

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE :

TEB2203/TFB2093 - INTERNET OF THINGS (IOT)

DATE

7 AUGUST 2024 (WEDNESDAY)

TIME

2:30 PM - 5:30 PM (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- Answer ALL questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- i. There are **SIX** (6) pages in this Question Booklet including the cover page
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

1. a. Describe **FIVE (5)** significant differences between Harvard Architecture and Von Neumann Architecture.

[5 Marks]

In the context of embedded systems and IoT, elaborate the role of Gyroscopes,
Accelerometers, Temperature Sensors, Wearable Sensors, and Proximity
Sensors.

[5 Marks]

- c. You are tasked with designing a Finite State Machine (FSM) to model the behavior of an autonomous drone in a search and rescue mission. The FSM should allow the drone to:
 - · Navigate efficiently through a disaster area.
 - Identify survivors.
 - Deliver medical supplies.
 - Return to its base for recharging and maintenance when necessary.
 - Handle error conditions like communication loss or equipment malfunctions.
 - i. Analyse the provided scenario to identify and categorize the potential states and transitions managed by the delivery drone.

[3 Marks]

ii. Construct a detailed State Transition Table outlining the identified states and transitions from part (c)(i) for the delivery drone scenario.

[3 Marks]

iii. Develop a visual Finite State Machine (FSM) based on the State Transition Table from part (c)(ii), for illustrating the identified states and transitions for the delivery drone scenario.

[4 Marks]

2. a. You are tasked with designing a temperature sensing system using an Arduino loT node, as shown in FIGURE Q2. The system incorporates a TMP36 temperature sensor, which provides raw temperature values ranging from 0 to 1023. Your objective is to integrate this sensor into the loT node (breadboard) to accurately detect and monitor temperature changes in a given environment. Analyze this design and ensure the system operates effectively for its intended application.

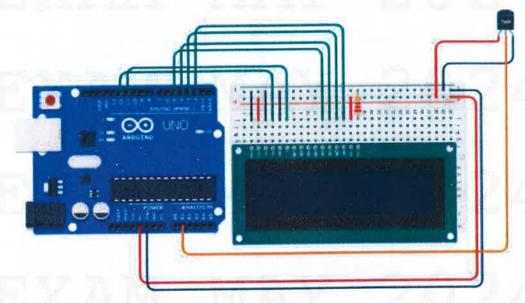


FIGURE Q2: Temperature Sensing System with TMP36

[8 Marks]

b. Create a well-defined and appropriately labeled schematic diagram based on **FIGURE Q2**.

[6 Marks]

- d. Develop a full Arduino sketch (program) to:
 - measure/read the raw temperature value at 2-second intervals,
 - convert the raw temperature value to a range of 0°C to 100°C,
 - show both the raw and the converted values on an LCD display.

[6 Marks]

3. a. Describe the following built-in Arduino IoT functions and provide an appropriate Arduino example for each.

```
i. pinMode()
```

[3 Marks]

ii. digitalWrite()

[3 Marks]

iii. analogRead()

[3 Marks]

iv. constrain(x, a, b)

[3 Marks]

b. Determine the resulting output in the provided Arduino code to illustrate converting float point numbers to integers.

float
$$x = 2.9$$
;
int $y = x$;

[4 Marks]

c. Consider the scenario where IoT sensor_X receives the pattern 1234.567 for storage and processing. Evaluate the processing of this received pattern using the concepts of mantissa and exponent in floating-point representation.

[4 Marks]

4. The circuit depicted in **FIGURE Q4** shows an Arduino board to control an LED, with the support of a resistor.

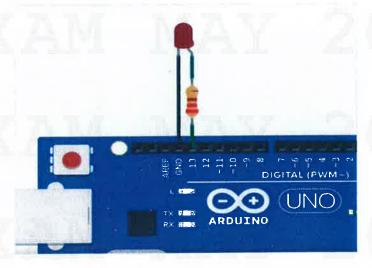


FIGURE Q4: Blinking an LED

a. Develop a comprehensive Arduino sketch to blink this LED and subsequently elucidate the code's functionality and purpose.

[10 Marks]

- b. Write a complete Arduino sketch to perform the following arithmetic operations in the sketch.
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Modulus
 - Increment (++)
 - Decrement (--)

[10 Marks]

5. Consider **FIGURE Q5** that illustrates the circuit for controlling a 7-segment display unit using Arduino board.

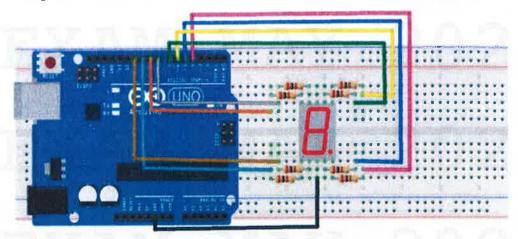


FIGURE Q5: 7-Segment Display Circuit

Assume the following array was declared earlier:

const int segment7[8] =
$$\{1, 2, 3, 4, 5, 6, 7, 8\}$$

a. Write function void setup() to set up the necessary pins for controlling the 7-segment display unit.

[8 Marks]

b. Write function void loop() to light up the segments one-by-one with the interval of 1000 milliseconds.

[5 Marks]

c. Develop an Arduino sketch that uses the min() and max() functions to find the minimum and maximum values from a set of numbers.

[7 Marks]

- END OF PAPER -