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ABSTRACT 
 
     The last half century has seen an increase in the use of fiber composites in 

many areas. One such class of composites is Short Fiber Reinforced Thermoplastics 

(SFRT), well known for their versatility in various applications. However, the 

physical properties of the finished molding are highly dependent upon the fiber 

orientation, which in turn is heavily influenced by the processing conditions. It is 

thus of interest to model the mold-filling process and compute the resulting fiber 

orientation due to the flow field that develops within the mold. This was done in this 

research in three stages. In the first stage, the mold-filling flow was modeled as a 

non-isothermal, incompressible, non-Newtonian fluid in a three-dimensional flow. 

The flow equations were solved numerically using the commercial Computational 

Fluid Dynamics (CFD) code, FLUENT 6.3. The simulation setup was validated by 

means of comparison with a numerical test case from literature. In the second stage, 

the fiber orientation evolution equation was discretized and numerically solved in 

Matlab, utilizing coefficients obtained from data imported from FLUENT. The third 

stage included a comparison of the performances of three closure models; linear, 

quadratic and hybrid, used to complete the fiber orientation evolution equation. The 

experimental data set was obtained from literature and it consisted of fiber 

orientation measurements from an injection molded, film-gated rectangular strip. For 

all three closure models, the dominant orientation component was directed along the 

flow direction – the a11 orientation tensor. The numerically computed a11 orientation 

tensor produced results which agreed well with the experimental data where the 

typical deviation range observed was about 45%. For the non-dominant components: 

a22, a33 and a13 the simulation results demonstrated better agreement with the 

experimental data set, however there was a broader range of deviation among the 

three closures than was observed with the a11 component. From an analysis of the 

deviation trends for all three closure models, it was concluded that for the film-gated 

mold geometry simulated here, the linear closure model performed best. 

A qualitative comparison of the numerical and experimental data trends showed that  
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the hybrid closure model demonstrated over-prediction of the a11 orientation in 

regions of high shear rate in the flow. In regions of low shear rate, near the mid-

plane of the flow, all three models demonstrated significant under-prediction of the 

a11 orientation. The highest degree of agreement between the numerically obtained 

a11 orientation and experimental data occurred in regions of high shear for all three 

closures. From the analyses performed it is clear that the simulation results were in 

qualitative agreement with the experimental data. Nevertheless the observed 

deviations between simulation and experiment highlight the importance of coupling 

effects between the fluid momentum and fiber orientation as well as the necessity of 

accurate closure models. 
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ABSTRAK 

 
Penggunaan komposit gentian dalam pelbagai bidang telah melihat peningkatan 

dalam lima dekad akhir abad ke-20. Salah satu kelas komposit gentian ini ialah 

komposit gentian halus, yang secara umumnya diketahui mempunyai aplikasi yang 

meluas. Walau bagaimanapun, sifat fizikal komposit yang dihasilkan sangat 

bergantung kepada orientasi gentian halus dalam komposit tersebut. Orientasi 

gentian ini pula mengalami perubahan yang bergantung kepada keadaan di dalam 

acuan sewaktu pemprosesan. Oleh yang demikian, keadaan ini telah merangsang 

kajian untuk menghasilkan model bagi meramal perubahan orientasi gentian halus 

yang berlaku semasa pemprosesan berlangsung. Dalam thesis ini, kajian dijalankan 

dalam tiga peringkat. Pertama, aliran bahan cair di dalam acuan dimodelkan sebagai 

bendalir yang mampat, bukan Newtonian dan mengalami perubahan suhu. Simulasi 

ini dijalankan untuk geometri tiga-dimensi menggunakan perisian komersial iaitu 

FLUENT 6.3 dan dibandingkan dengan hasil dari kajian lain untuk menguji 

ketepatan simulasi tersebut. Kedua, persamaan matematik yang menggambarkan 

perubahan orientasi gentian halus diselesaikan secara numerik dalam perisian 

Matlab, menggunakan data yang diperolehi daripada simulasi FLUENT. Tahap 

ketiga kajian ini melibatkan perbandingan antara model ‘closure’ yang digunakan 

untuk melengkapkan persamaan orientasi tersebut. Tiga model ‘closure’ yang 

dibincangkan dalam tesis ini ialah model linear, kuadratik dan hibrid. Data 

eksperimen yang membolehkan perbandingan antara tiga model tersebut diperolehi 

daripada kajian lepas yang telah diterbitkan. Data ini mengandungi bacaan 

eksperimen untuk empat komponen orientasi untuk komposit yang dibentuk dalam 

acuan segi-empat. Bagi kesemua model ‘closure’ yang diuji, komponen a11 iaitu 

komponen orientasi yang dominan menghasilkan trend yang menyerupai data 

eksperimen. Bagi komponen orientasi yang bukan dominan pula: a22, a33 dan a13 data 

yang diperolehi turut menyerupai data eksperimen. Bagaimanapun, bagi ketiga-tiga 

model ‘closure’, perbezaan antara trend yang diperoleh agak ketara berbanding trend 

yang diperolehi untuk komponen a11. Daripada analisis yang dijalankan, model linear 
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dilihat sebagai model ‘closure’ yang menghasilkan prestasi yang paling baik 

secara keseluruhan. Model hibrid pula meramalkan nilai a11 yang lebih tinggi 

daripada nilai eksperimental dalam bahagian aliran yang mempunyai stres bendalir 

yang tinggi. Di bahagian yang mempunyai stres bendalir yang rendah seperti di 

tengah-tengah acuan, kesemua model ‘closure’ menghasilkan nilai a11 yang lebih 

rendah berbanding data eksperimen. Persamaan antara data numerik dan eksperimen 

dilihat lebih ketara di bahagian aliran yang mempunyai stres bendalir yang tinggi. 

Analisis yang menyeluruh menemui bahawa simulasi yang dijalankan menghasilkan 

data yang mirip dengan data eksperimen. Bagaimanapun, perbezaan antara kedua-

dua set data ini turut menonjolkan kepentingan menghubungkan momentum bendalir 

dengan orientasi gentian serta keperluan untuk model ‘closure’ yang tepat. 
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction 

In the last fifty years, composites have found applications in diverse areas ranging 

from military applications and high-end sports equipment to relatively mundane 

household items such as chair seats. A composite may be described as a combination 

of two or more materials, where one material acts as a suspending matrix and the 

others are reinforcing particles embedded within. One such class of composites is 

short fiber reinforced thermoplastics (SFRTs), where a polymer matrix provides the 

binding medium, and the short fibers provide the reinforcement. Typical examples of 

short fibers used in the industry are glass, boron and graphite fibers. The commercial 

interest surrounding SFRTs stem from the fact that they are lightweight, provide 

attractive strength-to-weight ratios, and are resistant to chemical attacks and high 

temperatures [1]. Nevertheless, a significant problem emerges as the mechanical and 

thermal properties of SFRTs are highly anisotropic, depending heavily upon the 

direction of fiber alignment [2, 3]. Typically, the material stiffness and strength are 

greater in the direction of fiber alignment, as compared to across it [2]. Therefore, 

during processing, it is crucial to ensure that the composite has the bulk of its fibers 

aligned in the desired direction. Section 1.1 presents the empirical observations of 

the fiber orientation behaviour during mold-filling, and lays the background work of 

the model formulation to describe fiber orientation. Previous simulation findings are 

also discussed. Section 1.2 presents the research problem statement; Section 1.3 lists 

the research objectives, and Section 1.4 defines the research scope.  
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1.1 Background 

Injection molding is one of the widely used methods for the mass-manufacturing of 

SFRTs [1]. Polymer pellets are fed into the hopper where the motion of the rotating 

screw and external heat supplied melt the polymer. The short fibers are added and 

mixed in a hopper together with the molten polymer melt before being injected at 

high pressure into the cold mold. A schematic of an injection molding machine is 

shown in Figure 1.1. 

 

 

 

 

 

 

 

Single or multiple injection points may be used, and the molds may be designed 

with single or multiple cavities [1]. Once the mold is filled, the polymer – fiber melt 

is allowed to cool and solidify before the finished composite is removed.  

The behavior of short fibers during the mold filling process, (as shown in Figure 

1) has been studied in the past and the process of flow induced alignment is well – 

documented [5]. A characteristic ‘layered’ structure of orientation takes place, with 

fibers aligned differently through the thickness of the mold, described later in this 

section [4]. It was also found that processing conditions, such as polymer – fiber 

melt temperature, mold temperature, injection speed and mold geometry strongly 

influence the fiber orientation in the finished composite [4,5].   

Fig.1.1:A typical injection molding machine (Adapted from [58]) 
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Fig.1.2: A typical rectangular molding sample (short fibers are not drawn to 

          scale and the orientation profile through the mold thickness is 

exaggerated) 

As shown in Figure 1.2, if a cross section of the molding is taken, cut lengthwise 

in the flow direction and observed under a microscope, a distinct layered structure 

through its thickness will be observed [5]. Typically, a 5 layer structure is observed 

consisting of 2 skin layers, 2 shell layers and one core layer [5]. For cavities with 

large length to height (aspect) ratios, the fibers near the middle of the flow, termed 

the ‘core’ layer, are usually oriented transverse to the main flow direction. The fibers 

immediately adjacent to the mold wall form what is termed the ‘skin’ layer, and 

usually have a random orientation. Between these two zones is the ‘shell’ layer, 

where the fibers are aligned parallel to the flow direction. These observations are 

reported in several studies [6, 7, 8, 9] and is generally regarded as the majority view 

in literature [5].  
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Fiber orientation zones: 
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Although such general observations may be drawn, they are still insufficient to 

allow for the accurate prediction of fiber orientation in injection moldings which is 

required for a prediction of the mechanical properties of the finished composite. The 

modeling of composite stiffness for instance may be formulated on the basis of the 

orientation of short fibers present within the composite itself [3]. Thus it is vital to 

accurately model and predict the fiber orientation behavior during the injection 

molding process, and this has direct consequences for the commercial design and 

manufacturing of SFRTs. 
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CHAPTER 2 

LITERATURE REVIEW 

2.0 Analytical Modeling of Fiber Orientation Evolution  

Research directed at modeling the orientation of a single body suspended in a 

flow began with Jeffery [10] who derived the equations of change governing the 

rotation of a single ellipsoid in a dilute Newtonian fluid. Jeffery’s equations of 

change were further extended by Bretherton [11] to model the rotation of any single 

body with fore-aft symmetry, including a cylindrical fiber in a dilute suspension. A 

dilute suspension is defined as one where the fiber motion is affected by the 

surrounding fluid only, and fiber – fiber interactions are rare [12].  While the 

equation of change works well for one fiber, solving it for a group of fibers 

simultaneously quickly becomes untenable as the rotation of each individual fiber 

has to be directly accounted for. This lack of feasibility is readily apparent when an 

industrially relevant manufacturing scenario is considered: a typical industrial grade 

short fibre composite contains about 10000 short fibres aligned in multiple directions 

per cubic milimetre [13].  

2.1 Numerical Solutions of Fiber Orientation Evolution 

If Brownian effects of the suspending fluid are considered, Jeffery’s equation 

has to be transformed to form a Fokker – Planck equation, governing the evolution 

of the fiber orientation probability [14]. The Fokker – Planck equation is adapted 

from statistical mechanics where it describes the probability distribution of a particle 

velocity in a statistical system and can be generalized to describe other particle 

properties (such as orientation) as well. The Fokker-Planck equation applied in this 

context is a transient convective-diffusive equation that describes the change in the 
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probability distribution of fiber orientation. The direct solution of the Fokker – 

Planck equation has faced difficulties in the past due to the mathematical complexity 

and computing resources required in order to solve the orientation of a large number 

of fibers [1].  

However, in recent years, there has been an increase in interest in the Fokker-

Planck approach due to the increase in computing power available as well as the fact 

that this approach precludes the necessity of closure models, a drawback of the 

orientation tensor approach described later. Nevertheless, application of the Fokker-

Planck equation to describe fiber orientation evolution has been limited to flow 

regimes involving simple shear or recirculating shear flows, isothermal Newtonian 

fluid behaviour and involving simple two-dimensional geometries [15, 16 and 17]. 

These limitations restrict the applicability of the method to real world mold-filling 

problems involving arbitrary three-dimensional mold geometries and Non-

Newtonian non-isothermal flows. 

In view of this, tensorial approaches to modeling the fiber orientation were 

considered instead, beginning with Hinch and Leal [18, 19] and culminating with a 

full description of the fiber orientation evolution equation in tensor form by Advani 

and Tucker [20]. The orientation evolution equation is much less cumbersome, easier 

to implement and considerably less computationally expensive, although the 

accuracy is somewhat compromised [21]. However, in the case of industrial scale 

composite manufacturing, the aggregate behaviour of the fibers is a sufficient 

description of the orientation state [13]. This has been the approach of choice for 

many researchers in the last two decades [13, 21, 22, 23, 24, and 25].  

The use of the fiber orientation evolution equation in tensorial form does give 

rise to a particular problem, namely the appearance of fourth order tensor 

components [20]. In order to close the set of equations, the fourth order tensors have 

to be approximated in terms of the second order ones [20]. A variety of closure 

models have been introduced by researchers in the recent years. Hand [26] 

introduced a linear closure, so termed due to the fact that it was formed through a 

linear combination of the second order tensor terms. The model was derived with 

consideration of symmetry assumptions about the second order orientation tensor, 
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and is exact for flow cases where the orientation is random in space [29]. Hinch and 

Leal [27] derived limiting forms of the Fokker – Planck equation for cases where 

Brownian motion dominated the flow, and where it was of insignificant effect. 

Interpolating between the two equations, an expression for the fourth order 

orientation tensor was obtained.  In flow circumstances involving significant fiber – 

fiber interaction, the Brownian motion effect is limited thus allowing for a simplified 

closure termed the quadratic closure [27]. This closure is exact for cases where the 

orientation is aligned along one particular direction [29]. Advani and Tucker 

combined both the linear and quadratic closure model, using an absolute measure of 

orientation to interpolate between the two closures [20]. This model was termed the 

hybrid closure. Further development of the closure models involved a change in 

philosophy, whereby the eigenvalues of the orientation tensor are used to generate 

closure model forms [31]. The coefficients of these models are then computed by 

data – fitting to the solutions of the Fokker- Planck equation governing the fiber 

orientation probability distribution function. This is performed for several 

representative flow cases such as simple shear and stretching flow in order to obtain 

suitable coefficients [31]. Similar to this approach, the natural closure is conceived 

by first analytically solving the Fokker – Planck orientation equation for an idealized 

fiber, neglecting the fiber – fiber interactions [32]. These will yield canonical 

distributions of the fiber orientation which are then used to construct a closure 

model. However, while a closure model may be analytically derived for a two – 

dimensional orientation case, the three – dimensional orientation still requires 

‘tuning’ of coefficients in a similar procedure to the orthotropic closures. 

An additional consideration for the accurate modeling of fiber orientation 

behavior was the modeling of the fiber – fiber interactions and the effect of the fiber 

orientation upon the rheology of the suspending fluid. Lipscomb et al. [33] 

demonstrated that the presence of fibers in a polymer flow affected its rheology, in 

particular increasing its elongational viscosity or resistance to stretching. Dinh and 

Armstrong [34] modeled and experimentally fitted an equation model to relate the 

contribution of fiber orientation to the fluid stress based upon the local orientation 

tensor and the fiber volume fraction. Tucker [35] studied the effect of the flow field 

and fiber interaction in slender two-dimensional gaps, and evaluated the degree to 
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which fiber orientation affected the rheology of the suspending fluid. Utilizing 

scaling analysis, Tucker analyzed the degree to which the orientation effect could be 

neglected, allowing for the fiber orientation evolution equation to be effectively 

‘decoupled’ from the fluid momentum equations. An important study of fiber – fiber 

interactions was conducted by Folgar and Tucker [36], where the randomizing effect 

of these interactions was modeled as a function of an empirical constant and the 

strain rate magnitude. 

   Once a solid framework for implementing the governing equations of fiber 

orientation was in place, mold – filling simulations could be performed, where 

parameters relevant to industrial – scale manufacture of SFRTs could be introduced. 

