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ABSTRACT 
 

Cooling tower is one of the unit that is involved with water network system and it can 

contribute to higher water savings for a plant if maximum attention is given to it. 

Much of the works only concentrate on individual cooling tower unit, especially in 

improving the performance of the internals.  Nonetheless, work on the total cooling 

water system, which addresses the issues of interactions between the cooling tower 

and its associated heat exchangers or coolers, has received lesser attention. The 

objective of this study is to develop a systematic method for optimization strategy to 

improve efficiency of the existing cooling tower system, based on the established 

empirical model. A well-known Merkel’s Equation (Perry and Green, 1997) is used to 

predict the cooling tower performance. The basic idea in this optimization strategy is 

to minimize cooling water circulation in cooling tower through water reuse so as to 

maximize cooling tower return temperature. A two-stage approach is adopted in the 

optimization procedure.  The first stage is to address the cooling tower performance 

itself.  This effort takes into account the minimum approach temperature, pressure 

drop and fouling issues so that any modification of process parameters are within the 

acceptable limits of the cooling tower.  In the second stage, cooling water composite 

curve, which is similar to a conventional water pinch technology, is proposed to 

identify water reuse opportunities. Further design of water reuse is carried out by 

mathematical approach using General Algebraic Modelling System (GAMS) mainly 

when composite curve unable to identify water reuse opportunity.  Finally, the 

economics of the proposed improvement are then presented to demonstrate its cost 

effectiveness.  Based on the case studies, application of water reuse enables the total 

operating cost of the cooling water systems to be reduced up to 27% for case study 1 

and 28% for case study 2.  While for case study 3, the additional product capacity 

could be obtained up to 15%. These findings show a great promise for industrial 

application as the methodology developed in this thesis can be used to improve the 

performance of the cooling water system.  

 



 

ABSTRAK 

Menara penyejuk adalah sebuah unit yang melibatkan system jaringan air dan boleh 

memberikan lebih banyak keuntungan untuk sesebuah loji jika tumpuan yang lebih 

diberikan kepada sistem tersebut. Kebanyakan kerja-kerja pembaikan yang dilakukan 

ke atas menara penyejuk hanyalah menumpukan ianya secara individu seperti 

pengubahsuaian sistem dalaman. Bagaimanapun, kerja-kerja yang melibat interaksi 

keseluruhan sistem tidak begitu mendapat perhatian. Objektif kajian ini adalah untuk 

menghasilkan metodologi yang sistematik sebagai strategi supaya menara penyejuk 

beroperasi secara optimum dan lebih efisyen dengan menggunakan model empirikal 

yang telah diperkenalkan sebelum ini. Persamaan Merkel’s (Perry dan Green, 1997) 

telah digunakan untuk menganggarkan parameter menara penyejuk yang baru. Idea 

asas dalam kajian ini adalah dengan mengurangkan penggunaan air di dalam sistem 

ini melalui “guna semula” air dan juga dengan memaksimakan suhu air panas yang 

kembali ke menara penyejuk. Prosedur kajian telah dibahagikan kepada dua tahap. 

Tahap pertama adalah untuk meningkatkan prestasi menara penyejuk. Tahap ini 

mengambilkira tentang beza minimum antara suhu udara lembab dan suhu air sejuk, 

beza tekanan dan pembentukan lapisan (fouling) di dalam sistem, dengan yang 

demikian sebarang pengubahsuaian parameter sentiasa berada di dalam had yang 

dibenarkan oleh sistem. Pada tahap kedua, “Graf Komposit Air Penyejuk” yang 

menyamai “Teknologi Titik Pertemuan Air” yang konvensional, telah diperkenalkan. 

Kemudian, rekabentuk ini diteruskan dengan menggunakan persamaan matematik 

menggunakan program GAMS terutamanya apabila graf komposit tidak dapat 

mengenalpasti peluang ‘guna semula’ air. Akhir sekali, analisis ekonomi dilakukan 

untuk menunjukkan kos bagi kajian ini adalah efektif. Beberapa kajian kes yang 

disertakan di dalam kajian ini menunjukkan aplikasi guna semula air telah 

mengurangkan jumlah kos operasi sistem penyejuk air sehingga 27 peratus untuk kes 

1 dan 28 peratus untuk kes 2. Bagi kes 3 pula, penghasilan tambahan produk 

diperolehi sehingga 15%. Penemuan ini menjanjikan kepada industri bahawa 

metodologi yang diperkenalkan boleh digunakan untuk meningkatkan mutu operasi 

sistem penyejuk air. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

The cooling tower unit is always been ignored in plants as compared to any other 

plant utilities such as boilers and steam turbines. This is partly due to its less 

problematic operation and relatively cheaper maintenance. Nonetheless, the 

perception of that cooling tower is just “the box in the back where we send the hot 

water and it comes back cold” is no longer taken for granted. In fact, it is found that 

improvement in the cooling tower operations could generate a source of revenue in 

plant operation in the form of both energy and water savings. Cooling water is largely 

used as a cooler in processing plant due to its ease of availability and low cost. 

Cooling water demands have been estimated to account for up to 70 percent of water 

use in commercial buildings (Burger, 1995). Cooling water supply can be obtained 

through various systems such as once-through, closed recirculating and open-

recirculating cooling water systems 

In a once-through cooling system, high volume of hot water discharged could 

pose a severe environmental problem to aquatic system. Kairouani et al., (2004) has 

reported that the optimal water loss quantity from once-through cooling tower model 

has been determined at 10 million m3 per year. In contrast, converting once-through to 

a closed loop or recirculating system can reduce water usage by 20% to 95% 

(deMonsabert and Liner, 1996). This shows that, a single cycle cooling tower system 

could produce larger reduction of water consumption as compared to once-through 

system and thus reducing cooling tower operating cost. 
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Problems in cooling tower operation include the inadequate thermal performance 

of cooling towers that contributes to large electricity cost for more than $25 million 

per year. Inefficient thermal performance also leads to high back pressure on turbine 

and thus, increasing fuel cost and decreasing its cycle efficiency (Burger, 1995). Bad 

maintenance practice also leads to cooling tower inefficiency. For example, untreated 

cooling water will cause fouling inside condensers and this in turn reduces heat 

transfer area. Since product quality must be maintained to fulfill customer’s demand, 

more cooling water is needed to meet cooling requirement in condenser unit. 

By improving the performance of the cooling tower system, the outlet temperature 

return to the heat exchanger should be colder. Burger (1995) stated that a 1oF (0.6oC) 

colder water returns to the compressors and condensers in air-conditioning and 

refrigeration equipment results in a 3% savings in electrical energy input to these 

machines. Therefore, 2oC colder water off the tower can be expected to yield 

approximate 10% savings in electrical energy.  

Generally, optimization of cooling tower is done on its individual unit such as 

improving the cooling tower treatment program, adding new cells, increasing air 

flowrate by increasing fan power and replacing the packing. Those improvements can 

only produces colder cooling water supply temperature, while the energy and water 

consumptions remained the same. 

1.2    Problem Statement 

Recently, researchers started to carry out system-wide optimization in which the 

interaction between cooling tower and its associated components is investigated (Kim 

and Smith, 2001). Modification of the cooling water user network is then performed 

so that the cooling water consumption can be reduced and optimized. However, 

cooling tower is then modified so that the cooling tower can operate according to the 

parameters that are specified by optimized cooling water network. The drawbacks of 

this is that the problems may arise if the existing cooling tower cannot suit with the 

new parameters given by cooling water network and this may require new cooling 

tower. In this study, alternative procedure in optimizing cooling tower, especially for 
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recirculating cooling water system is proposed. This method is basically to 

compliment the previous work so that systematic procedure can be applied in 

improving cooling tower efficiency. 

 

1.3 Objective of Research 

The objectives of this study are: 

1. To increase the efficiency of cooling tower operation by reducing cooling 

water supply temperature through lower cooling water circulation rate inside 

cooling tower system. 

2. To exploit the use of graphical visualization and mathematical programming 

to identify the water re-use, regeneration and recycling in order to compensate 

the reduction in cooling water flow supply to the system. 

3. To determine the plant revenue obtained from the cooling tower optimization.  

1.4 Scope of Research 

The scope of this research focuses on a development of a systematic procedure to 

optimize recirculating cooling water system including cooling tower optimization, 

cooling water reuse, regeneration and recycle in the process operations.   

Previously, cooling tower optimization is more on improving or upgrading 

cooling tower internals. However, this study focuses only on modification of cooling 

tower operating parameters such as cooling water circulation rate inside the tower. In 

addition, this study will provide the extra revenue that is able to be obtained from the 

cooling tower optimization in terms of reduction of cooling tower operating cost and 

also the additional product capacity from the plants.  

The two-step optimization will be introduced in this study to ensure that all 

constraints and limitations in cooling tower and heat exchanger  is clearly defined 
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before go for water reuse design and thus, the design is more practicable to the 

existing systems. 

The principle of heat and mass transfer will be used in this study. The heat 

balance around cooling tower can be analyzed by indicating the inlet and outlet 

temperature of cooling water, cooling water and air flowrate as well as inlet and outlet 

temperature of air. Physchrometric analysis will be used in determining the properties 

of the air. Basically, psychrometrics deals with thermodynamic properties of moist air 

in and from the charts, the enthalpy value can be determined. The factors that are 

affected the enthalpy value are humidity ratio, wet and drybulb temperature as well as 

the barometric pressure. In this study, the wetbulb temperature and the humidity ratio 

are assumed to be constant by considering that the ambient condition in Malaysia is 

not much vary as compared to other seasonal countries.  

Meanwhile, heat and mass balance principle is carefully evaluated in cooling 

water reuse design. This is to ensure that the performance of cooling water user will 

not be disturbed. Since the stream mixing assume that the heat balance is involving 

only sensible heat, the calculation is simpler as compared to the heat balance around 

the cooling tower. The parameters that should be considered are the flowrates and 

temperatures for respective cooling water streams that going to be mixed.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Cooling Water System 

2.1.1 Types Of Cooling Water System 

There are many types of cooling water systems for industrial cooling. It includes once 

through cooling water system, open recirculating cooling water and closed 

recirculating cooling water system.  

Figure 2.1 shows a typical once through cooling water system. The cooling media 

or cooling water is used on a once-through basis. Cooling water is pumped from a 

water source where it absorbs heat from the process side of the heat exchanger, and 

then discharged to the environment. If required, the cooling water is cooled by means 

of spray pond or lagoon before being discharged to the environment. Generally water 

extracted from lakes or rivers is screened to remove large contaminants to prevent 

damages to pumps and clogging of heat exchanger equipment. Typical water source 

for once-through cooling system are seawater or freshwater from lakes, rivers or 

underground water source. A once through system requires a large amount of water, 

thus typically used by plants located where abundant water source is available and 

accessible. 

 

The advantages of using the once through system include:  

a. No cooling tower system thus low capital cost 

b. In some cases no water treatment is required thus reducing operating cost 
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The disadvantages of this system are: 

a. Plant must be located near the water source 

b. Only operate at small temperature rise, between 1oC to 2oC to limit 

environmental effect 

c. Since this system usually use large amount of water quantity, it requires large 

pump and pipe work and thus increasing electricity cost 

d. This system also poses a high risk of fouling on the heat exchangers from 

suspended material in water.  

 

 

Figure 2.1: Once Through Cooling Tower System 

 

For closed recirculating cooling water system as shown in Figure 2.2, heat is 

transferred from the process into the recirculating cooling water. The heat is then 

removed from the cooling water into another medium which acts as heat sink. 

Possible heat sinks include once-through seawater cooling, air cooling and open 

recirculating evaporative cooling.  

The obvious advantage of the system is its ability to operate at low water usage or 

even stagnant flow. Consequently, the requirement for lower chemical treatment is 

also lower. A closed system is designed to be filled with water, and run continuously 

for long periods without significant amount of make-up water. In addition, the system 
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can operate at higher temperatures since scale-forming constituents in a truly closed 

cooling system are low (PRSS, 2005).  

 

 

Figure 2.2: Closed Recirculating Cooling Water System 

While, the disadvantages of this system include: 

a. Closed systems, which are essentially two cooling systems in one, may require 

higher capital investment compared with other systems due to their greater 

requirement for equipment and pipework.  

b. Closed re-circulating systems are less efficient than once-through or open 

evaporative systems as they have to rely on two heat transfer stages rather than 

just one. Thus, the cooled water temperature for open or once through system 

can get closer to the approach temperature or wet bulb temperature. 

The commonly used cooling water system is open recirculating cooling water system. 

This system is described further in next section. 

2.1.2 Open Recirculating Cooling Water Systems 

Open recirculating cooling water system is the most widely used system in industries. 

The basic configuration of this system is shown in Figure 2.3. Open re-circulating 

Cooling water 

Process 
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cooling system is also known as open evaporative cooling system. The system is 

characterized by the presence of a cooling tower that is used to cool the cooling water. 

The cooling water, supplied by tower basin, absorbs heat from the process side 

through heat exchanger, thus raising its outlet temperature to a few degrees higher. 

The cooling water then returns to the tower.  The return point is located just above the 

tower packing or fill. As the water flows down into the basin, the water is cooled by 

evaporative action of air and the process is repeated. Addition of fresh makeup water 

is required to replace water loss from evaporation and blowdown.  

This system has few advantages and one of them is reducing the environmental 

problem (Lenntech, 2006). Cooling water that is used to cool process fluid will be 

circulated back to cooling tower. Only small portion of this water will be discharged 

as blowdown. It is different with once through cooling system in which all of cooling 

water is discharge after cooling process. In case of heat exchangers’ leak, once it goes 

back to cooling tower basin, proper cooling tower treatment is required to control the 

contaminant level. Besides, the side stream filter is also used to remove suspended 

solids from cooling water. Thus, the cooling water blowdown is relatively clean 

compared to once through system.  

 

 

Figure 2.3: Open Recirculating Cooling Tower System (PRSS, 2005) 
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As cooling water is recycled within the cooling system, the water consumption is 

reduced compared to once through system. It is because; all water that is used for 

cooling is returned back to be cooled by cooling tower. Make-up water is only added 

to recover water loss by evaporation, blowdown and drift losses. Smaller amount of 

water quantity also reduces pump and piping capacity as well as electricity 

consumption compared to once through system.  

2.1.3 Component of Cooling Water System 

Generally, cooling water systems include cooling tower, chiller and several heat 

exchangers such as shell and tube heat exchanger and condenser for distillation 

column. The component in this system is important to be considered in the 

optimization studies, since this study will look at overall system. The interaction of 

these components will add value on quantifying the economic savings. 

2.1.3.1 Chiller  

A chiller can be generally classified as a refrigeration system that cools water (FEMP, 

2006). Similar to an air conditioner, a chiller uses either a vapor-compression or 

absorption cycle to cool. Once cooled, chilled water has a variety of applications from 

space cooling to process uses. 

The refrigeration cycle of a simple mechanical compression system is shown in 

Figure 2.4. The mechanical compression cycle has four basic components through 

which the refrigerant passes. The first component is evaporator, a component in which 

liquid refrigerant flows over a tube bundle and evaporates, absorbing heat from the 

chilled water return line that is circulating through the tube bundle. Then, the 

compressor is functioning to compress the refrigerant vapor to the condenser by 

raising the refrigerant pressure and consequently increasing temperature. In addition, 

condenser is a component in which refrigerant condenses on a set of cooling water 

coils giving up its heat to the cooling water. Finally, the high-pressure liquid 

refrigerant coming from the condenser passes through this expansion device, reducing 

the refrigerant’s pressure and temperature to that of the evaporator. 
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The cycle begins in the evaporator where the liquid refrigerant flows over the 

evaporator tube bundle and evaporates, absorbing heat from the chilled water 

circulating through the tube bundle. The refrigerant vapor, which is somewhat cooler 

than the chilled water temperature, is drawn out of the evaporator by the compressor. 

The compressor “pumps” the refrigerant vapor to the condenser by raising the 

refrigerant pressure and thus, the temperature. The refrigerant condenses on the 

cooling water coils of the condenser giving up its heat to the cooling water. The high-

pressure liquid refrigerant from the condenser then passes through the expansion 

device that reduces the refrigerant pressure and temperature to that of the evaporator. 

The refrigerant again flows over the chilled water coils absorbing more heat and 

completing the cycle. 

 

 

Figure 2.4: Mechanical Compression Chiller System (GDC, 2002) 

 

While, for absorption chiller (Figure 2.5), the components are evaporator, 

absorber, generator and condenser. In a compression cycle chiller, cold water is 

produced in the evaporator where the refrigerant or working medium is vaporized and 

heat is rejected in the condenser where the refrigerant is condensed. In an absorption 

cycle chiller, compressing the refrigerant vapor is effected by the absorber, the 

solution pump and the generator in combination, instead of a mechanical vapor 

compressor. Vapor generated in the evaporator is absorbed into a liquid absorbent in 

the absorber. The absorbent that has taken up refrigerant, spent or weak absorbent, is 

pumped to the generator where the refrigerant is released as a vapor, which vapor is to 
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be condensed in the condenser. The regenerated or strong absorbent is then returned 

to the absorber to pick up refrigerant vapor. 

Figure 2.5: Steam Absorption Chiller (Perry and Green, 1997) 

In both type of chillers, it will use cooling water that is supplied by cooling tower. 

Thus, any changes in cooling water will affect the chiller or refrigerant cycle. Burger 

(1995) stated that compression work will be saved by 3% for every 1oF (0.6oC) 

cooling water temperature reduction. Otherwise, FEMP (2006) stated that for every 5 

oF to 10oF rise in cooling water temperature, $2.5K to $7K have to be paid for 

additional electricity cost in chiller operation. 

