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ABSTRACT 

A study of three dimension (3D) shape recovery is an interesting and 

challenging area of research. Recovering the depth information of an object 

from normal two dimensional (2D) images has been studied for a long time with 

different techniques. One technique for 3D shape recovery is known as Shape 

from Focus (SFF). SFF is a method that depends on different focused values in 

reconstructing the shape, surface, and depth of an object. The different focus 

values are captured by taking different images for the same object by varying 

the focus length or varying the distance between object and camera. This single 

view imaging makes the data gathering simpler in SFF compared to other shape 

recovery techniques. Calculating the shape of the object using different images 

with different focused values can be done by applying sharpness detection 

methods to maximize and detect the focused values. However, noise destroys 

many information in an image and the result of noise corruption can change the 

focus values in the images. This thesis presents a new 3D shape recovery 

technique based on focus values in the presence of noise. The proposed 

technique is based on LULU operators and Discrete Pulse Transform (DPT). 

LULU operators are nonlinear rank selector operators that hold consistent 

separation, total variation and shape preservation properties. The proposed 

techniques show better and more accurate performance in comparison with the 

existing SFF techniques in noisy environment.  
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ABSTRAK 

Kajian pembentukan semula 3D adalah suatu kajian yang menarik dan mencabar. 

Pemulihan maklumat kedalaman objek untuk imej 2D telah lama dikaji dengan 

menggunakan pelbagai teknik yang berbeza. Salah satu teknik bagi pembentukan 

semula 3D ialah Shape From Focus (SFF). SFF adalah satu kaedah yang bergantung 

pada nilai-nilai focus yang berlainan untuk membina semula bentuk, permukaan dan 

kedalaman objek. Nilai-nilai focus yang berbeza untuk sesuatu objek perlulah 

direkodkan sama ada dengan cara mengubah nilai focus atau mengubah jarak di 

antara objek dan camera. Teknik pengimejan tunggal ini menjadikan kaedah 

menghimpun data untuk teknik SFF ini lebih ringkas dan murah berbanding dengan 

teknik-teknik  pembentukan semula yang lain. Pengiraan bentuk objek daripada imej-

imej yang berbeza fokus boleh dilakukan dengan menggunakan kaedah pengesanan 

ketajaman untuk memaksimumkan dan mengesan nilai-nilai fokus. Walau 

bagaimanapun, kehadiran hingar di dalam imej boleh memusnahkan maklumat asal 

imej dan mengubah nilai fokus. Tesis ini membentangkan mengenai teknik baru 

pembentukan semula 3D yang berdasarkan nilai-nilai fokus yang berbeza dalam 

kehadiran hingar. Teknik yang dicadangkan adalah berdasarkan operator LULU dan 

Discrete Pulse Transform (DPT). Operator LULU adalah operator pemilih taraf yang 

tidak linear yang mempunyai ciri-ciri pemisahan yang konsisten, variasi yang  

menyeluruh dan pemeliharaan bentuk. Teknik yang  dicadangkan menunjukkan hasil 

pembentukan semula 3D dalam kehadiran hingar yang lebih baik dan lebih tepat 

berbanding dengan teknik SFF yang sedia ada. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Recovering the 3D shape of an object based on 2D image information is a challenging 

area of research. It is an emerging area of research aimed at improving the human's 

understanding of the shape and size of objects in images. This area of research is 

finding its implementation in many applications, such as virtual games, product 

modelling, facial representation, biomedical imaging, microscopic imaging, vehicle 

navigation, astronomy, distance measuring for CCTV (automatic surveillance 

systems), etc. 2D image information from same view seems to carry less information 

about the object's shape but since it is simpler compared to other multi-view methods, 

numerous research has been reported for 3D shape recovery using single view images. 

Single-view 2D image information can convey information of object's depth using 

different techniques. Focusing techniques are promising ones due to the 3D 

information that they detect. Image focusing is one of the principal schemes of 3D 

shape reconstruction. The shape from focus (SFF) is one of the best 3D shape 

recovery methods which reconstructs the 3D shape from a sequence of 2D images 

taken from same angle. The SFF images of an object are defined as a sequence of 

frames which carry different focused values of an object's surface. Each frame carries 

different focusing information about different sections of the 3D object.  

Reconstructing the 3D shape based on the focused values requires a sharpness 

extraction technique which can detect the focused parts in each frame. There are 

different sharpness measures for detecting the focus of image pixels along all the 

frames of SFF sequence.  
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Tenenbaum (TEN), Gray Level Variance (GLV), Mean, Laplacian, Modified 

Laplacian (ML), Sum of the Modified Laplacian (SML), Curvature and M2, are 

known to be some of the best methods in detecting the best focus value in noiseless 

situation. However the behaviour of these existing SFF methods significantly worsens 

in noisy environments. 

In this thesis, a new focus measure for shape from focus estimation is proposed for 

noisy environments. The proposed method is based on LULU operators which has the 

inherent property of filtering out the noise as well as performing initial estimation of 

the depth map by computing best focused pixels. LULU operators are nonlinear rank 

selector operators that hold consistent separation, total variation and shape 

preservation properties. The implementation of LULU is followed with Discrete Pulse 

Transform for optimized detection of the focused pixels in each frame. Furthermore, 

different combinations between LULU and the existing SFF methods, like 

Tenenbaum (TEN), sum modified Laplacian (SML) and Gray Level Variance (GLV), 

are considered as potential solution to depth map problem. The experimental results 

show good potential for the proposed LULU combined with DPT or with other 

existing SFF techniques in solving the depth map problem, especially in noisy 

environments.  

1.2 Motivation 

In practice, the acquired images are frequently corrupted with noise. There are many 

different types of noises from various sources which corrupt the image such as 

Gaussian, speckle and impulse noise. The presence of noise in the image limits the  

processing and subsequent analysis of images. 

Although the existing focus measures for 3D shape recovery using SFF perform 

well in noiseless environments but their performance deteriorates considerably in 

noisy environments. This deterioration is due to the fact that the existing focus 

measures are based on derivatives and variance information. As a result, their 

performance is poor for Gaussian noise as well as randomly distributed impulse noise.  
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This results of depth maps are far from the ground truth data and hence cannot be 

used for 3D shape recovery. Therefore, developing a reliable method for calculating 

depth map for 3D shape recovery using SFF in noisy environment is the major 

motivation of this research.  

1.3 Problem Statement 

The existing focus measures perform well in noiseless environments but their 

performance deteriorate in noisy environments. During image acquisition process, 

additive white Gaussian noise (AWGN) is present. In addition, based on the environment 

condition and the camera, speckle noise and impulse noise may also be present. Presence 

of these types of noise in the image destroys the focus information, especially sharpest 

pixel values. Hence, the algorithms computing the best focus values fail in such a 

situation. Therefore, a SFF method is required that be able to present acceptable results in 

the existence of noise. 

The main problems with the current SFF techniques are: 

• Noise removal is not inherently present in existing focus measures. 

• Existing methods depend on derivatives and statistics which does not perform 

well in the presence of noise. 

1.4 Research Objectives 

The main objectives of this research can be summarized in the following points: 

• To develop a 3D shape recovery method based on LULU and DPT. 

• To come up with new SFF based technique capable of extracting 3D in noisy 

environments.  

• To verify the performance of the developed SFF technique with real and 

simulated images.  

• To study the impact of different types of noise; Gaussian, impulse and speckle 

on the performance of the proposed techniques.  
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1.5 Research Scope 

This research introduces LULU and DPT and modify them to be used as focus 

measures for 3D shape recovery based on SFF. LULU based focus measure is 

proposed to be used in combination with other existing SFF methods like SML, TEN 

and GLV. The capability of LULU combined with DPT or with other SFF methods is 

tested in noisy environments and compared with existing methods.  

1.6 Thesis Outline 

Chapter 1, describes the problem statement, motivation of the work, research 

objectives, scope and study milestone.  

Chapter 2 begins with a brief description of 3D shape recovery and Shape From 

Focus (SFF). Then, it explains some of the different SFF techniques, like SML, GLV 

and TEN which are used and compared in this work.  

Chapter 3 describes LULU operators and DPT, and discuss the properties and 

applications of them. This chapter also shows the inherent capability of LULU in 

removing noise from images.  

Chapter 4 introduces modified versions of LULU and DPT for 3D shape recovery 

applications. Combinations between LULU and other existing SFF techniques are 

considered and outlined.  

 In Chapter 5, the proposed techniques based on LULU operators and DPT are 

applied on seven different SFF test objects. All the experiments are considered in the 

presence of impulse, Gaussian and speckle noise. The experiments are run several 

times and the results are analyzed quantitatively and qualitatively. Also, all the 

obtained results are compared with other techniques.  

Chapter 6 concludes this thesis and sheds light on possible future work. 

 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Reconstructing the 3D shape of an object is a primary step in 3D technology. The 

information of a scene can be captured by different optical systems and presented in 

different ways. Different images with different camera lens settings can capture 

photometric and geometric information differently. Different objects in an image can 

be defined with different information such as luminous intensity, colours, radiance, 

size, depth and distance. This information can be used in many data acquisitions 

applications from 2D images, such as 3D shape recovery. Shape recovery or shape 

reconstruction is widely used where the shape of the object is not easy to be 

estimated, such as astronomy and biomedical fields [1]. 

Figure 2.1, illustrates the fundamental geometry formation of an image, where 𝑢𝑢 

refers to the distance of the object from the lens, 𝑣𝑣 shows the distance of the image 

from the lens and 𝑓𝑓 indicated the focal length of the lens. This figure illustrates well 

that when there is an object at point 𝑃𝑃, it will be well focused at the point 𝑃𝑃′  and if the 

object point is not focused in image plane, there will be a blur image around 𝑃𝑃′′  point 

[2]. In thin lens law, the connection between the focal length, object and image 

distance, is given: 

1
f

=  
1
u

+
1
v

                                                           (2.1) 

                                                            



 

6 

 

 

Figure 2.1 Pattern of focused and defocused images [3] 

 

In general, 3D shape recovery can be performed by using three different techniques 

as shown in Figure 2.2. The first technique is a contact one which depends on the 

mechanical and inertial objects in order to estimate the shape. The second technique is 

transmissive, like CTR/MRI which is based on X ray or EM radiation. The third 

technique is reflective which can be optical or non-optical (e.g. radar, sonar, etc).  

 
Figure 2.2 Depth estimation methods 
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In this research we concentrate on the optical method because it is inexpensive and 

non-contact (with the object) which prevents damaging the object; though it has some 

disadvantages such as sensitivity to illumination, noise and confusion by secularity 

and inter reflections. 

Many optical techniques have been proposed over the last few years for 3D shape 

recovery. These techniques are mainly based on shape extraction as described here: 

• stereo 

The method of recovering the 3D depth from two or more intensity based 

images taken from different angles. The stereo method verifies which point 

in one image matches which point in another image [4]. 

• texture 

Shape from texture determines the depth of object from texture 

information in an image [5]. 

• focus 

This method is based on focus/sharpness detection of a particular object in 

different images for estimating the depth between different focused points 

[1]. 

• defocus 

Estimating shape from defocus is based on retrieving the depth information 

of a scene using the blurring variation of a number of images captured at 

different focus settings [2]. 

• motion  

Shape from motion recovers the 3D shape and motion from a small set of 

points matched in two images from single camera [4]. 

• shading 

This technique recovers the 3D shape of an object from the variations 

caused by shading in the image [6]. 

This thesis proposed new focus measurement technique in shape from focus (SFF). 

