
STATUS OF THESIS

Title of thesis

I, SYED NASIR MEHMOOD SHAH

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for _______ years.

Remarks on disclosure:

 Endorsed by

________________________________ ____________________________________
Signature of Author Signature of Supervisor

Permanent Address:

Gillani House, E-139, Kahuta,
Rawalpindi, Punjab (Pakistan)

Date: ___________________________

Name of Supervisor:

Assoc. Prof. Dr. Ahmad Kamil B. Mahmood

Date: _______________________________

ALI

 Confidential

√

DESIGN AND EVALUATION OF RESOURCE ALLOCATION
AND JOB SCHEDULING ALGORITHMS ON

COMPUTATIONAL GRIDS

Non-confidential

ALI
UNIVERSITI TEKNOLOGI PETRONAS

DESIGN AND EVALUATION OF RESOURCE ALLOCATION AND JOB

SCHEDULING ALGORITHMS ON COMPUTATIONAL GRIDS

by

SYED NASIR MEHMOOD SHAH

The undersigned certify that they have read, and recommend to the Postgraduate

Studies Programme for acceptance this thesis for the fullfilment of the requirements

for the degree stated.

Signature: ____________________________________

Main Supervisor: Assoc. Prof. Dr. Ahmad Kamil B. Mahmood .

Signature: ____________________________________

Cosupervisor: Prof. Dr. Alan Oxley e

.

Signature: ____________________________________

Head of Department: Dr. Mohd Fadzil Bin Hassan .

Date: ____________________________________

ALI
DESIGN AND EVALUATION OF RESOURCE ALLOCATION AND JOB

SCHEDULING ALGORITHMS ON COMPUTATIONAL GRIDS

K
by

 K
SYED NASIR MEHMOOD SHAH

K
A Thesis

Submitted to the Postgraduate Studies Programme

As a requirement for the degree of

K
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR

PERAK
K

JANUARY 2012

ALI

iv

ALI
DECLARATION OF THESIS

Title of thesis
DESIGN AND EVALUATION OF RESOURCE ALLOCATION

AND JOB SCHEDULING ALGORITHMS ON
COMPUTATIONAL GRIDS

I, SYED NASIR MEHMOOD SHAH

hereby declare that the thesis is based on my original work except for quotations and

citations, which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

 Witnessed by

________________________________ ___________________________________
Signature of Author Signature of Supervisor

Permanent Address:

Gillani House, E-139, Kahuta,
Rawalpindi, Punjab (Pakistan)

Date: ___________________________

Name of Supervisor:

Assoc. Prof. Dr. Ahmad Kamil B. Mahmood

Date: _______________________________

v

ALI
To My Beloved Holy Prophet Muhammad (Peace Be Upon Him),

His Family and His Companions

My late father, May the Mercy of Allah be upon him,

My beloved mother, my sisters and my brothers

vi

ALI
ACKNOWLEDGEMENTS

First of all, I owe my deepest gratitude to almighty ALLAH, the Most Merciful

and Compassionate, the Most Gracious and Beneficent, for blessing me strength,

health and will power to prevail and finish this work. May Allah accept this work,

count it as a good deed and make it useful.

I would like to express my profound thanks and gratitude to my supervisors

Assoc. Prof. Dr. Ahmad Kamil Bin Mahmood and Prof. Dr. Alan Oxley, without

whose guidance, encouragement and affection, the thesis could not be completed. It

was Dr. Ahmad Kamil, who introduced me in the area of Grid Computing, and

continued helping me in every stage of my endeavours to delve into its depth.

Furthermore, a very special note of thanks and appreciation goes to my lovely

mother, my sisters, my brothers and other family members, for their constant help,

encouragement and love throughout my academic career. Words seem to be

insufficient to thank them, for enduring all my problems with great patience and love.

I can say that, my academic access and progress, and any minor or major achievement

in my life is due to these people, whose endless prayers are a source of determination

for me.

I am grateful to all of faculty members, staff members and my colleagues in the

Computer and Information Science Department. But my special thanks go to Syed

Zain, S. J. Hosseini, Hanieh Kazemi, M. Asif, Rafi Raza, Rana Shahid, Raja Shahzad,

Aamir Amanat, Hafiz Tahir Ahmed, Dileep Kumar, Sami Ullah, Sajjad Ahmad, Dr.

Mona, Dr. Mohamed Abdee, Dr. Yasir, Dr. Esa, Babar Nazir, Jahangir Khan, Ahmad

Haruna, Helmi, Izzudin, Nurul Natrah and Okta. I owe to the members of the High

Performance Computing research group for the long discussions that had provided me

with enlightening views of the research problems that I was struggling with.

vii

I am also privileged to have the opportunity to collaborate with some of the most

brilliant friends Dr. M. Yonus Javed, Dr. Amir Shafi, Dr. A. J. Pal, Dani Adhipta,

Ms. Nazleeni Haroon and Thayalan Sandran.

Last but not the least, I would also like to thank to all of my Pakistani and

Malaysian friends, and other international students at the University Teknologi

PETRONAS for their endless support and spirit of brotherhood. I shall always cherish

my association and affinities with all of them and treasure the good days and happy

moments spent with them.

viii

ALI
ABSTRACT

 Grid, an infrastructure for resource sharing, currently has shown its importance in

many scientific applications requiring tremendously high computational power. Grid

computing enables sharing, selection and aggregation of resources for solving

complex and large-scale scientific problems. Grids computing, whose resources are

distributed, heterogeneous and dynamic in nature, introduces a number of fascinating

issues in resource management. Grid scheduling is the key issue in grid environment

in which its system must meet the functional requirements of heterogeneous domains,

which are sometimes conflicting in nature also, like user, application, and network.