2.1.3.2 Condenser for distillation column 

Distillation column is one of main equipment in processing plant. It used for product 

separation where mixture with binary or multicomponents liquid is fed to the tower 

and it is separated by the difference of its boiling point. The lighter component will 

vaporize to overhead of the column and will be recovered as liquid. Condenser is used 

to convert vapor product to liquid product through condensation by cooling water.  
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Cooling water flow for condenser is one of the important parameter in controlling 

pressure in distillation column as shown in Figure 2.6. The cooling water flow is 

regulated in order to get the suitable overhead pressure, so that the desired amount of 

the product can be achieved. In this case if the cooling water flow is increased then 

more vapors are condensed and the vapor pressure is reduced and vice versa.  

2.1.3.3 Process cooling 

In a processing plant, cooling water is mostly used (Wurtz, 2000) for process cooling 

such as to cool final product before storage or going into other equipments, as 

compressor intercooler or use to control reactor temperature that results from an 

exothermic reaction. 

For a reactor, a cooling jacket (Figure 2.7) is needed for controlling the 

temperature inside the reactors. It is required to prevent the temperature rising 

especially for exothermic reaction and to avoid material deterioration for reactors and 

heat exchangers and both reactant and product depreciation. Cooling water 

temperature and flowrate must be suitable for respective reactors to control the 

product quality and equipment efficiency. From Figure 1.8, it also can be seen that 

heat exchangers are using water as service fluid to cool the product from reactor 

before going for separation or storage. 

 

Figure 2.6: Controlling Column Pressure by Adjustment of Cooling Water Flow 

(Perry and Green 1997)  

PC 
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Figure 2.7: Reactor with Cooling Water Jacket and Cooling Water Heat Exchanger 

 

 

Figure 2.8: Cooling Water as Cooling Medium in Stage-Compressor Intercooler 
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2.2 Cooling Water System Model 

Kim and Smith (2001) carried out the optimization of cooling tower by looking into 

interactions of cooling tower and its associated heat exchangers. Systematic approach 

to optimize the system has been outlined in their study. Mathematical modeling was 

formulated to investigate the interaction between cooling tower and its heat 

exchangers based on system shown in Figure 2.9. A one-dimensional steady-state 

model is developed to illustrate the working principles of cooling towers and cooling 

tower efficiency.  

 

 

Figure 2.9: Cooling Water System (Kim and Smith, 2001) 

The schematic for mass and energy balance for cooling tower system shown in 

Figure 2.10 is usually used in deriving the model.  
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Figure 2.10: Schematic Figure for Mass and Energy Balance for Cooling Tower 

System (Kim and Smith, 2001) 

 

Khan et al., (2004) proposed a model that present a risk based approach to the 

analysis of fouling models and to describe its impact on the thermal performance in 

cooling tower. This model assumed constant specific heat of water and dry air and 

also constant heat and mass transfer coefficient and Lewis number throughout the 

tower. In addition, heat transfer from the tower fans to air or water stream and also 

heat and mass transfer through the tower walls to the environment are negligible. The 

temperature is also assumed to be uniformed throughout the water stream at any cross 

section as well as the cross-sectional area of the tower.  

This model is used to study the sensitivity analysis of various cooling tower 

parameters during the design calculation of a cooling tower. The sensitivity analysis 

includes the sensitivity of cooling tower volume with respects to cooling water outlet 

temperature, cooling water inlet temperature and wet-bulb temperature. Besides, the 

sensitivity of the effectiveness and water outlet temperature could be analyzed by 

using various mass to air ratio. Furthermore, the effect of atmospheric pressure of 

tower performance can also be studied by using this model. 
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While, a mathematical model for the numerical prediction of the performance of a 

crossflow cooling towers was presented by Kairouani et al., (2004). His model was 

based on the heat and mass transfer equations in which Lewis number, number of 

transfer unit, the percentage of water evaporation, water losses and cooling tower 

efficiency became its leading parameters. This model has been used to predict the 

performance of thermal behavior of six cooling towers that located in South of 

Tunisia as well as to determine the optimal of water loss quantity in cooling tower 

operation.  

In addition, Söylemez (2004) presented a model that combining the thermal and 

hydraulic performance analysis of cooling towers in order to determine the optimum 

ratio of the mass rate of circulating water flow to the mass rate dry air flow. This 

optimum ratio can be investigated by varying the cooling water mean temperature at 

fixed ambient pressure or by varying the ambient pressure at fixed cooling water 

mean temperature. This model seems to be helpful for cooling tower designers, 

manufactures and users. 

Furthermore, Cortinovis et al., (2009) has also built a model that considers the 

hydraulic, thermal and cooling water interactions in the overall process. A 

fundamental model is developed to obtain the performance of cooling tower, based on 

characterization of mass transfer coefficient, as a function of air and water flow rates 

that is obtained from the experimental design in the pilot plant. Due to the complex 

surface geometries of the cooling tower fills, the mass transfer coefficient is more 

precisely determined by the experiments. 

2.3 Cooling Tower Performance 

The effectiveness of cooling tower can be investigated through experimental work or 

modeling. From heat and mass balance model for cooling tower system, Kim and 

Smith (2001), it showed that when the inlet cooling water has high temperature and 

low flowrate, the effectiveness of cooling tower is high when the cooling tower 

removes heat from hot water. Kim (2001) compared the previous experimental data 

with his model, and both results agreed that the performance of cooling towers 
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increases with a decrease in the L/G ratio. Maintaining high temperature and low 

flowrate of inlet cooling tower is important in order to keep the driving force high. 

Fouling in cooling tower system can be described as the deposition of foreign 

matters, including bio growth on the water film area. This is usually true in cooling 

tower fills. Cooling tower model that was proposed by Khan et al., (2004) showed 

that fouling factors may reduced cooling tower effectiveness to approximately 6% and 

this reduces heat removal and in turn, increases 1.2% of water outlet temperature.  

 Marley (1983) reported two primary external factors, which are wind and air 

obstructions that influence the performance of cooling tower. The speed and direction 

of wind tends to cause part discharge air recirculate into the entering air stream. Then, 

the system begins to experience problems associated with elevated water temperatures 

such as an unexpected rise in wet-bulb temperature of the air entering the cooling 

tower. Higher cold water temperature is produced and consequently higher fan 

horsepower is needed and also increasing electrical consumption.  

2.4 Cooling Tower Issues 

Cooling tower design and operations as well as control system are main contributors 

for problems that are experienced by cooling tower internals and cooling water 

circulate in the system. Recirculating cooling water system use the same water 

repeatedly and the stagnant water in cooling tower basin result into water issues. The 

four fundamentals problems in cooling tower consist of scaling, corrosion, deposition 

fouling and microbiological growth. These water issues become worst when a 

problem becomes complex as depicted in Figure 2.11.  

2.4.1 Fouling 

Fouling in cooling systems may lead to corrosion. Fouling is mainly caused by the 

presence of insoluble suspended solids entrained into the system. The solids are 

deposited and accumulated onto surfaces of equipment of the water circulation. For 

instance, the particles of dust and dirt that presents in air will contaminate 
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recirculating cooling water through the water make-up. It can create fouling on the 

inside surfaces of the condenser system which can lead to under-deposit corrosion and 

loss of heat-transfer efficiency. In addition, air dissolved in the water making it 

saturated with corrosive oxygen. This happens at all times during cooling tower 

operation and also creates ideal condition for corrosion.  

Fouling can also be caused by microbiological growth. For open evaporative 

system, the presence of warm water and open sunlight is conducive for variety of life 

forms and nutrient sources. Thus, they are perfect breeding conditions for algae, fungi 

and bacteria. Microbiological growth can lead to corrosion as a result of under-deposit 

corrosion or direct attack from species that consume iron in order to propagate 

(PACE, 2006) 

 

 

Figure 2.11: Water Issues in Cooling Tower (PRSS, 2005) 
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2.4.2 Scaling 

Scaling is the crystalline deposition on the metal surfaces of inorganic materials from 

supersaturated solutions. Scaling occurs typically when the make up water has high 

hardness and alkalinity and the pH of the recirculating water is high. The main 

problem of scale is that it forms on heated surface of heat exchanger and consequently 

reduces heat transfer efficiency.  

2.4.3 Corrosion 

In addition to scaling problem, corrosion can occur through an electrochemical 

reaction in the presence of oxygen and water. It may cause equipment failures and can 

reduce the cooling tower performance. As opposed to scaling problem, water with low 

hardness concentration and low pH are more corrosive. Proper hardness and pH 

control must be established to minimize such problem. 

Decreasing heat transfer efficiency will translate directly into increased cooling 

cost. The cooling tower problem affects not only the cooling tower performance, but 

also the component in recirculating cooling tower system such as condensers and heat 

exchangers. Thus, proper maintenance and treatment program must be implemented.  

2.4.4 Chemical Treatment 

PACE (2006) has suggested the following ways to minimize these problems. One of 

that is to implement a properly designed chemical treatment. It involves in 

maintaining adequate levels of corrosion inhibitor, scale inhibitors and biocide in the 

cooling tower system. These agents should be carefully chosen to suit the local 

conditions under which the tower operates, for instance, raw water quality, air quality 

and material constructions. Chemical for treatment must be fed properly to ensure it 

works efficiently. The corrosion and scale inhibitors should be maintained in constant 

level at all times, while biocides are most effective when applied in slug doses on a 

product-alternate basis.  
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Proper implementation of an appropriate chemical treatment program will 

eliminate metal corrosion and scale deposits; reduce water usage and discharge; and 

allow running at higher cycles of concentration. Furthermore, the installation and 

proper maintenance of a filter for the water to condenser/cooling tower user can also 

help to minimize the needs of cooling tower treatment. Sand filter can be installed on 

a sidestream of cooling water and it will greatly assist in controlling the buildup of 

solids in the circulating water and on internal surfaces. Regular testing of the cooling 

water and observation of the equipment is also necessary to maintain adequate 

chemical levels and to ensure prompt action in the case of sudden system disruptions.  

2.5 Cooling Tower Heat Transfer 

The water and air relationship is illustrated in Figure 2.12. This illustration is only 

applicable for counterflow tower. This diagram is used in understanding cooling 

tower process. 

The water operating line is shown by line AB and is fixed by the inlet and outlet 

tower water temperatures. Meanwhile, line CD representing air operating line which 

starts at point C, vertically below point B. The liquid-gas ratio, L/G is the slope of the 

operating line. The cooling range is equal to the differences of cold water and wet 

bulb temperature and approach is the differences between cold water and hot water 

temperature.  

Basically, cooling tower process heat balance can be used to predict cooling tower 

performance. As shown by Equation 2.3, by finding the area between ABCD in 

Figure 2.12, one can find the tower characteristic.  An increase in heat load would 

have the following effects on the diagram in Figure 2.12 in which as increase in the 

length of line CD, and a CD line shift to the right. It also will increases in hot and cold 

water temperatures as well as increases in range and approach areas. 

The increased heat load causes the hot water temperature to increase considerably 

faster than does the cold water temperature.  Although the area ABCD should remain 

constant, it actually decreases about 2% for every 10oF increase in hot water 

temperature above 100oF (Cheresources, 2005).   
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Figure 2.12: Cooling Tower Process Heat Balance (Perry and Green, 1997) 

2.5.1 Cooling Tower Characteristic Curve 

Usually, cooling tower manufacturer will provide cooling tower characteristic curve 

(Figure 2.13). This curve is used for cooling tower testing. This curve contains data 

on cooling tower characteristic value, KaV/L and water/air ratio, L/G. According to 

Cooling Tower Institute (CTI), the curves should be based on constant fan pitch 

angle. The straight line shown in Figure 2.13 is a plot of L/G vs KaV/L at a constant 

airflow.  The slope of this line is dependent on the tower packing, but can often be 

assumed to be -0.60. From thus curve, it can be concluded that: 

1. A change in wet bulb temperature (due to atmospheric conditions) will not 

change KaV/L 

2. A change in the cooling range will not change KaV/L 

3. Only a change in the L/G ratio will change KaV/L 
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Figure 2.13: A Typical Set of Tower Characteristic Curves (Burger, 1995) 

2.5.2 Merkel’s Equation 

An alternative approach of estimating cooling tower performance is by using 

Merkel’s Equation. Merkel’s model was developed by Merkel in 1925 (Burger, 1995). 

His analysis and Equations include the sensible and latent heat transfer into and 

overall heat and mass transfer process based on enthalpy difference as the basic 

driving force.   
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Cooling tower performance can be evaluated by using Merkel’s Equation (Perry 

and Green, 1984) as in Equation 2.1. Similar to cooling tower characteristic curve, the 

terms KaV/L is used to describe the amount of heat transfer by the cooling tower or 

also known as tower characteristic curve. This theory is generally accepted by the 

industries due to its simplicity.  

This model is basically derived by assuming that heat is transferred from water 

drops to the surrounding air by the transfer of sensible and latent heat as illustrated in 

Figure 2.14. Temperature of air, TA is lower than bulk water temperature, TB, and so 
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as the enthalpy for the respective temperature. This enthalpy difference will create 

driving force and thus, heat will remove from water to the wet air.  

 

Figure 2.14: Water Drop with Interfacial Film (Cheresources, 2005) 

 

Thermodynamics also dictate that the heat removed from water must be equal to the 

heat absorbed by the surrounding air: 
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The terms KaV/L in Equation 3.3 can be solve used Chebyshev method:  
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2.6 Operational Constraint on Cooling Tower Performance 

Prior to any parameter changes in cooling tower operation, the constraint and 

limitations of the existing cooling tower must be made known. This will determine the 

number of degree of freedom exist in the optimization process.  
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2.6.1 Constant Wet-bulb Temperature 

Marley (1986) stated the performance of cooling tower is affected by wet-bulb 

temperature, hot water temperature, and ratio of water to air flowrate (L/G). The heat 

load of the cooling tower is directly proportional to cooling water flow and cooling 

water range, which are the difference of hot and cold water.  

While, the wet-bulb temperature depends on ambient temperature as well as the 

humidity or moisture content in air. In a seasonal country, the wet bulb temperature 

will change due to the ambient temperature change. Tower size factor varies inversely 

with wet-bulb temperature. When heat load, range, and approach values are fixed, 

reducing the design wet-bulb temperature increases the cooling tower characteristic or 

cooling tower size factor. This is because most of the heat transfer in a cooling tower 

occurs by means of evaporation and air's ability to absorb moisture reduces with 

temperature However, in Malaysia, the ambient temperature and air humidity is 

constant throughout the year. As such, the moisture content change can be neglected. 

2.6.2 Approach, L/G and KaV/L 

Ideally, wet-bulb temperature is the lowest theoretical temperature to which the water 

can be cooled. However, in practical, the cooling water temperature cannot meet the 

air wet-bulb temperature because it is impossible to contact all water with fresh air as 

water drops through cooling water fills. In actual practice, cooling tower is seldom 

designed for approaches lower than 2.8oC. 

Water to air ratio, L/G can be set as low as possible, by decreasing water 

circulation rate or increasing fan power. However, smaller water flowrate will affect 

the cooling water user demand. In addition, high fan power will increase energy 

usage and hence cooling tower operating cost. Thus, before changing cooling tower 

parameters, there is a boundary limit for L/G value and also tower characteristic, 

KaV/L. Mechanical-draft cooling towers normally are designed for L/G ratios 

ranging from 0.75 to 1.5, and KaV/L ranging from 0.5 to 2.5.   
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2.6.3 Water losses 

Meanwhile, Perry and Green (1997) gave some factors that could be use in 

quantifying the water lost from the cooling tower system such includes evaporation, 

drift and blowdown. Evaporation loss quantity can be calculated by adding factors of 

0.00085 to the total heat load of the cooling tower. This occurs when hot water is 

exposed to cooling air streams, hot water turns to vapor and heat from hot water is 

removed during this process.  

Moreover, the drift loss is caused by water entrained in discharge vapor.  Usually, 

drift eliminator is installed to prevent water being carried upwards by air. However, 

of course there will still small quantities that can be escaped from the eliminator 

which usually about 0.2% of water circulation rate. Besides, a blowdown is needed to 

prevent salt and chemical treatment buildup in cooling tower system. Unfortunately, 

a blowdown will make the circulated water reduced. Generally, 3% of water 

circulation rate will be discarded, or it can be more or less depending on cycle of 

concentration (CC) required for treatment system.  

Those water losses must be quantified properly. The quantity of water make-up 

required is equal to total water losses through blowdown, drift and evaporation 

losses. This is important to replace it and maintain the cooling water circulation in the 

system and thus, the performance of heat exchanger in process side is also 

maintained. 

2.6.4 Maximum hot water temperature 

In addition, the maximum hot water temperature must be identified so that the 

cooling tower internal including fills would not be destroyed. Spxcooling (2006) 

stated that, as general rule, the hot water temperature must be maintained below 

60oC. Besides destroying cooling tower internals, high water temperature could affect 

the chemical treatment program and lead to corrosion and scaling. Scaling will 

reduce cooling tower efficiency since it will reduce heat transfer area. 
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2.7 Optimization of Cooling Tower System 

2.7.1 Mechanical Modifications 

The optimization of cooling tower can be carried out by changing the mechanical 

parts, the existing configuration or by changing the operating condition at process side 

that using cooling water as a cooling medium to the process fluid. Mechanical 

modification of cooling tower involves change or addition of new cooling tower 

equipment such as new piping, adding new cell, installing new pump or change 

cooling tower fill. 

Goshayshi et al., (1999) studied the cooling tower optimization through evaluating 

the effects of various cooling tower fills. Basically, changing new cooling tower fills 

will improve cooling tower performance by improving the cooling ability. Since the 

cost of packing contributing 20 to 25% of total cooling tower cost, the selection of the 

best packing should be made to minimize the investment cost as well as to improve 

cooling tower efficiency.  