The developed technique uses SFF since focused image conveys more information 

about the shape of an object than normal image. 
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2.2 Shape from Focus 

SFF method requires capturing many different image frames for the same object from 

a specific angle. In general, there are two methods of capturing different sequences; 

the first is by changing the focus value of the lens and keeping the object and 

camera’s positions fixed, whereas the second is achieved by keeping the camera’s 

focus value fixed and change the distance between object and camera gently for 

different shots.  

In Figure 2.3, the test image shows different focused images of a cone object. This 

database is constructed from 97 different images with different focus values from the 

cone object. Figure 2.4, shows this concept clearer. It shows a sequence of frames that 

indicate to changed degrees of object focus achieved through a single camera.  

 
Figure 2.3 Test image with different focusing values 
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Figure 2.4 Sequence of images 

 

After collecting the data, we needed to determine the exact frame where the depth 

of the object is in focus or has the maximum sharpness. A sharpness measure or focus 

measure for each image in the sequence is computed at each pixel location using a 

small window around the pixel. The success of any focus measure depends on how 

accurate is the sharpness in image pixels. By applying different well known 

mathematical techniques for SFF such as Laplacian [7], modified Laplacian (ML), 

sum of the modified Laplacian (SML), Tenenbaum(TEN) [8], Gray Level Variance 

(GLV), mean, curvature and M2, the best depth value for each single point of the 

object from the lens of camera can be obtained. This information shows the highest 

amount of sharpness or best focusing values among the different captures. By 

selecting the pixel with highest focus value among all frames, the 3D shape of the 

object from a single view can be reconstructed. Besides these methods, other 

approximation methods can be used in order to obtain better results such as are the 

Gaussian interpolation [1] and Neural Networks [9] and [10]. 

Many techniques for shape recovery out of focus have been proposed over the last 

three decades with different degrees of success. Among the best known SFF-based 

techniques are the followings:  
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Table 2.1 SFF-based techniques 
Scientist Year Proposed Technique 

Horn 1968 a technique based on Fourier transform [11] 

Tenenbaum 1970 

built up the gradient magnitude maximization technique 

which is based on sharpness of edges to optimize focus 

quality [12] 

Buffington 1974 introduced aperture-plane distortion [13] 

Erteza 1976 
obtained an index value for sharpness by considering the 

intensity distribution of the image [14] 

Jarvis 1976 
established a new technique based on the sum-modulus-

difference [15] 

Pentland 1985 assessment of image blur [13] 

Krotkov 1986 
discussed about the distance calculation of the sharply 

focused point [16] 

Grossmann 1987 
suggested the evaluation of depth of edge points by 

considering the blur of the edges [17] 

Darrell and 

Wohn 
1988 

applied Laplacian and Gaussian pyramids for depth 

estimation [18] 

Nayar 1990 

built the first SFF system, he introduced Gaussian 

interpolation in 3D microscope [1]. He also in 1994 

introduced sum modified Laplacian in shape recovery [7] 

Dillion 1992 
combined shape from focus and stereo to get better 

results [19] 

Asada 1998 described eliminating windowing [20] 

Zhang 2000 
proposed 2nd/4th order central moment as a sharpness 

detector [21] 

Helmi 2002 
introduced new techniques based on mean, curveture and 

point focus methods [8] 

Yap 2004 suggested Chebyshev moments for focus detection [19] 

 

All these focusing techniques help in detecting the sharpness of the image. 

Calculating the sharpness in the image helps in finding the focused points which leads 
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to reconstructing the 3D shape of the object. Some of these SFF methods are used in 

this work and compared to DPT like the SML, TEN and GLV. In the subsequent 

section, these methods are outlined. More information about other SFF methods, can 

be found in [10]. 

2.2.1 The Sum Modified Laplacian (SML) 

Laplacian operators are differential operators. We can also define them as the 

divergence of the gradient. Overall, these operators are symmetric and suitable for 

exact shape reconstruction. For an image, with the function of f(x, y), the Laplacian 

can be defined as its second derivates across x and y coordinates. 

Laplacian =  
∂2f(x, y)
∂x2 +

∂2f(x, y)
∂y2                                    (2.2) 

                                                                  

Modified Laplacian operator is summing the squared value of each derivative in 

Laplacian method. 

ML =  �
∂2f(x, y)
∂x2 �

2

+ �
∂2f(x, y)
∂y2 �

2

                                     (2.3) 

                            

Sum modified Laplacian is the completed shape of Laplacian operators which 

detects the focus value for each single pixel. It is proper to be used at each pixel 

where p(x, y)is a pixel in the neighborhood U(x0, y0)of pixel (x0, y0) [10]. 

SML(x0, y0) =  � �
∂2f(x, y)
∂x2 �

2

+ �
∂2f(x, y)
∂y2 �

2

p(x,y)∈U(x0,y0)

              (2.4) 

            

Figure 2.5, shows the 3D shape recovery using SML operator for cone image with 

97 frames with different focus values. 
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Figure 2.5 Shape recovery using SML method for the cone image 

 

2.2.2 The Tenenbaum (TEN) 

Tenenbaum operator maximizes the gradient magnitude. It is defined as the 

summation of the Sobel operators along x axis and y axis.  

FMT(x0, y0) =  � (fx(x, y)2 + fy(x, y)2

p(x,y)∈U(x0,y0)

)                  (2.5) 

                    

Where f(x, y) is the image function and p(x, y)is a pixel in the neighborhood 

U(x0, y0) of pixel (x0, y0) [10]. 

The 3D reconstructed shape of a cone image using TEN operator is shown in 

Figure 2.6. 
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Figure 2.6 Shape recovery using TEN method for the cone image 

 

2.2.3 The Gray Level Variance (GLV) 

GLV operator, which is a statistical based method so far, is being widely used to get 

sharp images. Equation 2.6 shows the concept of GLV, where f(x, y) is the image 

function and μU (x0, y0)is the gray values’ mean in the neighborhood U(x0, y0) of 

pixel (x0, y0) [10]. Figure 2.7, illustrates the 3D shape recovery using GLV operator. 

GLV(x0, y0) =  
1

N − 1
� (f(x, y) − μU (x0, y0))2                      (2.6)

p(x,y)∈U(x0,y0)

 

          

 
Figure 2.7 Shape recovery using GLV method for the cone image 
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In general, we can illustrate the concept for shape from focus as shown in Figure 2.8. 

 
Figure 2.8 Existing SFF Techniques 

 

As it is shown in Figure 2.8, SML, GLV and TEN techniques with their different 

characteristics have the same flow of operation in SFF. The first step is the data which 

should carry different focused values of the object. After collecting the data we need to 

determine the exact frame where the depth of the object is in focus or where the sharpness 

is at its maximum. A sharpness measure or focus measure for each image in the sequence 

is computed at each pixel location. As a result, the output of SFF is 2D data/matrices; one 

matrix encloses the resultant frame number that the pixel is best focused, and the other 

matrix holds the best focus value for each of the pixels . We choose the matrix based on 

frame numbers and simply reconstruct the 3D based on this matrix. 

2.3 Existing Methods in the Presence of Noise 

The success of any focus measuring method is based on the estimation of sharpness 

calculation in image pixels even in the presence of noise. Applying the existing 

sharpness detection methods on a noisy SFF data show the failure of focus detection 

techniques in the presence of noise.  

Shape from Focus data

Sharpness Technique 
(SML/TEN/GLV)

Selecting the frame with the 
highest focus value

Generating a matrix based on the 
frame’s number for each pixel

Reconstruct the 3D shape based 
on frame’s number
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In this section, the result of applying SML, GLV and TEN is shown in the presence 

of impulse, Gaussian and speckle noise. Figure 2.9 shows the effect of these three 

noises on baboon and cameraman pictures. 

 
Figure 2.9 Effect of different noises on baboon and cameraman; (a) Original image of 
cameraman in absence of noise, (b) Original image of baboon in absence of noise, (c) 

Cameraman in presence of impulse noise with noise density of 0.2, (d) Baboon in 
presence of impulse noise with noise density of 0.2, (e) Cameraman in presence of 
Gaussian noise with mean value of 0 and variance of 0.2, (f) Baboon in presence of 

Gaussian noise with mean value of 0 and variance of 0.2, (g) Cameraman in presence 
of speckle noise with noise density of 0.2 and (h) Baboon in presence of speckle noise 

with noise density of 0.2 
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2.3.1 Impulse Noise                      

Impulse noise is a result of image sensors and transmission channels malfunction. It has a 

considerable bad affect on the image and decreases its quality. Even with low noise 

density this noise can corrupt the image due to the large difference of intensity of each 

pixel than neighborhood pixels [22]. The amplitude of the corruption is the maximum or 

the minimum intensity of the original image.  

Figure 2.10, shows the performance of SML, GLV and TEN Focus Measures 

(FM) in the presence of impulse noise with different noise densities. 

 

 
Figure 2.10 Existing methods in the presence of impulse noise; (a) Ground thruth, (b) 
TEN focus measure in the present of impulse noise with noise density of 0.5, (c) GLV 
focus measure in the present of impulse noise with noise density of 0.05 and (d) SML 

focus measure in the present of impulse noise with noise density of 0.005 
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2.3.2 Gaussian Noise                     

Gaussian noise is a random distribution which does not depend on the image original 

values. Gaussian noise is an additive and statistical noise which is generated by 

arbitrary interference generated by thermal friction of the atoms in conductors or 

photo-electronic sensors. The most significant feature of the Gaussian noise is that no 

matter how much the variance and histogram of the original image is, the histogram 

of contaminated image will always follow the Gaussian distribution [23]. Since noise 

has small range of amplitude, the noise performs poorly on the edge and for texture 

data, and it results in a large corruption on the smooth parts of the image [23].   

The result of SML, GLV and TEN FMs in the presence of Gaussian noise with 

different noise variances is shown in Figure 2.11. 

 
Figure 2.11 Existing methods in the presence of Gaussian noise; (a) Ground thruth, 

(b) GLV focus measure in the present of Gaussian noise with noise density of 0.5, (c) 
TEN focus measure in the present of Gaussian noise with noise density of 0.05 and 
(d) SML focus measure in the present of Gaussian noise with noise density of 0.005 
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2.3.3 Speckle Noise                     

Speckle noise is also known as multiplicative noise which is caused by oscillations  in 

the received signal from an object [24]. Figure 2.12 is showing the 3D shapes 

recovered with SML, GLV and TEN when the SFF data is corrupted by speckle noise. 

 
Figure 2.12 Existing methods in the presence of speckle noise; (a) Ground thruth, (b) 
GLV focus measure in the present of speckle noise with noise density of 0.5, (c) SML 
focus measure in the present of speckle noise with noise density of 0.05 and (d) TEN 

focus measure in the present of speckle noise with noise density of 0.005 

2.4 Chapter Summary  

A brief description of the problem of 3D shape recovery is presented. Three well-

known and widely used techniques in SFF are described and analysed.  These 

techniques are the Sum Modified Laplacian, the Gray Level Variance and Tenenbaum 

which are three of the best SFF techniques. Some of the results of performance of 

these existing methods in the presence of impulse, Gaussian and speckle noise which 

are almost present in all images, is shown in this chapter. The considered techniques 

in this chapter will be compared with the developed technique in Chapter 4 and 

Chapter 5.  



CHAPTER 3 

LULU OPERATORS AND DISCRETE PULSE TRANSFORM 

3.1 Introduction 

In signal and image processing techniques, many challenges are faced 

when attempting to recover the original data from the noisy one. This sort of 

processing is usually performed using different methods, including both linear and 

nonlinear smoothers. Linear smoothers or filters perform well in case of additive 

Gaussian noise. However, their performance degrades with data corrupted with 

impulse noise. Meanwhile, nonlinear methods deal with discontinuities or large 

impulses, which relatively, provide better results. In this work, we focus on LULU, 

which is one of the nonlinear methods. 

