

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE

AAB4233 - ADVANCES SURFACE COATING

DATE

30 JULY 2024 (TUESDAY)

TIME

9.00 AM - 12.00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- Answer ALL questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- i. There are **SIX** (6) pages in this Question Booklet including the cover page and appendix.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

 a. The wear properties are dependent on surface roughness of a metallic component. Evaluate the significance of irregularities on wear introduced on the surface of a carbon steel component during grinding, turning and polishing.

[10 marks]

An automotive gear may undergo excessive wear during its operation.
 Discuss a technique to improve its surface hardness and suggest a lubricant to protect the gear from wear,

[9 marks]

 Evaluate the surface roughness of shot peening and chemically deburred components. Suggest which component would be more resistant to fatigue. Justify.

[6 marks]

- 2. A pharmaceutical company is producing 50,000 coated tablets per day. The diameter and thickness of the tablet is 8 mm and 2 mm respectively. The coating is porous, and an average diameter of the pore is 20 nm. There are 100 pores per mm². If the thickness of the porous coating is 30 micrometres.
 - a. Determine the total number of pores on surface of one tablet and the quantity of material required for 50,000 tablets if density of material is 0.95 g/cm³.

[12 marks]

b. You are given three processes for coating of tablets. film coating, sugar coating and compression coating. Propose a suitable coating process and parameters required to achieve porous coating of desired thickness on tablets at lower cost. Justify your answer.

[13 marks]

a. You are working in a surface coating company as an inspection engineer.
 Propose a quality assurance plan for coating and inspection of carbon steel components for corrosion protection.

[15 marks]

b. A carbon steel component is required to be used in the grinding equipment. Propose a relevant method that can be used to harden the surface of the carbon steel component.

[10 marks]

 a. A carbon steel plate is required to be protected from corrosion by using metal coating. Propose a coating process and highlight the chemical used for this coating and their disposal for environment safety.

[10 marks]

 Evaluate the surface roughness of the steel plate to achieve adhesion strength suitable for industry application.

[8 marks]

c. A carbon steel plate of dimensions 50 mm x 50 mm is to be coated with epoxy and dry film thickness (DFT) of the coating is 2 mm. Assess the mass of epoxy required to achieve 2 mm dry film thickness (DFT) of the coating if the density of the epoxy is 1.25 g/cm³,

[7 marks]

END OF PAPER

Appendix

Shape Lateral Surface Area (LSA) Total Surface Area (TSA) Cube 4a2² 6a2² Right Prism Base perimeter × Height LSA + 2 (area of one end) Right Circular Cylinder 2πrh 2πr(r + h) Right Circular Cone πrl πr(1 + r) Solid Sphere 4πr2² 4πr2² Hemisphere 3πr2² 3πr²				
Cube $4a2^2$ $6a2^2$ Right Prism Base perimeter × Height LSA + 2 (area of one end) Right Circular Cylinder $2\pi rh$ $2\pi r(r+h)$ Right Circular Cone πrl $\pi r(l+r)$ Solid Sphere $4\pi r2^2$ $4\pi r2^2$ Hemisphere $3\pi r2^2$ $3\pi r2^2$		Shape	Lateral Surface Area (LSA)	Total Surface Area (TSA)
Right Prism Base perimeter × Height LSA + 2 (area of one end) Right Circular Cylinder $2\pi r h$ $2\pi r (r + h)$ Right Circular Cone $\pi r l$ $\pi r (l + r)$ Solid Sphere $4\pi r 2^2$ Hemisphere $3\pi r 2^2$ $3\pi r^2$		Cuboid (rectangular prism)	2h(l + b)	2(lb + bh + lh)
Right Circular Cylinder $2\pi rh$ $2\pi r(r+h)$ Right Circular Cone πrl $\pi r(l+r)$ Solid Sphere $4\pi r2^2$ $4\pi r2^2$ Hemisphere $3\pi r2^2$ $3\pi r^2$		Cube	4a2 ²	6a2 ²
Right Circular Cone $\pi r l$ $\pi r (l+r)$ Solid Sphere $4\pi r 2^2$ $4\pi r 2^2$ Hemisphere $3\pi r 2^2$ $3\pi r^2$		Right Prism	Base perimeter × Height	LSA + 2 (area of one end)
Solid Sphere $4\pi r 2^2$ $4\pi r 2^2$ Hemisphere $3\pi r 2^2$ $3\pi r^2$		Right Circular Cylinder	$2\pi rh$	2πr(r + h)
Hemisphere $3\pi r^2$ $3\pi r^3$		Right Circular Cone	$\pi r l$	$\pi r(l + r)$
	TP			
JTP EXAM MAY 2024 U				
			6	