The study concluded that overall mass transfer coefficient and pressure drops of 

ribbed corrugated packing increase considerably compared with smooth packing and 

also affected by spacing of the packing as well as the distance between the ribs. It also 

found that the packing with high air turbulence in combination with relatively low 

fluid velocity is more economic than a fairly smooth and straight packing in 

combination with high liquid velocity. 

Stanford (2003) proposed to change the tower configuration can be change by 

reconfiguring a forced draft tower as an induced draft tower or the small fans of a 

forced draft tower can be replaced with ducted air delivered from much larger fans. 

However, this type modification is not always cost effective and it is more 

economically attractive by replacing it with a new one.  

Gañán et al.,(2004) is also proposed a new cooling tower configuration that 

combines a present cooling system (Lake Arrocampo) with natural convection cooling 

tower in parallel in order to improve the performance of cooling tower system for the 
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Nuclear power plant. The newly installed cooling tower is designed by using Merkel’s 

Equation in which the water to air mass flowrate ratio comprised between 1 to 1.5.  

During the coldest months, the temperature of the water cooled by the towers 

would be too low for the condenser operation. Thus, the specific volume of the vapour 

would increase excessively. This would lead to a growth in its outlet rate from the low 

pressure turbine. In such case, the efficiency of the thermodynamic cycle would not 

be increased. Thus, the three-ways valve system is also installed in this system 

together with the appropriate connections. It would be possible to operate with the 

cooling towers during the unfavourable months. This would lower the circulation 

water temperature, thus increasing the condenser vacuum and consequently improving 

the efficiency of the system. 

2.7.2 Process Modifications 

Optimization of the operating conditions for cooling tower applications in cooling 

water is extremely significant in order to get the most energy efficient operating point 

for this system. Cooling tower optimization through process modification is carried 

out through changing the cooling tower operating parameters. 

Crozier et al., (1977) proposed an approach that generates savings in both capital 

costs of the cooling water system and the energy required for pumping. In his 

guidelines, two constraints must be satisfied that are closer approach to the wet-bulb 

temperature could increases the cooling tower investment and closer approach to the 

limiting process temperature will increases the exchanger area. 

Furthermore, the cooling water temperature rise is assumed to be 20oF unless 

temperature crosses is resulted, in which case a 10oF approach to the process outlet 

was used.  In addition, the “guideline” approach set the cooling water temperature 

outlet temperature equal to the process outlet temperature. For heat exchanger that 

having LMTD less than 30oF, a real optimum could be determined by plotting capital 

and operating cost against cooling water temperature rise.  
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Based on this approach, the cooling water operating cost is saved due to less 

cooling water flowrate and less power using for pumping work. However, the water 

treatment program cost is increased since the lesser cooling water flow inside the 

cooling tower will make the water more concentrate and need more chemical dosing. 

This study will become good guidelines for designing cooling water reuse where the 

LMTD can be used as a constraint.  

In addition, Hoots et al., (2001) improving the cooling tower performance by 

modifying the cooling tower parameters in which the high cycles of concentration is 

applied in cooling tower operation. By recirculating cooling tower system at higher 

concentration provides many economic and environmental benefits. Higher cycles of 

concentration will reduce water and chemical discharge and thus reducing cooling 

tower operating cost. But operation at high cycle of concentration should consider the 

few considerations such as hydraulic factors, time-related factors and water chemistry 

factors. 

The study also looks at the effects of high cycle of concentration in heat 

exchanger network. The minimum flowrate is measured to determine heat exchanger 

performance in order to ensure that the performance is not being limited by 

insufficient cooling water flowrate. Fouling inside the heat exchanger is also 

monitored in case of the excessive throttling of cooling water flowrate or incorrect 

heat exchanger design. Finally, the efficiency is also determined by measuring 

cooling tower flowrate, process fluid flowrate and temperature drops. 

Their results showed that at maximum concentration cycles setting, operating cost 

reduces up to $135,000. However, overall treatment cost increased due to the increase 

need of more-aggressive bio-control approach and the installation of side-stream 

filters. 

Meanwhile, Söylemez (2004) carried out an optimization of cooling tower by 

considering two important parameters, the ratio of heat capacity flowrates and the 

number of transfer units and it is done in thermo-hydraulic manner. The optimum 

ratio of mass flowrate of circulating water to the mass flowrate of dry air, Mopt, can be 

determined by combining the thermal and hydraulic performance analyses of cooling 

tower.  
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This study was found that the optimum values of M are varies with different mean 

water temperature and pressure. The relationship is presented in linear curve in which 

at constant cooling water mean temperature, the optimum M will decreasing as the 

ambient pressure is increasing. However, at constant ambient pressure, the optimum 

M is proportional to cooling water mean temperature. The optimum M value is 

increased as the average water temperature increases or the ambient temperature 

decreases. The water mass flowrate must be increased for a location that has lower 

ambient pressure and for higher average tower water temperature for the given air 

flowrate. The correct selection of M will lead to increase cooling tower efficiency. 

NCDENR (2005) gave several options in improving the cooling tower efficiency 

in terms of water management including blowdown and cooling tower water 

treatment program. In blowdown optimization option, water consumption can be 

reduced by minimizing blowdown in conjunction with an integrated and maintenance 

program. Besides, this paper also presented few treatment programs options in order 

to maintain a clean heat transfer surface while minimizing water consumption and 

meeting discharge limits.  

Several guidelines are suggested by Nesta and Bennet (2006) in order to minimize 

fouling effect in cooling water system. During system design, all items in cooling 

water loop should be designed to use the maximum allowable pressure rather than 

fixing the temperature rise and set the least amount of cooling water and then 

maximizing allowable pressure drop where it possible. Water flowrate is then adjusted 

to get the same pressure drop, more or less. However, the critical tube wall 

temperature also must be monitored because it may lead to corrosion and fouling. 

Thus, the cooling water flowrate is based on equal pressure drop by distributing itself 

to equalize the system pressure drop from inlet to outlet header.  

In contrast, if design pressure drop varies from exchanger to exchanger, the 

resulting cooling water flow to a given item may not be that required on the data 

sheet; some coolers may get more or less. A large cooling water user with low design 

pressure drop may rob cooling water from other users. Equal pressure drop may 

prevent this problem. 
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2.8 Water and Wastewater Minimization 

Besides being used as cooling fluid in heat exchangers, water is consumed for 

separation process in extraction, absorption, stripping, scrubbing operation, such as 

product quenching, equipment washing and steam generation. 

Previously, the industries always think that water is a very cheap utility. However, 

the prevailing shortage of water in some parts of the world, together with the increase 

environmental concerns on water pollution has made the job to conserve water 

become necessary. 

Conventionally, the engineers reduce freshwater consumption by changing the 

process for individual units. For instance, they increase number of mass transfer plates 

such as extraction and scrubbing, introduce local recycle, implement better control 

scheme or upgrade water washing equipment system. 

There were different approaches that are used by researchers in water 

minimization technique. Wang and Smith (1994) specifically addressed the water 

minimization problem by considering it as a contamination-transfer problem from 

process streams to water streams.  This approach has served as the pioneering tool for 

water minimization technique.  

The study have adopted mass transfer concept to explain the concept of the 

creation of liquid wastes as a migration of contaminants from a plant’s process 

streams to its water streams. It can also be represented as a plot of concentration 

versus mass or also called as limiting water profile.  

The concept of limiting water profile enables different water-using operations to 

be treated on a uniform basis and allows the design procedure to proceed without 

concern about the specific nature of the process stream or particular operating pattern. 

As this profile defines a boundary between feasible and infeasible region, any supply 

water line below or at the limiting profile would satisfy the process requirements.  

Linnhoff (1997) was introduced a systematic approach based on water reuse 

between processes in his case study for Mosanto plc. Based on this case study, the 

benefits that identified by this systematic approach include reducing the volume of 
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water used in the sytem, save raw materials and energy, reduce chemical oxygen 

demand (COD) and finally save of capital expenditure of centralized effluent 

treatment plant. Water pinch analysis also showed how Mosanto could improve 

effluent handling. Instead of all effluent being discharged centrally, it was far more 

efficient to segregate and treat different effluent streams. Adopting this measure 

meant only 25% of the site’s effluent need secondary treatment.  

Moreover, Isahak (2004) study was developed a systematic methodology to 

minimize freshwater consumption and hence wastewater based on the process 

integration techniques.  In this work, the water -source and -demand plot was 

explored further to look at the application of the Water Composite Curve (WCC) and 

Water Grand Composite Curve (WGCC).  A new methodology was also produced to 

develop the WGCC.  There are some new findings that were looked into such as 

process modification, water bypass and mixing, and pseudo pinch, which are used to 

explore new applications of these plots.  

Three case studies were presented to illustrate the application of the methodology 

developed for single contaminant, which has been extended for multiple contaminants 

using an example to show how the WCC is plotted.  From these examples, not only an 

average of 34% fresh water savings can be achieved, but at the same time, several 

options were able to be generated by this procedure.  The best option or design can be 

screened out without going into the detail design of the plant. 

Furthermore, Foo et al., (2002) was applied water cascade analysis (WCA) by 

using tabular and numerical approach to eliminate the tedious iterative steps of the 

water surplus diagram. By applying WCA, the accurate water targeting and pinch 

point location can be quickly yield. This method is not just limited to mass transfer-

based operations but can be applied in wide range of water using operation. Various 

options involving process changes, including water regeneration and mechanical 

modification can easily assessed using this method. 

This study also showed that WCA can be used to handle multiple streams 

operation in very efficient and accurate way as well as with much less effort. The 

systematic procedure of this method is also can easily translated into any computer 

language for the software development. 
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Less work has been done on water minimization problem for batch processes and 

this lead Tan et al., (2003) to develop the systematic that involving two key steps for 

water minimization, namely water targeting and network design have been conceived 

for batch processes. For water targeting, a new procedure which employs the water 

cascade table (WCT) has been developed to establish the minimum water requirement 

for maximum water recovery and minimum wastewater generated. This table has been 

adapted from water surplus diagram for continuous processes. The WCT is a 

tabulated approach that avoids the tedious graphical drawings of water surplus 

diagram.  

In addition, a systematic procedure for water networks design for batch processes, 

which include a recent developed graphical tool called the time-water network, has 

been introduced to allow designers to achieve the utility targets established for the 

problem. 

2.9 Design of Cooling Water Network 

During plant design stage, the cooling water network is usually designed in parallel 

configurations. In which, the cooling water supply from cooling tower divided into 

heat exchangers correspond to the flow needed by those units. Every unit will receive 

fresh cooling water from the tower and after it has been used, hot water will return to 

heat exchanger.  

2.9.1 Cooling Water Pinch Analysis 

Kim (2001) adapted the limiting water profile concept into cooling water system 

pinch analysis in order to develop ‘limiting cooling water profile’. In cooling network 

analysis, it is assumed that any cooling water-using operation can be represented as a 

counter-current heat exchange operation with a minimum temperature difference. 

Maximum inlet and outlet temperatures of cooling water stream are limited by the 

minimum temperature differences (Tmin).  
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The limiting profile is used to identify between feasible and infeasible region. In 

constructing limiting cooling water profile, the data of hot stream is extracted. The 

data was including inlet temperature of hot stream, outlet temperature of heat stream, 

heat capacity of the stream and also the heat load for the heat exchangers. Then, the 

curve of temperature versus heat load is drawn together with maximum cooling water 

stream outlet and inlet temperature. From this curve, the feasible region of cooling 

process can be determined.  

Then, the cooling water composite curve is constructed by combining all 

individual profiles into single curve within temperature intervals.  From this curve, the 

cooling water network can be designedThe maximum reuse can be determined by 

maximizing outlet temperature and minimizing the cooling water flowrate. Each point 

where the supply line touches the composite curve creates a pinch in the design. In 

heat transfer, the pinch does not imply zero driving force but a minimum driving 

force. 

2.9.2 Cooling Water Network with intermediate mains 

Cooling water mains are also included in cooling water network design in which they 

are conceptualized in cooling water design grid. In the network, an intermediate 

cooling-water main is positioned between the cooling-water supply main and the 

cooling-water return main, with the temperature usually at the pinch.  

The intermediate main receives recirculating cooling water from some coolers at 

temperatures less than or equal to its temperature and provides cooling water to some 

other coolers, which can use cooling water at temperatures higher than or equal to its 

temperature. In this way, the recirculating cooling water into or out of each cooler will 

be coming from or going into one of the three mains.  

Kim and Smith (2001) shows example of cooling water design grid with cooling 

water main using limiting cooling water data that extracted earlier. Three cooling 

water mains are created in three different temperatures, at supply temperature, pinch 

temperature and maximum temperature allowable in the system. All streams are 
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connected by cooling water mains at respective temperatures and thus satisfying the 

individual cooling requirement. 

The method is carried out in four steps. The first step is to generate a grid diagram 

with cooling water mains and plot the cooling water using operations. The second 

stage is to connect the operations with cooling water mains that is determined from 

the pinch point at plot of temperature versus heat load of each heat exchanger. Then, 

the operations that cross the water mains is merge in the next stage and finally the 

cooling water mains was removed and this will allowed the design of the cooling 

water network to be achieved with maximum water reuse. 

Chen et al., (2006) proposed a superstructure-based MINLP formulation in 

designing cooling water network with intermediate mains. Their research probes how 

the number of intermediates of cooling water mains influences the recirculating 

cooling water system’s performance. The mathematical model considers the generic 

problem confronted in the design of a recirculation cooling water system, including 

stretching the cooler network design and setting the operation constraints. The study 

also investigated how the conditional direct connections between cooling units can 

decrease the consumption of the recirculating cooling water network under little 

sacrifice of piping complexity.  

Their study concludes that the more mains are added, the more recirculating 

cooling water can be saved since higher return temperature is obtained resulting from 

more cooling water is reused in the network. In addition, more intermediate mains 

also increases operational flexibility because more buffer mains reduce the 

interference between heat exchangers. However, additional intermediate cooling 

water main will increase the complexity of the piping network due to increase of new 

additional piping is required to connect the heat exchangers and the intermediate 

mains.  

2.9.3 Cooling Water Network Design Using Mathematical Programming 

A superstructure models are also designed in carrying out the optimization of cooling 

tower system integrated with the cooling water using operations. Cortinovis et al., 
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(2009) has developed an integrated mathematical model for the minimization of the 

operating costs of cooling water, as stated in previous section. The cost minimization 

was investigated by varying the flow rate of hot water removed, the fan rotation speed 

and the flow rate of circulating water in the system.  

Besides, as inspired by previous study by Kim and Smith (2001) that considering 

the impact of the cooling water network on the performance of the cooling tower; 

Majozi and Moodley (2008) developed a mathematical optimization technique for 

debottlenecking of cooling water systems.  The choice of mathematical optimization 

technique over a typical graphical method is due to the flexibility of the former to 

handle various constraints from the practical view. In addition of direct cooling water 

supply, this work also allowed for reuses and recycle streams. 

Furthermore, Panjeshashi et al., (2009) has combining the pinch technology and 

the mathematical programming using MATLAB for minimum cost achievement 

together with enhanced cycle water quality. The technique is called as Enhanced 

Cooling Water Design (ECWSD). This work is actually extended of Kim and Smith 

(2001) by developing the comprehensive simulation model of recirculating cooling 

water system that accounting the interaction between cooling tower and heat 

exchanger network. The ozone treatment technology is also integrated in this system 

in order to improve the cycle water quality. Thus, this study provided an optimized 

cooling water system with water and energy conservation, minimum cost and 

environmental impacts.   

Then, Gololo et al., (2011) presents a technique for synthesis and optimization of 

cooling water system which incorporates the performance of the cooling tower 

involve. A mathematical model for the cooling system that consisting of multiple 

towers that supply to common sets of heat exchangers is generated. The cooling tower 

model is used to predict the thermal performance of the cooling towers. Meanwhile, 

the thermal conditions of the associated heat exchanger network also taking into 

account.  

This proposed technique debottlenecked the cooling towers by decreasing the 

circulating water flowrate. This can be achieved by exploiting the opportunity for 

cooling water reuse. In addition, the water outlet from heat exchanger can go to any 
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cooling tower provided that it fulfilled the specified cooling tower inlet temperature. 

The decreased in the overall circulation water flowrate has added benefit of 

decreasing the overall power consumption of the circulating pumps. This would also 

lead for the decreasing of blowdown and water make up. 

2.10 Summary 

In this chapter, a literature review of design of industrial water system and cooling 

water system is carried out. Basically, much of the work of cooling tower 

optimization is focused on improving the performance through changing the operating 

parameters, adding new equipment, increasing electrical capacity or upgrading 

treatment system. Very few attentions have been given to the cooling tower design as 

a system itself, with heat exchangers and condensers, with analyzing the interaction of 

this system contains to achieve economics savings. Thus, new design or improvement 

work should consider the entire cooling system component such as the study that is 

carried out by Kim (2001), where pinch analysis is used. However, the limitation of 

cooling tower operation is not properly address in his study that could affect on both 

the cooling tower and heat exchanger performance. Crozier “guidelines” is also a 

good guide for designing cooling water reuse where the LMTD is used as one of the 

constraints.  

Besides, for controlling fouling and pressure drop issues, equalized pressure drop 

in cooling water loop may also beneficial. Intermediate cooling water mains can also 

be used in initial cooling water design. Other studies by Majozi and Moodley (2008), 

Gololo et al., (2011), Pajeshashi et al., (2009) and Cortinovis et al., (2009) carried out 

integrated optimization between cooling tower and cooling tower user. Mathematical 

model and programming used to obtained the new operating parameter of cooling 

tower without take into account the suitability of existing cooling tower operation that 

usually describe as the cooling tower characteristics. 