Rohwer and Toerien in the late 1980s introduced LULU operators based on 

extreme order statistics [25]. LULU operators reduce impulse noise content in the 

signal prior to information extraction. LULU operators are computationally 

convenient and simple in comparison to the median smoothers. LULU operators have 

the properties of trend and total variation preserving that make them essential tool for 

multi-resolution analysis of sequences. They have a critical role in the analysis and 

comparison of nonlinear smoothers (an operator A can be defined as a smoother if it 

has the property of AE=EA where Exi=xi+1; also A(x+b)=Ax+b for all constant 

sequences b; and it should be suited in A(cx)=c(Ax) for all scalars for c ≥ 0) [26].  

LULU operators are also used in two dimensional analysis, i.e., image analysis, for 

smoothing or filtering the image and also for object detection and extraction (by using 

DPT) with composition of different L and U operators.  
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The other application of LULU smoothers is in applying Discrete Pulse Transform 

(DPT) to images. DPT is a new and powerful method for the analysis of signals and 

can be extended to images by using LULU operators.  

Since, DPT decomposes the image into different pulses, it can be used to extract 

the specific objects in the image by selecting the appropriate pulses. Furthermore, 

DPT is being used in the estimation of standard deviation of a random distribution 

[27]. 

A multi-resolution analysis of a space consists of a sequence of nested subspaces 

that satisfies certain self-similarity relations in time/space and scale/frequency, as well 

as completeness and regularity relations. DPT and Wavelet are two of the most 

important multi-resolution analysis methods. The properties of multi-resolution 

analysis is described in more detail in [28] and [29]. 

In this chapter, we first explain LULU operators and discuss their properties. Next, 

we discuss the main concept of DPT and the different applications of a combined 

LULU and DPT in the areas of signal and image processing.  

3.2 LULU Operators 

LULU operators are called MaxMin and MinMax filters due to their characteristics. 

They are local and nonlinear operators used for impulse noise removal. LULU 

operators consist of the sub-operators L (low) and U (upper) with different orders for 

different filters.  

For one dimensional analysis of the sequences of the signal, noise removal can be 

done via LU or UL operators. These operators remove the positive and negative peaks 

which have small widths similar to impulse noise. The resulted sequence after 

filtering with LU and UL operators is a local and monotone sequence without any 

detectable noise (the sequence ξ is n-monotone if it is either ξi  ≤  ξi+1   ≤. . .≤

 ξi+n  ≤  ξ i+n+1 or ξ i  ≥  ξi+1   ≥. . .  ≥  ξi+n   ≥  ξi+n+1  , it should fulfil for all 

values of i such that both of  ξi  and ξi  + n + 1 are members of the sequence [26]). 

http://en.wikipedia.org/wiki/Lp_space�
http://en.wikipedia.org/wiki/Sequence�
http://en.wikipedia.org/wiki/Linear_subspace�
http://en.wikipedia.org/wiki/Completeness�
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Also, the one dimensional LULU operators fulfil the idempotent condition (A is 

idempotent if it meets the condition of: A2  =  A and co-idempotent if I −  A is 

idempotent [26]).                                                                                                                                                                                                                                                                                                                                                                                                         

 

3.2.1 1-Dimensional LULU 

When LULU is being used for signals by simply removing the locally peaks and 

valleys. Figure 3.1, illustrates the power of L and U operators in filtering/smoothing 

the signal. In this figure, the top one is the original signal while the middle and the 

bottom one show the smoothed signals after applying L and U operators respectively. 

For a given bi-infinite sequence, 𝜉𝜉 = (𝜉𝜉𝑖𝑖), 𝑖𝑖 ∈ 𝑍𝑍, the 1D LULU operators are defined 

by Equation 3.1 and Equation 3.2, as follows [30]: 

(𝐿𝐿𝑛𝑛  𝜉𝜉)𝑖𝑖  =  𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑖𝑖𝑛𝑛{ 𝜉𝜉 𝑖𝑖−𝑛𝑛  , . . . , 𝜉𝜉𝑖𝑖  },𝑚𝑚𝑖𝑖𝑛𝑛{ 𝜉𝜉 𝑖𝑖 , , . . . , 𝜉𝜉 𝑖𝑖+𝑛𝑛}�, 𝑖𝑖 𝜖𝜖 𝑍𝑍        (3.1)        

(𝑈𝑈𝑛𝑛  𝜉𝜉)𝑖𝑖  =  𝑚𝑚𝑖𝑖𝑛𝑛 �𝑚𝑚𝑚𝑚𝑚𝑚{ 𝜉𝜉 𝑖𝑖−𝑛𝑛  , . . . , 𝜉𝜉𝑖𝑖  },𝑚𝑚𝑚𝑚𝑚𝑚{ 𝜉𝜉𝑖𝑖  , . . . , 𝜉𝜉 𝑖𝑖+𝑛𝑛}�, 𝑖𝑖 𝜖𝜖 𝑍𝑍       (3.2)        

 

Figure 3.1 a) Original signal, b) Result of L smoother on the signal, and c) Result of U 
smoother on the signal 
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3.2.2  2-Dimensional LULU 

When LULU smoothers are applied on a two dimensional array, they simply compare 

the elements with all their neighbors. The neighborhood of a pixel can be defined in 

different ways as shown in the Figure 3.2. 

 

Figure 3.2 Four different neighboring regions of pixel (i,j): a) 4-neighborhood, b) 8-
neighborhood c) 12-neighborhood, and d) 24-neighborhood  

  

 

To further clarify the concept of 2D processing using LULU operators, an example 

is provided. This example illustrates one of the many different possible neighborhood 

and sub-neighborhoods for a pixel. LULU in 2D, similar to 1D, can be extended to 

neighborhoods by considering more pixels surrounding each pixel.  

In this example, the neighbors of the pixel 𝐼𝐼 (𝑖𝑖, 𝑗𝑗) are divided to four different 

regions as shown in Equation 3.3 to Equation 3.6.  

 

 

i i

j j
(a) (b)

i i

j j
(c) (d)
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𝐼𝐼1 = [𝐼𝐼(𝑖𝑖, 𝑗𝑗 − 1), 𝐼𝐼(𝑖𝑖, 𝑗𝑗), 𝐼𝐼(𝑖𝑖 + 1, 𝑗𝑗 − 1), 𝐼𝐼(𝑖𝑖 + 1, 𝑗𝑗)];                    (3.3)                     

 𝐼𝐼2 = [𝐼𝐼(𝑖𝑖 − 1, 𝑗𝑗 − 1), 𝐼𝐼(𝑖𝑖 − 1, 𝑗𝑗), 𝐼𝐼(𝑖𝑖, 𝑗𝑗), 𝐼𝐼(𝑖𝑖, 𝑗𝑗 − 1)];                    (3.4)                    

𝐼𝐼3 = [𝐼𝐼(𝑖𝑖, 𝑗𝑗 + 1), 𝐼𝐼(𝑖𝑖, 𝑗𝑗), 𝐼𝐼(𝑖𝑖 + 1, 𝑗𝑗), 𝐼𝐼(𝑖𝑖 + 1, 𝑗𝑗 + 1)];                   (3.5)                       

𝐼𝐼4 = [𝐼𝐼(𝑖𝑖 − 1, 𝑗𝑗 + 1), 𝐼𝐼(𝑖𝑖 − 1, 𝑗𝑗), 𝐼𝐼(𝑖𝑖, 𝑗𝑗), 𝐼𝐼(𝑖𝑖, 𝑗𝑗 + 1)];                   (3.6)  

                     

 Others possible neighbors are not considered here. Figure 3.3 illustrates the 

Equation 3.3 to Equation 3.6, where O represents the corresponding pixel and X refers 

to the neighboring pixels. 

 

 
Figure 3.3 Illustration of neighbors for Equations 3.3 to 3.6,  

(a) 𝐼𝐼1, (b) 𝐼𝐼2, (c) 𝐼𝐼3, and (d) 𝐼𝐼4 

 

 

X X X X X X

i X O X i X O X

X X X X X X

j j
(a) (b)

X X X X X X

i X O X i X O X

X X X X X X

j j
(c) (d)
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Then the L and U operators were applied as follow: 

𝐿𝐿 (𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑖𝑖𝑛𝑛(𝐼𝐼1),𝑚𝑚𝑖𝑖𝑛𝑛(𝐼𝐼2),𝑚𝑚𝑖𝑖𝑛𝑛(𝐼𝐼3),𝑚𝑚𝑖𝑖𝑛𝑛(𝐼𝐼4)�;                   (3.7)                 

𝑈𝑈 (𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼1),𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼2),𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼3),𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼4)�;                  (3.8)                 

 The Figure 3.4(a) shows a randomly generated binary image and Figure 3.4(b) and 

Figure 3.4(c) shows the smoothed images after applying L and U smoothers. The L 

and U in Equation 3.7 and Equation 3.8 are actually L3 and U3 because of considering 

a neighborhood of four pixels in each region. In this example, the binary image has 

balanced numbers of black and white parts. After applying L smoother on the image, 

the black parts increased. That can be described according to Equation 3.7. L 

operators maximize the local minima of the neighborhood (this is the reason that 

Figure 3.4(b) has more black spots than the original image). U smoothers are opposite 

of L smoothers. Therefore Figure 3.4(c) is whiter compared to the original image. 

Other examples are given in Figure 3.5, to illustrate the concept of L and U filters on 

corrupted cameraman and baboon images with impulse noise. 

 

 
Figure 3.4 (a) Original binary image, (b) Resulted image after applying L smoother 

on it, and (c) Resulted image after applying U smoother on the original image 
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Figure 3.5 (a) Corrupted images of cameraman and baboon with impulse noise, (b) 

Resulted images after applying L smoother on it, and (c) Resulted image after 
applying U smoother on the original image 

 

3.2.3 Properties of LULU Operators 

Some of the properties of LULU operators, as introduced by Rohwer et.al., [26] are 

listed in APPENDIX A. However, detailed discussion of properties as well as their 

proofs, can be found in [26] and [31].  
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3.3 The Discrete Pulse Transform (DPT) 

DPT is a composition of different pulses, it is discrete like Discrete Fourier and 

Wavelet transforms. DPT is very similar to Discrete Fourier Transform (DFT), except 

that DPT separates the signal to positive and negative parts (pulses) but DFT divides 

the signal to even and odd parts. 

In image processing, DPT is used to separate the objects in the image by 

identifying the pulses corresponding to different objects in the image. For processing 

images with DPT, we need to use the LULU operators on multidimensional arrays. 

Sub-images are constructed based on the disparity of neighboring pixels and DPT is 

based on capturing the contrast in the original image on the boundary of their 

supports. Detailed comparison of DFT and DPT is provided by Rohwer in [26].  

 

3.3.1 1D DPT 

In general, DPT can map the bi-infinite sequences such as 

𝜉𝜉 =  (. . . , 𝜉𝜉−1, 𝜉𝜉0, 𝜉𝜉1, 𝜉𝜉2, . . . ) onto an infinite vector      

𝐷𝐷𝑃𝑃𝐷𝐷(𝜉𝜉) =  (𝐷𝐷1(𝜉𝜉),𝐷𝐷2(𝜉𝜉), . . . )                                    (3.9) 

where 𝐷𝐷𝑛𝑛(𝜉𝜉) is a sequence composed of well detached, discrete block pulses with 

support n (the set of non-zero values of a function is called the function’s support) 

[32]. 

