

## FINAL EXAMINATION MAY 2024 SEMESTER

COURSE :

**CEB2013/CFB2013 - SEPARATION PROCESS I** 

DATE

9 AUGUST 2024 (FRIDAY)

TIME

9.00 AM - 12.00 NOON (3 HOURS)

## **INSTRUCTIONS TO CANDIDATES**

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

## Note:

- There are FIVE (5) pages in this Question Booklet including the cover page.
- ii. DOUBLE-SIDED Question Booklet.
- iii. Graph papers will be provided.

Universiti Teknologi PETRONAS

 a. Using appropriate equations, compare the flux estimation for molecular diffusion and diffusion under convection.

[4 marks]

b. Hydrogen and cyclohexane are diffusing in counter diffusion through a straight glass tube at 101.32 kPa and 288.6 K. The pressures on the sides of the tube are 2.5 kPa and 0.2 kPa. The diffusivity of hydrogen is  $4.5 \times 10^{-5}$  m<sup>2</sup>/s, and the total pressure is constant throughout the tube. Discuss the effect of diffusion path on the hydrogen diffusion flux through the tube.

[4 marks]

c. A drop of liquid toluene is kept at a uniform temperature of 25.9°C and is suspended in a large volume of still air at 1 atm. The initial radius of the liquid toluene is 2.00 mm. The vapor pressure and the diffusivity of toluene in air at 25.9°C are 3.84 kPa and 7.85 ×  $10^{-6}$  m<sup>2</sup>/s, respectively. Derive an equation of diffusion flux in term of partial pressure and determine the diffusion flux,  $N_A$ . Assume gas constant, R = 8314.34 m<sup>3</sup>·Pa/kgmol·K.

[10 marks]

d. A volatile organic solvent is used to dissolve chlorine (Cl<sub>2</sub>) gas leaving the chimney. For the purpose of design calculations, prove that the overall solvent mass transfer resistance is controlled by Cl<sub>2</sub> gas phase.

[7 marks]

a. A batch distillation unit is used to distill 800 moles of a binary mixture of acetone and methanol. The initial and final concentrations of acetone are 0.3 and x<sub>2</sub> moles, respectively. Assume that the amount of liquid left is 180 moles. Develop a material balance for the distillation process.

[6 marks]

- b. A distillation column receives an equimolar mixture of styrene (C<sub>8</sub>H<sub>8</sub>) and ethylbenzene (C<sub>8</sub>H<sub>10</sub>) at a rate of 150 kmol/h. The purities of the top product (C<sub>8</sub>H<sub>10</sub>) and the bottom product (C<sub>8</sub>H<sub>8</sub>) are expected to have 98 mol% and 99 mol%, respectively. The feed mixture is a saturated liquid operates at 1 atm. The relative volatility of the system is 2.75.
  - i. Calculate the amount of C<sub>8</sub>H<sub>10</sub> in the distillate and bottom streams.
    [4 marks]
  - ii. Estimate the number of theoretical stages and feed-plate location if the reflux ratio is twice the minimum reflux ratio.

[10 marks]

iii. Based on the result obtained in **part** (**b**)(ii), determine the actual number of theoretical stages needed for a 75% overall column efficiency. Suggest an example of a tray design appropriate for this distillation process.

[5 marks]

- 3. a. An air stream with total flowrate of 60 kmol/h containing 5 mol% sulfur dioxide (SO<sub>2</sub>) is to be fed to an absorption tower at 293 K and 1 atm. It is desired to remove 95% of the SO<sub>2</sub> under counter current flow.
  - i. Determine the number of stages in the tower using Kremser's equation if pure water with total flowrate of 160 kmol/h is used as the solvent. Assume the equilibrium relation for  $SO_2$  in the gas-liquid system is  $y^2 = 4x^2$ , where y is the mole fraction of  $SO_2$  in gas phase and x is the mole fraction of  $SO_2$  in liquid phase.

[9 marks]

ii. Estimate the number of stages in the tower using a graphical method if pure water with total flowrate of 180 kmol/h is used as the solvent. Assume the equilibrium relation for  $SO_2$  in the gas-liquid system is y = 0.3 x - 0.013, where y is the mole fraction of  $SO_2$  in gas phase and x is the mole fraction of  $SO_2$  in liquid phase.

[12 marks]

b. With the aid of a x-y diagram, draw the location of operating lines for absorption, stripping, and minimum liquid flow operations.

[4 marks]

 a. Compare and discuss the characteristics of equilateral triangular and rectangular coordinates used for representing the equilibrium data for a three-component system in a liquid-liquid extraction process.

[7 marks]

b. Differentiate **THREE (3)** types of process flow for multi-stage liquid-liquid extraction systems with proper descriptions. Derive the mass balance equation for the final stage.

[8 marks]

c. A treated ore containing inert solid gangue and copper sulphate (CuSO<sub>4</sub>) is to be leached in a single stage process extractor using pure water. A total of 22 wt% of the CuSO<sub>4</sub> in the inlet ore is to be leached. Based on the economic analysis, the optimum ratio of the inlet ore to the solvent was found to be 1:1. The concentration of inert solid (N) for exit underflow is constant at 2 kg insoluble solid/kg solution. Determine the composition of the overflow and underflow leaving the process using graphical method. [10 marks]

-END OF PAPER-