In the following chapters, new methodology for the design cooling water 

networks will be described. In which, instead of simultaneous optimization, a two-

steps optimization will be introduced by investigating the limitations and constraints 
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of the existing cooling tower unit, before carried out the optimization procedure. Then 

only, water reuse and recycle are applied in order to fulfill the new cooling tower 

supply temperature and circulation rate as well as to satisfy the demand of each heat 

exchangers. Thus, it is hoped that, this research will promote the wide application of 

the proposed systematic study because of its relevancy for all the existing running 

process plants utilizing the cooling water system. 
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CHAPTER 3 

DEVELOPMENT OF COOLING TOWER OPTIMIZATION PROCEDURE 

3.1 Introduction 

The primary objective for cooling tower optimization is to increase cooling tower 

efficiency and consequently reduce the cooling tower operating cost.  

One of the options to improve cooling tower efficiency is by reducing cooling 

tower outlet temperature or cooling water supply temperature. The actions results in 

the lowering of L/G ratio. Higher G value to the tower can be gained by increasing 

fan power. However, higher fan power increases operating cost. On the other hand, 

lower L value by decreasing the amount of water circulation in the system will reduce 

cost of water. In cooling tower operation point of view, the cooling water reduction 

must be made carefully. This because, it can lead to the fouling problem inside 

cooling tower and the concentration level of contaminants in cooling water will 

increase and give a potential of additional water treatment program. 

As the amount of cooling water circulating in the system is reduced, the 

performance of the condenser or heat exchanger will get affected. Low cooling water 

flow will reduce the heat transfer between process fluid and cooling water and 

consequently the quality if the process fluid or products may not meet the plant 

specifications. Besides, low cooling water flow will cause fouling problem inside heat 

exchanger and will reduce the heat transfer efficiency.  

The cooling demand in the cooling water network must be maintained to avoid 

product quality give-away. Thus, cooling water reuse must be applied in order to 

maintain the cooling water flow rate into each heat exchanger and retain the same 

cooling performance.  
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3.2 Stage-Wise Approach 

A two-stage optimization procedure is proposed in this work. The procedure is able to 

provide greater insights to the designer as compares to an overall optimization 

approach. In addition, the procedure is able to offer a range of solutions rather than a 

single solution to the system designer. 

In the first stage the approach temperature (the difference between wet-bulb and 

cooling water supply temperature) is reduced by lowering cooling water circulation 

rate. By using Merkel’s Equation, a set of reduced approach temperatures and water 

circulation rates are obtained subject to the cooling tower operational constraints. The 

results from the first stage are then used as initialization for the second stage, in which 

for water reuse design. In addition to reducing the cooling water circulation rate, air 

flowrate reduction maybe investigated as well.  

In the second stage, data for heat exchangers associated with the cooling tower is 

collected. These are cooling water flowrate, inlet and outlet cooling water 

temperatures. These data are required to construct the cooling water composite curve. 

From the composite curve, reuse opportunity can be identified by identifying 

overlapping area between the source and the sink curves. The fresh water intake and 

outlet cooling water return to cooling tower for this system is then checked. If the 

value of water flowrate or cooling water return temperature is not matched with 

cooling tower optimized parameters, the calculation is back to the first stage and it is 

iterated until the cooling water flowrate and temperature supply satisfies the demand 

respectively.  

3.3 Data Extraction 

For data extraction, firstly, the information of cooling tower system is collected for 

first stage procedure. For the existing cooling tower system, the important data that 

need to be collected is wetbulb temperature, design supply cooling water temperature, 

design cooling water return temperature, air mass flowrate and cooling water 

circulation rate. Those data are important to calculate the cooling tower characteristic 
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and consequently, determining the new cooling water supply temperature and cooling 

water circulation rate. 

For second stage procedure, all heat exchangers that associated with the respective 

cooling tower are gathered and tabulated. The information consist of the type of heat 

exchanger, cooling water inlet and outlet temperature , process fluid inlet and outlet 

temperature, heat capacity and heat load of the heat exchangers. Besides, the overall 

heat transfer coefficient and heat transfer area are also need to be determined. 

3.4 Cooling Water Temperature Reduction 

The objective of the cooling tower performance optimization in the first stage is to 

reduce the approach temperature to an acceptable limit. Typically, this value is about 

2 to 3oC. The colder cooling water supply, the better the process efficiency is. This 

can take in the form of process debottlenecking for condensers and greater efficiency 

requirement for refrigeration and air conditioning system. Temperature reduction can 

be achieved by reducing cooling water circulation rate or reducing air flowrate inside 

the cooling tower. 

3.4.1 Reducing Cooling Water Circulation Rate 

Cooling water circulation rate maybe reduced under different conditions of air 

flowrate, heat load, hot water temperature and range. 

3.4.1.1 Constant Air Flowrate and Heat Load  

In order to achieve cooling water supply temperature reduction, L/G value must be 

reduced. From the characteristic curve, the lower L/G value will move the operating 

point to the left following the characteristic slope. As a result, a lower approach 

temperature is produced for constant ambient temperature and air flowrate.  The 

minimum cooling water circulation rate is then limited by both the minimum cooling 

water flow inside cooling tower and the associated heat exchangers.  In the absence of 
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cooling tower characteristic curve, which is usually provided by the manufacturers, 

Merkel’s Equation shall be used.  

Prior to temperature estimation, a new KaV/L or NTU must be determined first by 

solving the Merkel’s Equation. For this case, Chebyshev Method is applied. Then, the 

value of C is calculated using Equation 3.1. C is a constant value regardless of the 

change of water flow rate in finding the approach at the alternative temperature 

conditions.  

m

m G

L
x

L

KaV

GL

LKaV
C 






 )/(

/
      (3.1) 

 

Value of m in this Equation 3.1 is similar to the characteristic curve slope in tower 

characteristic curve. Then, the new tower characteristic is calculated by inserting new 

L or L` into Equation 3.1 and it can be rewritten as Equation 3.2. 
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Equations 3.1 and 3.2 are actually locating original and new KaV/L respectively along 

the characteristic slope line. It is to ensure that the existing cooling tower is 

accommodating the new operating parameter L`. The negative value of m in equation 

3.2 is because it was originally multiplied with the new cooling tower characteristic 

value, C`.  Then, in order to determine the value of C`, the L/G terms is brought to the 

right hand side, and thus the m value became negative. 

In order to get new cold and hot temperature of the tower, some iterations is 

needed by varying approach temperature until the KaV/L or NTU value of assumed 

approach is equal to new tower characteristic, C`. Then the new hot and cold water 

temperature (HWT and CWT) can be calculated using Equations 3.3 and 3.4.  

New Tcw = Twb + New Approach     (3.3) 

New Thw = Tcw+ R      (3.4) 

The procedure is summarized in Figure 3.1. 
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3.4.1.2   Constant Air Flowrate, Heat Load and Hot Water Temperature  

The calculation step in (3.4.1.1) is applicable if the efficiency and heat transfer area, 

or water and air contact area is maintained as designed value. However, if the hot 

water temperature, heat load and air flow is fixed as per previous value, then 

debottlenecking procedure must be applied.  

Hot water temperature is fixed to ensure that cooling tower internals will not be 

damaged by hotter water. The required cooling water circulation rate is calculated as 

follow: 

 

L` = Q / R     (3.5) 

 

In equation (3.5), 

 

Q  heat load (BTU/min or kW) 

R  Range (oF or oC) 

L`  new cooling water circulation rate (GPM or m3/hr or ib/min) 

 

New L`/G ratio is then calculated while maintaining air flowrate constant. 

However, by fixing the hot water temperature, the contact area in cooling tower fill 

will change slightly from original condition. For example, by following the original 

characteristic slope (slant line in Figure 1.13) in cooling tower characteristic curve, 

cooling tower with heat load of 50 kW, L/G = 1.23 and range of 13oC is able to cool 

down hot water with flowrate of 3308 t/hr and temperature of 47.23oC to colder 

temperature which is at 34.23oC. 

On the other hand, with the same range, water and air volume, hot water is entered 

at 45oC. The KaV/L value will increase by 58.3%. The parameters K,a and V 

represent the mass transfer coefficient, contact area in active tower volume, and active 

tower volume in plan area, respectively. Higher KaV/L value within the same cooling 

water flowrate means larger contact area and active tower volume.  
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Figure 3.1: Calculation Steps for Reducing Cooling Water Circulation Rate as In 

Stage 1 
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This will make cooling tower increase its active tower volume.  The increment of 

cooling tower characteristic is still acceptable since the maximum KaV/L value is 2.5 

(Perry and Green, 1997).      

3.4.1.3 Constant Air Flowrate and Variable Range 

In this case, the L/G value is assumed first. From cooling tower characteristic curve or 

Merkel’s Equation, the respective KaV/L and cooling tower approach that intersect at 

a design characteristic slope is found. The slope of tower characteristic curve value is 

usually assumed as -0.6 (Burger, 1995).  

For constant heat removal from cooling tower, Equation 3.6 can be used to predict 

the cooling tower range. On the other hand, if cooling tower inlet temperature that is 

obtained from cooling water network is lower than calculated value from Equation 

3.6, it can be assumed that heat removal in cooling tower is lower than that in the 

operating condition. The cooling tower characteristic, KaV/L value is constant since 

change in wet-bulb temperature and range will not affect the relationship of KaV/L, 

L/G and approach temperature. The relationship can be seen from cooling tower 

characteristic curve. This is due to the fact that the characteristic curve is plotted in 

logarithmic scale. If the cooling tower parameters are plotted in the same logarithmic 

function, the relationship of abscissa L/G and ordinate KaV/L are the same at 

different wet-bulb and range values (Burger, 1995). 

 

R = Q / L`          (3.6) 

3.4.2 Reducing Air Flowrate 

The energy consumed by cooling tower fan also contributes to high electricity cost in 

operating cooling tower together with electricity used by cooling tower pump. 

Operating cost savings can also be achieved by reducing air flowrate and 

consequently reducing the power needed to run the fan. However, reducing air 

flowrate alone can cause L/G value getting higher and less heat will be removed from 
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hot water returning to a cooling tower. This will affect the cooling water usage in later 

stage.  

One of the options is to maintain the L/G value, in which air flowrate and cooling 

water recirculation rate is reduced proportionally. Since L/G value is maintained, 

KaV/L and approach temperature will also be maintained (refer section 1.4.3). 

However, the cooling water supply temperature will remain the same and thus, the 

cooling tower efficiency will not be improved. 

3.5  Cooling Water Reuse 

Reducing cooling water circulation rate will affect the cooling water users, such as 

condensers. The flowrate cooling water supply is now less than the demand for 

cooling water by the heat exchangers. The only way to satisfy cooling water user 

demand is to promote cooling water reuse. Cooling water reuse is initially adapted 

from water reuse in wastewater minimization (Kim, 2001). In this work, pinch 

analysis is carried out in early stage of reuse study to determine the reuse opportunity 

in the system.  

3.5.1 Application of Cooling Water Network Composite Curve 

The procedure by Dhole (1996) is applied in the construction of cooling water 

network composite curve. The initial cooling water data is extracted from the cooling 

water network.  

The cooling water inlet to heat exchanger is called as ‘sink’ point and cooling 

water outlet is called as ‘source’ point. First, the cooling water temperature of source 

and sink stream is arrange in terms of descending cooling water temperature.  

For source streams, a horizontal line is drawn for the highest temperature of 

cooling water effluent. The quantity of cooling water flowrate at this temperature is 

then drawn on the horizontal axis. A vertical line is drawn from the current 

temperature level to the temperature of the next cooling water effluent. The flowrate 
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of the second temperature of cooling water effluent is accumulated by continuing the 

horizontal line. This procedure is continued for each temperature of cooling water 

effluent to give the upper “staircase” of the cooling water network composite curve. 

 

 

Figure 3.2: Example of Cooling Water Network 

 

For the sink stream, a similar “staircase” is constructed, starting at an arbitrary 

flow rate such that this second staircase does not overlap with the ‘sources’ one.  

Once constructed, the ‘sinks’ staircase is moved horizontally until it touches the 

‘sources’ staircase. The point at which the two meet is called the Pinch Point.  With 

the cooling water network composite curve, opportunities for cooling water 

minimization shall be determined. For example, water reuse opportunity is possible if 

the quantity and the temperature are sufficient.  

The opening at the top of the composite curve indicates fresh cooling water 

supply from cooling tower and the opening at the bottom indicates cooling water 

return to cooling tower. The vertical overlap between the two “staircases” highlights 

where opportunities exist for water reuse.  
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Other than using cooling water directly from source point, mixing of stream can 

also be applied to increase the cooling water recovery and minimize cooling water 

consumption. The suitable cooling water flowrate and temperature of two streams 

must be selected properly, so that it can satisfy the sink requirements. Other options is 

to mix the source stream with fresh cooling water, so that the temperature of source 

stream can be reduced and can be used by sink stream that require lower temperature 

than original source temperature. Besides using graphical method (Isahak, 2004), the 

amount of mixing streams can be identified by using mathematical programming.  

3.5.2 Application of Mathematical Programming using GAMS  

For any heat exchanger, HE (i), where i=1,2..,n acting as sink point, it requires 

cooling water inlet at flowrate B(i) and temperature Tsink. The two source streams are 

flow of x(j+1), where j=1,2..,n, with temperature T(j+1) and  flow of x(j-1) with 

temperature T(j-1). This mixture will cause inlet temperature to increase. Fresh 

cooling water with flowrate of y(i) and temperature Tcw is added to the mixture to 

dilute the inlet temperature to Tsink value. 

 

 

Figure 3.3: Schematic Representation around Heat Exchanger 
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Figure 3.3 shows the schematic representation around heat exchanger HE (i). The 

original mass balance around point A is: 

 

Fcw1 . Cpcw . (T1-Tref) + Fcw2 . Cpcw . (T2-Tref) + Fcw3 . Cpcw . (T3-Tref) = Fcwsink . Cpcw . 

(Tsink–Tref)                              (3.6) 

 

 Then, by assuming that Cpcw is constant and Tref = 0oC, Equation 3.6 is translated 

using the variables used in Figure 3.3: 

 

At i = n, and j = 1,2 ……., n  

 

x(i, j+1)T(j+1) + x(i, j-1)T(j-1) + y(i)Tcw = B(i)Tsink              (3.7a) 

 

If the cooling water sources are more than two streams, the model can be written as: 

 

∑x(i,j)T(j) + y(i)Tcw = B(i)Tsink                (3.7b) 

 

 The following constraints apply in this problem: 

 

(i) Total cooling water reuse must be less or equal than total cooling water outlet 

of heat exchanger (source point) 

 

 
j

jcjix )(),(   for i = 1,2……,n and j = 1, 2, ….. , n                        (3.8) 

 

(ii) Total cooling water reuse and fresh cooling water flow into each heat 

exchanger must be equal to cooling water demanded or needed by respective 

heat exchanger (sink point) 
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 for i = 1,2……,n and j = 1, 2, ….. , n    (3.9) 
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(iii) Total cooling water outlet temperature (source temperature) must be equal to 

cooling tower return temperature, Treturn 

 

Treturn
jFout

jTjFout

j

j 





)(

)()(
 for j = 1,2 ……, n                   (3.10) 

 

Objective function is to optimize fresh cooling water intake which is z until it is equal 

to new cooling tower supply, L`: 

 

 
j

Ljyz ')(  for j = 1,2 ……, n                     (3.11) 

The Non Linear Programming (NLP) formulations here will require initial points 

for the optimum solutions to be generated. These initializations will be based on the 

preliminary optimization (stage 1) together with the graphical approach (cooling 

water network composite curve). Then, based on NLP model, the GAMS/CONOPT 

solver is used in the programming. This is due to the robustness of the solver.  

This simple mathematical programming is an aid to avoid manual iterations in 

solving the water reuse calculation which is; to calculate the optimum cooling water 

stream mixing and splitting in order to fulfill the given cooling tower constraints. 

Based on this two-stage optimization procedure, a cooling tower system optimization 

can be performed. 

3.6 Cost Analysis 

The cost savings calculation on optimization work can be calculated based on 

comparison of operating cost, which is shown as equation below: 

 

Cooling tower operating cost = Electricity cost + Water Cost                               (3.12) 

Electricity cost = Fan Power + Pump Power              (3.13) 

Operating cost savings = Current operating cost – New operating cost           (3.14) 

Payback time = Capital cost / (Revenue – Operating Cost)            (3.15) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

As proposed in chapter 3, the two-step optimization procedure provides a practical 

approach to optimize a cooling water system. In this chapter, three case studies are 

presented to demonstrate the two-step optimization procedure. 

4.2 General assumptions  

For all the case studies in this work, the cooling tower internals are assumed to be in 

good condition, i.e. no internal deterioration.  For a cooling tower that consist more 

than one cell, it is assumed that the cells are in good working order. Cooling water 

flowing pattern inside fills is assumed to be uniformed for all cells. The cooling water 

flow is well-distributed and no channeling effect inside the fills occurs. For 

calculation purposes, the value of cooling water heat capacity is taken as 4.2 kJ/kg.oC 

and density is 996 kg/m3 and it is assumed that both values are constant for all 

temperatures and pressures.  