As shown in Equation 3.9, DPT of a sequence is a composition of DPT of different 

orders (pulses), and we shall calculate 𝐷𝐷1,𝐷𝐷2, . . . ,𝐷𝐷𝑛𝑛 , one by one to be able to 

reconstruct the signal. 𝐷𝐷𝑛𝑛  is a sequence made up of block pulses with the support n; 

for instance, it only compares the values of any position with n before and n after, and 

removes the pulses with width size n.   
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As an example for 1D DPT, consider a sequence of 𝜉𝜉 =  {1, 2, 7}, which is shown 

in Figure 3.6. The following is a step by step explanation for processing this sequence 

with 1D-DPT. In this example, the calculation for all DPT decomposition for this 

sequence, which is 𝐷𝐷1,  𝐷𝐷2 and 𝐷𝐷3 has been shown. This signal has only three 

elements, therefore its DPT can be calculated only up to three decompositions. 

 

Figure 3.6 1D sequence (𝜉𝜉) for DPT decomposition 

 

Step 1: First, we have to filter the signal with 𝐿𝐿1𝑈𝑈1 operator. For calculating 𝐿𝐿1, we 

shall filter the signal with 𝐿𝐿1 and remove all the signal’s peaks with width of size one. 

Then we apply 𝑈𝑈1 on the result to remove all the valleys with width of size one. 𝐿𝐿1𝑈𝑈1 

smoothes the signal by removing all the local maximum and minimum pulses with 

width 1.  

Please note that for processing boundary elements and also maintaining the size of 

the signal, we add zeros to the sequence. For example, for calculating L1, because it 

considers the neighborhood with only one element before and one after. We shall add 

one zero to the beginning of ξ and one at the end.  

𝐿𝐿1 =  {1, 2, 2}                                                     (3.10) 
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The first element of L1is 1 which is obtained by using Equation 3.1, i.e., min{ξi−1, 

ξi}=0 (since ξi−1=0 and ξi=1), and min{ξi , ξi+1}=1(since ξi =1 and ξi+1=2), and then 

max{min{ξi−1, ξi},min{ξi , ξi+1}}i =1. This process is repeated for all elements of ξ. 

Next, U1 operator is applied on the result of L1 and the following result is obtained. 

𝐿𝐿1𝑈𝑈1 =  {1, 2, 2}                                                  (3.11) 

The first element of L1U1 is 1 which is obtained by using Equation 3.2 on the result 

of L1, (here we represent the elements of L1U1 by “x”),  i.e., max{ x i−1, x i}=1, also 

max{ x i , x i+1}=2 and then min {max{xi−1, x i}, max{ x i , x i+1} }i =1  where x i  = 1 in 

sequence L1.       

Step 2

 

: For calculating D1, we subtract the smoothed signal L1U1 from the original 

signal to get all peaks and valleys of size one as shown in Figure 3.7. 

𝐷𝐷1 =  𝜉𝜉 −  𝐿𝐿1𝑈𝑈1 =  {0, 0, 5}                                   (3.12) 

 

Figure 3.7 Result of 𝐷𝐷1  on the 1D sequence of 𝜉𝜉 
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Step 3: For calculating D2, we shall find the pulses of width two, and for this 

reason we need to apply L2U2 operator on the result of step one. It means that we 

applied L1U1L2U2 operator on the signal according to their orders and we remove all 

the peaks and valleys of the signal with width one and two. Please note that we shall 

increase the previous sequence’s size by adding two zeros at the beginning and two at 

the end of it to consider the L2 and U2 neighborhood of size two. 

𝐿𝐿1𝑈𝑈1𝐿𝐿2 =  {1, 0, 1}                                             (3.13) 

The first element of L1U1 L2 is 1 which is obtained by using Equation 3.1 on the 

result of L1U1, (here we represent the elements of L1U1L2 by “z”), i.e., min{zi−2, zi−1, 

zi}=0, min{zi , zi+1, zi+2}=1 and then max {min{zi−2, zi−1, zi}, min{zi , zi+1, zi+2}}i =1 

where ξ i =1 in sequence L1U1. In a same way we calculate L1U1L2U2. 

𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2 =  {1, 1, 1}                                          (3.14) 

Step 4: Here we need to subtract the result of step 3 from the original signal to get 

all the pulses with width of one and two.  

𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2 =  {0, 1, 6}                                   (3.15) 

Step 5: The result of step 4 gives us the peaks and the valleys with width one and 

two, but for calculating D2, our concern is only to find pulses with width two. 

Therefore we shall remove the width one pulses from the result of last step by 

applying L1U1 filter on that. 

(𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2) 𝐿𝐿 1 =  {0, 1, 1}                           (3.16) 

𝐷𝐷2  =  (𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2) 𝐿𝐿1𝑈𝑈1 =  {0, 1, 1}               (3.17) 

The result of D2 is shown in Figure 3.8. 
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Figure 3.8 Result of 𝐷𝐷2  on the 1D sequence of 𝜉𝜉 

 

Step 6: For calculating D3 we need to apply L3U3 and keep the pulses with width 

three. Please note that this time, for calculating L3U3, we shall increase the previous 

sequence’s size by adding three zeros at the beginning and three at the end of it to 

consider the L3 and U3 neighborhood of size three. 

𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3 =  {0, 0, 0}                                    (3.18) 

The first element of L1U1L2U2L3 is 0 which is obtained by using Equation 3.1 on 

the result of L1U1L2U2 (here we represent the elements of L1U1L2 by “w”), i.e., 

min{wi−3, wi−2, wi−1, wi}=0, also min{wi , wi+1, wi+2, wi+3}=0 and then max {min{wi−3, 

wi−2, wi−1, wi}, min{wi, wi+1, wi+2, wi+3}}i=0  where wi =1 in sequence L1U1L2U2. In 

the same way we calculate L1U1L2U2L3U3.                                                                      

𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3𝑈𝑈3 =  {0, 0, 0}                                 (3.19) 

Step 7: By reducing the filtered sequence with L1U1L2U2L3U3 from the original 

one, we can sift all the peaks and valleys remaining from the L1U1L2U2L3U3 filter. 

𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3𝑈𝑈3  =  {1, 2, 7}                           (3.20) 
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 Step 8

 

: This step is similar to step 5. The difference is we need to filter with L2U2 

L1U1 to take all the pulses with width less than three out. 

(𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3𝑈𝑈3) 𝐿𝐿2  =  {1, 0, 1}                     (3.21) 

(𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3𝑈𝑈3) 𝐿𝐿2𝑈𝑈2 =  {1, 1, 1}                   (3.22) 

(𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3𝑈𝑈3) 𝐿𝐿2𝑈𝑈2𝐿𝐿1 =  {1, 1, 1}                 (3.23) 

𝐷𝐷3 =  (𝜉𝜉 −  𝐿𝐿1𝑈𝑈1𝐿𝐿2𝑈𝑈2𝐿𝐿3𝑈𝑈3) 𝐿𝐿2𝑈𝑈2𝐿𝐿1𝑈𝑈1 =  {1, 1, 1}            (3.24) 

The result of D3 is shown in Figure 3.9. 

Figure 3.9 Result of 𝐷𝐷3  on the 1D sequence of 𝜉𝜉 

 

Step 9

We can extend the work from 1D sequences to the multi-dimensional arrays, that is 

to say, functions on Zd, d>1. The notation Zd refers to an n-

: In this step, we want to show that after summing all the DPT decompositions 

for different pulses, we can get the sequence ξ again. 

𝐷𝐷1  +  𝐷𝐷2 +  𝐷𝐷3  =  {1, 2, 7}                              (3.25) 

dimensional space with 

integer coordinates. For example, a value of Z3 consists of three integer numbers and 

specifies a location in 3-dimensional space [33]. 

http://en.wikipedia.org/wiki/Dimension�
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3.3.2 2D DPT 

𝐴𝐴(𝑍𝑍2) refers to the set of all functions defined on 𝑍𝑍2. Assume having a gray scale 

image 𝑓𝑓 ∈ 𝐴𝐴(𝑍𝑍2)  such that the support of the image is a finite rectangular subset 𝛺𝛺 of 

𝑍𝑍2. Then the discrete pulse transform of the image  𝑓𝑓 ∈ 𝐴𝐴(𝑍𝑍2) is given as [34]: 

𝐷𝐷𝑃𝑃𝐷𝐷(𝑓𝑓) = �𝐷𝐷1(𝑓𝑓),𝐷𝐷2(𝑓𝑓), … ,𝐷𝐷𝑁𝑁(𝑓𝑓)�                         (3.26)                          

The 𝐷𝐷𝑃𝑃𝐷𝐷(𝑓𝑓) is finite because 𝑓𝑓 has a finite support. In the equation above, 𝑁𝑁 is the 

number of pixels in the image 𝑓𝑓. 𝐷𝐷𝑁𝑁(𝑓𝑓) is given as 𝐷𝐷𝑛𝑛(𝑓𝑓) =  ∑ 𝜑𝜑𝑛𝑛𝑛𝑛
𝛾𝛾(𝑛𝑛)
𝑖𝑖=1  where 𝜑𝜑𝑛𝑛𝑛𝑛  

represents the pulses. The functions 𝜑𝜑𝑛𝑛𝑛𝑛 , 𝑛𝑛 = 1, 2, … , 𝛾𝛾(𝑛𝑛) affects the number of 

pulses of each pixel where 𝛾𝛾(𝑛𝑛) is a function of 𝑛𝑛. These functions are discrete pulses 

with support of size 𝑛𝑛, 𝑛𝑛 = 1, 2, … , 𝛾𝛾(𝑛𝑛). A discrete pulse is a function  𝜑𝜑 ∈ 𝐴𝐴(𝑍𝑍2)   

which is constant magnitude on a connected set 𝑊𝑊 and zero elsewhere. The set 𝑊𝑊 is 

called the support of the pulse, 𝑤𝑤 = 𝑛𝑛𝑢𝑢𝑠𝑠𝑠𝑠(𝜑𝜑). The value of  𝜑𝜑  on  𝑊𝑊  is the value of 

the pulse. If the value of 𝜑𝜑 is positive then  𝜑𝜑  is an up-pulse; if it is negative, 𝜑𝜑 is a 

down-pulse. Using DPT, we represent a function  𝑓𝑓 ∈ 𝐴𝐴(𝑍𝑍2) as a sum of pulses [35]. 

𝑓𝑓 = �𝐷𝐷𝑛𝑛(𝑓𝑓)
𝑁𝑁

𝑛𝑛=1

=  ��𝜑𝜑𝑛𝑛𝑛𝑛                                    (3.27)
𝛾𝛾(𝑛𝑛)

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1

 

                             

Furthermore, similar to 1D discrete pulse transform, 2D DPT as in Equation 3.11 

preserves the total variation (TV) of the data as formulated in Equation 3.12. The total 

variation (TV) is an important characteristic of an image and it is used in noise 

removal as in [35] and [36]. 

𝐷𝐷𝑇𝑇(𝑓𝑓) = �𝐷𝐷𝑇𝑇�𝐷𝐷𝑛𝑛(𝑓𝑓)� = ��𝐷𝐷𝑇𝑇(𝜑𝜑𝑛𝑛𝑛𝑛)                    
𝛾𝛾(𝑛𝑛)

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1

(3.28) 
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The DPT of  𝑓𝑓 ∈ 𝐴𝐴(𝑍𝑍2) is obtained via iterative application of the operators 𝐿𝐿𝑛𝑛  

and Un  with n increasing from 1 to 𝑁𝑁. The order of applying the 𝐿𝐿𝑛𝑛  and the 𝑈𝑈𝑛𝑛  

operators does not change the properties of the function DPT because both operators 

add a bias upward or downward only. Let Pn  denote either the composition  𝐿𝐿𝑛𝑛    ⃘ Un  or 

the composition 𝑈𝑈𝑛𝑛   ⃘ 𝐿𝐿𝑛𝑛 . For combining 𝐿𝐿 and 𝑈𝑈, we apply opening operators. 