Factoring in parameters such as industrial scale injection pressures, processing 

temperatures, fiber volume fractions and melt viscosity behavior allow for a realistic 

description of the mold – filling process relevant to the industry. Bay [9, 21] 

simulated the non-isothermal filling of a film – gated strip mold and performed a 

decoupled analysis of the fiber orientation development in the mold. Chung and 

Kwon [22] simulated non – isothermal mold – filling flow and solved a coupled 

three – dimensional fiber orientation evolution equation for several three – 

dimensional cavities. They estimated the clamping force necessary for the mold in 

relation to the degree of fiber – fiber interaction. Hung and Shen [37] performed a 

two – dimensional analysis of the filling and subsequent fiber orientation of a 

rectangular mold, utilizing Jeffery’s equation to model the fiber rotation. They 

determined that fiber motion and orientation change occurred fastest in the 

suspension – air interface region.  

A common feature of those works was the use of the Hele – Shaw method to 

reduce the mathematical treatment of the mold – filling flow from three dimensions 

to two [38]. The mathematical simplification introduced by the Hele – Shaw method 

however, is unable to numerically capture the fountain flow effect. Fountain flow 

occurs at the suspension – air interface, where the suspension velocity reduces 

significantly as it approaches the interface. Due to the constraint of fluid continuity, 

the suspension flow is directed outward towards the wall. Capturing this feature is 

essential for the accurate description of the flow behaviour at the interface. 
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Verweyst [13] solved the coupled fiber orientation evolution equation with the 

full three – dimensional set of fluid equations for the filling of a radial disk and noted 

that there was considerable difference between the results obtained by this method 

and those with the Hele – Shaw approximation. Verweyst further noted that the 

coupling between the fiber orientation and the suspension momentum was 

significant in the core regions of the flow, and that this was almost negligible in the 

shell regions. It was further noted that the decoupled assumption is valid for slender 

cavities [30]. This analysis is important as it studies the fiber orientation behavior in 

high and low shear regions of fluid and help explain the layered structure described 

earlier, as parallel flow in a mold cavity exhibits both high and low shear regions [5].  

Chung and Kwon [25] simulated the filling of a film – gated strip and a radial 

disk, and solving for the fiber orientation. They tested two approaches: the Hele-

Shaw method and a full three – dimensional simulation of the flow. Their findings 

agree with those of Verweyst: the fountain flow effect produces a significant 

difference in the fiber orientation development of the flow. In addition, they also 

found that coupling the fiber orientation to the suspension momentum produced 

blunter velocity profiles as compared to the decoupled case; this is demonstrated in 

Figure 2.1. Further, they also noted that the effects of coupling were significant in 

the core and transition (from core to shell) layers, and that this effect diminished 

rapidly in the shell layer. 

  



10 
 

 

 

 

 

 

 

 

 

 

 

Fig.2.1: Fiber orientation coupling effects on the radial flow velocity of a center – 

gated disk. The circles represent a decoupled analysis and the squares           

represent the coupled one. (Adapted from Chung and Kwon [25]) 

 

2.2 Problem Statement 

In recent years, short-fiber reinforced composites have become materials of 

choice in many areas of mass and specialized manufacturing. As the properties of a 

finished composite depend highly upon the orientation of short fibers during the 

processing phase, there is a necessity to effectively model the entire mold filling 

process. The orientation tensor description of fiber orientation has found favour due 

to the ease of numerical implementation and its relative computational cheapness as 

compared to the Fokker-Planck method. In recent years, it has also been featured in 

commercial numerical codes for solving mold-filling problems involving SFRTs, 

such as Moldex3d and Moldflow. However, these commercial softwares are ‘black-

box’ applications that do not allow for the free modification of their internal 

workings. Thus, important aspects of the simulation of fiber orientation evolution 
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such as the model equations used and the solution algorithms which may require 

modification with passing time are inaccessible. Therefore, there is a strong 

motivation for the development of in-house mold-filling numerical software that 

solves for the fiber orientation evolution as well. This research project represents a 

step in that direction; a numerical code that solves the fiber orientation evolution is 

‘piggybacked’ on a mold-filling flow simulation performed with the commercial 

CFD code, FLUENT 6.3. 

2.3 Research Objectives 

This research’s objectives are as follows: 

1. Simulate the filling of an initially empty mold by a suspension consisting of a 

mixture of molten polymer and short fibers.  

2. Develop a code to numerically solve the discretized fiber orientation evolution 

equation, with coefficients derived from the flow field results extracted from 

the three – dimensional mold – filling flow simulation.  

3. Implement three closure models: linear, quadratic and hybrid closures, and 

compare the numerically computed orientation against an experimental data 

set obtained from literature. The performance of each closure model is 

assessed. 

2.4 Scope of Study 

The scope of this study may be divided into two phases. The first phase involves the 

numerical simulation of the filling of an initially empty mold with the aid of the 

commercial CFD code, FLUENT 6.3. The mold is a rectangular, film-gated strip 

[29]. The mold-filling flow is treated as an incompressible three-dimensional, 

laminar, unsteady, non-isothermal flow, and the fluid is treated as a polymeric Non-

Newtonian fluid. Velocity, pressure, temperature and volume fraction parameters are 

supplied at the mold inlet boundary and outlet. A slip condition and temperature 

parameter is applied at the wall. The effects of the slip condition type (dynamic vs. 
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traditional no-slip) are studied and a grid independence test is also carried out. 

Verification of the mold-filling simulation setup is performed by comparison with a 

solved two-dimensional problem from literature [39]. The second phase of this study 

is the simulation of the two-dimensional fiber orientation on a segment of the flow 

domain extracted from the FLUENT results. The simulation of fiber orientation is 

pursued via decoupled analysis and three closure models: linear [26], quadratic [27] 

and hybrid [20] are implemented, and their performance is assessed against 

experimental data from literature [29]. The parameters supplied for the simulation of 

fiber orientation are the inlet orientation state and the initial orientation field. A 

numerical code was written in Matlab for this purpose.  

2.5 Summary 

SFRTs find application in diverse areas. As the properties of the finished composite 

depend strongly on the fiber orientation, there is strong research and commercial 

interest to ensure that that the fiber orientation development during the processing 

phase is well modeled. This research is directed towards simulating the fiber 

orientation during the filling of an initially empty mold. A numerical code is 

developed to solve the fiber orientation evolution equation, and three closure models 

are implemented separately. The numerical results are compared against 

experimental data in order to assess the predictive capability of each closure model. 
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CHAPTER 3 

GOVERNING EQUATIONS 

3.0 Introduction 

In the analysis of mold-filling flows, the numerical solution of the Navier-Stokes 

equations describes the behavior of the fluid flow. Physical conservation laws which 

have to be satisfied are mass, momentum and energy conservation. Further, 

additional equations that model the non-Newtonian viscosity have to be included as 

well. These are described in Sections 3.1 through Section 3.4. For the fiber 

orientation modeling, the governing equation solved is the fiber orientation evolution 

equation. These equations may be formulated about an imaginary fluid volume that 

possesses the extensive properties of mass, momentum and energy. The fiber 

orientation tensor may be treated as an extensive scalar property, as it derives from 

ensemble averages of fibers about a fluid volume. This is described in Section 3.5.  

3.1 Mass Conservation 

The mass conservation laws states that the mass of the system is conserved, i.e. there 

is no creation or destruction of mass during the mold-filling flow. Thus, the total rate 

of change of mass of the system is zero as seen in Equation 1: 

 

                                                                                                                            (1)

 

 

0=
dt
dm
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Conceptually, the mass balance of a fixed fluid volume may be expressed as 

follows: The rate of mass increase in the fluid volume is equal to the net rate of mass 

flow through the fluid volume.                                

This concept can be written mathematically as:            

             

                                                                                                                            (2) 

If the working fluid is regarded as incompressible and steady, then the density is 

constant and the set of equations reduces to: 

 

                                          (3) 

This is known as the continuity equation for an incompressible, steady working 

fluid.  

3.2 Momentum Conservation  

The momentum conservation principle applied to the fluid volume implies that the 

rate of momentum change of the fluid across the volume is equal to the sum of the 

external forces applied to the volume itself. Mathematically, this is described as 

follows:  

 

                                                                                                                            (4) 

Where m is the mass of the fluid volume, U is the fluid velocity and F represents 

the forces applied. The left hand side of Equation 4 may be expanded by means of 

the Burger’s expansion, and the external forces applied may also be expanded to 

include surface and body forces. Surface forces are those that act upon the surface of 

the fluid volume, and are thus surface orientation dependant (i.e. pressure and 

viscous forces), whilst the body forces are those that act independently of orientation 
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(i.e. gravitational, centrifugal and magnetic forces). Mathematically, this is described 

by the following equation: 

 

                                                                                                                            (5) 

The deviatoric stress tensor τ is defined as follows: 

                              (6) 

and the fluid strain tensor,     is derived as:           

                    

                                                                      (7) 

where the tensor notation i,j = 1,2,3 

The polymer-fiber (suspension) mixture displays Non-Newtonian behaviour and 

thus its viscosity changes with respect to the temperature and local strain rate. In 

addition, due to the fact that a two-phase filling process is encountered here, the 

phase present in a fluid volume may be the suspension or air, or a combination of 

both. The air phase is assumed to have a constant Newtonian viscosity. The 

suspension viscosity however is modeled with a Power Law model as follows: 

           

                                                                                                          (8) 

where n refers to the fluid index and the strain rate magnitude γij is defined as: 

                                                                                            

                                                                                               (9)                         

 For flows which are near-creeping (Re < 2), such as those observed in mold-

filling, it has been demonstrated that the body force term, consisting of the 
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gravitational and surface tension terms is negligible [23, 40], thus dropping FB from 

Equation 5.  

3.3 Energy Conservation  

The principle of energy conservation states that the rate of change of energy of the 

fluid volume must equal the net amount of energy entering and leaving the volume. 

The energy of the fluid volume is the sum of the fluid internal energy and kinetic 

energy. The energy flow into the fluid volume comes primarily from heat conduction 

and viscous dissipation. In the event that the change in kinetic energy of the fluid is 

negligible, constant thermal properties and the pressure work done on the volume is 

also negligibly small, then the energy equation may be written as: 

                                                                               

                                                           (10) 

3.4 Fluid Volume Fraction Conservation  

The mold-filling flow is a two-phase filling process, and the gradual filling of 

the mold is modeled by the volume fraction equation. The scalar Φ represents the 

volume fraction of the phase occupying a fluid volume. The volume fraction Φ = 1 

indicates that the volume is occupied by the polymer-fiber mixture while Φ = 0 

indicates that the volume is occupied by air and values in between indicate that the 

volume is occupied by a combination of both fluids. The volume fraction equation is 

written as follows: 

                                                                                            

                                                                                 (11) 

The volume fraction equation serves two purposes: first, it allows for the 

tracking of the fluid interface and second, the material properties at each control 

volume are evaluated as a volume fraction average of the existing individual phases.  
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3.5 Fiber Orientation 

The orientation of fibers in suspension is modeled based upon two major 

assumptions. First, the fibers are assumed to be rigid cylinders, uniform in length 

and diameter [11, 20]. Second, the concentration of fibers throughout the suspension 

is uniform. The orientation of a single fiber may be described by a single vector p 

aligned along its principle axis as shown in Figure 3.1. 

 

 

 

 

 

Fig.3.1: The orientation of a single fiber 

The x, y, and z components of p are represented as follows: 

                                                                                                                      

                                                                                      (12) 

The change in indices (from alphabets to numbers) is used to facilitate the use of 

tensor notations. The second order and fourth order tensors are taken as spatial 

ensemble averages of the orientation vectors of individual fibers, as follows: 
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pp dppppppppa lkjilkjiijkl )(ψ∫==                                                              (14) 

The second and fourth order tensors are a suitably compact and accurate 

description of the fiber orientation state [29].  

Following this, several tensor properties may be invoked in order to provide 

simplifications to the system of tensors. A subscript notation is used here to describe 
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a tensor, aij, where i,j and k represent the tensor indices (1,2,3). The components 

‘11’, ‘22’ and ‘33’ represent the x, y and z directions respectively. The out of plane 

or mixed components ‘12’, ‘13’ and ‘23’ represent projections of the tensor onto the 

x-y, x-z and y-z plane respectively. The orientation tensor for a single fiber is shown 

relative to the Cartesian axes in Figure 3.2. 

 

 

 

 

 

 

Fig.3.2: The orientation tensor for a single fiber relative to the Cartesian axes 

 The second order orientation tensor consists of five independent components 

a11, a22, a12, a13 and a23, and forms a 9-element matrix where the components a11, a22 

and a33 represent the principal directions of orientation, and the magnitude of each 

term represents the strength of the orientation in the direction. The non-diagonal 

terms represent the degree to which the orientation frame of the fiber is rotated out of 

the principal axis system. If the fiber is oriented within the principal axis system, the 

diagonal terms reduce to zero. 

3.5.1 Fiber Orientation Evolution Equation 

The fiber orientation evolution equation models the change of the fiber orientation as 

a function of the local fluid flow field, fiber orientation and fiber-fiber interaction 

effects.  The evolution equation used in this research project is the Advani-Tucker 

orientation tensor equation [20], which is essentially a re-writing of the Folgar-

Tucker evolution equation [36] using orientation tensors to characterize the fiber 

orientation. Once the normalization and the symmetry condition are considered, 

there are five independent components to the aij tensor: a11, a22, a12, a13 and a23. Thus, 
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there are five independent evolution equations to describe the evolution of each 

tensor component separately.   
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ωij is the fluid vorticity defined as: 

   

                                                                                          (16) 

The parameter α equals 3 for a three dimensional version of the equation and 2 

for planar orientation, and λ is a constant that depends on the geometry of the fiber, 

being defined as )1/()1( 22 +−= ee rrλ with re being fiber aspect ratio.  

The rotary diffusivity, Dr models the Brownian-like motion of the fibers arising 

from fiber-fiber interactions within the suspension. It should be noted that although a 

basic assumption introduced at the beginning of the analysis is that the fibers are 

large enough not to be affected by the Brownian motion of the fluid molecules, the 

effect of fiber interactions on the fibers themselves are modeled as a Brownian 

motion. A simple inspection of the right hand side of the fiber orientation evolution 

equation illuminates the factors affecting orientation change. The first two terms 

represent the effect of the fluid vorticity and strain rate acting upon the current fiber 

orientation. The third term represents the effect of fiber-fiber interactions on the 

orientation change.  

The effect arising from the Dr   term is two-fold [41]: Firstly, the diffusivity acts 

to randomize the fiber motion - as the value of Dr increases, the fiber motion 

becomes more random. Secondly, it makes the fiber orientation in simple shear flows 

asymmetrical. In the Folgar-Tucker model, the diffusivity term was modeled to be a 

function of the magnitude of strain rate tensor, and an interaction coefficient [36].  

This is described as follows:                                                                                                  
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                                                                                                            (17) 

where CI is the interaction coefficient. The following expression was 

derived by Bay for the interaction coefficient in concentrated suspensions [29]:  

                                                                                   (18) 

The fourth order tensor that appears in Equation 15 has to be approximated by 

means of a closure approximation. This is explained in the next section. 

3.5.2 Closure Approximations 

Closure approximations are introduced in order to close the orientation tensor 

evolution equation. In essence, it represents the higher order tensor as a function of 

the lower order ones. For the case of the second order tensor, a closure 

approximation of the fourth order is required: 

)( ijijkl afa =                                                                                                            (19) 

The closure models which are to be assessed are described in this section. These 

models are built on purely analytical analysis where combinations of the second 

order tensor are used to construct the fourth order one. Thus, these are as stand-alone 

models, and do not need to be ‘tuned’ in any sort of way with respect to solutions of 

the Fokker-Planck version of the orientation probability distribution function [14]. 

By contrast, more modern models such as the orthotropic class of closures require 

this [31, 32]. 
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i. Linear Closure Model 

The linear closure model constructs the fourth order tensor from a combination 

of the second order orientation tensor and the Kronecker delta [26]. This model is 

linear in the sense that only first order terms appear. 

   

 

                                                                (20) 

 

ii.  Quadratic Closure Model 

The quadratic closure model makes the simple assumption that the fourth order 

tensor is a product of two second order orientation tensor terms, with the appropriate 

choice of indices [27]. 

klijijkl aaa =                                                                                               (21) 

iii.   Hybrid Closure Model 

The hybrid closure model is actually a result of the combination of two earlier 

models: the linear closure model and the quadratic closure model [28].  