4.3 Relationship of Cooling Water Flowrate to Cooling Water Temperature 

The data of cooling tower unit from methanol plant has been collected in order to 

study the relationship of cooling water circulation rate to the cooling water supply 

temperature as well as range and approach values. The data was taken from the 

plant’s record, in which the data is arranged in descending cooling tower circulation 

rate. The data is tabulated in table 4.1. 
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Table 4.1: Results for Cooling Tower Operating Data 

Date  Cooling Tower 
Circulation Rate 

(m3/hr) 

Cooling Water 
Supply 

Temperature 
(oC) 

Approach 
 (oC) 

 

Range  
(oC) 

2 Sept 4920 35.00 9 8 

4 Feb 4800 34.00 6 8.5 

30 Sept 4400 31.50 6 10.5 

Design Data 4350 32.00 7 10 

Table 4.2: Results for Calculated Data Using Merkel’s Equation 

Date  Cooling Tower 
Circulation Rate 

(m3/hr) 

Cooling Water 
Supply 

Temperature 
(oC) 

Approach 
 (oC) 

 

Range  
(oC) 

2 Sept 4920 35.29 7.29 8.74 

4 Feb 4800 35.27 7.27 8.96 

30 Sept 4400 35.02 7.02 9.77 

Design Data 4350 35.00 7.00 10.00 

In addition, the relationship of cooling water flowrate to the approach and range 

temperature is also investigated using Merkel’s Equation. Thermodynamically, as 

cooling water circulation rate inside the cooling tower is reduced, more heat will be 

removed as the driving force is larger, and hence the supply cooling water becomes 

colder.  Thus, the range must increase to give larger driving force in order to 

maximize the cooling tower heat load. This relationship can be seen in Figure 4.1 and 

4.2. 

Since the cooling tower outlet temperature cannot be lower than the wet-bulb 

temperature, the incoming hot water temperature is expected to be higher. Lower 

cooling water circulation rate will also cause the residence time for water contact in 

the cooling tower is getting higher. This can contribute to more heat exchange 

between air and cooling tower.  
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However, the calculation using Merkel’s Equation assumed that the wet-bulb 

temperature is constant at 28oC, this value is taking the average wet-bulb temperature 

in Malaysia (PRSS, 2005). In real cooling tower operation, the wet-bulb is varies from 

26 to 28 oC and thus, the relationship of the cooling water temperature and circulation 

rate is differed from the calculated value. For the design data, the wet-bulb 

temperature is taken as 25oC. 

Overall, reducing cooling water circulation rate will reduce water make-up as well 

as cooling water pump work and consequently the cooling tower operating cost. 

Make-up water reduction is not affected much if heat load is constant and basically 

pumping work is proportional to the water volumetric rate. From Figure 4.3, it shows 

that the operating cost is reduced as cooling water circulation rate is reduced.  

 

Figure 4.1: Relationship of Approach and Range Temperature to Cooling Water 

Flowrate (Cooling Tower Operating Data) 
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Figure 4.2: Relationship of Approach and Range Temperature to Cooling Water 

Flowrate (Calculated Using Merkel’s Equation)           

 

 

 

Figure 4.3: Cooling Tower Operating Cost Variation with Cooling Water Circulation 
Rate 
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4.4 Effect of Colder Cooling Water Temperature to the Plant 

It can be seen that the colder cooling water and a lower cooling water circulation rate 

allow cost savings to be achieved. With a lower cooling water inlet temperature and 

maintaining the cooling water flow, the capacity to remove heat from the condenser 

will increase as colder cooling water creates bigger driving force to transfer heat in 

the condenser. If the existing area of the condenser is to be exploited, a colder cooling 

temperature should assist process debottlenecking of the condenser system as higher 

throughputs can be handled.  

For an overhead condenser, the reduction of cooling water temperature from 35oC 

to 32oC is managed to increase the product capacity from 200 m3/hr to 250 m3/hr. As 

the cooling water flow and cooling water outlet temperature from the condenser, the 

condenser heat load will be increased. By assuming constant heat capacity and density 

of product A, the volumetric flow is proportional to condenser heat load. As results, 

the volumetric flow of product A was increased by 30%. Figure 4.4 shows the 

schematic diagram of the overhead condenser system that subjected to the cooling 

water temperature reduction. 

Furthermore, Burger (1995) stated that every 0.6oC colder water return to the 

compressors and condensers in refrigeration and air conditioning system, electrical 

energy input for compression work will reduced approximately by 3%. This was 

proven in the calculation at appendix C. Lower cooling water temperature will 

produce lower condensed refrigerant temperature and hence, the potential temperature 

difference for refrigerant to reject heat in condenser is reduced. The refrigeration 

system will operate at a lower head pressure and temperature to produce this 

temperature differences and thus less compression work is needed in order to produce 

lower pressure and temperature for the respective system. Besides, electricity 

consumption in pumping system is reduced as cooling water circulation rate is 

decreased.  
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Figure 4.4: Effect of colder cooling water in overhead condenser 
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4.5 Case Study 1: Cooling Tower for a Chiller System 

Assumptions 

As discussed in earlier, a chiller system consists of a condenser that remove heat after 

the working fluid is compressed. Cooling water is used as the cooling medium in the 

condenser.   

Each component of the chiller system is analyzed as a control volume at steady 

state. Pressure drops in a condenser and evaporator are assumed to be in acceptable 

region. The compressor operates adiabatically with an efficiency of 80%. The 

expansion through the valve is a throttling process that operates adiabatically. Kinetic 

and potential energy effects are negligible. Besides, it is also assumed that 3% of 

compression work can be saved for every 0.6oC cooling water temperature reduction 

(Burger, 1995).  

4.5.1 Gas District Cooling Tower System 

The Gas District Cooling or GDC is a built to produce chiller water with the capacity 

of 4000 RT and electricity of 8.4 MW. This chiller water is produced for the air-

conditioning system for the new academic complex, chancellor hall and mosque at 

University.  

Chiller is one of the units in the GDC plant that produces chilled water at 6.0oC and it 

is returned at 13.5oC. Refrigerant is evaporated to cool back chilled water. Refrigerant 

vapor is compressed with 465 kW of power input and then sent to condenser. 

Conceptually, refrigerant carries heat from the return chilled water and then this heat 

is removed in a condenser. Cooling water from the cooling tower enters the condenser 

at a flowrate of  966 m3/hr and a temperature of 32.0oC. The heat load to be removed 

is 8426 kW/hr, i.e heat from return chilled water and from compression work. Thus, 

returning cooling water becomes hotter at 39.5oC. 

The cooling tower system consists of four cells in which cooling water returning 

from condenser is split into four streams of 241.5 m3/hr per cells. The calculation for 

the optimization is evaluated for single cell. However, water from each cell will be 
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combined before supply back to chiller system. The resulting supply water 

temperature is assumed uniform for all cells. Figure 4.5 shows the flow diagram of 

cooling tower and chiller water system. 

39.5oC32.0oC
966 m3/hr

Cooling tower

Condenser 

Compressor 

Evaporator 

Expansion 
valve

465 kW

Refrigerant 

Cooling water

Chilled water
6.0oC 13.5oC

 

Figure 4.5: A Cooling Tower and a Chiller System (GDC, 2002) 

4.5.2 Optimization Results 

The objective of the optimization is to reduce cooling water approach as minimum as 

possible. From Perry and Green (1997), the minimum cooling tower approach is 

usually set at 2.9oC. Thus, the targeted cooling water supply temperature is 30.9oC 

and cooling tower approach is reduced from 4.0oC to 2.9oC. In order to reduce cooling 

water temperature, L/G value is reduced by reducing cooling water circulation rate, L 
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while maintaining cooling tower heat load. Using the two-step procedure as described 

in chapter 3, a new cooling water circulation rate is determined.  

From the first stage, a cooling water circulation rate in each cell is reduced to 158 

m3/hr and the total of cooling water for this system is 632 m3/hr. As a result of cooling 

water reduction, cooling tower range is then increased from 7.5oC to 11.4oC. As 

expected the range has increased to compensate the reduction of cooling water flow in 

order to maintain the cooling tower heat load. The KaV/L value increases to 

accommodate more contact area between air and cooling water inside the tower. The 

operating and optimized parameters are tabulated in Table 4.3. 

  

Table 4.3: Cooling Tower Operating and Optimized Parameters 

Parameters Operating value Optimized value 

Air flowrate, G (m3/hr) 9849 (Fixed) 

Water circulation rate, L (m3/hr) 966 632 

CW supply temperature, Tcw (oC) 32.0 30.9 

CW return temperature, Thw (oC) 39.5 42.3 

Wet-bulb Temperature, Twb (
oC) 28.0 28.0 

Approach (oC) 4.0 2.9 

Range (oC) 7.5 11.4 

L/G  1.5 1.0 

KaV/L 1.5 1.9 

 

As for the chiller side, colder cooling water does not affect the chilled water 

quality. However, the colder cooling water will reduce refrigerant compression work. 

As stated in assumption, compression work will be reduced by 3% for every 0.6oC 

cooling water temperature reduction. The detail calculation is shown in Appendix C. 

In this case, 1.1oC of cooling water temperature has been reduced, thus the 

compression work is saved by 5.6%. Consequently, the power input to run the 

compressor reduces to 440 kW. Since the flowrate of the cooling water supply from 

the cooling tower is reduced, the inlet cooling water flowrate to the condenser is also 

reduced. 
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The optimization will also affect the cost of cooling tower system. Because no 

additional mechanical modification, no additional capital cost is incurred as a results 

of optimization. For operating cost, savings is obtained from electricity cost and cost 

of make-up water. Total operating cost savings for overall cooling tower and chiller 

system is about 27% which is worth for RM 160 500 per year. The comparison 

between current and new cooling tower operating cost is shown in Table 4.4. 

 

Table 4.4: Cost Comparison for Cooling Tower and Chiller System 

Parameters Current Operating Cost New Operating Cost 

Fan (RM/yr) 24 088 24 088 

Pump (RM/yr) 50 799 33 235 

Make up water (RM/yr) 400 214 261 826 

Compressor (RM/yr) 81 946 77 398 

Chiller pump (RM/yr) 37 557 37 557 

Total (RM/yr) 594 604 434 104 

Savings (RM/yr) - 160 500 

Savings (%) - 27 

 

It can be seen that, optimization of cooling tower results in cost savings for both the 

cooling tower and the chiller systems. However, since chiller and cooling water 

systems only contain single cooling water user, which is the condenser, there is no 

water reuse design that can be applied in this case.  

4.6 Case Study 2: Cooling Tower System with Multiple Heat Exchangers  

In the previous study, cooling water is only used by a single unit heat exchanger. In 

the second case study, a system with cooling tower with multiple heat exchangers is 

studied. The application of cooling water network composite curve is demonstrated to 

predict the minimum amount of cooling water reuse. 

Assumptions as presented in the previous case study are applied for this case 

study as well. Hence, the cooling tower internals are assumed to be in good 

conditions. In addition, the heat exchanger is treated as a shell and tube heat 
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exchanger with cooling water flowing in the tube side. The pressure drop is also 

assumed to be maintained as existing operating conditions.  

The data for the second case study is taken from Kim (2001). Four heat 

exchangers include two condensers for chiller system and distillation column and 

another two coolers for the process fluid. The cooling water system for case study 2 is 

shown in Figure 4.6. 

As in the previous case study, approach temperature is reduced to 2.9oC resulting 

in a new target cooling water temperature of 30.9oC. To achieve the new targeted 

temperature, the cooling water circulation rate, L must be reduced to 1166 m3/hr and 

consequently resulted in new range temperature of 15.0oC. The optimized and original 

parameters are tabulated in Table 4.5. 

As discussed previously, colder cooling water inside distillation column 

condenser will increase the quantity of fluid condensed and thus increasing 

production capacity. Besides, for chiller condenser, the effect of colder water will 

reduce the compression cost and thus reducing operating cost. 
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Figure 4.6: Cooling Water System for Case Study 2 (Kim, 2001) 

 

Table 4.5: Cooling Tower Operating and Optimized Parameters for Case Study 2 

Parameters  Original  Optimized  

Air flowrate, G (m3/hr) 830784 (fixed) 

Water circulation rate, L (m3/hr) 1420 1166 

CW supply temperature, Tcw (oC) 33.0 30.9 

CW return temperature, Thw (oC) 45.3 45.9 

Wet-bulb Temperature, Twb (
oC) 28.0 28.0 

Approach (oC) 5.0 2.9 

Range (oC)  12.3 15.0 

L/G 1.5 1.1 

KaV/L 1.6 2.3 
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However, after the optimization, the water circulation rate is lower than the 

existing condition. This has created a bottleneck for the cooling water users in the 

process. In addition, this will cause low velocity inside cooling water user equipment 

and may lead to fouling problem. To overcome this problem, cooling water reuse 

maybe applied.  

Cooling water reuse targeting is carried out using cooling water network 

composite curve (CWNCC). From the data given, a CWNCC is generated as shown in 

Figure 4.7. The maximum direct cooling water reuse is shown in CWNCC with 

shifted sink line. Three options have been identified to achieve the target minimized 

cooling water circulation rate. 

 

 

Figure 4.7: Cooling Water Network Composite Curve with shifted sink line 
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Figure 4.8: Cooling water network configuration with direct reuse (option 1) 

Through the Option 1 (Figure 4.8), the maximum cooling water reuse that can be 

obtained from the cooling water network is 419 m3/hr. With this maximum reuse, the 

fresh cooling water supply needed from cooling tower is only about 1001 m3/hr, 

whereas the cooling tower circulation rate is 1166 m3/hr. Thus, there is surplus of 

cooling water supply from the cooling tower.   

In order to ensure that the fresh cooling water amount is maintained at 1166 

m3/hr, the base case CWNCC is modified as shown in Figure 4.9. Here, the stream 

mixing can be applied, in which the source stream can be mixed with the fresh 

cooling water. The addition of reuse cooling water to the fresh cooling water from 

cooling tower will produce colder heat exchanger inlet at 35.2oC than original 
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stream 4 with 165 m3/hr fresh cooling water and then produces 419 m3/hr cooling 

241 m3/hr 
30.9oC  

419 m3/hr 
38.0oC 

545 m3/hr 
30.9oC 

HE 1 

HE 2  

HE 3 

HE 4 
48.0oC 

56.7oC 

38.0oC 

214 m3/hr 
35.0oC 

Make-up 
water

Hot water Cooling Water 

Cooling Tower

1 2

3 4

6

7

5

8

39.5oC

Q=1831 kW 

Q=3178 kW 

Q=8165 kW 

Q=3250 kW 

1166 m3/h 
30.9oC  



  

64 

water with temperature of 35.2oC.  The result in Option 2 of cooling water network is 

shown in Figure 4.10. 

Option 3 gives a different network design but with similar cooling total water 

reuse quantity. The reuse quantities for each heat exchanger are different from option 

2. As shown in Figure 4.11, two streams, streams 4 and 8, are being reused by sink 

streams of 7 and 5, respectively. As in option 2, stream mixing is also applied. Some 

of streams 4 and 8 are diluted with fresh cooling water and divided into streams a and 

b. Temperature of streams 4a and 8a are maintained at its original temperature which 

are 38.0oC and 48.0oC respectively. In addition, the temperature for stream 8b is 

reduced from 48.0oC to 36.9oC and stream 4b reduced from 38.0oC to 34.4oC. These 

modifications can be seen from CWNCC as shown in Figure 4.11. Thus, there are 

opportunities to reduce inlet temperatures for heat exchangers 3 and 4. 

For all options, the savings for new cooling tower operating cost are similar and 

technically are feasible to be applied with a new piping. However, the overall savings 

vary due to the difference in additional capacity for each option. First option gives 

25% additional capacity from HE 3. While, for second option, HE 3 gives higher 

additional capacity which is about 36% since the lower inlet temperature for cooling 

water inside HE 3. On the other hand, option 3 gave lower additional capacity which 

is approximately at 23% since cooling water inlet temperatures for HE 3 and HE 4 is 

almost similar to the designed values. The cost comparison of cooling tower 

performance is shown in Table 4.6.  

Table 4.6: Comparison for cooling tower operating cost 

Parameters 
Current Cooling Tower 

Operating Cost 
New Cooling Tower 

Operating Cost 
Fan cost (RM/yr) 24 088 24 088 
Pump cost (RM/yr) 298 602 210 454 
Make up cost (RM/yr) 2 352 490 1 658 029 
Compressor cost (RM/yr) 81 946 73 259 
Chiller pump cost (RM/yr) 37 557 37 557 
Total Operating Cost (RM/yr) 2 794 682 2 003 387 
Savings (RM/yr) - 791 296 
% savings - 28 
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Figure 4.9 Modified Cooling Water Network Composite Curve for option 2 

 

Figure 4.10: Cooling water network configuration with stream mixing (Option 2) 
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Figure 4.11: Modified Cooling Water Network Composite Curve for option 3 
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From Case Study 2, it can be shown that a lower cooling water supply 

temperature can give additional capacity to the plant. Besides, cooling water reuse 

design is applied in carrying out cooling tower optimization to compensate the 

reduction of cooling water circulation rate. This study also showed that, cooling tower 

system can be improved without any mechanical modification and additional capital 

cost. In fact, it can increase the plant profit through lowering the cooling tower 

operating cost. 

Figure 4.12: Cooling water network configuration with stream mixing (option 3) 
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In summary, the results from the case study are shown as in table 4.7. 

Table 4.7: Summary of Case Study 2 

Options Description 

Option 1  Direct cooling water reuse : 419 m3/hr 

 Surplus in CW supply from CT  

 Less piping cost (only one additional 

piping) 

Option 2  Cooling water reuse : 419 m3/hr 

 Only 1 Stream diluted to get lower CW 

inlet  T  

 Less piping cost (only one additional 

piping) 

Option 3  Cooling water reuse : 419 m3/hr 

 2 streams are diluted to get lower CW T 

 More piping cost 

 

From table above, it can be concluded that the option 2 may the best option. This 

is due to the less piping cost and complexity, since only one additional piping is 

needed compared to option 3. In addition, the cooling water inlet to the HE 3 in option 

2 is cooler than option 1, and thus may give higher additional capacity. 