In mathematical morphology, opening is the dilation of the erosion of a set A by 

a structuring element 𝐵𝐵: 𝐴𝐴  ⃘𝐵𝐵 = ((𝐴𝐴⊖𝐵𝐵) ⊕  𝐵𝐵) [37]. Now let the function 𝑄𝑄𝑛𝑛 =

𝑃𝑃𝑛𝑛    ⃘ 𝑃𝑃𝑛𝑛−1   ⃘…   ⃘ 𝑃𝑃2  ⃘  𝑃𝑃1 which is iteratively applying the opening operation multiple 

times [38]. 

On the other hand, the filtered parts by 𝑃𝑃𝑛𝑛 , 𝑛𝑛 = 1, 2, … , 𝛾𝛾(𝑛𝑛) are very important. 

These portions indicate the information about 𝑓𝑓 which are peeled off [35]. More 

precisely, 

𝑓𝑓 = (𝑖𝑖𝑖𝑖 − 𝑃𝑃1)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 − 𝑃𝑃2)   ⃘ 𝑄𝑄1)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 − 𝑃𝑃3)   ⃘ 𝑄𝑄2)(𝑓𝑓) + ⋯

+ ((𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑁𝑁−1)   ⃘ 𝑄𝑄𝑁𝑁−2)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑁𝑁)   ⃘ 𝑄𝑄𝑁𝑁−1)(𝑓𝑓) + 𝑄𝑄𝑁𝑁(𝑓𝑓) 

       (3.29)                      

where id denotes the identity operator. Similarly to this application of area opening 

and area closing, in [39], Acton and Mukherjee used these operators for image 

classification. In this application, filtering is done for specific values of n and instead 

of the layers of peeled off portions, the authors keep a record of filtered images at 

every scale. For more information, please refer to [34], [40] and [41].  

DPT for 2D considers a wider neighborhood for each pixel compared to 1D. 

Besides, the size of support can vary up to the matrix’s size. An example for 2D DPT 

is provided here, which shows the affects of different pulses on the image. The 

following steps show the DPT decomposition for the image with the pixel values 

illustrated in Figure 3.10.  

http://en.wikipedia.org/wiki/Mathematical_morphology�
http://en.wikipedia.org/wiki/Dilation_(morphology)�
http://en.wikipedia.org/wiki/Erosion_(morphology)�
http://en.wikipedia.org/wiki/Set_(mathematics)�
http://en.wikipedia.org/wiki/Structuring_element�
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Figure 3.10 DPT decomposition for 2D 

 

Please note that we can consider a different neighborhood, but here we just 

illustrated the result of the 4-connectivity and 8-connectivity neighborhoods as shown 

in Figure 3.11 and Figure 3.12 respectively. 2D DPT is concerned about connectivity. 

Therefore for calculating different decompositions, we shall follow the steps below. 

The properties of connectivity and segmentation are described in more detail in [42] 

and [43]. 

Step 1: First step is finding the local maximum sets. For this, we shall find the 

connected sets. For example, to calculate 𝐷𝐷1, we can consider all the pixels one by 

one because each one makes a set of size one. For any 𝐷𝐷𝑛𝑛  , any n pixels with the same 

value that are connected can be considered as one set of size n. Any set which has a 

higher value than its neighbors will be highlighted and its value will be changed to its 

neighbor values. 

Step 2: This step is the same as the first step; the difference is that we are looking 

for local minimum sets on the result of the previous step. After finding the local 

minimum sets, we convert the whole set’s value to its neighbors' values and continue 

with the next decomposition (Dn+1), which shall repeat step 1 followed by step 2 for 

the result of Dn. 

Step 3: The last step is when all values of the image become the same. This will 

be the point when we shall stop. 
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Figure 3.11 2D DPT for 4-Connectivity 

 

D1 D1

1 0 1 1 1 1 0 1 1 1
1 0 1 1 0 1 0 1 1 0
0 0 1 1 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0
1 0 1 0 1 0 0 1 0 0

local maximum sets local minimum sets

D2 D2

1 0 1 1 1 0 0 1 1 1
1 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 1 0 0

local maximum sets local minimum sets - none

D3 D3

0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 1 0 0

local maximum sets - none local minimum sets

D4 until D8 D4 until D8

0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 1 0 1 1 1 1
0 0 1 1 1 0 0 1 1 1

local maximum sets - none local minimum sets - none

D9 D9

0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 1 0 1 1 1 1
0 0 1 1 1 0 0 1 1 1

local maximum sets - none local minimum sets 

Decomposition complete (constant image reached)
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
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Figure 3.12 2D DPT for 8-connectivity 

3.4 Chapter Summary  

In this chapter, LULU operators and DPT’s are explained and thoroughly analyzed 

and their properties are described. LULU operators are the nonlinear operators which 

have been applied recently in image processing for different applications and one of 

their well known applications is DPT. Different examples in 1D and 2D are given in 

order to clarify their implementation in signal and image processing.  

   

D1 D1

1 0 1 1 1 1 0 1 1 1
1 0 1 1 0 1 0 1 1 0
0 0 1 1 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0
1 0 1 0 1 1 0 1 0 1

local maximum sets local minimum sets

D2 D2

1 0 1 1 1 0 0 1 1 1
1 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 0 0 1 1 1 0
1 0 1 0 1 1 0 1 0 1

local maximum sets local minimum sets - none

D3 until D7 D3 until D7

0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1

local maximum sets - none local minimum sets - none

D8 D8

0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1 1
0 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1

local maximum sets - none local minimum sets - none

Decomposition complete (constant image reached)
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



CHAPTER 4 

SFF USING LULU AND DPT 

4.1 Introduction 

In this thesis, we propose a new shape from focus method. The method is based on 

LULU filters and Discrete Pulse Transform in determining the frame number with the 

best focus with respect to particular pixel in the image. Up to date, the best frame 

number is selected according to the best maximum focus value for each pixel along all 

the frames. This is due to the characteristic of SFF which calculates the depth based 

on focused values. 

 The proposed technique is also implemented as a combination between LULU 

operators and the existing SFF methods including Sum Modified Laplacian (SML), 

Tenenbaum and Gray Level Variance (GLV). These methods are selected because 

they are the most widely used SFF methods. The performances of these combinations 

are tested with images corrupted with impulse, Gaussian and speckle noise. The 

reconstructed depth map is compared with the original data by using different image 

quality matrices, like Peak Signal to Noise Ratio (PSNR) and Root Mean Square 

Error (RMSE). 

4.2 The Modified LULU Focus Measure (MLULU) 

This algorithm is an extension of 2D LULU operators applied in 2D or 3D 

neighborhood.  

The algorithm can be described as follow: 
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4.2.1 Step 1: MLULU Algorithm  

Apply LULU operators in 2D or 3D neighborhood on each frame. The neighboring 

area can be defined in different ways, as it is explained below.  

2D neighborhood means to apply LULU operators on each frame separately, 

regardless of the frames before and after. This is shown in Equation 3.3 to Equation 

3.8 and Figure 3.3.                   

Derived from Equation 3.7 and Equation 3.8, we can apply L and U operators on 

each frame, which are actually L3 and U3 due to considering only four pixels in each 

sub-neighborhood. Hence, for applying LU, we shall first apply L3 and then apply U3 

on the obtained result of L3, and vice versa for UL. But if we need to apply LUL, ULU, 

LULU or ULUL, we need to expand the window size because they are actually 

referring to L3U3L8, U3L3U8, L3U3L8U8 and U3L3U8L8. For example, for applying 

LULU filter on a single image, firstly we apply L3, followed by U3 and next we apply 

L8 and then U8 as illustrated in Figure 4.1. As it is shown in Figure 4.1, the sub-

window size will increase to; 

 

𝐴𝐴′ = � 𝑋𝑋
(𝑖𝑖 − 1, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 − 2, 𝑗𝑗),

𝑋𝑋(𝑖𝑖 − 2, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 − 2, 𝑗𝑗 − 2),𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗 − 2),𝑋𝑋(𝑖𝑖, 𝑗𝑗 − 2)� ;                   (4.1)                                                                            

𝐵𝐵′ = � 𝑋𝑋
(𝑖𝑖 − 1, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖 − 2, 𝑗𝑗),

𝑋𝑋(𝑖𝑖 − 2, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖 − 2, 𝑗𝑗 + 2),𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗 + 2),𝑋𝑋(𝑖𝑖, 𝑗𝑗 + 2)� ;                  (4.2)                                                   

 𝐶𝐶′ = � 𝑋𝑋
(𝑖𝑖, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖, 𝑗𝑗 + 2),

𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗 + 2),𝑋𝑋(𝑖𝑖 + 2, 𝑗𝑗 + 2),𝑋𝑋(𝑖𝑖 + 2, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖 + 2, 𝑗𝑗)� ;                  (4.3)               

𝐷𝐷′ = � 𝑋𝑋
(𝑖𝑖, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 2, 𝑗𝑗),

𝑋𝑋(𝑖𝑖 + 2, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 + 2, 𝑗𝑗 − 2),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗 − 2),𝑋𝑋(𝑖𝑖, 𝑗𝑗 − 2)� ;                  (4.4)          
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Subsequently, the L and U formula becomes: 

𝐿𝐿 (𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑖𝑖𝑛𝑛(𝐴𝐴′),𝑚𝑚𝑖𝑖𝑛𝑛(𝐵𝐵′),𝑚𝑚𝑖𝑖𝑛𝑛(𝐶𝐶′),𝑚𝑚𝑖𝑖𝑛𝑛(𝐷𝐷′)�;                         (4.5)                 

𝑈𝑈 (𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴′),𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵′),𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶′),𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷′)�;                       (4.6)    

It is necessary to mention that higher orders of LULU operators can be performed 

by increasing the sub-neighbors window size. However, to avoid blurring the image, 

we applied until  L3U3L8U8 and U3L3U8L8.   

 

 
Figure 4.1 2D neighborhood for L3U3L8U8 

 

For 3D neighborhood the neighborhood's window around each pixel is different. 

It means that LULU value for each pixel does not only depend on its neighbors of the 

same frame but also on the neighbors of the frames before and after. Therefore the 

neighborhood is a 3D one as it is shown in Figure 4.2. 
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Figure 4.2 3D neighborhood of window size  3 × 3 for pixel "X" 

 
 

With the new 3D neighborhood defined around a pixel "X" as shown in Figure 

4.2, the sub-windows are defined as in Figure 4.3. 
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Figure 4.3 3D neighborhood for pixel "X" 

 

Based on Figure 4.3, the sub-windows equations are as follow: 

𝐴𝐴′′ = [𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗 − 1),𝑋𝑋−1(𝑖𝑖, 𝑗𝑗),𝑋𝑋+1(𝑖𝑖, 𝑗𝑗)];      (4.7)    

𝐵𝐵′′ = [𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖 − 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖, 𝑗𝑗 + 1),𝑋𝑋−1(𝑖𝑖, 𝑗𝑗),𝑋𝑋+1(𝑖𝑖, 𝑗𝑗)];       (4.8) 

𝐶𝐶′′ = [𝑋𝑋(𝑖𝑖, 𝑗𝑗 + 1),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗 + 1),𝑋𝑋−1(𝑖𝑖, 𝑗𝑗),𝑋𝑋+1(𝑖𝑖, 𝑗𝑗)];      (4.9)  

𝐷𝐷′′ = [𝑋𝑋(𝑖𝑖, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖, 𝑗𝑗),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗 − 1),𝑋𝑋(𝑖𝑖 + 1, 𝑗𝑗),𝑋𝑋−1(𝑖𝑖, 𝑗𝑗),𝑋𝑋+1(𝑖𝑖, 𝑗𝑗)];   (4.10)   
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The formulas for L and U are the same as Equation 4.5 and Equation 4.6. Instead 

of A, B, C and D, we substitute A′′, B′′, C′′ and D′′.  