     

                                             (22) 

where [ ]ijaf det271−=  is the scalar measure of the orientation. It should also be 

noted that the hybrid closure is a popular model used in the simulation of real 

manufacturing processes due to its stability [23].  
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3.6 Summary 

The mathematical equations governing the mold-filling flow are built on the basis of 

conservation of mass, momentum and energy principles and are listed as follows: 

1. Continuity equation  

2. Momentum equation  

3. Energy equation 

4. Fluid volume fraction equation 

The fiber orientation is governed by an orientation evolution equation, and is 

closed by a closure model. The three closure models implemented in this research 

are as follows: 

Linear closure 

Quadratic closure 

Hybrid closure 

As these equations are not amenable to direct analytical solution, they are 

implemented numerically. This is described in the Chapter 3 of the thesis. 
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CHAPTER 4 

THEORY AND IMPLEMENTATION 

4.0 Introduction 

The equations described in Chapter 3 model the physical process of mold – filling 

and the consequent fiber orientation. These equations have to cohere with the actual 

physical processes which occur during mold – filling. Further, these equations are 

numerically implemented and solved iteratively.  Section 4.1 presents a physical 

overview of the injection molding process. Section 4.2 describes the numerical 

implementation of the equations governing mold-filling flow. Section 4.3 describes 

the numerical implementation of the fiber orientation evolution equation.  

4.1 A Physical Description of the Injection Molding Process 

A brief description of the physical process of injection molding is necessary in order 

to have a good idea of what exactly is being modeled. Figure 4.1 shows a simple 

mold geometry that accords with the rectangular film gated strip from Bay’s work 

[29]. Bay performed mold – filling experiments to study fiber orientation during the 

filling process, and the experimental data Bay obtained is used in this work for 

comparison with our numerical simulation results. This is expanded in greater detail 

in Chapter 4.2.  
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Fig.4.1:Schematic of a film-gated strip 

The physical process of mold filling, from an injection molding standpoint may 

be outlined in three broad stages as follows:  

 

Prefilling: (Initial condition) 

• The mold is initially empty (air-filled) at an initial ambient temperature 

Filling: 

• Hot polymer melt is injected into the mold via a film gate. 

• The polymer melt is subject to cooling as the mold walls are kept at a  

           constant temperature, much lower than the solidifying temperature of the  

           melt. 

• As the mold fills, the polymer melt displaces the air, and the air escapes    

     through a vent at the far end of the mold 

Post- filling: 

• The injection filling stops once the mold is completely filled 

• The filled mold is allowed to cool and then the finished composite is  

            removed. 

As may be observed, the filling phase is of greatest concern in this research 

project, and it is to this phase of injection molding that the fiber orientation evolution 

is especially pertinent. The physical mold-filling flow consists of a polymer resin 

with suspended short fibers within, which is injected at high pressure and high 

temperature into an empty mold. This suspension is modeled as a three-dimensional 

laminar, incompressible, non-isothermal, non-Newtonian flow. Several key 

assumptions of the flow have to be addressed here: 
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• The mold-filling flow is treated as a filling problem, whereby the hot 

polymer and fiber mixture is injected into an empty mold, and gradually fills 

it whilst displacing air from the mold.  

• Incompressibility of the polymer-fiber mixture is assumed, and 

solidification effects due to cooling of the mixture are neglected.  

• The viscosity of the polymer-fiber suspension is regarded as non-

Newtonian, and varies with the local strain rate and temperature of the flow. 

• The mold-filling phase is decoupled from the fiber orientation, thus the flow 

equations are solved separately from the fiber orientation. This disregards 

the effects the fiber orientation may have on fluid momentum.  

The simulation of the fiber orientation evolution was performed via a two – 

stage process; first, a simulation of the mold-filling flow was performed with the aid 

of the commercial Computational Fluid Dynamics (CFD) software, FLUENT 6.3. 

Second, the resultant flow field was used to perform numerical computation of the 

fiber orientation evolution equation, implemented in Matlab. A two – dimensional 

plane was extracted from FLUENT, and the two – dimensional fiber orientation 

evolution equation was solved on this plane utilizing the flow field data obtained for 

a fully filled mold. 

4.2 Numerical Implementation of the Governing Equations of the Mold – Filling                         

      Process  

The governing equations describing the mold-filling flow were numerically solved 

using FLUENT 6.3 which utilizes the finite volume (FV) method to solve a series of 

descretised flow equations on a discrete spatial and temporal numerical grid. This 

section presents a brief description of the finite volume method where this process is 

elaborated by the discretization of a one – dimensional steady diffusion equation. 

The temporal discretization of transient terms is also addressed. The numerical 

treatment of each of the significant flow equations: momentum, energy and volume 

fraction equations are addressed individually. The implementation of the fiber 

orientation evolution equation is also addressed. 
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4.2.1 Finite Volume Method 

The FV method is popular in fluid dynamics simulations due to the use of the 

conservation form of the flow equations in the discretization of these equations [42]. 

In this section, simplified equations are used to describe the methods used in the 

numerical treatment of the flow equations solved by FLUENT. The discretization of 

the flow equations is performed on a control volume (CV). A CV may be a one, two 

or three dimensional structure. For simplicity, a rectangle is used here as the CV for 

the two dimensional case and a cube for the three dimensional one. It should be 

noted that the discretization of the flow equations about a control volume may be 

performed for any arbitrary shape. A rectangle or cube simplifies the discretization 

process as they are easily referenced to the Cartesian axes. Figures 4.2 and 4.3 

present a visualization of the numerical grid for both a two – dimensional and three – 

dimensional case. 
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Fig.4.2: Typical rectangular two-dimensional finite volume grid [42] (the N – S 

direction coincides with the z axis) 
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Fig.4.3: Typical rectilinear control volume (CV) in a three – dimensional grid [42] 

(the N – S direction coincides with the y axis and the T – B direction coincides with 

the z axis) 

 

The notation for both the two and three – dimensional  grids here follow the 

magnetic compass convention for simplicity of notation, where the symbols mean; 

North (N), South (S), East (E), West (W), North-East (NE), North-West (NW), 

South-East (SE), South-West (SW), North-North (NN), South-South (SS), East-East 

(EE), West-West (WW), Top (T) and Bottom (B).  

The node (P) here refers to the reference or principal node. Other quantities of 

interest are Δx , Δy and Δz (grid spacing in the x, y and z direction). and n, the 

normal vector to the line or area bounding the cell. The principal node (P) is bounded 

by four lines (in the 2D grid) and six planes (in the 3D case) the area or volume 

bounded by these lines or planes is referred to as the control volume. It may also be 

referred to as a ‘cell’. The principal node is located in the center of the cell and n is 

the normal vector projected from the line or area bounding the cell [42]. The flow 

equations are then descretised in a manner where the change in the scalar quantity of 

y 

Δz 

z 

•  
 

•  
 

•  
 

•  
 

Δx 

Δy 
•  
 

•

n

•  
 

x 

T 

E 

N 

P

S 

W 

B 



29 
 

a principal node is related to the quantities at its neighbouring nodes through scalar 

fluxes through the boundaries of the cell.  

To describe the discretization process, a simple 1-dimensional steady convective 

– diffusive equation is considered: 

( )
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

Γ
∂
∂

=
∂

∂
xxx

u φρφ
                                                                                              (23) 

where φ  is any arbitrary scalar continuum variable and Γ is the diffusion 

constant.  

A central differencing scheme is employed where the gradient at node P is 

approximated by values one node to the left (West) and one node to the right (East) 

of node P as shown in Figure 4.4.  



30 
 

 It may be descretised for a one – dimensional grid as follows: 

 

 

 

 

                  

                                                                                                                                  

 

 

Fig.4.4: A representative one – dimensional finite volume grid 

 

 

           

          (24) 

For a grid with equal spacing as a special case, the face areas are the same, thus 

they cancel out, simplifying the equation to: 

 

                                                                   

                      (25) 

The quantities ρ ,φ  and u have to be approximated on the cell faces, and are 

assumed to be known or guessed. Various schemes exist for the treatment of the 

discretized variable, if the first order upwind scheme is employed for instance, the 

flow direction is from west to east so we set Ww φφ = and Pe φφ = . The equation then 

becomes: 
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                 (26) 

Or, 

 

where aP denotes the coefficient of the principal node and aW and aE denote 

those of the nodes to the West and East of the principal node respectively. The 

‘upwind’ term refers to the node position relative to the flow direction. In this case, 

as the flow direction is from west to east, thus the cell on the west of the cell P is 

‘upwind’ relative to cell P. This may be generalized to a series of nodes terminating 

on both ends with known boundary values of φ , and we then have a system of linear 

equations such that:              

                                             

                                                                                                 

                                                                          (27) 

where ‘neigh’ denotes the neighbouring nodes and B is a scalar constant. The 

system of equations may then be solved iteratively.  

The flow equations encountered in this work involve transient terms as the mold 

– filling flow and fiber orientation evolution are treated as unsteady processes. Thus, 

temporal discretization is required as well in order to ‘march’ the solution forward in 

time. The FLUENT solver used for the two and three – dimensional simulations in 

this research is first order implicit which can be described by considering the 

temporal discretization of Equation (28). 
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where a transient term has been added on the left – hand side of Equation (23). 

The spatial terms may be discretized as described previously. The transient term is 

approximated by a first order backward difference (implicit) such that: 

Baa neigh
neigh

neighPP += ∑ φφ

( ) ( )[ ] ( ) EeWwwPweeww DFDFFDFD φφφ ++=−+++

EEWWPP aaa φφφ +=
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                                                                                      (29) 

where the spatial terms are evaluated at time step ‘n+1’. For a time step size, ∆t 

the system of linear equations that arises from the discretization of Equation 28 is: 

                                                       

                                       (30) 

The choice of the implicit scheme is motivated by the fact that it is stable for a 

large range of time steps [52]. In a similar manner, the flow equations may be 

discretized on a three-dimensional grid which results in a system of equations 

identical in form to Equation 30. 

 

⎥
⎦

⎤
⎢
⎣

⎡
+Δ+= ++ ∑ Bataa n

neigh
neigh

neigh
n
PP

n
PP

11 φφφ



33 
 

4.2.2   Solver 

A segregated solver was applied whereby the numerical iteration of the flow 

equations; continuity, momentum, energy, etc. proceeds sequentially as depicted in 

Figure 4.5. 

 

 
Fig.4.5 : solution algorithm of the segregated pressure-based solver in FLUENT 
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FLUENT solves a general conservation equation defined in Equation 32 that 

serves as a template for the physically meaningful flow equations. Due to the two-

phase nature of the flow, a control volume or cell may be filled with either one or 

both fluids at the same time. Thus, the fluid properties in a particular cell may be 

considered to be representative of the composition of the two different fluid species 

present and are taken as the volume averages of the species properties as follows: 

 

 

 

                                              (31) 

In this thesis, unless explicitly stated, all the coefficients of the flow equations 

are volume averaged. A generic conservation equation is used to demonstrate this 

here, in Equation 30. The differential equation governing the evolution of a flux in 

and through a fluid volume is cast in conservation form: 

 

                          (32) 

where nr  is the normal vector to the differential area dA, φq is an arbitrary source 

term of the variable φ , φ∇  is the gradient of φ and Ω is the cell volume. 

Equation 32 is descretised as follows: 
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fU
r

is the fluid velocity vector on the face of the control volume, nr  is the normal 

vector to the area dA, The subscript f denotes the faces of the cell and N is the total 

number of faces. The value of φ  on a particular face is interpolated from the values 

at two neighbouring cell centers (nodes). For instance, the value of φ  on the North 
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face of the two-dimensional control volume as shown in Figure 4.2 is determined 

from the interpolation of the two values at the cell centers of node P and node N. The 

form of the interpolation is determined by the type of differencing scheme used. This 

results in a system of linear equations as in Equation (29). The coefficients of the 

linear equations form a sparse matrix, and the system is solved iteratively in 

FLUENT by means of a Gauss-Seidel type linear solver. 

The discretization of the flow conservation equations results in systems of linear 

equations. However, different discretization schemes are suited for the conservation 

equations encountered in a variety of physical flow problems. For instance, the 

numerical treatment of the model equations for a convection-dominated flow would 

be different from a diffusion-dominated one. To this end, a parameter used to 

characterize the relative significance of these two flow features is the Peclet number; 

a dimensionless number that describes the ratio of the convective to diffusive term in 

the conservation equation: 

                                                                                                             

                                                                                                          (34) 

where Uavg is the fluid characteristic velocity (usually average velocity) and L is 

the characteristic length of the geometry. 

4.2.3 Momentum 

The three-dimensional conservation of momentum equation is obtained by 

substituting the velocities u, v and w in place of the termφ  in Equation (32); the 

pressure gradient and shear stress terms may be incorporated into the gradient term 

on the right hand side, as follows: 

Γ
=

LU
Pe avgρ
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X – momentum: 
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Y – momentum: 
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Z - momentum: 
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where, u, v and w are described on the faces, ‘f’ of the control volume. As the 

Peclet number of the flow is larger than 1, a second order upwind scheme is used in 

the discretization of the momentum equation. A second order scheme implies that 

the approximation of the terms in the momentum equation takes place by accounting 

for a higher number of nodes on the grid, thus leading to greater accuracy. A first 

order scheme approximates values at a node based on data from one adjacent node, a 

second order scheme approximates values based on data from two adjacent nodes. 

Higher accuracy schemes have higher order truncation errors but tend to be more 

computationally expensive as they require data from more computational nodes on 

the grid. This is especially true in the case of the discrete approximation of scalar 

gradient terms.  

4.2.4 The Staggered Grid Approach 

Due to the fact that a second order scheme is implemented in the solution of the 

momentum equation, a staggered grid is used to prevent ‘checkerboarding’ of the 

resulting velocity and pressure field. This occurs when central differences are used to 

approximate all or some of the gradient terms in the flow equations. ‘Checkerboard’ 

results satisfy the discretised equations, but the values obtained are physically 
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unrealistic. The staggered grid option is enabled by turning on the Pressure 

Staggering Option (PRESTO).This scheme is offered in FLUENT 6.3 when the 

Volume of Fraction (VOF) equation is solved. A staggered grid essentially means 

that the pressure (and other scalars) and velocity values (and other vectors) are 

computed on different areas on the numerical grid. This is depicted for a two-

dimensional grid in Figure 4.6.  

 
Fig.4.6: A two-dimensional staggered grid 

As may be observed, the velocity cells (shaded) are displaced by half a grid 

distance from the pressure cell center. Thus, for the pressure control volume (CV), 

the velocity nodes appear on the face of the cell, and for the velocity control volume, 

the reverse occurs. In this manner, the discretised expressions for pressure and 

velocity are formulated on different control volumes which are distanced half a grid 

apart. The pressure and velocity gradients that appear on the faces of a control 

volume (for a pressure CV and velocity CV) are approximated from neighbouring 

pressure and velocity nodes respectively. The staggered grid scheme is readily 

extended to a three-dimensional case. The staggered grid formulation and the issue 
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of pressure-velocity coupling are quite closely related. In interest of clarity, the 

following section employs a slightly different form of notation – the compass 

notation used earlier is less convenient when applied to a staggered grid, thus a 

different notation system is used to locate pressure and velocity nodes. In addition to 

this, for simplicity, the momentum equation used here is the two-dimensional 

unsteady momentum equation. The methods for pressure-velocity coupling are easily 

extended to a three-dimensional case [43]. With reference to Figure 4.6, the pressure 

control volume(CV) is centred at node (I, K), the x – velocity (u) CV is centred at 

node (i+1,K) and the z-velocity (w) is centred at node (I, k+1).  

The x -momentum conservation equation in discrete form may then be recast as 

follows: 

                     (38) 

where ∂u/∂x and ∂u/∂z are the velocity gradients, Ai,j is the area of the face of the 

control volume at node (i,j) perpendicular to the velocity vector ui,j or wi,j. The 

constituents (velocity and density) of the momentum and gradient terms are 

evaluated at the same nodes. Following this, as the momentum balance takes place 

on a x – velocity centred node, the velocities on the face of the control volume have 

to be interpolated from neighbouring velocity nodes. This is also true of the gradient 

terms. The interpolation method then depends upon the choice of discretization 

scheme used. As mentioned earlier, the second order upwind scheme has been 

chosen for the discretization of the momentum equation as the flow Peclet number is 

larger than 1. This is shown in Equation (39). 
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where uface is the face x-velocity of the control volume, and uupwind, and 

( )upwindru ⋅∇
 

are determined at the cell center (node) of the cell immediately 

‘upwind’ of the control volume. The term ‘upwind’ is taken with reference to the 

flow direction; r is the distance vector from the cell centre of the upwind cell to the 

face of the downwind cell. 