 

 

 

 

 

 

 



  

69 

4.7 Case Study 3: Cooling Tower Optimization in a Methanol Plant 

Methanol can be produced in many ways, but most processes use natural gas a feed 

stock. The natural gas is then converted to synthesis gas or Syngas by steam 

reforming. Syngas is composed of carbon monoxide (CO), carbon dioxide (CO2) and 

hydrogen (H2). The Syngas is then sent to methanol converter where crude methanol 

and water are produced. Distillation is used as a means for products separation. Figure 

4.13 shows typical methanol processing flow diagram. 

 

Figure 4.13: Typical layout of Methanol Production using Lurgi Process (Lurgi, 2011) 

 

From above figure, it can be seen that numbers of cooling water heat exchanger 
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4.7.1 Cooling Tower Network Data 

A methanol plant named Plant I that is using Lurgi Process; is selected and the 

cooling data were gathered from one of the cooling towers in this plant. All of the 

heat exchangers that are associated with the cooling tower are operated at the desired 

operating conditions to ensure that the chemicals produced are within customer 

specifications. The cooling water network in this case study has 14 heat exchangers 

that are connected to the cooling tower. All cooling water inlet temperatures is 35oC. 

The function of the heat exchangers and the operating parameters for all heat 

exchangers are shown in Table 4.6. 

Figure 4.14 shows the flow diagram of cooling water network for this case study. 

The total cooling water circulated in this system is about 4300 t/hr. The cooling water 

supply temperature is 35oC and the return temperature is about 45oC. The wet-bulb 

temperature is assumed at a typical tropical temperature of 28oC and it is uniform over 

the year. Thus, the approach is at 7oC and the range temperature is 10oC.  

Taking the minimum allowable approach temperature of 2.9oC (Perry and Green, 

1997), there is an opportunity to improve the cooling tower supply temperature. Thus, 

the optimization of cooling tower itself is carried out first. 

4.7.2 Optimization Approach  

In this case study, it is required that the return temperature of cooling tower must be 

less than 60oC. This is a process constraint to prevent water temperature damage the 

fill. Furthermore, the heat load for cooling tower is maintained to ensure that the 

existing cooling tower area is able to cope with new cooling tower operating 

parameters. 

From Table 4.7, it can be seen that, as L/G is reduced, the approach became tight 

while the range is widen. Therefore, it gives higher hot water temperature but lowers 

cold water supply temperature. As recommended by Perry and Green (1997), the 

value of L/G is only varies down to 0.75. 
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The optimized parameters are tabulated in Table 4.8. Minimum L/G value of 0.75 

is selected and thus resulting in cooling water circulating flow of 2000 m3/hr. 

Consequently, the cooling tower supply temperature is reduced by 2.4oC. The return 

temperature is about 54.1oC and thus, the new range temperature is about 21.5oC.  

 

 

Figure 4.14: Cooling water network for Plant I (PMLSB, 2005)
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Table 4.6: Function and Operating Parameters of Heat Exchangers (PMLSB, 2005) 

HE Functions 

Cooling Water side Process side 
Q UA 

Tin Tout Flow Tin Tout 

(oC) (oC) (m3/hr) (oC) (oC) (MW) (W/oC) 

HE 1 Gas cooler 35 45 727 99 38 8.46 597590 

HE 2 methanol cooler 35 45 940 60 38 10.94 1729585 

HE 3 off-gas cooler 35 45 53 64 40 0.62 55188 

HE 4 Reflux cooler for pressured column 35 45 293 70 40 3.41 520340 

HE 5 final product cooler 35 45 293 128 40 3.41 147559 

HE 6 reflux cooler for prerun clmn 35 45 817 83 64 9.51 378463 

HE 7 gas compressor cooler 35 45 179 131 108 2.08 56831 

HE 8 lube oil cooler 35 45 226 60 45 2.63 266654 

HE 9 lube oil cooler 35 45 224 60 45 2.61 264294 

HE 10 compressor intercooler 35 45 84 137 40 0.98 37139 

HE 11 compressor intercooler 35 45 96 151 40 1.12 39753 

HE 12 compressor intercooler 35 45 75 145 40 0.87 36089 

HE 13 compressor intercooler 35 45 75 125 40 0.87 37375 

HE 14 Small exchangers 35 45 218 Group of small coolers 2.49  
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Table 4.7: Cooling tower parameters with variation of L/G (Q constant) 

L/G 
L 

(t/hr) 

Cooling 

Water 

Return 

Temperature 

(oC) 

Cooling 

Water 

Supply 

Temperature 

(oC) 

Range 

(oC) 

Approach 

(oC) 

1.60 4300 45.0 35.0 10.0 7.0 

1.44 3870 45.8 34.7 11.1 6.7 

1.35 3620 46.3 34.4 11.9 6.4 

1.28 3440 46.9 34.4 12.5 6.4 

1.23 3308 47.2 34.2 13.0 6.2 

1.12 3010 48.2 33.9 14.3 5.9 

1.10 2950 48.5 33.9 14.6 5.9 

0.96 2580 50.1 33.4 16.7 5.4 

0.84 2250 52.1 32.9 19.2 4.9 

0.82 2200 52.4 32.9 19.6 4.9 

0.80 2150 52.8 32.8 20.0 4.8 

0.75 2000 54.1 32.6 21.5 4.6 

 

Table 4.8: Cooling tower parameters with minimum L/G 

Parameters Operating Optimized 

Approach (oC) 7.0 4.6 

Return Temperature,Thw (oC) 45.0 54.1 

Supply Temperature, Tcw (oC) 35.0 32.6 

Wet-bulb Temperature, Twb (oC) 28.0 28.0 

Water Circulation Rate, L1 (t/hr) 4300 2000 

Air Flowrate, G1 (m3/hr) 2335608 2335608 

L/G 1.61 0.75 

KaV/L 0.95 1.50 

 

 



  

74 

Those optimized data are then used in cooling water reuse design. To develop the 

reuse design, the cooling water data is plotted in CWNCC as shown in Figure 4.15. 

From CWNCC, it can be seen that source stream is having higher temperature than 

sink stream and thus presents no opportunity for cooling water reuse. Modifications 

should be made to the source stream in order to locate stream line above the sink line. 

Mathematical programming is used to find the best mixing streams to fulfill the 

cooling water network requirements. Reuse design applied are further analyzed. 

 

Figure 4.15: Cooling Water Network Composite Curve for Plant I 
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Table 4.9: Cooling Tower Parameters with Tcw = 33.9oC 

Approach (oC) 5.9 

Return Temperature,Thw (oC) 48.5 

Supply Temperature, Tcw (
oC) 33.9 

Water Circulation Rate, L` (t/hr) 2950 

L`/G 1.1 

KaV/L` 1.2 

 

The temperature constraints for the heat exchangers are listed in Table 4.10. 

 

Table 4.10: Maximum temperature for heat exchangers network 

HE 
CWin temperature CWout temperature 

oC oC 

HE 1 37 47 

HE 2 37 47 

HE 3 37 47 

HE 4 39 49 

HE 5 39 49 

HE 6 39 49 

HE 7 39 49 

HE 8 39 49 

HE 9 39 49 

HE 10 39 49 

HE 11 39 49 

HE 12 39 49 

HE 13 39 49 

HE 14 39 49 

 

The reuse design is capable of fulfilling the cooling tower’s new parameters and 

new cooling water reuse network is shown in Figure 4.16. Cooling water consumption 

is saved by 12% while the cooling tower temperature is reduced by 1.1oC. Even 

though the cooling tower supply temperature reduction is only 1oC, cooling tower can 
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save the operating cost up to RM 139,000 per year. This savings is obtained from the 

lesser cooling water consume inside the plant as well as lesser power consumption 

used by cooling water circulation pump. However, the heat exchanger needs to be 

revamped and this is estimated to be due the 355 m2 additional heat exchanger area 

needed to cope with higher load of the heat exchangers. Thus, the total capital cost for 

this option is RM 148,000 and the revenue is RM 139,000 and those values made the 

payback period for this option as 13 months (refer appendix D).  

 

Figure 4.16: Cooling Water Reuse Network for Plant I (Option 1) 

4.7.2.2 Option 2: Cooling Water Reuse with Additional Product Capacity 

For the second option, some 15% of additional capacity that is gained from additional 

heat load that is approximated to be worth of RM39 million per year is expected. This 

can be achieved by increasing LMTD value, provided that there is no temperature 

cross occurs. Thus, it is proposed that additional heat exchanger area is needed to 

cope with the new heat load. Cooling water regeneration is introduced in second 

option design, while stream mixing is still applicable to reduce in regeneration cost. 
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New cooling tower parameters, as tabulated in Table 4.11, are used for this 

option. The fresh cooling water supply is at 33.9oC and supply cooling water 

circulation rate is 2950 m3/hr. For reuse design, a return cooling water temperature 

must be set at 48.5oC. This is to ensure that cooling tower area is fully occupied 

during heat removal process and thus cooling tower can operate efficiently. After 

reuse design, it is found that 294 m3/hr of hot water is needed for regeneration by air-

cooled heat exchanger (AHE) since only 1056 m3/hr of hot water can be reused by the 

system. About 2500 m2 additional heat exchanger is required and this will cost about 

RM 2 million. Thus, the total capital cost for this option is 2.8 Million including RM 

700,000 for cost of new AHE and RM 2.1 Million for additional heat exchanger area. 

A very large revenue of RM 39 Million per year, made this option need a very short 

payback period which is about 1 month (refer appendix D) and cooling water reuse 

network is shown in Figure 4.17. The AHE unit which is acts as regeneration unit is 

put in parallel with the cooling tower. This is to ensure that the cooling water 

circulation rate and its return temperature are satisfying the optimized parameters. 

 

Table 4.11: Cooling Tower Parameters with Tcw = 33.9oC 

Approach (oC) 5.9 

Return Temperature,Thw (oC) 48.5 

Supply Temperature, Tcw (oC) 33.9 

Water Circulation Rate, L1 (t/hr) 2950 

L/G 1.1 

KaV/L 1.2 
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Figure 4.17: Cooling Water Reuse Network for Plant I (Option 2) 

4.7.2.3 Option 3: Cooling Water Reuse and regeneration 

The third option for this case study is to get increase production capacity without 

involving any additional heat exchanger area. Cooling water regeneration and stream 

mixing is still applicable in this design.  

Minimum L/G value and low cooling water return temperature are chosen and 

lower cooling tower circulation rate is obtained. The new cooling water supply 

temperature is 31.6oC. Besides, in ensuring that UA of heat exchanger is maintained, 

the temperature of outlet cooling water from heat exchangers are lower in the range of 

43.0oC to 48.0oC. New cooling tower parameters are tabulated as follows:  
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Table 4.12: Cooling Tower Parameters with Tcw = 31.6oC 

Approach (oC) 3.6 

Return Temperature,Thw (oC) 45.0 

Supply Temperature, Tcw (oC) 31.6 

Water Circulation Rate, L1 (t/hr) 2000 

L/G 0.75 

KaV/L 1.50 

The reuse design option can be designed by targeting a new inlet cooling water 

temperature at 34oC. The advantage of this option is small amount of cooling water 

regeneration amount is needed. The total capital cost for this option is made by the 

cost of AHE which is RM 700,000. Then, the total operating cost of this option which 

is about RM 1 Million per year the total of operating cost of cooling tower as well as 

operating cost of AHE.  The payback for this option is 2 months and cooling water 

reuse network design is shown in Figure 4.18. The payback for this option is shorter 

because of large additional profit that comes from additional production capacity of 

3% and this worth about RM 8 Million per year. 



  

80 

HE 1

HE 2

HE 4

HE 3

2000 t/hr
44.7oC

2000 t/hr
31.6oC

1347 t/hr

280 t/hr

327 t/hr

897 t/hr

44.6oC

1667 t/hr

44.8oC

346 t/hr

44.1oC
 405 t/hr

44.1oC
284 t/hr

HE 5

HE 6

HE 7

249 t/hr

138 t/hr

237 t/hr

44.0oC
308 t/hr

44.4oC
 171 t/hr

44.9oC
293 t/hr

1474 t/hr
44.7oC

1474 t/hr
31.6oC

Mixing Point

Splitting Point

Water Reuse Line

 

Figure 4.18: Cooling Water Reuse Network for Plant I (Option 3) 
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4.7.3 Result Summary for Case Study 3 

In summary, the results for case study 3 are tabulated as in Table 4.13. It can be 

concluded that, option 2 is the most attractive, since it having the shorter payback 

period together with largest additional revenue.  

 

Table 4.13: Result Summary for Case Study 3 

Options Description 

Option 1  Less water make-up=12% 

 Operating cost savings = RM139,000/Yr 

 Additional capital cost (new HE area) 

 Payback period = 13 months  

Option 2   Targeted 15% additional product capacity 

 Additional product value: RM39 Million / Yr 

 Needs water regeneration unit 

 Payback period : 1 months 

Option 3  Additional product capacity by increasing heat 

load at HE 

 Needs water regeneration unit 

 Additional profit : RM8 Million / Yr  

 Payback period : 2 months 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

A duo-step optimization procedure was proposed in this thesis, in which optimization 

of cooling tower parameters provided the opportunity of cooling water savings from 

cooling water reuse and additional production capacity. The first stage was used to 

calculate the cooling tower supply temperature with various L/G ratios. The reduction 

in L/G ratio will reduce cooling water supply temperature and thus increase the 

cooling tower performance. Optimized parameters were then used as constraints in 

second stage of optimization process for cooling water reuse design. 

In cooling water reuse design, cooling water network composite curve (CWNCC) 

was used to identify the minimum cooling water reuse opportunity. Most of cooling 

water network has source temperature that was higher than sink temperature. 

Consequently no reuse opportunity could be determined from CWNCC. Stream 

mixing was introduced to create lower source temperature, in which hot water is 

mixed with fresh cooling water from cooling tower. This enables the inlet temperature 

of cooling water into heat exchanger to be higher than the cooling water supply 

temperature.  

Mathematical programming was used to calculate and match streams to be mixed. 

The objective function of this program was to maximize cooling water reuse, while 

cooling tower optimized parameters were included as constraints. In addition, the 

operability of heat exchanger was also considered as one of the important constraint 

in reuse design. Several designs options were produced in each case. 
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Three case studies were performed to show the effects and the benefits of the 

proposed two-stage cooling tower optimization procedure. The first case study, which 

did not use cooling water reuse, showed that cooling tower operating cost can be 

reduced up to 27%. For the second case study, with cooling water reuse design, 

savings opportunities can be realized up to 28%. The best option may for option 2 that 

having less additional piping together with possibilities of giving higher additional 

capacity than others. Finally, as shown in case study 3, savings and process 

debottlenecking could generate substantial extra revenue for the plant up to RM 39 

Million per year. Due to the shortest payback period, which is 1 month, option 2 is 

chosen for the best option. 

 

5.2 Future Work 

As an alternative to a stage-wise approach, a simultaneous optimization technique 

could be considered. This combines both stages 1 and 2 together especially with the 

advent of high power computing. 

More detail physical models for heat exchanger can also be considered in order to 

account for non linear heat transfer. Besides, cooling tower model can also be 

developed based on thermodynamics and mass transfer rather than just using models 

that is already develop such as Chebysheve solutions for Merkel’s model. Thus, it is 

easier to incorporate cooling tower optimization with cooling water reuse design. 

In addition, this study only considered constant cooling water flow inside heat 

exchanger to avoid fouling problem and concerns in pressure drop. In future, pressure 

drop can be also considered as one of optimize parameters, so that it can be utilized in 

network design. As mentioned in Chapter 2, Nesta and Bennet (2006) suggested that 

equal pressure drop inside heat exchanger can be applied, so that, cooling water 

flowrate is based on equal pressure drop by distributing itself to equalize the system 

pressure drop from inlet to outlet header.  

As cooling tower circulation rate is reduced, blowdown quantity is also being 

reduced. Changes in this quantity may affect water quality and treatment problems. 