In the Equations 3.3-3.6, Equations 4.1-4.4 and Equations 4.7-4.10, it is obvious 

that the LULU operators detect the peaks and valleys in each sub-window. These 

operations illustrate that when we apply L or U based on Equation 4.5 to Equation 

4.6, they minimize noise in each region by eliminating the very high or very low 

intensities and ensure a smooth focus measure in the presence of noise.  

Smoothing characteristic of LULU operators plays a very important role in focus 

measurement. For images corrupted with noise, the noise value is wrongly interpreted 

as focused value. However, the focus value should be at least similar to few 

neighboring pixels, because in each frame, the focusing part is not a point. Rather it 

refers to a small part, tiny group of pixels, near each other. Based on the concept of 

focusing, it is obvious that high frequencies may be chosen as the focused values 

which are in fact the noise values. 

 

4.2.2 Step 2: MLULU Algorithm  

After applying LULU operators in step 1, substitute each pixel's intensity by its 

LULU value. For reconstructing the 3D shape, select the maximum value for each 

pixel along all frames as shown in Figure 4.4. 
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Figure 4.4 Choosing the maximum value along all frames 

 

Figure 4.4, illustrates the sequence of frames for calculating the focused frame for 

pixel 𝑋𝑋 among all the frames for pixel (𝑖𝑖, 𝑗𝑗). As a result, the output of SFF is two 2D 

matrices; maximum intensity and corresponding frame index. Maximum intensity 

holds the best focus value for each one of the pixels, and corresponding frame index 

holds the resultant frame number where the pixel is best focused [4].  

[𝑀𝑀𝑚𝑚𝑚𝑚 𝐼𝐼𝑛𝑛𝑖𝑖𝐼𝐼𝑚𝑚(𝑖𝑖, 𝑗𝑗),𝑀𝑀𝑚𝑚𝑚𝑚 𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖𝐼𝐼𝐼𝐼(𝑖𝑖, 𝑗𝑗)] = max[𝑘𝑘𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈(𝑖𝑖, 𝑗𝑗)]              (4.11)  

Where k refers to the frame number, which varies from 1 to last frame number. 

These two matrices provide the depth map of the object. 

After implementing LULU and getting an initial estimation of the best focusing 

frame for each pixel in the image, we propose the use of a modified version of DPT 

for further improvement on depth map. 
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4.3 The Modified DPT Focus Measure (MDPT) 

The main concept behind this algorithm is to reconstruct the 3D shape based on the 

very high frequencies of the image which are the focused pixels. DPT decomposes the 

image into many pulses and each object in the image can have a specific number of 

pulses. For detecting the object, we shall find out the range of pulses and eliminate 

other pulses from the image. We use this concept of pulses in SFF. The focused parts 

of the images can be selected by choosing the correct pulses. 

In this proposed Focus Measure (FM), we apply DPT on each frame based on 

Equation 3.11. Since LULU operators are only applied up to L3, U3, L3U3, U3L3, 

L3U3L8, U3L3U8, L3U3L8U8 and U3L3U8L8, therefore the DPT operators are also 

limited as it is shown in Table 4.1. 

 

Table 4.1 DPT operators for SFF 

LULU Operator DPT Operator 

L3 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − L3)(𝑓𝑓) 

U3 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − U3)(𝑓𝑓) 

L3U3 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − L3U3)(𝑓𝑓) 

U3L3 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − U3L3)(𝑓𝑓) 

L3U3L8 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − L3U3)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 − L3U3L8)   ⃘ 𝑄𝑄3)(𝑓𝑓) 

U3L3U8 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − U3L3)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 − U3L3U8)   ⃘ 𝑄𝑄3)(𝑓𝑓) 

L3U3L8U8 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − L3U3)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 − L3U3L8U8)   ⃘ 𝑄𝑄3)(𝑓𝑓) 

U3L3U8L8 𝑓𝑓 = (𝑖𝑖𝑖𝑖 − U3L3)(𝑓𝑓) + ((𝑖𝑖𝑖𝑖 −  U3L3U8L8)   ⃘ 𝑄𝑄3)(𝑓𝑓) 
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 Where f refers to DPT values, id is the original pixel value and Q3 refers to the 

DPT value of the third order operators, which are (id − L3)(f), (id − U3)(f), (id −

L3U3)(f) or (id − U3L3)(f) in this work. 

In this work, we considered the first two pulses in images which are D3 and D8 to 

detect the focused values.  

 

4.4 MLULU Cascaded with Other Techniques  

In addition to the original form of the MLULU, this method can be used in cascade 

with other methods such as SML, Tenenbaum (TEN) or GLV for further 

improvement on depth map estimation. The procedure is same as with MLULU alone, 

and the only difference is to replace each frame with its LULU values and then 

implement it with the second operator (SML, TEN or GLV). This combination 

produces accurate sharpness detection estimation in the presence of noise.  

This algorithm is implemented as follow: 

Step 1) Apply LULU operators in 2D or 3D neighborhood on each frame.  

Step 2) Process the output of step 1 with SML/GLV/TEN FM in 2D 

neighborhood.  

Step 3) Calculate the maximum index for each pixel along all the frames. 

Step 4) Build up the 3D shape out of step 3 output. 

Other combinations, like swapping step 1 and step 2 or adding more LULU stages 

may improve the accuracy but at the expense of higher computational load.  

 



 

46 

 

4.5 Chapter Summary 

In this Chapter LULU and DPT for a 3D shape recovery application, are described. 

Furthermore, LULU operators are combined with the existing techniques to increase 

the 3D shape recovery accuracy. In the combination of LULU with other techniques, 

LULU is considered as a pre-processing that helps in removing part of the noise and 

giving initial estimation of depth map, whereas the combined technique helps in 

refining the obtained results.  

 

 

  



CHAPTER 5 

RESULT AND DISCUSSION 

5.1 Introduction 

Different objects have been chosen to be studied in this work. Simulation has been 

performed using two different quality measures; RMSE and PSNR to compare 

proposed methods with SML, GLV and TEN for different types of noises. For the 

purpose of comparison seven test sequences are used, including both the simulated 

and real objects, i.e. simulated cone, simulated slope, simulated cosine, real cone, real 

coin, real LCD and real plane, as shown in APPENDIX B. In total, seven objects are 

evaluated; three simulated objects and four real objects.  

5.2 Test Images 

The test objects are chosen from different textures with different level of details. Coin 

and cosine carry good amount of details. These high textured images are good SFF 

images which help to test the outcomes of focusing. Slope and plane have poor 

uniformed texture. Cone is a dense textured object and it is considered as medium 

level of details, but Liquid Crystal Display (LCD) image has low level of details and 

variance and it is a microscopic image. The resolution is 360 × 360 × 97 for 

simulated and real data Cone, 320 × 320 × 60 for Slope and Cosine objects, 

300 × 300 × 68 for Coin, 300 × 300 × 60 for LCD and 200 × 200 × 87 for Plane. 

More explanation about the test images are given in APPENDIX B.   
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5.3 Experimental Results 

The seven different test objects are considered in the presence of impulse noise, 

Gaussian noise and speckle noise. Each noise is evaluated with three different noise 

density/variance values, which are; 0.005, 0.05 and 0.5. The results of the proposed 

methods are compared with SML, GLV and TEN techniques. These techniques were 

explained in Chapter 2.  

In general, all the results obtained for each object are compared qualitatively and 

quantitatively with SML, the GLV and TEN. This comparison is done qualitatively 

and quantitatively.  

5.3.1 Metric Measures 

The subjective image quality assessment is ideal for assessing the quality of images 

and videos. It reflects subjective analysis of the quality of an image or video as most 

of the people commonly perceive. However, it has some critical constraints, i.e. a 

large number of images and tests are required. Therefore, the objective image quality 

assessment is preferred in practical situations and thus has been widely investigated 

[44]. Different image quality measures have been proposed for assessment of the 

methods. Among the widely used metrics are the root mean square error (RMSE), 

peak signal to noise ratio (PSNR), mean absolute error (MAE), correlation and some 

newly introduced methods like structural similarity (SSIM), phase quantization code 

(PQC) [45], contourlet structural similarity (CSSIM) [46] and singular value 

decomposition (SVD) [47]. For their simplicity and less computational complexity, 

the RMSE and PSNR are used in this research to assess the performances of the 

different techniques.  

A. RMSE 

RMSE is one the most famous quality assessment methods. It is easy to compute, has 

understandable physical meaning and enjoys mathematical convenience in the context 

of optimization [48]. The MSE is the second moment of the error. It simply measures 

the average of the squares of the errors. The error indicates the intensity variation 
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between two images which needs to be compared. It estimates the total difference 

between the ground truth and the studied image. Equation (5.1) shows the formula for 

RMSE. 

RMSE = �
1

XY
��|f(x, y) − g(x, y)|2

Y−1

Y=0

X−1

X=0

                             (5.1) 

                           

B. PSNR 

PSNR is commonly used in image quality measures. It is defined in logarithmic scale, 

therefore provides a large dynamic scale. PSNR is easy to calculate and has low 

computational complexity. PSNR is a ratio of the highest intensity of a signal to the 

RMSE. The PSNR tends to move to infinity as the RMSE moves toward zero, and 

consequently a higher PSNR value presents a higher image quality but a small value 

of the PSNR means that there is a high numerical differences between images [49]. 

PSNR value presents a good assessment of the image quality when the features of 

image, like its signal variations, tend to get lost in a sea of random variations when the 

noise variance increases [50]. Equation (5.2) shows the formula for PSNR, where 

MAXI refers to the maximum possible pixel value in the image and MSE is square 

value of the Equation (5.1) [51]. 

 

PSNE = 10. log10 �
MAXI

2

MSE
�                                          (5.2) 
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5.3.2 Results 

This section shows the result for the proposed methods which are described in 

Chapter 4 and comparison is provided both qualitatively and quantitatively with SML, 

GLV and TEN. The 3D recovered shapes for the seven objects in the presence of 

various types of noise are shown in this section.  

Three noise levels are used for experiments, i.e., high (noise 

density/variance=0.5), medium (noise density/variance=0.05) and low (noise 

density/variance=0.005). Figure 5.1 illustrates the performance of SML, TEN, GLV, 

MDPT and MLULU Focus Measures (FM's) for simulated cone object in the presence 

of impulse noise with the noise density (ND) of 0.5.  

 

 
Figure 5.1 Simulated Cone in the presence of impulse noise with noise density of 0.5; 

(a) Ground truth, (b) SML focus measure, (c) TEN focus measure, (d) GLV focus 
measure and (d) MLULU focus measure  
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In Figure 5.2, the performance of MLULU is compared with other three methods 

in the presence of impulse noise with noise density of 0.05 for real LCD.  