The gradient term, ( )upwindu∇  is determined by means of the Green Gauss 

theorem: 

   

                                                   (40) 

where fu is taken to be the average of the values at two neighbouring cell centers 

(nodes) adjacent to the face.  

                                                                                                             

                          (41) 

neigh 1 and neigh 2 denote the two neighbouring cells. This is termed the Green-

Gauss Cell-based Gradient Evaluation. For instance, 

                                                                                                        

                                                                     (42) 

where 

 

                

        (43) 

The gradient of u is evaluated with only x components of velocity, due to the 

fact that for a regular grid, the distance vector r solely points in the x – direction. 

For the z – momentum equation,  
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( ) 1,1,1, −−+ ⋅∇+= KiKiki rwww                                                                        (44) 

 

                                

                     (45) 

The discretised x-momentum equation results in a system of linear equations:  

                            (46) 

And the y – momentum equation in discrete form is: 

 

                                   (47) 

Where a is the coefficient of the x-velocity term u. The conservation of 

momentum equation in the y – direction is treated in a similar matter. 

Provided P and the mass flux, Jiu ,ρ are known, the system of equations may be 

solved. However, the pressure and velocity are not known a priori and have to be 

guessed or obtained as part of the solution. In FLUENT, the initial values are used 

for the first set of guess values. 

4.2.5 Pressure – Velocity coupling: The Pressure Correction Method 

The pressure and velocity terms are coupled in the sense that pressure values 

throughout the flow field may be obtained once the velocity field is known, and vice 

versa. The solution algorithm used by FLUENT guesses pressure values first then 

uses these values to solve the momentum equation to obtain the x, y and z velocities 

(u*, v*, w*)  as shown in Figure 4.5. Back-substituting these values into the 

momentum equation to obtain the pressure field is meaningless, unless they are 

‘corrected’ first. This process termed ‘pressure correction’ operates in the following 

manner: 

( ) ( )

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+

Ω
=

−
Ω

=∇

−−−−

−−−

1,2,2,,1,,

1,1,,,1,

2
1

2
11

1

kiKiKijiKiKi

kikikikiKi

AwwAww

AwAww

( ) Ω+−+= −∑ KiKiKIKIneighneighKiKi qAPPuaua ,,,,1,,

( ) Ω+−+= −∑ kIkIKIKIneighneighkIkI qAPPwawa ,,,1,,,



41 
 

1. Guess initial pressure field, pressure values are denoted P* 

2. Use P* to solve the momentum equation to obtain u*,v* and w* 

3. Derive the expression for the corrector velocities u’,v’ and w’ in terms of the  

    pressure correction term P’. 

4. Substitute u*,v* and w* and P’ into the continuity equation and solve for the                    

     pressure correction P’ that will  satisfy the discretized continuity equation.    

   The corrected pressure field is obtained. 

                P = P*+ P’ 

5. The corresponding ‘corrections’ u’,v’ and w’ may be obtained from P’ such  

     that: 

                u = u*+ u’ 

                v = v* + v’ 

                w = w*+w’ 

6. Setting the new P* = P, the sequence is repeated until the pressure correction   

      terms are minimized and the guess velocities satisfy the continuity equation.   

     When this is achieved, then the correct velocity field is obtained. 

This process is described in greater detail for a two-dimensional case: 

First, the initial pressure field is guessed, P* resulting in a guessed velocity field   

as follows: 

x- velocity: 

                                               

                                      (48) 

z-velocity: 

                                              

                                       (49) 

The pressure and velocity correction terms are defined as follows: 
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P’ = P - P*     

u’= u - u*  

w’ = w - w*   

Then, the guessed velocity field in terms of the velocity corrections may be 

written:  

x- corrected velocity: 

                                   (50) 

 

z- corrected velocity: 

                                    (51) 

 

The scheme used for the two and three – dimensional simulations in this work is 

the Pressure-Implicit with Splitting of Operators (PISO) scheme. This choice is 

motivated by the fact that pressure and velocity are strongly coupled for mold – 

filling flows. Thus, an accurate and robust guess – correct algorithm is required.  It is 

a modification of the Semi-Implicit Method for Pressure-Linked Equations or 

SIMPLE [45] algorithm.  

 

The SIMPLE algorithm applies an approximation to compute the corrected 

velocities. It is assumed that the corrected velocity at a particular node is a function 

of the corrected pressures at the node only, such that: 

 

                                             (52) 
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and  

                                                      

                               (53) 

It should be noted that this omission of the velocities at the neighbouring nodes 

is only enforced when the momentum equation has been fully discretised, and thus it 

is merely a numerical trick and is in no way due to any physical insight of the flow 

[41]. What this does however, is to effectively decouple the velocity at a particular 

node from other velocity nodes in the grid so that the velocity value may be known 

once the pressure at the two neighbouring scalar nodes is known.  

Now, the ‘real’ velocities may be expressed as follows: 

                                                                                      

                                                      (54) 

                                                      (55) 

Now that the formulation for the ‘real’ velocity in terms of the guessed velocity 

and pressure correction terms is derived, these terms are in turn substituted into the 

flow continuity equation. 

The incompressible flow continuity equation derived at node (I,K) in discretised 

form is: 

                                                                                 (56) 
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The other two discrete expressions for velocity required are: 

                                                                                           

                                                   (57) 

                                                                              

                                                   (58) 

Substituting these discrete approximations of the velocity into the flow 

continuity equation, a linear system of equations in terms of the pressure correction 

term is obtained:  

 

                                          

                                         

 

 

                                                                                                                          (59)  

or, 

                                           

    (60) 

As may be observed, the equation now reduces to a system of linear equations 

which may be solved iteratively to obtain the values of P’. The term b’I,K is basically 

the steady continuity equation discretised by a central difference scheme about node 

(I,K), such that for a control volume centered at node (I,K), the guess velocities u* 

and w* are located on the faces of the control volume. With progressing iterations, 

the term b’I,K  should reduce gradually to zero. Once this happens, the solution p’ 

added to p* will yield the solution to the ‘real’ pressure P. In order to aid the 

convergence of the solution, under-relaxation of the solution is used in this manner: 

                                                                                                                                   

                                                                                       (61) 
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where N denotes the number of iterations, PN+1 becomes the guessed value for 

iteration number N+1. αP is the relaxation factor ranging from 0 to 1 which is 

introduced in order to regulate the change in pressure values from one iteration to the 

next in order to prevent divergence in the solution. The velocity (momentum) 

solution is similarly under-relaxed.  

The PISO scheme introduces an additional corrector step performed within the 

pressure correction loop. In essence, the ‘real’ velocity values obtained from the 

SIMPLE algorithm are used to generate a second approximation of the pressure 

values (while the pressure was initially guessed at the beginning of the SIMPLE 

algorithm, once the ‘real’ velocities are obtained, the momentum equation may be re-

solved to obtain the ‘real’ pressure. This is then substituted into a second velocity 

approximation scheme). In effect, the SIMPLE algorithm is performed twice, one 

loop within another. By way of a trade-off, the convergence rate of the pressure 

correction term increases at the expense of greater computational cost. This is shown 

in Figure 4.7. 
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Fig.4.7: PISO solution algorithm for a transient flow

START 

Initialize u,v, P and other transport 
variables, Set the time step size ∆t.  

Set t = t + ∆t, u*=u, v*=v, set the initial guess values 
of the other transport equation parameters to be the 

values of the previous time step 

Solve the pressure correction equation to obtain the 
pressure correction terms P’ 

Solve the discretized momentum equation in order to obtain 
the guess velocities u* and v* 

Utilizing the corrected pressure and velocity values as guess values, steps 
1,2 and 3 are performed for a second time in order to obtain a second set 

of corrected pressure and velocity values. Solve the other transport 
equations.

Obtain the corrected pressure and velocity 
fields, P, u and v 

1

2

3 

Convergence No
Set P*=P 

Is t > tmax? 

Yes 

Stop 

Yes 

Set P*=P
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4.2.6 Energy 

The energy equation has to be solved in order to model the temperature of the fluid; 

a second order upwind scheme is also used here. As the energy equation is a scalar 

equation, the discrete form of the equation is solved on the pressure control volume. 

Therefore, the temperature is calculated on the same set of nodes as the pressure. The 

form of the energy equation solved in FLUENT is a more general form of the energy 

equation presented in the theory section of this report. However, as will be 

demonstrated, they are equivalent if certain assumptions are introduced. The energy 

equation model solved in FLUENT is: 

                          

                                                  (62) 

where    

   

                                                               (63)  

where effτ is the effective shear stress, and Sh is the source term. For a two-

dimensional case, this may be expanded to give: 

                                                                                                                          (64)                          
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The viscous energy terms may be manipulated to yield: 

 

                                                                                                                           (65) 

If it is assumed that the specific heat capacity cp is constant, that the kinetic 

energy terms are small and that the rate of change of pressure P is also small, and if 

it is also further assumed that the second derivatives of velocity are small in 

comparison to the square of the first derivatives, then the energy equation readily 

simplifies to: 
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Equation (66) is a two – dimensional equivalent of Equation (10) described in 

Chapter 2. 
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implementation of the volume fraction equation is also popularly known as the 

Volume – of – Fluid (VOF) method [46]. A High-Resolution Interface Capturing 

(HRIC) scheme is used to numerically solve the volume fraction equation [47]. The 

HRIC scheme allows for the smooth switching between an Upwind, Central and 

Downwind differencing scheme of the volume fraction equation depending upon the 

local distribution of the phase volume fraction [47]. This scheme is known to 

produce a clear definition of the fluid interface, whilst being relatively cheap in 

terms of computational cost as compared with geometry reconstruction schemes 

[47]. 

 

 

 

Fig.4.8: The suspension-air interface 

 

The volume fraction equation in the volume integral form is: 

                                                                                              

                                                               (68) 

  

The volume fraction itself is defined as follows: 

volumecell
phasesuspensionbyoccupiedvolumecell

polymer =Φ  

volumecell
phaseairbyoccupiedvolumecell

air =Φ  

 

From the conservation of volume, it may be seen that: 
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                                                                                       (69) 

Thus, suspensionair Φ−=Φ 1  or vice versa, and so, the volume 

fraction equation has to be solved for one variable only, as once the volume fraction 

of one phase is known, the other can be found easily. 

As the volume fraction Φ is a scalar, this equation is discretised and solved on 

the pressure grid as shown in Figure 4.9. 

 

 

 

 

Fig.4.9: Volume fraction equation discretization and solution on the pressure grid 

 

A description of the HRIC scheme is limited to a consideration of only one 

spatial dimension (the x-direction) in favour of simplicity and clarity. 

Φf is the volume fraction value on the face of the principal cell (cell P). Φf has to 

be numerically approximated; however, the numerical scheme used to achieve this is 

switched depending upon the local cell-centered values of Φ; ΦP, ΦU and ΦD.   

A normalized variable of the cell-centred values of Φ, termed CΦ
~ is introduced. 

It is a measure of the gradient of the volume fraction between cells U, D and P, and 

is the criteria for switching the numerical schemes used to estimate the parameter Φf.  

 

                                                                                                       (70) 
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The numerical schemes are the: first order upwind, central difference and first 

order downwind scheme. 

 

 

                                                       (71)                          

In the event that the flow at the interface is parallel to the interface surface itself, 

‘wrinkles’ in the interface may occur, where there could be jumps in values of the 

volume fraction Φf  from one adjacent cell to another. In order to prevent this, the 

value of the face volume fraction is corrected, taking into account the direction of the 

flow, and the location of the interface. This correction scheme is termed 

ULTIMATE-QUICKEST [48]. 

 

                                                   

                                                 (72) 

 

The volume fraction correction term is: 

                                                                                      

                                                      (73) 

where, 

                        

                                                                (74) 

The unit vector normal to the fluid interface is given as: 

                                                                                                                                      

                                                                                                            

                                                                                                                       (75) 

And the unit vector representing the x-velocity direction is drawn from the 

centre of cell P to cell D as shown in Figure 4.9. 
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                                                                                                             (76) 

Thus the dot product of the two may be manipulated to give the angle between 

the vector normal to the interface and the vector parallel to the velocity. 

The face volume fraction may then be expressed as: 

                                                                                             

                                                                                    (77) 

4.2.7.1   Pseudo-concentration Method 

The simulation of the mold – filling flow encounters two separate fluids – 

suspension and air, of vastly different densities, viscosities and thermal properties. 

This creates problems with the numerical stability of the equations to be solved. For 

instance, the suspension density and viscosity is of the order O(103
 kg/m3) and O(103

 

Pa.s) respectively, while the air density and viscosity is of the order O(1 kg/m3) and 

(10-5 Pa.s) respectively. In cells that are a mixture of air and suspension, the 

properties of the fluid in the cell are averaged by considering the volume fraction of 

the individual phases, for instance: 

                                                                                             

                                                     (78) 

Due to the large differences in the properties of the suspension and air, even a 

small amount of the suspension phase results in a significant change in the fluid 

properties of a particular cell. This may cause blow-ups, especially in the momentum 

equations when fluid momentum is transferred across the interface from the 

predominantly suspension zone, to the predominantly air one. A possible solution is 

to solve two separate momentum equations: one for the suspension and another for 

the air. This however, consumes system resources. The pseudo-concentration method 

introduced by Haagh and Vosse is an intelligent way of dealing with this potential 

problem [49]. Scaling arguments may be used to demonstrate that, the most 
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significant terms in the momentum equation for the suspension phase, are the 

viscous and pressure gradient terms: 

                                                        (79) 

Similarly, scaling arguments may also be used to show that for the air phase, the 

most significant terms are the inertial and gravity terms: 

                                                                                       

                                                                                         (80) 

The scaling arguments used to demonstrate this are elaborated in detail in 

Appendix A of this thesis. 

As the phase of concern is the suspension phase – this is the phase in which the 

short-fibers are suspended, the behaviour of the air phase is of significantly less 

concern. By introducing a fictitious fluid or a ‘pseudo-fluid’ in place of air, the 

momentum equation of the air phase may be altered so that the significant terms are 

the pressure gradient and the viscous terms. Then, only one momentum equation has 

to be solved for both suspension and air phases. This process is simply done by 

substituting the physical properties of air with ‘pseudo-fluid’ properties: in effect, the 

viscosity is changed to a constant 1 Pa.s. This value is small enough that it doesn’t 

cause unrealistic pressure buildups in the air phase, but large enough that the viscous 

terms in the air phase is large.  

However, as FLUENT solves a generic transport equation for the entire domain, 

the modification of air viscosity to that of ‘pseudo-air’ is necessary only so that the 

gravity term of the momentum equation may be dropped. In order to avoid 

confusion, the ‘pseudo – air’ phase is referred to simply as ‘air’ for the remainder of 

this thesis. 

Additionally, the presence of two phases of vastly different viscosities presents 

difficulties for the definition of the slip boundary at the wall due to the fact that a 

stress singularity develops at the contact point of the suspension, air and wall [50].  
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In order to remedy this, a dynamic slip boundary is imposed where the slip 

condition on the wall is switched depending upon the phase present: no-slip for 

suspension and free-slip for air. A User-Defined Function (UDF) was written into 

FLUENT 6.3 to allow for the dynamic switching of slip conditions from no-slip to 

free-slip (traction free) depending upon the phase present at the wall.  

The algorithm is as follows: 

 

 

  

 

 

For a predominantly suspension – filled wall boundary cell (defined as a cell 

with a volume fraction Φ equal to or greater than 0.5) the slip condition is ‘no-slip’ 

whereby the fluid velocity is set to zero at the wall boundary. For a predominantly 

air filled cell, the condition is ‘free-slip’ and the velocity in the cell is equal to that of 

the adjacent cell. The UDF was written in C – programming language and compiled 

in FLUENT. 

4.3 Numerical Implementation of the Fiber Orientation Evolution Equation 

The two – dimensional fiber orientation evolution equation was solved utilizing flow 

field data extracted on Plane A as shown in Figure 5.6. The numerical solution of the 

fiber orientation was performed in Matlab. Due to the decoupled approach to solving 

this problem, the fiber orientation evolution equation may be independently solved. 