Hence consideration for water chemistry should be incorporated with the 
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debottlenecking and targeting of cooling water network design. Cooling water from 

blowdown sytem can also be incorporated with waste minimization studied as done 

by Kim (2001) in his work. 
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APPENDIX A 

SAMPLE OF GAMS CODING 

A.1 Defining constraints  

**Decalaration of set 

sets             i      source/RE1,RE2, RE3, RE4, RE5, RE6,RE7, RE8, RE9,RE10, 

RE11,RE12, RE13/ 

**Tabulated constant parameters 

table            B(i,*)    CW inlet to HE 

 

                            Fcw         Tpin       Tpout       UA             Qo           LT 

 

                 RE1        727        98.91        38        597590        8.46         0.80 

                 RE2        940        60            38        1729585       10.94       0.85 

                 RE3        53         64.3          40        55188         0.62          1.06 

                 RE4        293        69.5         40        520340        3.41         0.53 

                 RE5        293        128          40        147559        3.41         0.83 

                 RE6        817        83.4         64.3      378463        9.51         0.75 

                 RE7        179        131          108       56831         2.08         0.46 

                 RE8        226        60            45        266654        2.63         0.80 

                 RE9        224        60            45        264294        2.61         0.80 

                 RE10       84         136.9       40        37139          0.98         0.88 

                 RE11        96         150.5        40        39753          1.12         0.85 

                 RE12        75         145.4        40        36089          0.87         0.76 

                 RE13        75         124.5        40        37375          0.87         0.87 

 

scalar           Tcw     cooling water tempr/32.58/    ; 
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                  Qnew(i) 

                  Tret 

                  LMTD(i) 

           

Fcwnew (i) 

positive variable Tcwin, Tcwout, Qnew, UAnew, LMTD, Tret; 

equation 

       obj                  

       LMTD1(i) 

       Area1 (i) 

       Qnew1 (i)            

       Qnew2 (i) 

       flow(i) 

       treturn; 

 

       obj..            z =e= sum(i,Qnew(i)); 

 

       LMTD1 (i)..      LMTD(i) =e= [(B(i,'Tpin') - Tcwout(i))- (B(i,'Tpout')-    

Tcwin(i))]/log [(B(i,'Tpin') - Tcwout(i))/ (B(i,'Tpout')- Tcwin(i))] 

; 

       Area1 (i)..       Qnew (i)- B(i,'UA')/1000000*[LMTD(i) * B(i,'LT')] =e= 0 ; 

       Qnew1(i)..       Qnew(i) =e= 1000*4.19*0.0000002778*Fcwnew(i)*(Tcwout(i) - 

Tcwin (i) ); 

       Qnew2 (i)..      Qnew (i) =g= B(i,'Qo'); 

       flow(i)..        Fcwnew(i) =l= B(i,'fcw'); 

       treturn..        sum (i,Fcwnew(i)*Tcwout(i))- [sum (i, Fcwnew(i))]* Tret =e= 0; 

       Tcwin.lo(i) = 32;  Tcwin.l(i) = 35;   tcwin.up(i)= 35; 

       Tcwout.l(i) = 45; Tcwout.up(i) = 50; 

       Tret.fx = 45; 

model           reuse/all/; 

solve           reuse using nlp maximizing z ; 
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A.2 Cooling water reuse design 

 

Schematic Diagram  

 

**Declaration of sets 

sets             I       source/RE1,RE2, RE3, RE4, RE5, RE6,RE7/ 

                  J       sink /HE1,HE2,HE3,HE4,HE5, HE6,HE7/ 

 

**Parameters 

parameter        B(I)    CW outlet reuse and return-source/ 

                  RE1        1667 

                  RE2        346 

                  RE3        1110 

                  RE4        405 

                  RE5        308 

                  RE6        171 

                 RE7        293 

                 / 

                   T(I)    Tout or source T for every HE/ 

                   RE1        44.99 

                   RE2        44.63 

                   RE3        44.09 

                   RE4        44.11 

                   RE5        44.42 

                   RE6        44.35 

BA
HE (i) 

x(j+1) 
T(j+1)
  

x(j-1) 

T(j-1)  

y(i) 

Tcw B(i) 

Tsink  

C(j) 

T(j)

x(j) 
T(j)
  

Fout(i) 

T(i)
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                   RE7        44.86 

                  / 

                  C(J)    min flow for each HE-sink/ 

                   HE1        1667 

                   HE2        346 

                  HE3        1110 

                   HE4        405 

                   HE5        308 

                   HE6        171 

                   HE7        293 

                  / 

scalar           tin inlet T /34/                ; 

 

**Declaration of variables 

Variables 

       Z  objective variable   

       x(i,j)    cw reuse in cases 

       y(j)      fresh cw in cases 

       Tout     hot water T return to CT 

       Fout(i) Cw return to CT 

Positive Variable x,y, Fout ; 

 

**Declaration of equations used  

equation 

obj                 objective 

        supply(i)           observe supply limit j 

        demand(j)          satisfy cw demand at i 

        demand2(j)         satisfy cw demand at i 

            Temp(i)  calculate cw return at i 

       tout2   calculate T return to CT; 

**Formulations 

  obj..         z   =e= sum(j,y(j)); 
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  supply(i) ..   sum(j, x(i,j))=l=  b(i) ; 

  demand(j)..    (sum(i, x(i,j)*T(i)) + y(j)*31.6 )- tin* c(j)  =e= 0 ; 

  demand2(j)..   sum(i, x(i,j))+y(j) =e= c(j); 

  temp(i)..      fout(i)+ sum(j,x(i,j)) =e= b(i)  ; 

  tout2..        (sum(i,Fout(i)*T(i))) / (sum (i,Fout(i)))  =e= Tout    ; 

 

**initial conditions 

 

  fout.l (i) = 10; 

  tout.l = 45; 

 

**Solving equations 

 

model            reuse/all/; 

solve            reuse using nlp minimizing z ; 

parameter        regen 

                  fresh 

                 reusew    ; 

                  fresh = sum (j, y.l(j)); 

                  reusew = sum ((i,j), x.l(i,j)); 

                  regen = fresh - 2000; 

display           x.l, y.l, tout.l, fout.l, regen, fresh, reusew ; 
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APPENDIX B 

SAMPLE OF GAMS OUTPUT 

 

GAMS Rev 228  x86/MS Windows                            02/06/09 21:00:30 Page 1 

G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
C o m p i l a t i o n 
 
 
   1    
   2  sets              I       source/RE1,RE2, RE3, RE4, RE5, RE6,RE7/ 
   3                    J       sink /HE1,HE2,HE3,HE4,HE5, HE6,HE7/ 
   4    
   5    
   6  parameter        B(I)    CW outlet reuse and return-source/ 
   7                           RE1        1667 
   8                           RE2        346 
   9                           RE3        1110 
  10                           RE4        405 
  11                           RE5        308 
  12                           RE6        171 
  13                          RE7        293 
  14                          / 
  15                            T(I)    Tout or source T for every HE/ 
  16                            RE1        44.99 
  17                            RE2        44.63 
  18                            RE3        44.09 
  19                            RE4        44.11 
  20                            RE5        44.42 
  21                            RE6        44.35 
  22                            RE7        44.86 
  23                           / 
  24                           C(J)    min flow for each HE-sink/ 
  25                            HE1        1667 
  26                            HE2        346 
  27                           HE3        1110 
  28                            HE4        405 
  29                            HE5        308 
  30                            HE6        171 
  31                            HE7        293 
  32                           /
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  33  scalar           tin inlet T /34/                ; 
  34    
  35  **Declaration of variables 
  36  Variables 
  37         Z                objective variable 
  38         x(i,j)           cw reuse in cases 
  39         y(j)             fresh cw in cases 
  40         Tout            hot water T return to CT 
  41         Fout(i)        Cw return to CT 
  42  Positive Variable x,y, Fout ; 
  43    
  44  **Declaration of equations used 
  45  equation 
  46  obj                               objective 
  47                 supply(i)                         observe supply limit j 
  48                 demand(j)                 satisfy cw demand at i 
  49                 demand2(j)                satisfy cw demand at i 
  50              Temp(i)                calculate cw return at i 
  51         tout2                        calculate T return to CT; 
  52  **Formulations 
  53    obj..         z   =e= sum(j,y(j)); 
  54    
  55    supply(i) ..   sum(j, x(i,j))=l=  b(i) ; 
  56    demand(j)..    (sum(i, x(i,j)*T(i)) + y(j)*31.6 )- tin* c(j)  =e= 0 ; 
  57    demand2(j)..   sum(i, x(i,j))+y(j) =e= c(j); 
  58    temp(i)..      fout(i)+ sum(j,x(i,j)) =e= b(i)  ; 
  59    tout2..        (sum(i,Fout(i)*T(i))) / (sum (i,Fout(i)))  =e= Tout    ; 
  60    
  61  **initial conditions 
  62    
  63    fout.l (i) = 10; 
  64    tout.l = 45; 
  65    
  66  **Solving equations 
  67    
  68  model                   reuse/all/; 
  69  solve                   reuse using nlp minimizing z ; 
  70  parameter        regen 
  71                           fresh 
  72                          reusew    ; 
  73                           fresh = sum (j, y.l(j)); 
  74                           reusew = sum ((i,j), x.l(i,j)); 
  75                           regen = fresh - 2000; 
  76  display                  x.l, y.l, tout.l, fout.l, regen, fresh, reusew ; 
 
 
COMPILATION TIME     =        0.000 SECONDS      3 Mb  WIN228-228 Jul 26, 2008 
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GAMS Rev 228  x86/MS Windows                            02/06/09 21:00:30 Page 2 
G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
Equation Listing    SOLVE reuse Using NLP From line 69 
 
 
---- obj  =E=  objective 
 
obj..  Z - y(HE1) - y(HE2) - y(HE3) - y(HE4) - y(HE5) - y(HE6) - y(HE7) =E= 0 ; 
      
      (LHS = 0) 
      
 
---- supply  =L=  observe supply limit j 
 
supply(RE1)..  x(RE1,HE1) + x(RE1,HE2) + x(RE1,HE3) + x(RE1,HE4) + 
x(RE1,HE5) 
      
      + x(RE1,HE6) + x(RE1,HE7) =L= 1667 ; (LHS = 0) 
      
supply(RE2)..  x(RE2,HE1) + x(RE2,HE2) + x(RE2,HE3) + x(RE2,HE4) + 
x(RE2,HE5) 
      
      + x(RE2,HE6) + x(RE2,HE7) =L= 346 ; (LHS = 0) 
      
supply(RE3)..  x(RE3,HE1) + x(RE3,HE2) + x(RE3,HE3) + x(RE3,HE4) + 
x(RE3,HE5) 
      
      + x(RE3,HE6) + x(RE3,HE7) =L= 1110 ; (LHS = 0) 
      
REMAINING 4 ENTRIES SKIPPED 
 
 
---- demand  =E=  satisfy cw demand at i 
 
demand(HE1)..  44.99*x(RE1,HE1) + 44.63*x(RE2,HE1) + 44.09*x(RE3,HE1) 
      
      + 44.11*x(RE4,HE1) + 44.42*x(RE5,HE1) + 44.35*x(RE6,HE1) 
      
      + 44.86*x(RE7,HE1) + 31.6*y(HE1) =E= 56678 ; (LHS = 0, INFES = 56678 
****) 
      
demand(HE2)..  44.99*x(RE1,HE2) + 44.63*x(RE2,HE2) + 44.09*x(RE3,HE2) 
      
      + 44.11*x(RE4,HE2) + 44.42*x(RE5,HE2) + 44.35*x(RE6,HE2) 
      
      + 44.86*x(RE7,HE2) + 31.6*y(HE2) =E= 11764 ; (LHS = 0, INFES = 11764 
****) 
      
demand(HE3)..  44.99*x(RE1,HE3) + 44.63*x(RE2,HE3) + 44.09*x(RE3,HE3) 
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           + 44.11*x(RE4,HE3) + 44.42*x(RE5,HE3) + 44.35*x(RE6,HE3) 
      
      + 44.86*x(RE7,HE3) + 31.6*y(HE3) =E= 37740 ; (LHS = 0, INFES = 37740 
****) 
      
REMAINING 4 ENTRIES SKIPPED 
 
 
---- demand2  =E=  satisfy cw demand at i 
 
demand2(HE1)..  x(RE1,HE1) + x(RE2,HE1) + x(RE3,HE1) + x(RE4,HE1) + 
x(RE5,HE1) 
      
      + x(RE6,HE1) + x(RE7,HE1) + y(HE1) =E= 1667 ; (LHS = 0, INFES = 1667 
****) 
      
demand2(HE2)..  x(RE1,HE2) + x(RE2,HE2) + x(RE3,HE2) + x(RE4,HE2) + 
x(RE5,HE2) 
      
      + x(RE6,HE2) + x(RE7,HE2) + y(HE2) =E= 346 ; (LHS = 0, INFES = 346 ****) 
      
demand2(HE3)..  x(RE1,HE3) + x(RE2,HE3) + x(RE3,HE3) + x(RE4,HE3) + 
x(RE5,HE3) 
      
      + x(RE6,HE3) + x(RE7,HE3) + y(HE3) =E= 1110 ; (LHS = 0, INFES = 1110 
****) 
      
REMAINING 4 ENTRIES SKIPPED 
 
 
---- Temp  =E=  calculate cw return at i 
 
Temp(RE1)..  x(RE1,HE1) + x(RE1,HE2) + x(RE1,HE3) + x(RE1,HE4) + 
x(RE1,HE5) 
      
      + x(RE1,HE6) + x(RE1,HE7) + Fout(RE1) =E= 1667 ; 
      
      (LHS = 10, INFES = 1657 ****) 
      
Temp(RE2)..  x(RE2,HE1) + x(RE2,HE2) + x(RE2,HE3) + x(RE2,HE4) + 
x(RE2,HE5) 
      
      + x(RE2,HE6) + x(RE2,HE7) + Fout(RE2) =E= 346 ; 
      
      (LHS = 10, INFES = 336 ****) 
      
Temp(RE3)..  x(RE3,HE1) + x(RE3,HE2) + x(RE3,HE3) + x(RE3,HE4) + 
x(RE3,HE5) 
           + x(RE3,HE6) + x(RE3,HE7) + Fout(RE3) =E= 1110 ; 
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           (LHS = 10, INFES = 1100 ****) 
      
REMAINING 4 ENTRIES SKIPPED 
 
 
---- tout2  =E=  calculate T return to CT 
 
tout2..  - Tout + (0.00710204081632648)*Fout(RE1) 
      
      + (0.00195918367346937)*Fout(RE2) - (0.00575510204081631)*Fout(RE3) 
      
      - (0.00546938775510208)*Fout(RE4) - (0.00104081632653064)*Fout(RE5) 
      
      - (0.00204081632653064)*Fout(RE6) + (0.00524489795918359)*Fout(RE7) 
=E= 0 
      ; (LHS = -0.507142857142853, INFES = 0.507142857142853 ****) 
      
GAMS Rev 228  x86/MS Windows                            02/06/09 21:00:30 Page 3 
G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
Column Listing      SOLVE reuse Using NLP From line 69 
 
 
---- Z  objective variable 
 
Z 
                (.LO, .L, .UP, .M = -INF, 0, +INF, 0) 
        1       obj 
 
 
---- x  cw reuse in cases 
 
x(RE1,HE1) 
                (.LO, .L, .UP, .M = 0, 0, +INF, 0) 
        1       supply(RE1) 
       44.99    demand(HE1) 
        1       demand2(HE1) 
        1       Temp(RE1) 
 
x(RE1,HE2) 
                (.LO, .L, .UP, .M = 0, 0, +INF, 0) 
        1       supply(RE1) 
       44.99    demand(HE2) 
        1       demand2(HE2) 
        1       Temp(RE1) 
 
x(RE1,HE3) 
                (.LO, .L, .UP, .M = 0, 0, +INF, 0) 
        1       supply(RE1) 
       44.99    demand(HE3) 
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        1       demand2(HE3) 
        1       Temp(RE1) 
 
REMAINING 46 ENTRIES SKIPPED 
 
---- y  fresh cw in cases 
 
y(HE1) 
                (.LO, .L, .UP, .M = 0, 0, +INF, 0) 
       -1       obj 
       31.6     demand(HE1) 
        1       demand2(HE1) 
 
y(HE2) 
                (.LO, .L, .UP, .M = 0, 0, +INF, 0) 
       -1       obj 
       31.6     demand(HE2) 
        1       demand2(HE2) 
 
y(HE3) 
                (.LO, .L, .UP, .M = 0, 0, +INF, 0) 
       -1       obj 
       31.6     demand(HE3) 
        1       demand2(HE3) 
 
REMAINING 4 ENTRIES SKIPPED 
 
---- Tout  hot water T return to CT 
 
Tout 
                (.LO, .L, .UP, .M = -INF, 45, +INF, 0) 
       -1       tout2 
 
 
---- Fout  Cw return to CT 
 
Fout(RE1) 
                (.LO, .L, .UP, .M = 0, 10, +INF, 0) 
        1       Temp(RE1) 
       (0.0071) tout2 
 
Fout(RE2) 
                (.LO, .L, .UP, .M = 0, 10, +INF, 0) 
        1       Temp(RE2) 
       (0.002)  tout2 
 
Fout(RE3) 
                (.LO, .L, .UP, .M = 0, 10, +INF, 0) 
        1       Temp(RE3) 
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      (-0.0058) tout2 
 
REMAINING 4 ENTRIES SKIPPED 
 
GAMS Rev 228  x86/MS Windows                            02/06/09 21:00:30 Page 4 
G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
Model Statistics    SOLVE reuse Using NLP From line 69 
 
 
MODEL STATISTICS 
 
BLOCKS OF EQUATIONS           6     SINGLE EQUATIONS           30 
BLOCKS OF VARIABLES           5     SINGLE VARIABLES           65 
NON ZERO ELEMENTS           233     NON LINEAR N-Z              7 
DERIVATIVE POOL              20     CONSTANT POOL              23 
CODE LENGTH                  74 
 
 
GENERATION TIME      =        0.031 SECONDS      4 Mb  WIN228-228 Jul 26, 2008 
 
 
EXECUTION TIME       =        0.031 SECONDS      4 Mb  WIN228-228 Jul 26, 2008 
 
GAMS Rev 228  x86/MS Windows                            02/06/09 21:00:30 Page 5 
G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
Solution Report     SOLVE reuse Using NLP From line 69 
 
 
               S O L V E      S U M M A R Y 
 
     MODEL   reuse               OBJECTIVE  Z 
     TYPE    NLP                 DIRECTION  MINIMIZE 
     SOLVER  CONOPT              FROM LINE  69 
 
**** SOLVER STATUS     1 NORMAL COMPLETION          
**** MODEL STATUS      2 LOCALLY OPTIMAL            
**** OBJECTIVE VALUE             3473.7390 
 
 RESOURCE USAGE, LIMIT          0.023      1000.000 
 ITERATION COUNT, LIMIT        10         10000 
 EVALUATION ERRORS              0             0 
  
  
    C O N O P T 3   version 3.14S 
    Copyright (C)   ARKI Consulting and Development A/S 
                    Bagsvaerdvej 246 A 
                    DK-2880 Bagsvaerd, Denmark 
  
 Second order sparsety pattern was not generated. 
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 The Hessian of the Lagrangian became too dense because of 
 equation tout2. 
 You may try to increase Rvhess from its current value of  10.0 
 in the CONOPT Options file. 
 Using default options. 
  