 

Figure 5.2 Real LCD in the presence of impulse noise with noise density of 0.05; (a) 
Ground truth, (b) SML focus measure, (c) TEN focus measure, (d) GLV focus 

measure and (d) MLULU focus measure 

In general, proposed focus measure performs well in the presence of impulse 

noise as is evident from Figure 5.1 and Figure 5.2. MLULU FM removes the locally 

occurring hills and valleys of signals and images. It is clear that in the presence of 

impulse noise, the other focus measures (FMs) are not performing well and the 3D 

shape reconstructed based on them is not clear at all. Their result is a set of noisy data 

which does not show anything similar to the object. This is true for high noise density 

(0.5) as well as medium noise density (0.05) levels. But the 3D shape reconstructed 

based on MLULU FM is clear and shows the shape at three noise levels. The 

quantitative result for simulated cone is provided in Table 5.1 and Figure 5.3 and 

Figure 5.4. 



 

52 

 

 
Table 5.1 MLULU and DPT performance in the presence of impulse noise for 

simulated cone object 
Noise Density Focus measure (FM) RMSE PSNR 

0.5 

MLULU 15.69 24.21 
MDPT 28.74 18.99 
SML 32.01 18.02 
GLV 22.37 21.13 
TEN 25.24 20.09 

0.05 

MLULU 12.12 26.46 
MDPT 17.09 23.47 
SML 29.34 19.49 
GLV 14.8 24.72 
TEN 12.13 26.46 

0.005 

MLULU 15.01 24.55 
MDPT 17.32 23.47 
SML 27.04 19.49 
GLV 9.71 28.38 
TEN 8.55 29.49 

 

 

 
Figure 5.3 RMSE comparison between different methods for simulated cone object in 

the presence of impulse noise 
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It is clear in Figure 5.3 that MLULU is performing better than SML and MDPT in 

general and at high and medium impulse noise levels, its performance is better than 

all focus measures. This is also evident from Figure 5.4. 

 

 
Figure 5.4 PSNR comparison between different methods for simulated cone object in 

the presence of impulse noise 

 

In Figure 5.5 and Figure 5.6, we show the comparison between MLULU, SML, 

GLV and TEN for Gaussian and speckle noises. We illustrate that MLULU is not 

only a good focus measure in the presence of impulse noise, but its performance is 

comparable in the presence of other types of noise like speckle and  Gaussian. In 

Figure 5.5, MLULU method is performing better than other methods in the presence 

of Gaussian noise with variance (V)=0.5.  
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Figure 5.5 Coin in the presence of Gaussian noise with mean value of 0 and variance 
of 0.5; (a) Ground truth, (b) SML focus measure, (c) TEN focus measure, (d) GLV 

focus measure and (d) MLULU focus measure 

 

Figure 5.5 shows that SML, GLV and TEN focus measurement techniques failed 

totally in recovering the 3D shape of coin object, their result show nothing similar to 

the ground truth but MLULU can recover a shape similar to the ground truth. 

Similarly in Figure 5.6, the good performance of MLULU can be seen. In Figure 5.6. 

the other methods show noisy result and the 3D shape is not clearly recovered but 

MLULU managed to reconstruct it well. 
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Figure 5.6 LCD in the presence of speckle noise with noise density of 0.5; (a) Ground 

truth, (b) SML focus measure, (c) TEN focus measure, (d) GLV focus measure and 
(d) MLULU focus measure 

 

From Figure 5.6, it is obvious that MLULU performance is comparable with other 

focus measures in the presence of speckle noise.  
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5.3.3 Cascading proposed method with other FMs 

In this section, we cascade the proposed focus measure based on MLULU with 

existing focus measures, i.e., MLULU+SML, MLULU+GLV and MLULU+TEN. 

Figure 5.7 demonstrates the result of combining MLULU with other focus measuring 

techniques.  Figure 5.7 is showing the simulated cone object with three levels of 

impulse noise and each cascading option is compared with the existing focus measure, 

i.e., SML, GLV and TEN. The improvement in the 3D shape recovery is due to dual 

performance of MLULU, i.e., noise reduction and focused points extraction. 

 
Figure 5.7 (a) Ground truth of Simulated Cone, (b) TEN focus measure result in the 

presence of impulse noise with noise density of 0.5, (c) MLULU+TEN focus measure 
result in the presence of impulse noise with noise density of 0.5, (d) GLV focus 
measure result in the presence of impulse noise with noise density of 0.05, (e) 

MLULU+GLV focus measure result in the presence of impulse noise with noise 
density of 0.05, (f) SML focus measure result in the presence of impulse noise with 

noise density of 0.005 and (g) MLULU+SML focus measure result in the presence of 
impulse noise with noise density of 0.005 
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The quantitative comparison for cascaded option is shown in Table 5.2 which 

clearly illustrates that cascading proposed Focus Measure with existing ones gives 

good results.  

 

 
Table 5.2 Cascaded methods performance in the presence of impulse  

noise for simulated cone object 
Noise density Focus measure (FM) RMSE PSNR 

0.5 

SML 35.02 18.02 
MLULU+SML 38.22 16.48 
GLV 22.38 21.13 
MLULU+GLV 17.62 23.21 
TEN 25.24 20.09 
MLULU+TEN 10.9 27.38 

0.05 

SML 29.33 18.78 
MLULU+SML 7.89 30.18 
GLV 14.80 24.72 
MLULU+GLV 7.75 30.35 
TEN 12.13 26.46 
MLULU+TEN 7.75 30.34 

0.005 

SML 27.04 19.49 
MLULU+SML 7.89 30.19 
GLV 9.71 28.39 
MLULU+GLV 7.75 30.33 
TEN 8.55 29.49 
MLULU+TEN 7.68 30.42 

 

The results in Table 5.2 show the improvement for each focus measure technique 

after cascading it with MLULU. The only failure of the cascading methods is at high 

level of noise (ND=0.5) for SML technique because second derivative is very 

sensitive to noise. APPENDIX C shows qualitative results for various objects and 

different noise levels.  
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Some of the results for each one of the seven different objects which are 

experimented with proposed focus measure are shown in APPENDIX C. The 

cascaded methods show better result as it is shown for all the objects in the figure. For 

example for  plane object, TEN is not performing well in the low density speckle 

noise, but when it is cascaded with MLULU, the result is very clear. Cosine object in 

the present of Gaussian noise (variance=0.005) can be well reconstructed if GLV is 

cascaded with MLULU, otherwise the GLV result is not similar to the cosine object at 

all. LCD object which is a microscopic image can be nicely reconstructed and similar 

to the original ground truth with MLULU+GLV even when there is impulse noise 

with medium level of noise. The cascaded options give good results for Gaussian and 

speckle noise too as shown in Table 5.3 and Table 5.4. 

 

Table 5.3 Cascaded methods performance in the presence of Gaussian 
noise for simulated cone object 

Variance Focus measure (FM) RMSE PSNR 

0.5 

SML 34.46 17.52 
MLULU+SML 29.93 18.61 
GLV 34.33 17.42 
MLULU+GLV 27.44 19.36 
TEN 31.73 18.10 
MLULU+TEN 28.52 19.03 

0.05 

SML 33.94 17.52 
MLULU+SML 13.50 25.53 
GLV 16.87 23.59 
MLULU+GLV 8.10 29.96 
TEN 9.61 28.48 
MLULU+TEN 8.44 29.60 

0.005 

SML 23.00 20.90 
MLULU+SML 7.97 30.10 
GLV 8.32 29.73 
MLULU+GLV 7.73 30.36 
TEN 8.21 29.84 
MLULU+TEN 7.68 30.41 
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Table 5.4 Cascaded methods performance in the presence of speckle  
noise for simulated cone object 

Noise density Focus measure (FM) RMSE PSNR 

0.5 

SML 27.48 19.35 

MLULU+SML 13.01 25.79 

GLV 8.23 29.82 

MLULU+GLV 7.77 30.36 

TEN 8.22 29.84 

MLULU+TEN 7.91 30.07 

0.05 

SML 20.57 21.86 

MLULU+SML 7.96 30.11 

GLV 8.26 30.12 

MLULU+GLV 7.75 30.33 

TEN 8.18 30.21 

MLULU+TEN 7.70 30.41 

0.005 

SML 8.28 29.77 

MLULU+SML 7.89 30.19 

GLV 8.34 30.35 

MLULU+GLV 7.75 30.34 

TEN 8.26 30.44 

MLULU+TEN 7.65 30.45 

 

 

 

 



 

60 

 

5.4 Chapter Summary 

In this chapter, the proposed 3D shape recovery techniques are applied on eight 

different SFF test objects individually and in combination with SML, GLV and TEN. 

The test objects are chosen from different textures in real and simulated data. The 

experiments are repeated in the presence of three different image noises which are 

impulse, Gaussian and speckle noises.  Each noise experiment is considered ten times 

to provide a more accurate result. Achieved results are analyzed quantitatively and 

qualitatively with the original ground truth of each object to prove the accuracy of 

them. Although, the proposed techniques perform well in the presence of noise, 

however, the improvement comes at the cost of higher computational complexity. 

 

 

 



CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion  

In this thesis, we discussed the LULU operators and the concept of DPT based on 

LULU operators. LULU operators are nonlinear rank selector operators that are 

efficient with low complexity. They hold consistent separation, total variation and 

shape preservation properties. DPT is a transform that decomposes image into pulses. 

These two methods are implemented for 1D sequences as well as 2D arrays (images) 

for different applications. LULU is already being used widely in filtering and 

smoothing operations especially in econometrical and statistical literatures. Now, 

many researchers are employing LULU and DPT for image analysis too. DPT is a 

very efficient operator for multi-dimensional arrays unlike median operator. It is one 

of the best filtering methods for removing impulse noise from images as well as 1D 

sequences. Now, it is also being used for edge detection and contour tracing for object 

detection and object extraction applications. We have proposed to use LULU and 

DPT for 3D applications, i.e., depth map estimation, 3D shape extraction etc. 

The most challenging concern in 3D shape extraction is the roughness of the 

surfaces. Image focusing is one of the principal schemes of 3D shape reconstruction. 

The shape from focus (SFF) is one of the best shape recovery methods which 

reconstructs the 3D shape from sequence of 2D images taken from same angle. The 

existing focus measures perform well in noiseless environments but their performance 

deteriorates in noisy environments. During image acquisition process, Gaussian noise 

is present. In addition, based on the environment condition and the camera, speckle 

noise and impulse noise may also be present. Presence of these types of noise in the 

image destroys the focus information, especially sharpest pixel values. Hence, the 

algorithms computing the best focus values fail in such a situation. This problem can 

be explained due to the reason that noise removal does not inherently exist in them 
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and because the existing techniques are based on variance and derivatives. Therefore, 

disability of the existing methods calls for a new technique which can perform well 

even in noisy environments. 

In this thesis, new focus measures are proposed and tested for 3D shape recovery 

based on LULU operators and DPT. The proposed techniques are implemented on 

seven simulated and real data objects. The test objects are chosen from different 

textures with different level of details to verify the proposed techniques for different 

conditions. The proposed techniques are also cascaded with the existing SFF methods, 

i.e., Sum Modified Laplacian (SML), Tenenbaum (TEN) and Gray Level Variance 

(GLV). The experiments are repeated in the presence of impulse, Gaussian and 

speckle noise for 3D shape recovery. Each noise is evaluated in three different noise 

levels, which are; low noise density/variance (0.005), medium noise density/variance 

(0.05) and high noise density /variance (0.5). 

In general, all the results obtained for each object are compared qualitatively and 

quantitatively with SML, the GLV and TEN. The reconstructed depth maps have been 

compared with the ground truth by using two different image quality metrics, which 

are; RMSE and PSNR.  