Breaking up the tensor aij into its five independant constituent components; a11, a22, 

a12, a13 and a23, as explained in 2.5.1 results in five separate orientation equations that 

have to be solved in tandem. The a33 component is obtained from the normalization 

condition (a33 = 1 – a11 – a22). 

1. Access cells on wall boundary: 
 

2. Check polymer volume fraction (Φ) of wall boundary cell 

If (Φ >= 0.5)  
Set velocity in wall boundary cell to zero. (no-slip)  

 
Else 

Set velocity in wall boundary cell to the velocity of the    
cell adjacent to the wall boundary (free-slip) 
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Each of these orientation equations is descretized by means of the finite 

difference method, utilizing the flow field data obtained from FLUENT as the 

coefficients of the resulting system of linear equations. 

4.3.1 Finite Difference Method 

The finite difference method implements the discretization of Equation 30 in its 

non - conservation or differential form. This is achieved by representing the 

differential forms of Equation 30 as truncated forms of Taylor series, and is 

demonstrated here by re-examining the one-dimensional convective-diffusive from 

Equation 23. With respect to Equation 24, the finite difference form of the equation 

is: 

 

                                                               (81) 

The reference for the discretization process are the nodes themselves, not the 

fluid volumes. The grid points upon which the fiber orientation equation is 

discretized coincides with the cell centers of the finite volume grid, as shown in 

Figure 4.10. Two grids, one a finite difference grid, and another finite volume one 

are superimposed to demonstrate how the finite difference grid is obtained from the 

latter by shifting the reference from the cell center to the grid points. 
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Fig.4.10: A two-dimensional finite difference grid superimposed over a finite 

volume grid. (The finite difference grid is drawn with broken lines and the finite 

volume one is drawn with solid lines) 

4.3.2 Fiber Orientation Evolution Numerical Scheme 

The Crank-Nicolson scheme is used to discretize the fiber orientation evolution 

equation. This choice was predicated upon the fact that the Crank-Nicolson (C-N) 

scheme is stable for a broad range of time steps [52]. The philosophy behind the C-N 

scheme is to combine an explicit or forward differencing scheme which is first order 

accurate in time, with an implicit or backward one, and central differencing for the 

spatial terms to obtain a stable numerical scheme that is second order accurate in 

both time and space. Consider for instance the one dimensional unsteady convective 

equation: 

 

                                                        

          (82) 
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The C – N scheme selects the time t+0.5∆t as the point in time around which the 

equation is discretized. A central difference scheme is used for the spatial terms, and 

in addition the spatial terms are averaged at two different time steps to obtain an 

expansion around t+0.5∆t. This is demonstrated as follows: 

 

                                                            

                           (83) 

 

Applied to the two – dimensional fiber orientation evolution equation, this 

results in: 

                                                                                                                           (84) 

where λ is the aspect ratio of the short fibers, taken to be 1 in this work. Δx and 

Δz represent the grid spacing in the x and z directions and are identical to those used 

in the FLUENT simulations. It should be noted here that the source terms on the 

right-hand side of the equation are evaluated at time level t, however, tensor 

components which are part of the source term that match the i,j index are averaged 

between the two time steps.  

These terms may then be re-combined and re-arranged to yield the following set 

of linear equations: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

22
1

22
1

...
5.02

1
5.02

1

11
1
1

1
1

5.05.01

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ
−

+
Δ
−

+
Δ

−

−+
+
−

+
+

+++

xx

tt
n
I

n
I

n
I

n
I

n
I

n
I

n
I

n
I

ρφρφρφρφ

ρφρφρφρφ

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )n KIijij

n
KII

n
KIijklkl

n
KIkjik

n
KIkjik

n
KIkjik

n
KIkjik

n
KIij

n
KIij

KI

n
KIij

n
KIij

KI

n
KIij

n
KIij

KI

n
KIij

n
KIij

KI

n
KIij

n
KIij

aC

Aaaaa

z

aa
w

z

aa
w

x

aa
u

x

aa
u

t

aa

,,

,,,,,

1,1,
,

1
1,

1
1,

,

,1,1
,

1
,1

1
,1

,
,

1
,

32

...2

222
1

...
222

1

−⋅+

+⎥⎦
⎤

⎢⎣
⎡ −++⎥⎦

⎤
⎢⎣
⎡ −−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ

−
+

Δ

−
+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ

−
+

Δ

−
+

Δ

−

−+
+
−

+
+

−+
+
−

+
+

+

δγ

γγγλωω

&

&&&



58 
 

                                                                                                                            (85) 

where A is the coefficient matrix of the time dependant term, (aij)t+1. B and C are 

the convective coefficients at time level t+1 and t respectively. S is the source term 

which includes the fourth order orientation closure terms. This results in a 5-diagonal 

sparse matrix that is diagonally dominant and thus may be solved by the Gauss-

Seidel iteration method [53].   

Although the Crank-Nicolson scheme is unconditionally stable, oscillations may 

develop if the ratio of the time step size to grid size is large. Furthermore, the fourth 

order orientation closure terms are non-linear for the case of the hybrid and quadratic 

closure. Thus, von Neumann stability analysis was performed in order to find a 

suitable time step size that would ensure a stable solution of the system of linear 

equations. The detailed workings for the a11 orientation evolution with the quadratic 

closure implemented are included in the Appendix B of this thesis. Due to the fact 

that the orientation components derive from ensembles of unit vectors, the range of 

possible real values are bounded. It was found that allowing any tensor component to 

‘stray’ out of this range resulted very quickly in numerical blow-up within a few 

time steps, thus they have to be constrained: 

                                                                                             

                                                                                            

               (86) 

This is achieved by implementing a bounding function at the end of each 

iterative loop in order to capture values which drift out of bounds and push them 

back within the appropriate limits.  
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4.3.3 Solution Method and Algorithm 

The series of linear equations developed from the discretization of the fiber 

orientation evolution equation may then be solved iteratively. The solution algorithm 

is laid out in Figure 4.11. As may be observed, there are two separate iteration loops 

which are in actual fact nested, one inside the other. First, there is the time 

advancement loop which governs the incremental increase in the number of time 

steps, and second, nested inside is the iteration loop that iterates the evolution 

equations of a11, a22, a12, a13 and a23 to convergence. The converged solution is then 

checked to assess if it has achieved a steady-state result. This is assessed based upon 

a ‘steadiness’ criterion where the results from two consecutive time steps are 

compared to assess if the difference between them have fallen below a certain 

threshold. If this has not been achieved, then the time step is advanced and the 

iteration loop begins again. 
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Fig.4.11: Solution algorithm of the fiber orientation evolution equation 
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4.4 Summary 

Due to the fact that the fiber orientation evolution equation is solved in a decoupled 

manner, the numerical solution proceeds in two stages. First, the gradual filling of 

the empty mold is simulated; this is accomplished through a commercial CFD code. 

The finite volume method is employed to accomplish this. A two dimensional 

segment of the flow field is extracted, and the fiber orientation evolution equation is 

solved, using the flow field data as coefficients for the numerical solution. This is 

implemented by means of the finite difference method.  
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CHAPTER 5 

�������������������

5.0 Introduction 

Two test cases were used to verify the accuracy of the simulation as a whole. A 

solved numerical problem from literature due to Hieber [39] was used to assess the 

validity of the mold – filling solution method. The setup of the validation case is 

elaborated in Section 5.1. Section 5.2 discusses the setup for the three-dimensional 

simulation of the mold-filling flow and the subsequent solution of the fiber 

orientation equation. The experimental results of Bay [29] were used to assess the 

accuracy of the numerical solution to the fiber orientation evolution equation and the 

related closure models.  

5.1 Test Case 1: Hieber’s Mold – Filling Simulation 

Hieber [39] performed a two-dimensional simulation of the gradual filling of an 

empty rectangular cavity of dimensions 200mm x 25mm x 2mm, by a hot 

polystyrene-type polymer. This work was used by Bay [21] as a test case for the 

numerical solution algorithm of the mold – filling flow, and is used here in this work 

for the same purpose. The choice of this problem as a test case was motivated by the 

fact that the salient features of the polymer flow encountered in Hieber’s work are 

similar to ours, namely, a high viscosity, non-isothermal flow nature where the 

length of the flow domain is much greater than its height.  
A two-dimensional simulation was performed where the choice of flow 

equations and solution controls are identical to those described earlier in Chapter 4.2. 
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The pseudo-concentration method and the dynamic slip model described in 

Chapter 3.2.8 was applied. 

Hieber [39] simplified the three – dimensional geometry of the empty cavity to a 

two – dimensional rectangular domain of dimensions 200mm x 2mm. As the 

geometry exhibits top-bottom symmetry, a symmetry line is implemented through 

the middle of the domain. This effectively reduces the computational cost by half. A 

diagram of the computational domain is shown in Figure 5.1.   

 

                              
Fig.5.1: Two dimensional domain of the Hieber case [39] 

 
A velocity boundary was used for the inlet with an inlet velocity of 0.2m/s 

(computed with respect to a filling time of 1s) with an inlet temperature of 473 K. 

An initial inlet pressure was specified to be 107 Pa. The wall temperature was 300K, 

and a pressure outlet was used for the mold outlet, where the pressure was set to 0 Pa 

(gage). The generation of the two – dimensional mesh was performed in Gambit 2.4, 

a preprocessing software accompanying FLUENT 6.3. A uniform grid size of 

0.0001m was used in both the x and z directions. This choice of grid size is identical 

to that used by Hieber [39]. The polymer was modeled with a Power Law relation 

and Arrhenius temperature dependence. The material properties of the polymer are 

listed in Table 5.1. For the air phase, the pseudo-air properties listed in Table 5.5 are 

used. Simulation data was extracted from a location corresponding to a distance of 

0.1m from the mold inlet, after complete filling of the mold was achieved. The time 

step size and relaxation factors for each iteration are the same as those used for Test 

Case 2, as listed in Table 5.6. 

  

x=0 
z=0 

• 
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Table 5.1 

Polymer material properties of the Hieber case [39] 

 

 

 

 

 

 

 

 

 

 

 

5.2 Test Case 2: Bay’s Fiber Orientation Experiment 

Bay [29] conducted injection molding experiments with Zytel 43B which consisted 

of nylon 6/6 (DuPont Zytel 101L) reinforced with 43wt% glass fibers for a film-

gated strip and a center-gated disk. The fiber orientation at several mold locations 

was measured once the filling process and the subsequent solidification of the 

suspension melt were complete. The orientation data for the film-gated strip is used 

for comparison with the numerical results in this research project. The mold 

geometry is drawn in Figure 5.2 and its dimensions are 203.2mm x 25.4mm x 

3.18mm.  

 

 

 

 

 

 

 

 

 

Property Value Units 

Density, ρ 940 kg/m3 

Specific heat capacity, Cp 2100 J/kg.K 

Thermal conductivity, k 0.15 W/m.K

Consistency index, B 3.43 Pa.s 

Power law index, n 0.312  

Reference Temperature 3910 

Maximum viscosity limit 2648  

Minimum viscosity limit 33.7  
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Fig.5.2: Schematic of the film-gated strip (Bay [29]) 

 

Bay measured the fiber orientation at 6 points along the mold at various heights 

and distances from the inlet. Four orientation components were measured; the 

component along the flow (a11), in the height direction (a33), and in the width 

direction (a22), as well as the in-plane component (a13). These measurement points lie 

along the middle plane of the mold and are approximately 9mm, 54mm, 77mm, 

96mm, 146mm, and 167mm from the inlet in the length direction. 

5.2.1 Simulation Setup 

The film – gated strip from Bay’s [29] work was simplified by observing that the 

gate region could be neglected. Due to the fact that the suspension phase is highly 

viscous, the flow development region is extremely short, thus the vicinity of the gate 

is important only if the flow behaviour in this area is to be studied. The effect of the 

gate in the flow simulation has a limited distance of influence from the inlet itself, 

allowing a mold flow simulation without consideration of the thin-gate. This is 

demonstrated by scaling arguments in the Appendix A of this report.  The presence 

of the outlet vent shown in the mold geometry of Figure 5.2 serves to vent out air 

from the mold during the filling process. This maintains the air phase at atmospheric 

pressure throughout the filling process, and is adequately modeled as a pressure 

boundary. The simplified computational domain with the gate removed is shown in 

Figure 5.3. 
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Fig.5.3: Computational domain 

 
As the flow exhibits top-bottom and left-right symmetry, two symmetry 

boundaries were applied to the geometry which effectively reduces the 

computational domain to a quarter of the original and consequently the 

computational cost is reduced. The computational domain, boundaries and location 

of the symmetry planes are shown in Figure 5.4. 

 

 

 

 

 

 

 

 

                             

 

 

Fig.5.4: The inlet boundary and symmetry planes of the three-dimensional mold. The 

darkened region is the resulting computational domain. 

 

The three – dimensional mesh was generated in Gambit 2.4 with a variety of grid 

sizes, and grid independence tests were performed to determine the optimal grid size. 

This is described later in Chapter 6 of this thesis. The optimal grid sizes are listed in 

Table 5.2 and Figure 5.5 displays the meshed geometry. 

main flow  
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left - right 
symmetry plane 

 x 

 
z 
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Table 5.2 

Optimal grid size of the film-gated strip 

Grid Size 

X – direction 0.00048m 

Y – direction 0.00048m 

Z – direction 0.00016m 

Total number of meshes 113778 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.5: Meshed geometry of the mold in Gambit 2.4 
 

A velocity boundary was defined for the mold inlet where the inlet velocity was 

computed from a recorded filling time of 0.4s [29], and an initial injection pressure 

was defined as well. In addition, the inlet admits solely the suspension phase into the 

mold. A pressure boundary was defined for the outlet, and in the event of reversed 

flow (fluid entering the outlet in the reversed direction to the main flow direction), 

only air was admitted through this boundary. Further, a temperature was specified 

for the inlet, outlet (in the event of reversed flow) and the walls. For the initial 

condition, the volume fraction of the air phase was set to 1 in the whole interior of 

the mold, mirroring an empty mold at the beginning of the filling process. The 

boundary and initial conditions are summarized in Table 5.3. 
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Table 5.3 

Boundary and initial conditions 

Boundary/ 

Zone 

Boundary 

/Zone Type 

Boundary condition Initial Condition 

Parameter Value Parameter Value 

Inlet Velocity inlet 

Velocity 

Magnitude 

0.508 

m/s 
Pressure 

0 Pa 

(gage) 

Suspension 

Volume 

Fraction 

1   

Temperature 550 K Temperature 550K 

Outlet 
Pressure 

outlet 

Pressure 
10 7 Pa 

(gage) 
  

Suspension 

Volume 

Fraction 

0   

Reversed Flow 

Temperature 
297K   

Mold 

interior 
Interior   

Temperature 297 K 

Suspension 

volume fraction 
0 

 

 

As mentioned earlier in Chapter 3, the suspension phase is modeled as a non-

Newtonian, Power Law fluid. Based upon experiments conducted by Bay [29], the 

coefficients of the viscosity relation were derived through data-fitting of viscosity 

values under strain rate and temperature variance. Although the presence and 

orientation of glass fibers affects the local fluid viscosity, globally, the Power Law 

viscosity relation adequately represents the bulk viscosity of the mixture. It is treated 

as such by Bay [21], Chung and Kwon [23, 24, 25] and Verweyst et al. [54], who 

performed similar analysis with Bay’s data set for comparison. Table 5.4 lists the 

suspension properties. 
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Table 5.4 

Zytel 43B suspension properties 

Property Value Units 

Density ρ 1330 kg/m3 

Specific heat capacity, Cp 1970 J/kg.K 

Thermal conductivity, k 0.26 W/m.K

Consistency index, B 1.003 x 10-5 Pa.s 

Power law index, n 0.58  

Reference Temperature 10790 K 

Maximum viscosity limit 2648  

Minimum viscosity limit 33.7  

 

Table 5.5 lists the properties of the air, where the viscosity has been set to 1 Pa.s 

(the original viscosity of air at 25oC is 1.86 x 10-5 Pa.s) in accordance with the 

pseudo – concentration method while retaining the other physical properties of air. 

The dynamic slip model described in Section 3.2.8 is applied here as well. 

