, Technology and

achievements.”

GABBAY M., 2007 . Heriot-Watt University, Scotland, “Formal Specification Course.”

GUTTAG J., 1982, HORNING J., WING J., MIT Laboratory for computer Science,

“Some Notes On Putting Formal Specifications to Productive Use.”

HOLFELDER W., 2004. DaimlerChrysler Research and Technology, INC. Palo Alto,

CA, “Vehicle-to-Vehicle and Vehicle-to-Infrastructure

Communication Recent Developments, Opportunities and

Challenges.”

BIBLOGRAPHY 162

JI L., 1999, ISHIBASHI M., CARSON M.. Institute for Systems Research, University of

Maryland. “An Approach to Mobile Ad hoc Network Protocol

Kernel Design.”

JONES B., 2005. ITS Joint Program Office, U.S. Department of Transportation, National

VII Coalition, “DSRC – Linking the Vehicle and the Road.”

JULIUSSEN E., 2007. Principle Analyst, Telematics Research Group, INC. Detroit.

“Advancements in V2V & C2I-V2R.”

L. WANG, 2004, and S. OLARIU, Department of Computer Science Old Dominion

University, Book: “Hybrid Routing Protocols for Mobile Ad- hoc

Networks.”

MANI P., 2003. Master’s thesis, University of Kansas, “Development and Performance

Characterization of Enhanced AODV Routing for CBR and TCP

Traffic.”

OLARIU S., 2008. Sensor Networks Research Group at Department of Computer

Science, Old Dominion University. “An Architecture for Traffic

Incident Detection”.

ROEBUCK R., 2005. SIRIT Technologies, Carlton, Texas. 5.9 GHz Prototype

Development Program “DSRC Technology and the DSRC Industry

Consortium (DIC) Prototype Team.”

STAMPOULIS A., 2006, CHAI Z., “A Survey of Security in Vehicular Networks”.

BIBLOGRAPHY 163

STOJMENOVIC I., 2008. University of OTTAWA, Lecture Notes: “Engineering

Environmentally Friendly and Integrated Intelligent Transportation

Systems.”

WING J., 1. School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.

“Hints for Writing Specifications.”

WING J., 2. School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.

“Teaching Mathematics to Software Engineers.”

WING J., 1990. School of Computer Science, Carnegie Mellon, Pittsburgh, USA. IEEE,

“A Specifier’s Introduction to Formal Methods.”

WING J., 1992. School of Computer Science, Carnegie Mellon, Pittsburgh, USA. IEEE,

“Specifications in Software Development.”

WING J., 1994. Massachusetts Institute of Technology, “Encyclopedia of Software

Engineering – 2 Volume Set – Formal Methods.”

WING J., 1996. Massachusetts Institute of Technology, “Teaching and Learning Formal

Methods - Hints to Specifiers.”

YONGKANG X., 2004, LIN Z., XIUMING S., YONG R., and ZHENGXIN M.,

Department of Electronic Engineering, Tsinghua University, Beijing,

P.R. China. “Neighbor-Medium-Aware MAC Protocol with Fairness

for Wireless Ad Hoc Networks”

YONGKANG X., 2005. Department of Electronic Engineering, Tsinghua University,

Beijing, P.R. China. “Introduction of Mobile Ad hoc Network.”

REFEREED COPNFERENCES PROCEEDINGS 164

REFEREED CONFERENCES PROCEEDINGS

1. Maythem Kamal Abbas, Azween B. Abdullah, Department of Computer and
Information Sciences, Universiti Teknologi PETRONAS, “Vehicles Speed
Control via VANET”, ICIMU 2008.

2. Maythem Kamal Abbas, Azween B. Abdullah, Department of Computer and
Information Sciences, Universiti Teknologi PETRONAS, “Remote Mobile
Nodes Service Delivery via VANET”, NetApps 2008.

3. Maythem Kamal Abbas, Azween B. Abdullah, Department of Computer and
Information Sciences, Universiti Teknologi PETRONAS, “A VANET Safety
Application: Remote Mobile Nodes Service Delivery via VANET”, NPC 2009.