Based on the quantitative and qualitative experimental results, the proposed 

techniques are more accurate in focused value extraction and shape recovery in the 

presence of various types of noise. MLULU focus measure performs better than 

existing methods when the SFF data is noisy. The performance of the cascaded 

MLULU and existing methods show a good improvement in shape recovery. 

However, the performance of MDPT method can be improved by combining it with 

other approximation methods, like Gaussian interpolation and choosing proper range 

of pulses. 
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6.2 Future Work 

LULU is being used widely in filtering and smoothing operations, especially in 

econometrical and statistical applications. Recently many researchers are 

implementing LULU and DPT for image analysis as well. In the future, the proposed 

techniques based on LULU operators and DPT can be tested in various applications 

like 3D shape extraction, microscopic applications [52], communication [53], medical 

imaging [54] and [55], etc.  
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APPENDIX A 

In Table A.1, M is the median, I is the identity operator, C and F are, respectively, the 

ceiling (biased towards lower limits) and floor (biased towards upper limits)  LULU 

operators. 

 
Table A.1 Some of the properties of LULU operator 

 

Property Comment 

L ≤ I ≤ U I represents identity operator 

L2=L, U2=U  Repetition of same operator would not affect 

the result 

L ≤ M ≤ U M denotes the median operator 

(LUL)2= LUL, (ULU)2= ULU [56] Repetition of same operator would not affect 

the result 

LUL≤ULU [56] LUL due to applying L operator twice in 

different orders makes the result smaller than 

ULU which applies the U operator  more 

(LU)2= LU, (UL)2= UL [32] Repetition of same operator would not affect 

the result 

Un (x) = Ln(x)  = x  “where x is a constant sequence and x ϵMn” 

Ln ≤ UnLn ≤ Cn ≤ Fn ≤ LnUn ≤ Un 

[26] 

“The Cn and Fn operators (ceiling and floor) 

are given by: 

C0 = L0U0 = I = U0L0 = F0 

Cn+1 = Ln+1Un+1Cn;  

Fn+1 = Un+1Ln+1Fn” [26] 

UnUk = Um and LnLk = Lm [26] where m = max{n, k} [26] 

LnUn (and UnLn) are idempotent and 

co-idempotent [26] 

“A is idempotent if A2 = A and co-idempotent 

if  I - A is idempotent, therefore they are 

separators ” [26] 

 UnLn ≤  Mn ≤  LnUn [26] Mn denote the median operator of order n 

[26] 

(Mn x)i = median{ xi-n ,..., xi,..., xi+n } 
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 LnUn (and UnLn) are syntone 

operators [26] 

An operator S is syntone if x > y  Sx > Sy 

[26] 

LnUn (and UnLn) are ntp operators 

[26] 

“An operator A is neighbor trend preserving 

(ntp) if for each sequence x, 

xi  ≥xi+1  (Ax)i  ≥ (Ax)i+1 

xi  ≤xi+1  (Ax)i  ≤ (Ax)i+1” [26] 

LnUn (and UnLn) are ftp operators 

[26] 

“An operator A is fully trend preserving (ftp) 

if A is ntp and,  |(Ax)i - (Ax)i+1 | ≤ |xi - xi+1 | ” 

[27] 

Un and Ln are variation preserving A parameter expression 

that preserves orthonormality 

under variation up to n order 

The operators Ln and Un are duals in 

that Un(-x) = -Ln(x) [26] 

Negation property [26] 

Un(x+c) = Unx+c (and Ln(x+c) = 

Lnx+c) for any constant sequence c 

[26] 

Constant Shift property [26] 

Un(αx) = αUn(x) (and Ln(αx) = 

αLnx) for any α> 0 [27] 

Constant Multiple property [26] 

Fn and Cn are separators [26] “A smoother A is a separator if it is both 

idempotent and co-idempotent ” [26] 

 

 

 

 

 

 

 

 



APPENDIX B 

Simulated Cone: In this case the sequence is constructed from 97 different images 

with different focus values, with the resolution of 360 × 360. Figure B.1, illustrates 

the simulated data of the cone. It has a dense texture [4]. 

 

 
Figure B.1 Test object: simulated cone; (a) focused on the based section of the cone, 

(b) focused on the middle part of the cone and (c) focused on the apex part  

Simulated Slope: This data consist of 60 frames with the resolution of 320 ×

320. Some of the frames are shown in Figure B.2. 

 
Figure B.2 Test object: simulated slope; (a) focused on a narrow column on the left 

side, (b) focused on a narrow column in the middle of the image and (c) focused on a 
narrow column on the right side  

Simulated Cosine: Similar to slope and sine simulated data, simulated cosine also 

consists of 60 frames with the resolution of 320 × 320. Some of the frames are 

shown in Figure B.3. 
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Figure B.3 Test object: simulated cosine; (a) focused on a large circular portion, (b) 

focused on a medium cicular part and (c) focused on a small cicular region in the 
middle 

Real Cone: Real Cone object is the real data of the real cone. The resolution is 

360 × 360 and the number of images in the sequence is 97. Some frames are shown 

in Figure B.4.  

 
Figure B.4 Test object: real cone; (a) focused on the based section of the cone, (b) 

focused on the middle part of the cone and (c) focused on the apex part 

Real Coin: This data has been collected from a microscopic object with 68 

frames of 300 × 300 pixels. Figure B.5 shows different focused frames of this object. 

This object is the head of Licoln on a one penny coin which is a good sample of a 

rough texture [4]. 
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Figure B.5 Test object: real coin; (a) far sectioned is focused, (b) focused on head 

section and (c) focused on the very far points 

Real LCD: LCD is also another microscopic object which is a sequence of 60 real 

data. The resolution of the image is 300 × 300. Figure B.6 shows three of the frames 

for Thin Film Transistor-Liquid Crystal Display (TFT-LCD). 

 
Figure B.6 Test object: real LCD; (a) focused on the back part, (b) focused on the 

middle part and (c) focused on the corner parts  

Real Plane: Real Plane is the real data collected from a plane. Its SFF data 

consists of 87 frames at resolution of 200 × 200 pixels. This object is a good 

example of a poor texture and some of its different focused frames are illustrated in 

Figure B.7. 
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Figure B.7 Test object: real plane(a) far sectioned is focused, (b) focused on the 

middle section and (c) focused on the front points 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX C 

This section shows the qualitative results of cascaded techniques in the presence of 

different noises for all the test images. Following figures show the result of impulse 

noise for various objects and different noise levels. 

• Speckle noise with noise density of 0.005 
 

 
Figure C.1 Simulated cosine in the presence of speckle noise with noise density of 

0.005; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus 
measure 
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Figure C.2 Real plane in the presence of speckle noise with noise density of 0.005; (a) 

Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

 
Figure C.3 Simulated slope in the presence of speckle noise with noise density of 

0.005; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.4 Real cone in the presence of speckle noise with noise density of 0.005; (a) 

Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

• Speckle noise with noise density of 0.05 

 
Figure C.5 Simulated cosine in the presence of speckle noise with noise density of 

0.05; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.6 Simulated slope in the presence of speckle noise with noise density of 

0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.7 Simulated Cone in the presence of speckle noise with noise density of 

0.05; (a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.8 Simulated slope in the presence of speckle noise with noise density of 

0.05; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 

 
Figure C.9 Real Plane in the presence of speckle noise with noise density of 0.05; (a) 

Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
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• Speckle noise with noise density of 0.5 

 
Figure C.10 Simulated cosine in the presence of speckle noise with noise density of 
0.5; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.11 Simulated cone in the presence of speckle noise with noise density of 0.5; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.12 Simulated cosine in the presence of speckle noise with noise density of 
0.5; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 

• Impulse noise with noise density of 0.005 

 

Figure C.13 Simulated slope in the presence of impulse noise with noise density of 
0.005; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus 

measure 
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Figure C.14 Simulated cone in the presence of impulse noise with noise density of 

0.005; (a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus 
measure 

 
Figure C.15 Simulated slope in the presence of impulse noise with noise density of 

0.005; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.16 Simulated cone in the presence of impulse noise with noise density of 

0.005; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus 
measure 

 
Figure C.17 Real plane in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.18 Real cone in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.19 Real plane in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
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Figure C.20 Real LCD in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.21 Simulated cosine in the presence of impulse noise with noise density of 

0.005; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus 
measure 
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Figure C.22 Real cone in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

 
Figure C.23 Real LCD in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

 



 

87 

 

 

 
Figure C.24 Real coin in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

 
Figure C.25 Simulated cone in the presence of impulse noise with noise density of 

0.005; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.26 Real cone in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 

 
Figure C.27 Real LCD in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.28 Real coin in the presence of impulse noise with noise density of 0.005; 

(a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 

• Impulse noise with noise density of 0.05 

 

Figure C.29 Simulated slope in the presence of impulse noise with noise density of 
0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
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Figure C.30 Real cone in the presence of impulse noise with noise density of 0.05; (a) 

Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.31 Real plane in the presence of impulse noise with noise density of 0.05; 

(a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
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Figure C.32 Simulated cone in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.33 Simulated slope in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
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Figure C.34 Simulated cosine in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.35 Real cone in the presence of impulse noise with noise density of 0.05; (a) 

Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.36 Real plane in the presence of impulse noise with noise density of 0.05; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

 
Figure C.37 Simulated cone in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.38 Real LCD in the presence of impulse noise with noise density of 0.05; (a) 

Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
 

 
Figure C.39 Real coin in the presence of impulse noise with noise density of 0.05; (a) 

Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.40 Simulated slope in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
 

 
Figure C.41 Real cone in the presence of impulse noise with noise density of 0.05; (a) 

Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.42 Real plane in the presence of impulse noise with noise density of 0.05; 

(a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
 

 
Figure C.43 Simulated cone in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.44 Real LCD in the presence of impulse noise with noise density of 0.05; (a) 

Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 

 
Figure C.45 Simulated cosine in the presence of impulse noise with noise density of 

0.05; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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• Impulse noise with noise density of 0.5 

 
Figure C.46 Simulated cone in the presence of impulse noise with noise density of 

0.5; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
 

 
Figure C.47 Real plane in the presence of impulse noise with noise density of 0.5; (a) 

Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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• Gaussian noise with noise density of 0.005 

 
Figure C.48 Simulated slope in the presence of Gaussian noise with noise density of 

0.005; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus 
measure 

 
Figure C.49 Simulated cone in the presence of Gaussian noise with noise density of 

0.005; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus 
measure 
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Figure C.50 Real plane in the presence of Gaussian noise with noise density of 0.005; 

(a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
 

 
Figure C.51 Simulated slope in the presence of Gaussian noise with noise density of 

0.005; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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Figure C.52 Simulated cosine in the presence of Gaussian noise with noise density of 
0.005; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 

• Gaussian noise with noise density of 0.05 

 

Figure C.53 Simulated slope in the presence of Gaussian noise with noise density of 
0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 
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Figure C.54 Simulated cosine in the presence of Gaussian noise with noise density of 
0.05; (a) Ground truth, (b) GLV focus measure and (d) MLULU+GLV focus measure 

 
Figure C.55 Simulated cone in the presence of Gaussian noise with noise density of 

0.05; (a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.56 Real plane in the presence of Gaussian noise with noise density of 0.05; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 

 
Figure C.57 Real coin in the presence of Gaussian noise with noise density of 0.05; 

(a) Ground truth, (b) SML focus measure and (d) MLULU+SML focus measure 
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Figure C.58 Simulated slope in the presence of Gaussian noise with noise density of 
0.05; (a) Ground truth, (b) TEN focus measure and (d) MLULU+TEN focus measure 
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