 
Table 5.5 

Air (pseudo-air) properties 

Property Value Units 

Density ρ 1.225 kg/m3 

Specific heat capacity, Cp 1.003 x 10-3 J/kg.K 

Thermal conductivity, k 0.025 W/m.K

Viscosity 1 Pa.s 

 

5.2.2 Solution Controls 

As the flow is time-dependant, the simulation is transient. The total mold-filling time 

is 0.4s. In order to observe the filling process, data was extracted at the flow time; 

0.1s, 0.2s, 0.3s and 0.4s. 
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An adaptive iteration control was used, where minimum and maximum time 

steps are specified, and the code is allowed to decide on the change in time step, 

based upon an evaluation of the Courant number. Relaxation values were used to aid 

convergence. The iteration parameters are listed in Table 5.6 and the Courant 

number is defined as: 

 

        
                                                                                     (87)                     

 
Table 5.6 

Iteration parameters 

Parameter Value Units 

Minimum time step 0.00001 s 

Maximum time step 0.0001 s 

Courant number limitation 2  

Flow times 0.1, 0.2,0.3, 0.4 s 

Pressure relaxation factor 0.4  

Momentum relaxation factor 0.3  

5.2.3 Grid Independence and the Effect of the Wall Boundary Slip Condition 

Grid independence tests were conducted for the simulation of mold – filling flow in 

order to obtain the optimal mesh size at which further refinement did not produce 

any significant change in the results. In addition, the effects, if any, of the dynamic 

slip boundary applied to the wall boundary were studied. An assessment of grid 

independence was conducted by comparison of the velocity magnitude profiles on 

‘Plane A’, of Figure 5.6 for a halfway filled mold at time t = 0.2s at a distance of 

0.00016m from the inlet. Several grids, tabulated in Table 5.7 were examined 

applying each slip condition.  
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Table 5.7 

Computational domain grid sizes 

 

5.2.4 Fiber Orientation Evolution 

The two – dimensional fiber orientation evolution equation was solved using the 

flow field data from FLUENT extracted on ‘Plane A’ as shown in Figure 5.6.   The 

flow field data was taken from a simulation for a flow time of t = 0.399s in order to 

ensure that the mold was completely filled. The x and z – direction grid sizes 

correspond with those of the three – dimensional mold – filling simulation. The three 

closure models were tested; the linear, quadratic and hybrid models and were 

implemented separately, and the results were compared against Bay’s [29] fiber 

orientation measurements. 

  

Run 

number 

Slip Condition Tested Grid Size 

Dynamic 

Slip 

Traditional 

No-Slip 

X –

direction 

Y – 

direction 

Z –

direction 

Run 1 Yes No 0.00048m 0.00048m 0.00032m 

Run 2 Yes Yes 0.00032m 0.00032m 0.00032m 

Run 3 Yes Yes 0.00032m 0.00032m 0.00016m 

Run 4 Yes Yes 0.00032m 0.00032m 0.00011m 

Run 5 Yes 
Numerically 

Unstable 
0.00048m 0.00048m 0.00016m 

Run 6 No Yes 0.00024m 0.00024m 0.00016m 
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Fig.5.6: ‘Plane A’: The two – dimensional data extraction plane for the solution of 

the fiber orientation evolution equation. 

 

The fiber orientation evolution equation is solved over the two-dimensional 

computational domain subject to a set of initial and boundary conditions. An initial 

orientation is specified over the entire domain and the inlet boundary carries fixed 

orientation values for each tensor component. Only the inlet orientation needs to be 

supplied, and the orientation at the wall and outlet are left to evolve along with the 

rest of the domain. The boundary and initial conditions sets have identical values and 

are specified in Table 5.8. They are identical to those that have been employed in 

Chung and Kwon [24], and match Bay’s experimental observations at the mold gate. 
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Table 5.8 

Inlet (Initial) Boundary Condition of each Orientation Tensor Component 

Orientation Tensor 

Component 
Value

a11 0.5 

a22 0.2 

a33 0.3 

a12 0 

a13 0 

a23 0 

 

5.2.5 Fiber Orientation Evolution Solution Controls 

As described in Figure 4.11, there are two sets of iteration loops; one is the time-

stepping loop and nested inside is the iteration loop of the a11, a22, a12, a13 and a23 

tensor components at a particular time step. The convergence criterion, ε, defined as 

the difference between the values of two consecutive iterations is used as the 

measure of convergence of the iteration loop. This is defined as follows: 

 

                                                                                              

                                                                      (88.0) 

 

Where aij is the orientation tensor component at iteration number n, at location 

(I,K) on the grid.  

Further, due to the decoupled approach, the time domain of the fiber orientation 

evolution equation is distinct and independent of the time domain of the mold-filling 

flow equations. Thus, there are two different sets of ‘times’. It may be 

mathematically demonstrated that a unique solution exists for the fiber orientation 

equation for any point in time, solved with the use of the linear, quadratic and hybrid 

closure [55]. However, this does not guarantee that a steady orientation will be 

obtained after a sufficiently long time has passed. To circumvent this, a ‘steadiness’ 
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criteria, S, is used to halt the time-stepping of the discretized fiber orientation 

equation. Once the difference between the orientation values at two successive time 

steps falls below preset criteria, a steady orientation state is considered to have been 

achieved. This is defined in Equation 85.0, and the criterion for each orientation 

tensor component is listed in Table 5.9. The basis for selecting these criteria were 

that they were the most stringent possible without causing the time-stepping to go on 

indefinitely. It was found that very large time-steps (>300) produced completely 

unrealistic results. A time step size of ∆t=0.0001s was found to produce stable 

iterations. 

  

 

      
                                                                                          
                                                           (89.0) 

 
Where aij is the orientation tensor component at time step n, at location (I,K) on 

the grid. An average relaxation factor was introduced in order to aid the convergence 

of the fiber orientation evolution equation. This is listed in Table 5.9. 

 

Table 5.9 

Solver parameters 

Property 
Orientation Tensor Component 

a11 a22 a12 a13 a23 

Time step (s) 0.0001 0.0001 0.0001 0.0001 0.0001 

Relaxation factor 0.8 0.8 0.8 0.8 0.8 

Convergence criteria, ε 
(%) 

0.01 0.01 0.01 0.01 0.01 

Steady criteria, S (%) 1 1 5 5 5 
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5.3 Summary 

The validation of the simulation of fiber orientation during mold-filling was carried 

out in two stages. First a two-dimensional test case from literature [39] was used to 

validate the simulation setup of the mold-filling flow. The same simulation setup 

was used to perform a three-dimensional simulation of mold-filling for a geometry 

corresponding to Bay’s [29] work. Grid independence tests were carried out to 

obtain the optimal mesh size and to study the effects of the dynamic slip condition. 

A two-dimensional segment of the flow field data was used to solve the fiber 

orientation. The simulation results for the validation test, three-dimensional mold-

filling flow and fiber orientation are presented and discussed in the following 

chapter. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

6.0 Validation of the Mold – Filling Simulation Setup 

The results of the simulations for Test Case 1 and Test Case 2 are presented and 

discussed here. Test Case 1 involved the simulation of the two – dimensional filling 

of an empty cavity, and the results were used to ‘validate’ the simulation setup which 

would be applied to the three – dimensional simulation in Test Case 2. This is 

presented and discussed in Section 5.1. Section 5.2 discusses the results obtained from 

Test Case 2 which involved the simulation of the three – dimensional filling of an 

initially empty mold. Section 5.3 discusses the subsequent computation of the fiber 

orientation profile along the mold and assessment of closure model performance. 

6.1 Validation of the Mold – Filling Simulation Setup 

The ‘validation’ of the mold – filling simulation setup was performed with Test Case 

1, where computed velocity and temperature profiles were compared against those 

obtained by Hieber [39] from a previous simulation. Figures 6.1 and 6.2 show a 

comparison of the velocity and temperature results between the two simulations. 
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Fig. 6.1: A comparison of velocity data extracted on ‘Plane A’ after complete filling 

at a distance 0.1m from the mold inlet 

 
 

 
Fig. 6.2: A comparison of temperature data extracted on ‘Plane A’ after complete 

filling at a distance 0.1m from the mold inlet 

 
Beginning at the wall, the velocity trends in Figure 6.1 depict a slight deviation 

between the computed results and those obtained from Hieber’s work [39]. After 

0.0004m from the wall, and moving towards the middle of the flow, the discrepancy 

between the two sets of data is diminished with an exception of the last data point. 

As for temperature, the computed results match Hieber’s almost exactly for locations 
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near the wall as shown in Figure 6.2. After 0.0004m from the wall however, a slight 

deviation develops where the computed results slightly under-predict the temperature 

of the flow, as compared with Hieber’s results. The deviation that appears after this 

height is of a constant value. This indicates that the simulation setup is capable of 

accurately predicting velocity and temperature profile of the test case. In addition, 

this validates the use of the dynamic slip condition in conjunction with the PC 

method as a viable means of defining the fluid slip at the walls. 

6.2 Three – dimensional Mold – Filling Flow  

The simulation results of Test Case 2 are presented here. Several flow features of 

interest were investigated, discussed and qualitatively assessed against experimental 

and numerical observations from literature. These flow features are: the flow front 

progression during the mold – filling process, the suspension velocity profiles 

developed within the mold, fountain flow at the suspension air interface, and grid 

independence results. In addition the effect of using the dynamic slip boundary as 

opposed to the traditional no-slip boundary is also investigated. 

6.2.1 Data Visualization and Extraction 

The flow field data presented here was extracted from the simulation of Test Case 2 

along a plane that cuts halfway through the width of the mold. This plane is termed 

‘Plane A’ as depicted in Figure 5.6. This choice was motivated by the fact that the 

mold height is much smaller when compared to the width and length of the mold, 

thus the flow gradients are greatest across the mold height and therefore best 

represent the flow conditions in the mold.  

Plane A coincides with the left – right symmetry plane described in Figure 5.4 

and is also the plane along which Bay’s [29] fiber orientation measurements were 

made, thus the flow field data on this plane was also used to numerically solve the 

two – dimensional fiber orientation evolution equation. 
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As a top – bottom symmetry plane was also employed, as shown in Figure 5.6, 

the results obtained along Plane A extend from the mold wall to the symmetry line at 

the middle of the flow. 

6.2.2 Grid Independence and the Effect of the Wall Boundary Slip Condition  

In order to study grid independence, the velocity magnitude profiles for several grid 

sizes were compared to observe the size at which the velocities profiles no longer 

changed, and further refinement would be unnecessary. As the choice of wall 

boundary slip could conceivably affect the results, comparisons were performed for 

both the dynamic slip and traditional no – slip boundaries. The grid sizes and details 

of each run are listed in Table 5.7. Simulations performed for the dynamic slip 

condition are denoted with the term ‘dyn’ added to the run number, i.e. ‘Run # dyn’, 

and those with the traditional no-slip condition are identified by an addition of ‘no-

slip’ after the run number, i.e. ‘Run # no-slip’.  

Not all the runs successfully produced results however, as stability issues were 

encountered for ‘Run 5 no-slip’. This was attributed to the numerical instability 

introduced by grids with significant aspect (length to height) ratios (X/Z = 3) whilst 

applying the no-slip condition universally, as defined by Fluent.  

Two runs; ‘Run 1 no-slip’ and ‘Run 6 dyn’ were not performed. It was reasoned 

from the results obtained on the other runs, that for ‘Run 1 no-slip’, further 

coarsening would not resolve the problem of a skewed interface described later. In 

like manner, from the grid independence results for the grids using the dynamic slip 

boundary, it was observed that further refinement of the grid, ‘Run 6 dyn’ was 

unnecessary. 
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A comparison of the velocity magnitude profiles for the dynamic slip case is 

made first. Figure 6.3 presents velocity magnitude data extracted for ‘Run 1 dyn’ 

through ‘Run 5 dyn’. As may be observed in Figure 6.3, the data are clustered into 

two groups based on their trends: ‘Run 1 dyn’ and ‘Run 2 dyn’ tend to group, whilst 

‘Run 3 dyn’, ‘Run 4 dyn’ and ‘Run 5 dyn’ form another. Runs of the two different 

trends are separated in Figures 6.4 and 6.5. An analysis of ‘Run 1 dyn’ and ‘Run 2 

dyn’ in Figure 6.4 demonstrates a profile that is almost linear between the heights of 

0m and 0.0009m from the wall. Progressing from ‘Run 3 dyn’ through ‘Run 5 dyn’ 

the velocity trends between these two points on the mold interior begin to exhibit a 

non-parabolic profile as observed in Figure 6.5, where the velocity gradients in the 

near wall region (less than 0.0004m from the wall) are reduced. However, near the 

flow core (0.01 to 0.016m from the mold wall), the velocity trends for all the runs 

begin to converge together as seen in Figure 6.3. Due to the imposition of fluid 

continuity, this results in a speeding up of the fluid between the heights of 0.0004m 

to 0.001m from the mold wall. It should be noted as well, that the grids used for 

‘Run 3 dyn’, ‘Run 4 dyn’ and ‘Run 5 dyn’ have smaller mesh sizes in the height 

direction as compared to ‘Run 1 dyn’ and ‘Run 2 dyn’.  
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Fig. 6.3: Velocity magnitude data on ‘Plane A’ for ‘Run 1 dyn’ to ‘Run 5 dyn’, taken 

at time t = 0.2s at a distance 0.06m from the mold inlet. 

 
 

 

 

 

 
 

 

 

 

 

 

Fig. 6.4: Velocity magnitude data on ‘Plane A’ for ‘Run1 dyn’ and ‘Run 2 dyn’, 

taken at time t = 0.2s at a distance 0.06m from the mold inlet. 

 
The effect of grid refinement in the height (z) direction may be clearly seen 

when the velocity trends in Figure 6.4 and 6.5 are compared. The trends in Figure 

6.4 are closely clustered, where both grids have a grid size of 0.00032m in the height 
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(z) direction, but different grid sizes in the length (x) and width (y). This 

demonstrates that the grid refinement in the length (x) and width (y) directions yields 

little effect. Refinement in the height (z) direction produces noticeable effects, as 

demonstrated in Figure 6.5. This is readily explained by the fact that the largest fluid 

gradients occur across the mold height, as it is the shortest dimension in comparison 

to the mold length and width, thus refinement in the height direction captures these 

gradients better. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.5:  Velocity magnitude data extracted on ‘Plane A’ for ‘Run 3 dyn’, ‘Run 4 

dyn’ and ‘Run 5 dyn’, taken at time t = 0.2s at a distance 0.06m from the mold inlet. 

 
It may be seen from further analysis of Figure 6.5 that the velocity magnitude 

profiles are clustered together for most of the points, with differences between the 

two sets of results pronounced near the wall (less than 0.06m from the wall). These 

differences are small however, in comparison to the velocity magnitude itself – less 

than 10% deviation between ‘Run 3 dyn’, ‘Run 4 dyn’ and ‘Run 5 dyn’ results. 

Following this, it is understood that the finer grids in Run 3 and Run 4 do not show a 

considerable difference in the simulated results. Therefore, ‘Run 5 dyn’ gives a grid 

independent solution.  

Identical simulations were performed for several runs (termed ‘Run # no-slip’) 

with the traditional no-slip boundary conditions applied to both phases as listed in 

Table 5.7. With the exception of ‘Run 6 no-slip’, the results produced demonstrated 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 0.2 0.4 0.6 0.8 1
Velocity (m/s)

He
ig

ht
 (m

)

velocity magnitude 'Run 3 -dyn' velocity magnitude 'Run 4 -dyn'
velocity magnitude 'Run 5 -dyn'



 
84 

 

a highly stretched interface which was physically unrealistic. ‘Run 5 no-slip’ was 

found to be unstable even for very small time steps (Courant number = 0.25). An 

example of the stretched interface taken from ‘Run 3 no-slip’ is shown in Figure 6.6. 

 

 

 

 

 

 

 

 

 
Fig. 6.6: Fluid phase profile extracted on ‘Plane A’ for ‘Run 3 no-slip’, taken at time    

t = 0.2s. The red phase is the polymer, and the blue one is pseudo-air. 

 
For contrast, Figure 6.7 shows a fluid phase profile from ‘Run 5 dyn’. As may be 

observed, the interface is a rounded quarter circle, which is in agreement with results 

obtained by others [56, 57].  
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Fig. 6.7:  Fluid phase profile extracted on ‘Plane A’ for ‘Run 5 dyn’, taken at time t 

= 0.1s. The red phase is the polymer, and the blue one is pseudo-air. 