  
 ** Optimal solution. There are no superbasic variables. 
  
  
 CONOPT time Total                            0.000 seconds 
   of which: Function evaluations             0.000 =  0.0% 
             1st Derivative evaluations       0.000 =  0.0% 
  
 Workspace           =     0.18 Mbytes 
    Estimate         =     0.18 Mbytes 
    Max used         =     0.07 Mbytes 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU obj             .         .         .        1.000       
 
  obj  objective 
 
---- EQU supply  observe supply limit j 
 
       LOWER     LEVEL     UPPER    MARGINAL 
 
RE1     -INF       .     1667.000      .          
RE2     -INF       .      346.000      .          
RE3     -INF    826.261  1110.000      .          
RE4     -INF       .      405.000      .          
RE5     -INF       .      308.000      .          
RE6     -INF       .      171.000      .          
RE7     -INF       .      293.000      .          
 
---- EQU demand  satisfy cw demand at i 
 
       LOWER     LEVEL     UPPER    MARGINAL 
 
HE1 56678.000 56678.000 56678.000    -0.080       
HE2 11764.000 11764.000 11764.000    -0.080       
HE3 37740.000 37740.000 37740.000    -0.080       
HE4 13770.000 13770.000 13770.000    -0.080       
HE5 10472.000 10472.000 10472.000    -0.080       
HE6  5814.000  5814.000  5814.000    -0.080       
HE7  9962.000  9962.000  9962.000    -0.080       
 
---- EQU demand2  satisfy cw demand at i 
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       LOWER     LEVEL     UPPER    MARGINAL 
 
HE1  1667.000  1667.000  1667.000     3.530       
HE2   346.000   346.000   346.000     3.530       
HE3  1110.000  1110.000  1110.000     3.530       
HE4   405.000   405.000   405.000     3.530       
HE5   308.000   308.000   308.000     3.530       
HE6   171.000   171.000   171.000     3.530       
HE7   293.000   293.000   293.000     3.530       
 
---- EQU Temp  calculate cw return at i 
 
       LOWER     LEVEL     UPPER    MARGINAL 
 
RE1  1667.000  1667.000  1667.000      EPS        
RE2   346.000   346.000   346.000      EPS        
RE3  1110.000  1110.000  1110.000      EPS        
RE4   405.000   405.000   405.000      EPS        
RE5   308.000   308.000   308.000      EPS        
RE6   171.000   171.000   171.000      EPS        
RE7   293.000   293.000   293.000      EPS        
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- EQU tout2           .         .         .         EPS        
 
  tout2  calculate T return to CT 
 
                       LOWER     LEVEL     UPPER    MARGINAL 
 
---- VAR Z              -INF   3473.739     +INF       .          
 
  Z  objective variable 
 
---- VAR x  cw reuse in cases 
 
           LOWER     LEVEL     UPPER    MARGINAL 
 
RE1.HE1      .         .        +INF      0.072       
RE1.HE2      .         .        +INF      0.072       
RE1.HE3      .         .        +INF      0.072       
RE1.HE4      .         .        +INF      0.072       
RE1.HE5      .         .        +INF      0.072       
RE1.HE6      .         .        +INF      0.072       
RE1.HE7      .         .        +INF      0.072       
RE2.HE1      .         .        +INF      0.043       
RE2.HE2      .         .        +INF      0.043       
RE2.HE3      .         .        +INF      0.043       
RE2.HE4      .         .        +INF      0.043       
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RE2.HE5      .         .        +INF      0.043       
RE2.HE6      .         .        +INF      0.043       
RE2.HE7      .         .        +INF      0.043       
RE3.HE1      .      320.320     +INF       .          
RE3.HE2      .       66.485     +INF       .          
RE3.HE3      .      213.291     +INF       .          
RE3.HE4      .       77.822     +INF       .          
RE3.HE5      .       59.183     +INF       .          
RE3.HE6      .       32.858     +INF       .          
RE3.HE7      .       56.301     +INF       .          
RE4.HE1      .         .        +INF      0.002       
RE4.HE2      .         .        +INF      0.002       
RE4.HE3      .         .        +INF      0.002       
RE4.HE4      .         .        +INF      0.002       
RE4.HE5      .         .        +INF      0.002       
RE4.HE6      .         .        +INF      0.002       
RE4.HE7      .         .        +INF      0.002       
RE5.HE1      .         .        +INF      0.026       
RE5.HE2      .         .        +INF      0.026       
RE5.HE3      .         .        +INF      0.026       
RE5.HE4      .         .        +INF      0.026       
RE5.HE5      .         .        +INF      0.026       
RE5.HE6      .         .        +INF      0.026       
RE5.HE7      .         .        +INF      0.026       
RE6.HE1      .         .        +INF      0.021       
RE6.HE2      .         .        +INF      0.021       
RE6.HE3      .         .        +INF      0.021       
RE6.HE4      .         .        +INF      0.021       
RE6.HE5      .         .        +INF      0.021       
RE6.HE6      .         .        +INF      0.021       
RE6.HE7      .         .        +INF      0.021       
RE7.HE1      .         .        +INF      0.062       
RE7.HE2      .         .        +INF      0.062       
RE7.HE3      .         .        +INF      0.062       
RE7.HE4      .         .        +INF      0.062       
RE7.HE5      .         .        +INF      0.062       
RE7.HE6      .         .        +INF      0.062       
RE7.HE7      .         .        +INF      0.062       
 
---- VAR y  fresh cw in cases 
 
       LOWER     LEVEL     UPPER    MARGINAL 
 
HE1      .     1346.680     +INF       .          
HE2      .      279.515     +INF       .          
HE3      .      896.709     +INF       .          
HE4      .      327.178     +INF       .          
HE5      .      248.817     +INF       .          
HE6      .      138.142     +INF       .          
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HE7      .      236.699     +INF       .          
 
                       LOWER     LEVEL     UPPER    MARGINAL 
---- VAR Tout           -INF     44.685     +INF       .          
 
  Tout  hot water T return to CT 
 
---- VAR Fout  Cw return to CT 
 
       LOWER     LEVEL     UPPER    MARGINAL 
 
RE1      .     1667.000     +INF       .          
RE2      .      346.000     +INF       .          
RE3      .      283.739     +INF       .          
RE4      .      405.000     +INF       .          
RE5      .      308.000     +INF       .          
RE6      .      171.000     +INF       .          
RE7      .      293.000     +INF       .          
 
 
**** REPORT SUMMARY :        0     NONOPT 
                             0 INFEASIBLE 
                             0  UNBOUNDED 
                             0     ERRORS 
 
GAMS Rev 228  x86/MS Windows                            02/06/09 21:00:30 Page 6 
G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
E x e c u t i o n 
 
 
----     76 VARIABLE x.L  cw reuse in cases 
 
            HE1         HE2         HE3         HE4         HE5         HE6 
 
RE3     320.320      66.485     213.291      77.822      59.183      32.858 
 
  +         HE7 
 
RE3      56.301 
 
 
----     76 VARIABLE y.L  fresh cw in cases 
 
HE1 1346.680,    HE2  279.515,    HE3  896.709,    HE4  327.178,    HE5  248.817 
HE6  138.142,    HE7  236.699 
 
 
----     76 VARIABLE Tout.L                =       44.685  hot water T return to 
                                                           CT 
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----     76 VARIABLE Fout.L  Cw return to CT 
 
RE1 1667.000,    RE2  346.000,    RE3  283.739,    RE4  405.000,    RE5  308.000 
RE6  171.000,    RE7  293.000 
 
----     76 PARAMETER regen                =     1473.739   
            PARAMETER fresh                =     3473.739   
            PARAMETER reusew               =      826.261   
 
EXECUTION TIME       =        0.437 SECONDS      3 Mb  WIN228-228 Jul 26, 2008 
 
 
USER: GAMS Development Corporation, Washington, DC   G871201/0000CA-ANY 
      Free Demo,  202-342-0180,  sales@gams.com,  www.gams.com   DC0000 
 
 
**** FILE SUMMARY 
 
Input      C:\Documents and Settings\User\My Documents\draft thesis february 09\ 
           appendix B.gms 
Output     C:\Documents and Settings\User\My Documents\gamsdir\projdir\appendix  
           B.lst
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APPENDIX C 

CHILLER SYSTEM 

39.5oC32.0oC
966 m3/hr

Cooling tower

Condenser 

Compressor 

Evaporator 

Expansion 
valve

1.8 kW

Refrigerant 

Cooling water

Chilled water
6.0oC 13.5oC

P = 0.8 MPa
h = 272.05 kJ/kg

P = 0.8 MPa
h = 93.42 kJ/kg

P = 0.14 MPa
h = 9.42 kJ/kg

P = 0.14 MPa
h = 236.04 kJ/kg

QH

m= 0.05 kg/s

QL

 

Assume ideal refrigeration cycle. 

)42.9305.272(05.0  x
s

kg
QH  = 8.93 kW 
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)42.9304.236(05.0  x
s

kg
QL   = 7.13 kW  

 

Compression work, Wnet,in = )04.23605.272(05.0 x
s

kg
  = 1.80 kW 

 
Compression work is also can be calculated as follows: 

= 8.93 – 7.13 

=1.8 kW 

 

As temperature of cooling water is reduced by 0.6 deg C, liquid refrigerant  is also 

reduced by 0.6 deg C to maintain dTmin of condenser. Thus, new liquid refrigerant 

temperature is 30.7 deg C (saturated liquid, thus pressure is reduced  a bit)  

 

New enthalpy of saturated liquid @ 30.7 deg C is 92.53 kJ/kg 

QH is constant at 8.93 kW 

Thus, New QL = )53.9204.236(05.0 x
s

kg
=7.18 kW 

New compression work, New Wnet,in; 

=8.93 – 7.18 

=1.75 kW 

 

Compression work reduction = 100
80.1

)75.180.1(
x


= 2.78  3 % 
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APPENDIX D 

SAMPLE OF CALCULATIONS 

Assumptions 

a) Price of methanol, CM =  USD 300/tonne 

b) Price of electricity, CE = RM 0.26/kW 

c) Price of water, CW = RM 0.90/m3 

d) Pump efficiency = 80% 

e) Fan efficiency = 70% 

f) Motor efficiency = 85% 

g) Working hours = 8000 hr/year 

h) Density of air = 1.2 kg/m3 

i) Density of water=1000 kg/m3 

 

Equations  

 

1. Cooling tower operating cost 

a) Pump power  

 

3960

))()(min)(/(746.0

))((746.0.

HSGhgal

HhphkW

d


 

Where; 

Gal/min  = flowrate 

hp  = horsepower 

H  = hours of operation 

hd  = head of fluid (ft) 

SG  = specific gravity relative to water 

Source: www.osha.gov 
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b) Fan power 

 

6356

))()(min)(/(746.0

))((746.0.
3 HSGPft

HhphkW





 

Where; 

kW.h  = kilowatt hour 

hp  = horsepower 

ft3/min  = actual volumetric of air flowrate 

P   = pressure loss in wg 

   =mechanical efficiency, usually 60-70% 

H  = hours of operation 

hd  = head of fluid (ft) 

SG  = specific gravity relative to water 

 

Source: www.osha.gov 

 

c) Cost of electric (RM/year)  

= Fan Power + Pump Power (kW.hr) x price of electric (RM/kW)  

 

d) Cost of water (RM/year)  

= Make-up Water (m3/hr) x price of water (RM/m3) x Working hours (hr/year)  
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3. heat exchanger system 

 

a) LMTD calculation  

 

)(

)(
ln

)()(

12

21

1221

tT

tT
tTtT

LMTDm







     Eq D.1  

 

Figure D.1 : Four Basic Arrangements for LMTD may be determine from eq. D.1: (a) 

counterflow; (b) co-current or parallel flow; (c) constant-temperature source and 

rising-temperature receiver; (d) constant-temperature receiver and falling-temperature 

source (Kraus, 2006) 
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4. Payback Calculation 

 

a) cost estimation of new cell  

 

 

Figure D.2: Purchased cost of cooling towers. Prices are for conventional, wood-

frame, induced-draft, cross-flow cooling towers. Price does not include external 

piping, power wiring, special foundation work, or field labor. (Smith R, 2005). 
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b) cost estimation of additional heat exchanger area,  

A’ (m2) = 
U

UAUA newold 

 

 

 

Figure D.3: Purchase cost of fixe-tube-sheet heat exchangers with 0.019-m (¾ in.) OD 

x 0.025-m (1-in.) square pitch and 4.88- or 6.10-m (16- or 20-ft) bundles and carbon-

steel shell operating at 103.5 kPa (150 psia) (Smith R, 2005).  
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Figure D.4: Purchased cost of U-tube heat exchangers with 0.0254-m (1-in.) OD tubes 

x 0.0254-m (1-in) square pitch and 4.88-m (16-ft) bundles operating at 103.5 kPa (150 

psia). Source: Smith R, , Chemical Process Design and Integration, 2005 

 

c) energy used for air-cooled heat exchanger(hp)  

= 2 x AHE cooling load (MW) x 3.4121 

 

d) operating cost for air-cooled heat exchanger   

       = Energy used (kW) x CE x operating hours per year 
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e) cost estimation of air-cooled heat exchanger  

 

 

Figure D.4: Purchase cost of air-cooled heat exchangers. Source: Smith R, , Chemical 

Process Design and Integration, 2005 

f) New capacity estimation, Fnew (kg/hr) = new
old

old xQ
Q

F
 

 

g) Additional revenue (RM/year) = 

USD

RM

kg

tonne

yr

hr

tonne

RM
C

hr

kg
Fnew M 1

7.3

1000

1

1

8000
)()(    

 

 

h) Payback period calculation  

Payback time (months) =                Capital Cost              x12  
            Income – Operating Cost   
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Sample of calculation  

 

Case study 3 – Option 1 

Fan Power   =
7.06356

80000.483.013746746.0 2



 yr
hrHincfm

 

  = 890631 kW.hr / yr 

 

Pump power  = 
8.085.03960

80003512988746.0



 yr
hrftgpm

 

   = 1007505 kW.hr/yr 

 

Electricity cost = kWRMyr
hrkW

yr
hrkW /26.0).1007505.04.890631(   

   = yr
RM 493515  

 

Water cost  = yr
RM

yr
hr

m
RM

hr
m 53784080009.070.74 3

3
  

   = RM 537840 per year 

 

Cooling Tower Operating cost  = RM 493515 + RM 537840  

     = RM 1,031,355 per year. 

 

Original cooling tower operating cost = RM 1,170,671 per year. 

 

Operating savings cost  = RM 139,315 / yr 

 

Total heat exchanger additional area = 355 m2  

Cost of heat exchanger  = RM 148,000 (from figure D.3 x RM3.7 / USD) 

Payback time (month)  =  
315,139

12148000

RM

monthRM 
 = 12.7  13 months 
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Case study 3 – Option 2 

 

Fan Power   =
7.06356

80000.483.013746746.0 2



 yr
hrHincfm

 

  = 890631 kW.hr / yr 

 

Pump power  = 
8.085.03960

80003512988746.0



 yr
hrftgpm

 

   = 1007505 kW.hr/yr 

 

Electricity cost = kWRMyr
hrkW

yr
hrkW /26.0).1007505.04.890631(   

   = yr
RM 493515  

 

Water cost  = yr
RM

yr
hr

m
RM

hr
m 53784080009.070.74 3

3
  

 

Cooling Tower Operating cost  = RM 493515 + RM 537840  

     = RM 1,031,355 per year. 

 

HP for air-cooled heat exchanger (HE) = 2 X 4.38 MW x 3.4121 = 29.91 hp 

 

Operating cost air-cooled HE  = yr
hr

kW
RMhp 800026.091.29746.0 

     = RM46417 per year. 

 

Total heat exchanger additional area = 2541 m2  

Cost of heat exchanger  = RM 2,025,700 (from Figure D.3 x RM3.7 / USD) 

Cost of air-cooled HE  = RM 703,000 (from Figure D.4 x RM3.7 / USD) 

Total Capital Cost  = RM 2,025,700 + RM 703,000 = RM 2,778,700 
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New product capacity  = hr
kg

MW

MWhr
kg

33966
51.9

94.1029527



  

Additional profit = 
USDtonnekg

yr
hrtonneUSDhr

kg
hr

kg

11/1000

8000/300)2952733966(




  

= RM 39,426,462 per year 

Payback time (month)     =  
)/53100/355,031,1(/462,426,39

12700,778,2

yrRMyrRMyrRM

monthRM




  

    = 0.9  1 months 

 

Case study 3 – Option 3 

Fan Power   =
7.06356

80000.483.013746746.0 2



 yr
hrHincfm

 

  = 890631 kW.hr / yr 

 

Cooling Tower Operating cost  = RM 982,114  

 

Operating cost air-cooled HE  = RM 238, 545 per year. 

 

Cost of air-cooled HE  = RM 703,000 (from Figure D.4 x RM3.7 / USD) 

Additional capacity in prerun column calculation: 3% 

Additional profit   

=
USDtonne

kg
yr

hrhRMtonneUSDhr
kg

hr
kg

111000

80007.3/300)2952730427(




 

= RM 7,995,577 per year 

Payback time (month)     =  month
yryrRM

RM
12

/982114/577,995,7

70300



  

    = 1.2  2 months 