 

The simulation with ‘Run 6 no-slip’ produced results with a reasonable interface 

shape and location; the velocity magnitude results were very close to those obtained 

on ‘Run 5 dyn’, as shown in Figure 6.8. 
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Fig. 6.8:  A comparison of the velocity magnitudes on ‘Plane A’ for ‘Run 5 dyn’ and 

‘Run 6 no-slip’ taken at time t = 0.2s at a distance of 0.06m from the mold inlet. 

 

A plausible reason for the stretched interface observed in Figure 6.6 and the 

improvement in the quality of results (with reference to ‘Run 2 dyn’ and ‘Run 5 

dyn’) may be elaborated here. FLUENT defines the no-slip boundary by specifying a 

large wall shear stress of order 109 Pa at the wall boundary, resulting in large 

velocity gradients across the height direction in cells near the wall. When the meshes 

used have a large aspect (length to height) ratio, the area of the cell face across the 

height is larger than that across the length leading to comparably higher convection 

through the height direction of the cell. Considering the volume fraction of cells near 

the wall, increased convection through the height direction leads to the movement of 

polymer away from the walls resulting in a higher proportion of air filled cells. Due 

to the conservation of polymer mass, this leads to a commensurate convection of 

polymer along the flow direction from cells in the middle of the flow, the net effect 

of which is the skewed interface observed in Figure 6.6. The grid used in ‘Run 6 no-

slip’ has a small aspect ratio of 1.5 and thus a smaller difference in the face areas of 

the cell. This balances out the convection across the height and along the length of 

the cell resulting in a more balanced distribution of polymer (and air), thus a more 

gradual, curved interface is observed. Due to the similarity in the velocity 
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magnitudes trends shown in Figure 6.8, it is considered that ‘Run 6 no-slip’ produces 

grid independent results for the traditional slip cases. However, it should be pointed 

out that the grid ‘Run 6 no-slip’ has four times as many meshes as ‘Run 5 dyn’ for 

similar quality of results. Thus there is a considerable increase in computational 

resources required in the earlier case as opposed to the latter one. 

Due to the fact that the velocity profiles from ‘Run 5 dyn’ demonstrate grid 

independence, the remainder of the flow field data presented in this thesis is derived 

from ‘Run 5 dyn’. In addition, the velocity and strain rate data used to solve the fiber 

orientation evolution equation was derived from this particular simulation run as 

well. 

6.2.3 Suspension – Air Interface Progression 

As the inlet velocity used in this simulation was estimated from the actual filling 

time of the mold, the interface progression should agree with the elapsed flow time. 

The interface at various times; 0.1s, 0.2s, 0.3s and 0.39s should be at the 

approximate locations at the corresponding times, as tabulated in Table 6.1: 

 
Table 6.1 

Interface location at corresponding flow times 

 

 

 

 

 

 

Figure 6.9 shows the volume fraction plots of the mold at the corresponding 

times as those in Table 6.1, viewed from above. The red phase is the suspension, the 

blue phase is the pseudo-air and the light green band represents the interface. 

The plots show that the interface locations correspond to the filling times that 

would be expected during the actual filling process. In addition, the interface shape 

viewed from above demonstrates a curvature that extends from the wall to the 

Flow 
Time 

 

Interface location  
(distance from mold 
inlet)  

0.1 s 0.05m 
0.2 s 0.1m 
0.3 s 0.155m 
0.39 s 0.19m 
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symmetry plane. This is expected, and is in keeping with the no-slip condition 

applied to the suspension phase at wall. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                              
 
 
       
                                                        

 
 
      
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.9: Volume fraction plots of mold geometry viewed from above at times 0.1s, 

0.2s, 0.3s and 0.39s 
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6.2.4 Suspension Velocity  

Velocity profiles across the mold height were obtained at various points along ‘Plane 

A’, at four different flow times: 0.1, 0.2, 0.3 and 0.39s in order to observe the 

velocity field development as the filling process occurs. A sampling of these data at 

a distance of 0.04m from the mold inlet are presented at the four different times, in 

Figures 6.10 through 5.13. It was observed that running the simulation for a full 0.4s 

resulted in the suspension ‘over-flowing’ the pressure outlet boundary, thus only 

values close to 0.4s were used. The flow field for which the fiber orientation is 

computed was obtained at flow time t = 0.399s. A general picture of the velocity 

profile within the mold may be gleaned from Figure 6.10 through Figure 6.13 where 

it may be observed that the velocity profile changes gradually with respect to time 

especially near the wall. As may be seen, the shape of the profile does not approach 

the parabolic curve typical of Newtonian flows. Rather, it features a sharp increase in 

velocity near the wall which corresponds with the viscous and thermal boundary 

layer occurring there. The viscous boundary layer occurs due to the effect of zero 

slippage at the wall, and in conjunction with the rapid decrease in temperature near 

the wall, the viscosity of the polymer increases dramatically, slowing the fluid down 

further. This classic ‘nipple’ shape conforms to the velocity profile observed in 

typical mold filling flows [56]. It illustrates the importance of using a Non-

Newtonian formulation for the viscosity that allows for variation with respect to 

local fluid strain rates and temperature.  
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Fig. 6.10: Velocity Components vs. mold height, 'Plane A' at x =0.04m, t = 0.1s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.11: Velocity Components vs. mold height, 'Plane A' at x =0.04m, t = 0.2s 
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Fig. 6.12: Velocity Components vs. mold height, 'Plane A' at x =0.04m, t = 0.3s 

 

Fig. 6.13: Velocity Components vs. mold height, 'Plane A' at x =0.04m, t = 0.39s 
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6.2.5 Fountain Flow 

The phenomenon of fountain flow has been described in the introduction of this 

report, and the necessity of a complete three-dimensional simulation to capture this 

effect has been clarified. The occurrence of fountain flow in the simulations carried 

out is visualized by velocity vectors. A view of this is presented in Figure 6.14. The 

vectors are coloured according to the phase present: red for suspension and blue for 

air, colours in between represent a mixture of suspension and air. The vector lengths 

correspond to the velocity magnitude, and the direction of the vectors indicates the 

predominant direction of the velocity. 

 

Fig. 6.14:  Velocity vectors on ‘Plane A’ at location x = 0.1m, flow time, t = 0.2s 

 
At the interface, the suspension velocity vectors are directed away from the 

predominant flow direction and towards the mold wall. This is caused by the bulk 

flow decelerating at the suspension – air interface due to the curvature of the 

interface itself. A similar result was obtained by Chang and Yang [57], where they 

noted that this effect may only be captured with a full three-dimensional simulation, 

without the use of any mathematical simplifications such as the Hele-Shaw method 

[38]. This naturally has an effect on the fiber orientation near the interface, thus 
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capturing this flow feature is necessary in order to permit an accurate simulation of 

the fiber orientation during mold-filling flow. 

6.3 Fiber Orientation Calculation  

The two – dimensional fiber orientation evolution equation was solved using the 

velocity and strain rate data extracted on Plane A as the coefficients of the 

orientation tensors. As shown in Figure 5.6, the symmetry line extends through the 

middle of the flow along the mold height, thus, due to the fact that the symmetry 

boundary is employed for the solution domain of the fiber orientation evolution, the 

simulation results produced extend from the mold wall to the mid-plane of the 

domain (0m to 0.0016m). Bay’s [29] data consists of fiber orientation measurements 

that extend the entire mold height, from 0m to 0.0032m. Due to this disparity, the 

numerical data is ‘mirrored’ across the symmetry plane in order to allow for a 

comparison with the full set of experimental data.   The experimental data used for 

the analysis is tabulated in Appendix D, where the magnitude for each orientation 

component is listed together with the error range of each measurement. In order to 

allow for a comparison, the experimental data used consists of the average 

orientation values measured at each data sampling point. In addition, the 

experimental data sampling points do not match the simulation grid points, thus 

linear interpolation is applied where necessary to the numerical data in order to 

facilitate a point by point analysis. 

The data comparison between the numerical and experimental sets is organized 

on the basis of the closure model used. Three closure models are employed (linear, 

quadratic and hybrid), with four orientation tensor components of interest (a11, a22, 

a33 and a13), at six measurement locations (9, 54, 77, 96, 146, and 167mm from the 

mold inlet). 

Simulations with each closure model met the halting or ‘steadiness’ criteria 

listed in Table 5.9, and for each time step, a converged solution was typically 

achieved within eight iterations. However, there were halting issues with the a13 and 

a23 components for the linear and the a12 and a23 components for the hybrid closure 

which did not resolve with further time-stepping. Thus for these two closure models, 
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only three of the five steady criteria were met. Plots of a13, a23 and a23 values against 

iteration time-steps at several locations within the mold, for the linear and hybrid 

closure model are provided in the Appendix C section of this report. It was observed 

that the bulk of the data trends demonstrated steady values when the time-stepping 

was terminated, and that the inability to meet the steady criteria was due to the skew 

introduced by several data points. Taking this into account, the steady solution for 

the simulation utilizing the linear closure was obtained at 157 time-steps or 

corresponding to a real time of 0.0157s. The simulation with the quadratic closure 

steadied at 103 time steps or 0.0103s, and the one with the hybrid closure attained 

steadiness at 152 time steps or 0.0152s. 

6.3.1 Fiber Orientation Profiles 

Due to the sheer volume of data generated by the simulation; four orientation 

components by three closure models at six locations within the mold, a composite 

image of the orientation data along the mold superposed over the mold geometry for 

each closure model is presented here. The composite images afford an overall view 

of the fiber orientation along the mold, and allow for qualitative descriptions of the 

closure model performance at various locations along the mold. The individual fiber 

orientation profiles for each orientation component are attached in Appendix H 

(linear closure), I (quadratic closure) and J (hybrid closure) of this thesis and allow 

for a closer observation of the numerically predicted fiber orientation values against 

the experimental data.  

The composite images in Figures 6.15 through 6.26 are arranged in order of 

orientation components as follows: a11, a22, a33 and a13. Figures 6.15 through 6.18 

present the data obtained for the linear closure, Figures 6.19 through 6.22 present the 

data for the quadratic closure and Figures 6.23 through 6.26 present the data for the 

hybrid closure model. 
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Fig. 6.15: a11 orientation tensors computed along the mold length at several locations 

using the linear closure model. The solid lines represent the numerical data and the 

dots are the experimental data. (The mold length to height ratio is not to scale)
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Fig. 6.16: a22 orientation tensors computed along the mold length at several locations 

using the linear closure model. The solid lines represent the numerical data and the 

dots are the experimental data. (The mold length to height ratio is not to scale) 



 
97 

 

Fig. 6.17: a33 orientation tensors computed along the mold length at several locations 

using the linear closure. The solid lines represent the numerical data and the dots are 

the experimental data. (The mold length to height ratio is not to scale)
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Fig. 6.18: a13 orientation tensors computed along the mold length at several locations 

using the linear closure. The solid lines represent the numerical data and the dots are 

the experimental data. (The mold length to height ratio is not to scale)  
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Fig. 6.19: a11 orientation tensors computed along the mold length at several locations 

using the quadratic closure model. The solid lines represent the numerical data and 

the dots are the experimental data.  (The mold length to height ratio is not to scale)
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Fig. 6.20: a22 orientation tensors computed along the mold length at several locations 

using the quadratic closure model. The solid lines represent the numerical data and 

the dots are the experimental data. (The mold length to height ratio is not to scale) 
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Fig. 6.21: a33 orientation tensors computed along the mold length at several locations 

using the quadratic closure model. The solid lines represent the numerical data and 

the dots are the experimental data.  (The mold length to height ratio is not to scale) 
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Fig. 6.22: a13 orientation tensors computed along the mold length at several locations 

using the quadratic closure model. The solid lines represent the numerical data and 

the dots are the experimental data.  (The mold length to height ratio is not to scale) 
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Fig. 6.23: a11 orientation tensors computed along the mold length at several locations 

using the hybrid closure model. The solid lines represent the numerical data and the 

dots are the experimental data.  (The mold length to height ratio is not to scale) 
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Fig. 6.24: a22 orientation tensors computed along the mold length at several locations 

using the hybrid closure model. The solid lines represent the numerical data and the 

dots are the experimental data. (The mold length to height ratio is not to scale)
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Fig. 6.25: a33 orientation tensors computed along the mold length at several locations 

using the hybrid closure model. The solid lines represent the numerical data and the 

dots are the experimental data. (The mold length to height ratio is not to scale)
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Fig. 6.26: a13 orientation tensors computed along the mold length at several locations 

using the hybrid closure model. The solid lines represent the numerical data and the 

dots are the experimental data. (The mold length to height ratio is not to scale) 
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6.3.2 Fiber Orientation Profile Analysis 

A brief idea of the fiber orientation profile may be gleaned from a simple 

consideration of the fluid shear within the mold. The mold geometry has a large 

length-to-height ratio, resulting in flow that exhibits considerable shear and may be 

termed a shear dominated flow. It is a well understood process that short fibers in a 

flow tend to orient in the direction of fluid strain [1, 31]. When the predominant 

strain rates occur in the flow direction, it may then be argued that the most 

significant change in the orientation tensor will occur in the flow direction. The 

exception to this will occur near the middle of the flow where fluid stretching tends 

to dominate leading to orientation transverse to the flow direction. In the case under 

study here, the orientation tensor component directed along the flow is the a11 tensor, 

and as may be observed in the experimental data trends of Figures 6.15, 6.19 and 

6.23 this is indeed the predominant orientation tensor component as it is the largest 

in magnitude. In addition, due to the fact that the numerical solution of the evolution 

equation of the 5 independent tensor components proceeds sequentially (in the 

following order: a11, a22, a12, a13 then a23), an accurate prediction of the a11 

component is necessary in order to ensure the accurate prediction of the others. 

 Therefore, this indicates that the a11 tensor is the primary component of interest 

in the simulation utilizing the current mold geometry, and it should be the key 

indicator in assessing the performance of the closure models. 

6.3.2.1   Symmetry Analysis 

The computed orientation profiles observed in Figures 6.15 through 6.17, Figures 

6.19 through 6.21 and Figures 6.23 through 6.25 corresponding to the a11, a22 and a33 

orientations demonstrate symmetry about the mold height of 0.0016m, and the 

numerical trends in Figures 6.18, 6.22 and 6.26 corresponding to a13 orientation 

demonstrate anti-symmetry. This is the consequence of imposing the symmetry 

boundary condition through the mid-plane of the mold. The experimental a11, a22, a33 

and a13 trends qualitatively demonstrate this behaviour, however, there are 

quantitative differences in the orientation values across the mold height of 0.0016m. 

This may be readily confirmed in closer detail by studying the orientation plots in 
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Appendix H, I and J of this thesis. Neglecting post-filling effects, this behaviour may 

be best accounted for by the occurrence of anisotropic fiber-fiber interactions which 

are not accounted for by the Folgar-Tucker model [36] used in this work. Thus 

further research in this direction is necessary in order to develop models that account 

for interaction anisotropy.  Nevertheless, it should be noted that the implementation 

of an anisotropic model would immediately invalidate the mathematical symmetry of 

the fiber orientation evolution equation and the mold-filling flow, thus requiring a 

numerical solution with the entire mold geometry.  

6.3.2.2   a11 Orientation Component 

The computed a11 orientation profiles in Figures 6.15, 6.19 and 6.23 generally 

demonstrate qualitative agreement with the experimental trends and this is most 

pronounced at locations 54, 96 and 170 mm from the mold inlet. This may be 

confirmed quantitatively by the orientation plots in Appendix H, I and J. The 

experimental trends tend to follow a profile where the a11 magnitude at the wall is 

low, then it increases some distance away to a maximum, and then drops off towards 

the middle of the flow. A commensurate increase in the magnitude of a22 and a33 may 

be observed in Figures 6.16, 6.20 and 6.24 and Figures 6.17, 6.21 and 6.25. This 

coheres well with the received view of the 5 layer orientation profile described 

earlier. The layer immediately adjacent to the wall corresponds with the ‘skin’ layer, 

the ‘shell’ layer is encountered next where the maximum alignment of the fibers in 

the flow direction (maximum a11). Last, near the middle of the flow the ‘core’ layer 

is observed, where the orientation in the flow direction reduces (a11 decreases). This 

trend is captured well by all three closure models; however, there is a tendency in all 

of them to under-predict the a11 orientation near the flow core (0.001 to 0.0016m 

along the mold height) and in the skin layer (0 to 0.0002m and 0.003 to 0.0032m 

along the mold height).  
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6.3.2.3    Non – dominant Orientation Components  

Both experimental and numerical a22 and a33 values are significantly smaller than a11 

as may be observed in Figures 6.16, 6.20 and 6.24 and Figures 6.17, 6.21 and 6.25, 

even in regions near the middle of the flow where fluid stretching should be 

dominant. Generally, all three closure models demonstrate an over-prediction of a33 

in the core region (0.001 to 0.0016 m along the mold height) and at the skin layer (0 

to 0.0002m and 0.003 to 0.0032m along the mold height) as shown in Figures 6.17, 

6.21 and 6.25. These findings may be confirmed in closer detail with reference to the 

figures in Appendix H, I and J of this thesis.  

The a13 component is also qualitatively predicted by the quadratic and hybrid 

closure as seen in Figures 6.22 and 6.26, and especially well by the linear closure, 

where the trend of numerical data closely follows the experimental data, as seen in 

Figure 6.18.  

6.3.3 Closure Model Performance Comparison  

The deviation between the experiment and numerical results was used to assess the 

prediction capabilities of each closure model. The normalized root-mean-square of 

the deviation (NRMSD) between the two sets of data was computed using the 

following formulation:   

 

 

                           (90) 

 

where exp
ija  is the measured orientation component magnitude at a particular 

mold location and height and num
ija is the orientation tensor component obtained by 

numerical simulation at the corresponding point. N is the total number of points 

along the mold height at a given mold distance from the inlet. 
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values. Thus the NRMSD is used as a measure of deviation for each tensor 

component. Given the fact that the experimental measurements are taken at 6 

locations in the mold at several different heights, the average deviation may be 

computed for each location. Table 6.2 lists the average deviation for each tensor 

component at each mold location for each closure model. The NRMSD calculations 

at each location are tabulated for each closure model in Appendix E, F and G. 

 
Table 6.2 

Average deviation of each tensor component 

Closure Model 

Orientation 

Tensor 

Component 

Mold location (distance from the inlet) 

(mm) 

9 54 77 96 146 170 

N
R

M
SD

 (%
) 

Linear 

a11 34.79 31.87 44.34 42.41 48.87 36.35 
a22 29.35 31.41 31.17 30.39 33.17 31.48 
a33 33.66 27.10 31.32 32.14 30.69 28.36 
a13 24.95 11.39 9.36 12.66 12.40 11.49 

Quadratic 

a11 43.38 30.39 42.16 39.53 45.1 31.94 
a22 24.98 28.10 27.37 26.42 29.20 28.11 
a33 38.03 27.16 29.41 30.61 29.59 27.53 
a13 27.90 22.94 23.10 28.55 32.34 26.33 

Hybrid 

a11 56.11 32.07 43.30 40.55 46.01 34.11 
a22 29.65 25.95 22.14 20.75 23.12 24.50 
a33 44.15 32.87 35.32 35.99 35.40 32.99 
a13 42.28 44.76 43.78 35.51 38.85 43.69 

 

A profile of the average deviation at each grid location for each closure model 

may be used to observe the change in deviation as we proceed downstream from the 

inlet, and to compare the performance of each closure model. Figure 6.27 through 

Figure 6.30 plots the average deviation profile for the orientation tensor components 

in the following order: a11, a22, a33 and a13.  

As has been argued earlier, the a11 tensor is the dominant orientation tensor and 

from Figure 6.27 it is clear that the numerically computed values are in agreement 

with the experimental data and that the trends of deviation are identical for each 

closure model. As mentioned earlier, an inspection of the a11 plots for each closure 
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model generally shows that best agreement between numerical and experimental 

trends occurs at 54, 96 and 170 mm from the mold inlet. This is borne out by the 

profile in Figure 6.27, where the deviation at these locations is less than 45% for all 

the closures. The agreement between the two sets of data is best at the shell region of 

the flow (0.0002 to 0.001m and 0.0022 to 0.003m along the mold height) as 

observed in Figures 6.15, 6.19 and 6.23. This observation may be confirmed in 

closer detail with reference to the a11 orientation plots in Appendix H, I and J of this 

thesis. With the exception of the orientation results 9mm from the inlet, it is clear 

that the quadratic closure produces the most accurate prediction as the average 

deviation is the lowest of all three closure models. The hybrid closure is only slightly 

worse. As described in the introduction of this work, the quadratic closure is exact 

for aligned orientation. The mold-filling flow encountered in this work has strong 

bulk shearing characteristics (with exception of the core and skin layer), thus a 

closure model that performs well where the fiber orientation is predominantly in a 

single direction, would be expected to produce the best results. This is in fact 

observed with the quadratic closure. 

The orientation results measured at the location of 9mm from the inlet are close 

enough to encounter the near-gate effects, resulting in a more randomized orientation 

due to significant fluid convection. Here the linear closure performs better than the 

others, as the a11 orientation results are predicted with better accuracy as compared to 

the quadratic and hybrid closure. As described in Chapter 1, the linear closure model 

is exact for completely random in space fiber orientation, thus, this explains why the 

a11 values are best predicted by the linear closure in the near gate region.  

The deviation between numerical and experimental data of all three closure 

models is reduced where the prediction of the a22 component is concerned as seen in 

Figure 6.28. The difference between the numerical and experimental data is less 

significant here than for the a11 component. The linear and quadratic closures 

demonstrate similar qualitative trends; however, the hybrid closure performs better 

than either the linear or quadratic closures as the trend consistently shows the least 

deviation from the experimental results. It may be observed from Figures 6.16 and 

6.20 that the closest agreement between the numerical and experimental data for the 

linear and quadratic trends occurs in the shell region (0.0002 to 0.001m and 0.0022 
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to 0.003m). For the hybrid closure shown in Figure 6.24 however, the numerical 

results in the shell zone demonstrate a consistent under-prediction of the a22 

orientation which is best explained by the over prediction of the a11 orientation 

component.   

The deviation of the a33 orientation component is of the same order of magnitude 

as that of the a11 orientation, however for this component, the hybrid closure 

performs worse than either the linear or quadratic closure models. In a manner 

similar to the a11 trend, the deviation trends of the a22 component for both the linear 

and quadratic closure are very close together. For all three closure models, the 

closest agreement between the numerical and experimental trends is observed in the 

shell region (0.0002 to 0.001m and 0.0022 to 0.003m) of the flow. 

For the a13 orientation component, the trends in Figure 6.30 demonstrate that the 

difference between the numerical and experimental data is highest for the hybrid 

closure followed by the quadratic and linear closure. In contrast to Figures 6.27 

through 5.29, it may be observed that the deviation trends produced by each of the 

closure models are considerably different from one another. In addition, the 

deviation trends are spread over a broader range as compared to those of the other 

orientation components. From Figure 6.30, it is apparent that the linear closure 

predicts the a13 orientation with the least deviation from experiment. 

An assessment of the closure model performance in terms of the deviation from 

the experimental results may thus be made. Comparing the linear, quadratic and 

hybrid model performance against the experimental data reveals that for the a11 the 

deviation profiles of all three closures are similar and are relatively close to one 

another. However, the linear closure performs better in the near-gate region. For the 

a22 orientation component, the deviation profiles of all three closures are confined to 

a small range of about 20 to 35% from experiment and demonstrate the same 

qualitative trend. Similarly for the a33 component, with the exception of the near-gate 

region, the deviation trends of all three closures fall within a range of about 25 to 

36% and are thus close to one another.  For the a13 component however, it is clear 

that the linear closure outperforms the other two closure models considerably as the 

deviation in the numerical data produced by the linear closure is considerably 
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smaller as compared to the quadratic and hybrid closure. Thus, from this analysis it 

is concluded that the linear closure exhibits the best all – round performance. 

 

Fig. 6.27: The NRMSD of the computed a11 orientation tensor at distances from the 

mold inlet. 

 

Fig. 6.28: The NRMSD of the computed a22 orientation tensor at distances from the 

mold inlet. 
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Fig. 6.29: The NRMSD of the computed a33 orientation tensor at distances from the 

mold inlet. 

 

Fig. 6.30: The NRMSD of the computed a13 orientation tensor at distances from the 

mold inlet. 

 

 

 



 
115 

 

6.3.4 Error Analysis 

The discrepancies between the numerical and experimental data are analyzed in 

order to ascertain the probable causes. Closure model deficiencies and fiber-flow 

coupling effects have been identified as probable causes of these discrepancies and 

are discussed in the following sections. The effect of partial solidification of the 

suspension during the filling process on the flow field may be safely neglected as the 

flow has a Graetz number [21] of 1019.06. This analysis is demonstrated in 

Appendix K.  

As the a11 component tensor is the dominant one here, deviations in the predicted 

values heavily affect the other component tensors. As mentioned earlier, there is 

considerable under-prediction of the a11 orientation in the regions at the core (0.001 

to 0.0016m along the mold height) and in the skin (0 to 0.0002m and 0.003 to 

0.0032m along the mold height) region. This may be visually confirmed by viewing 

Figures 6.15, 6.19 and 6.23. Further clarification of this point may be obtained from 

the figures in Appendix H, I and J. These are also areas where the fluid shearing in 

the flow direction is reduced. This highlights the possibility that the linear, quadratic 

and hybrid models do not work well with domains of the flow where fluid stretching 

is prominent. The suspension flow simulation predicts that the maximum strain rates 

occur at some distance away from the wall and they coincide with positions where 

the a11 orientation results match the experimental data well. Figure 6.31 presents the 

plots of a11 orientation results for the linear, quadratic and hybrid closure and the 

experimental data at the mold location 54mm from the inlet. Figure 6.32 presents the 

γ13 strain rate data (the dominant strain rate component in the flow direction across 

the mold height) at the same location.  
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inaccuracies and demonstrates the degree to which the mathematical formulation 

fails to capture the actual phenomena. 

The a22 values are best predicted by the hybrid closure and a33 values by the 

quadratic closure, as seen in Figures 6.28 and 6.29. The discrepancy between the 

numerical and experimental results for these two orientation components may be 

attributed to the knock – on effect from the error in the a11 orientation prediction, 

where the considerable under – prediction of the a11 in the low shear regions, results 

in the over prediction of a22 and a33 which are linked directly to a11 through the 

normalization criteria described in Chapter 3.5. 

For the hybrid closure, the discrepancy in the a13 values between measured and 

computed tensor values are noticeably greater than that of the linear and quadratic 

closure. Verweyst [13], who performed a coupled analysis with the same geometry, 

has noted that the hybrid closure predicts the a13 orientation reasonably well.  

However, in this work, this is not the case, although the predicted trend is stable and 

qualitatively agrees with the experimental results as seen in Figure 6.26. This may be 

due to coupling effects. The simulation results of the a13 tensor for the quadratic 

closure also follow the experimental results qualitatively as seen in Figure 6.22, 

although there is a constant deviation between the two sets of data. Compared to 

these two models, the performance of the linear closure is the best as the predicted 

a13 values agree well with the experimental results as shown in Figure 6.18, with the 

exception of values 9mm from the mold inlet. This deviation may be attributed to 

convection effects at the inlet. In addition, it may be observed that the maximum 

experimental a13 values typically occur near the middle of the flow as is the case at 

locations 54, 77, 96, 146 and 170mm from the inlet. As the a13 orientation describes 

the degree to which fibers are oriented in the x – z plane, thus it may be used as a 

measure of the size of the flow core [13]. As Figure 6.18 demonstrates, the peak a13 

numerical values are further from the middle of the flow then the experimental 

values, thus they predict a larger core than the actual case. 

As mentioned earlier, the justification for the de-coupling of the fiber orientation 

evolution equation from the suspension momentum equation was that a decoupled 

approach significantly eases implementation. However, there are consequences to 

this, which also help explain the discrepancies between the numerically computed 
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and experimental values. The coupling between the two sets of equations means that 

the fiber orientation affects the fluid momentum directly, via the local fluid shear 

stress. The presence of fibers creates resistance to fluid stretching [33] which in this 

case occurs near the core and skin region, contributing to an increase in viscosity. As 

fluid stretching increases the degree of orientation transverse to the flow direction 

(a22 and a33 components), resistance to stretching would serve to increase the degree 

of orientation in the flow direction (a11) near the middle of the flow. Thus the under-

prediction observed with the decoupled solution presented here is expected. This 

agrees with previous findings [25] that for the film-gate geometry, the fiber – flow 

coupling is significant in regions near the middle of the flow, and that this effect is 

reduced in the high shear regions.  

6.4 Summary 

The validation of the numerical setup of the mold-filling flow was successfully 

performed, where the velocity and temperature trends obtained agree with those from 

literature. An identical setup was used for the three-dimensional mold-filling 

simulation where it was observed that the interface progression of the filling mold 

was realistic. The velocity profiles obtained agreed with observations from literature, 

and the implementation of the dynamic slip model allowed for the capture of the 

fountain flow phenomena at the interface. In addition, it was found that the dynamic 

slip model allowed for savings in terms of computational resources. The numerical 

solution of the fiber orientation evolution equation was carried out with the 

implementation of the linear, quadratic and hybrid closure where it was found that 

the linear closure produced the best all round performance. The best agreement 

between the numerical and experimental data was observed in the shell zone, and 

significant under-prediction of the a11 orientation was observed in the core and skin 

layer for all the closure models. 
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CHAPTER 7 

CONCLUSIONS 

 

In this work, a simulation of the fiber orientation evolution encountered in a mold-

filling process was done. For a non–isothermal, laminar, three-dimensional 

simulation of mold-filling flow, the velocity and temperature results of the 

simulation demonstrated agreement with the validation case. From the grid 

independence tests carried out, it was further concluded that the application of the 

dynamic slip condition resulted in an accurate simulation which was cheaper 

computationally as compared to one carried out with the traditional no-slip 

boundaries applied to both phases. As for the simulation of the decoupled fiber 

orientation equation, it was found that the linear closure model demonstrated the best 

overall performance of the three closures tested. This finding is limited to the film-

gated strip mold geometry, characterized by a large length to height ratio, thus the 

findings are not readily extended to arbitrary mold geometries, where the flow 

conditions may differ significantly from the one under study here. The dominant 

orientation tensor, a11 was found to produce results in agreement with the 

experimental data for all three closure models and the performance of all three 

closure models was similar as the deviation trends were close together. The quality 

of numerical predictions of the non-dominant components a22, a33 and a13 were 

consistent with those observed for the a11 component, however the deviation ranges 

were considerably broader especially for the a13 component. The quality of the 

numerical predictions were also found to vary with respect to the mold height, where 

it was observed that the fiber orientation simulation accuracy was highest in regions 

of high fluid shear (shell) and lowest where extensional flow dominated (skin and 

core). This observation agrees with other findings from literature.  
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7.1 Recommendations and Future Work 

Throughout the research work, several areas have been highlighted in which 

improvements can be made in order to improve the quality of the numerical 

simulation of the fiber orientation evolution during the mold-filling process. 

First, a strict adherence to the scaling analysis performed by Tucker [35], 

described in the introduction of this theses imply that with exception to a very 

narrow selection of actual mold-filling cases, the decoupling of the fiber orientation 

from the suspension momentum equation compromises the results quality. Thus, 

expanding the current fiber orientation solution algorithm to complex mold 

geometries as encountered in the industry will require the development of a three 

dimensional coupled solver. A coupled solver would also be required to address 

heavily time-dependant flow problems. 

Second, the use of bounding functions to restrict blow-up in the numerical 

solution of the fiber orientation evolution equation as used in this theses reveals the 

high sensitivity to values outside its defined domain. This could be resolved through 

the use of a fully implicit solver utilizing very small time steps, as well as heavy 

under-relaxation in the solution algorithm. 

Third, improved closure models such as the natural and orthotropic closure 

described in the introduction of this thesis may be applied in order to improve the 

prediction of fiber orientation especially in regions of low fluid shear. In addition, 

direct solution of the Fokker-Planck equation for fiber orientation for a broader case 

of flow problems should also be a real possibility given the improvement in 

computing power expected in the coming years.  

Last, the post-filling effects of solidification and packing definitely affect the 

fiber orientation once the mold is fully filled and allowed to cool. This presents an 

unknown source of error to mold-filling simulations that only account for the filling 

phase of the process as there would be deviations between the predicted results and 

the orientation of the final, finished piece. Thus, in order to develop an accurate code 

to simulate the fiber orientation evolution during the mold-filling process, as well as 

to apply these results in the industry, the post-filling effects have to be modeled as 

well. 
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