Moreover, the system must satisfy non-functional requirements like reliability,

efficiency, performance, effective resource utilization, and scalability. Thus, overall

aim of this research is to introduce new grid scheduling algorithms for resource

allocation as well as for job scheduling for enabling a highly efficient and effective

utilization of the resources in executing various applications.

The four prime aspects of this work are: firstly, a model of the grid scheduling

problem for dynamic grid computing environment; secondly, development of a new

web based simulator (SyedWSim), enabling the grid users to conduct a statistical

analysis of grid workload traces and provides a realistic basis for experimentation in

resource allocation and job scheduling algorithms on a grid; thirdly, proposal of a new

grid resource allocation method of optimal computational cost using synthetic and

real workload traces with respect to other allocation methods; and finally, proposal of

some new job scheduling algorithms of optimal performance considering parameters

like waiting time, turnaround time, response time, bounded slowdown, completion

time and stretch time. The issue is not only to develop new algorithms, but also to

evaluate them on an experimental computational grid, using synthetic and real

workload traces, along with the other existing job scheduling algorithms.

Experimental evaluation confirmed that the proposed grid scheduling algorithms

possess a high degree of optimality in performance, efficiency and scalability.

ix

LI
ABSTRAK

Grid, merupakan sebuah infrastruktur untuk perkongsian sumber, telah menunjukkan

kepentingannya pada masa kini dalam pelbagai aplikasi saintifik yang memerlukan

kuasa pengkomputeran tinggi dengan pesatnya. Pengkomputeran grid membolehkan

perkongsian, pemilihan dan pengumpulan sumber untuk menyelesaikan masalah

saintifik yang kompleks dan berskala besar. Sumber-sumber pengkomputeran grid

yang kebiasaannya teragih, pelbagai jenis dan dinamik secara semula jadi,

memperkenalkan beberapa isu yang cukup menarik dalam pengurusan sumber.

Penjadualan grid adalah isu utama dalam persekitaran grid di mana sesebuah sistem

perlulah memenuhi keperluan fungsi kepelbagaian domain, yang kadangkala

bertentangan dalam alam semula jadi seperti pengguna, aplikasi, dan rangkaian.

Tambahan pula, sistem mestilah memenuhi keperluan bukan-fungsi seperti

kebolehpercayaan, kecekapan, prestasi, keberkesanan dalam penggunaan sumber, dan

kebolehskalaan. Oleh itu, matlamat keseluruhan kajian ini adalah untuk

memperkenalkan algoritma penjadualan grid yang baru untuk peruntukan sumber

seperti mana juga penjadualan tugasan yang akan membolehkan penggunaan pelbagai

sumber yang sangat cekap dan berkesan dalam melaksanakan pelbagai aplikasi.

Empat aspek utama yang terkandung dalam kajian ini ialah: pertamanya, sebuah

model dalam masalah penjadualan grid untuk persekitaran grid yang dinamik; kedua,

pembentukan alat simulasi berasaskan web yang baru (SyedWSim), membolehkan

para pengguna grid untuk menjalankan analisis statistik dalam mengesan beban kerja

grid dan menyediakan asas yang realistik untuk uji kaji dalam peruntukan sumber dan

algoritma penjadualan kerja di dalam sesebuah grid; ketiga, cadangan kaedah

peruntukan sumber grid yang baru dalam mengoptimakan kos pengiraan yang

menggunakan pengesanan beban kerja sintetik dan asli dengan bersandarkan kaedah-

kaedah peruntukan yang sedia ada, dan yang terakhir, cadangan sesetengah algoritma

penjadualan kerja yang baru memiliki prestasi optimum dengan mengambil kira

parameter seperti masa menunggu, masa yang diambil, masa tindak balas, masa

aliran, kelembapan terbatas dan masa regangan. Hal ini bukan sahaja untuk

x

membangunkan algoritma baru, tetapi juga untuk menilai mereka dalam persekitaran

grid uji kaji, menggunakan pengesanan beban kerja sintetik dan asli bersama-sama

dengan algoritma penjadualan kerja yang sedia ada. Penilaian eksperimen telah

mengesahkan bahawa algoritma penjadualan yang dicadangkan memiliki pencapaian

yang optimum dalam prestasi, kecekapan dan kebolehskalaan.

xi

ALI
In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the legal

entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained

in, or derived from, this thesis.

 © Syed Nasir Mehmood Shah, 2011

Institute of Technology PETRONAS Sdn Bhd

All rights reserved.

xii

ALI
TABLE OF CONTENTS

STATUS OF THESIS ... i

DECLARATION OF THESIS .. ivi

ACKNOWLEDGEMENTS .. vi

ABSTRACT ... viii

ABSTRAK .. ix

TABLE OF CONTENTS ... xii

LIST OF FIGURES ... xx

LIST OF TABLES ... xxviii

CHAPTER 1

INTRODUCTION ... 1

1.1 Chapter Overview .. 1

1.2 Background .. 1

1.3 Motivation .. 3

1.4 Research Problem .. 4

1.5 Research Questions .. 5

1.6 Research Objectives ... 7

1.7 Research Methodology and Activities ... 8

1.8 Research Scope .. 10

1.9 Structure of Thesis ... 11

1.10 Chapter Summary .. 13

CHAPTER 2

BACKGROUND AND RELATED RESEARCH... 15

2.1 Chapter Overview .. 15

2.2 Parallel and Distributed Computing Architectures .. 15

2.2.1 Multiprocessor Computers ... 16

xiii

2.2.2 Clusters .. 18

2.2.3 Supercomputers.. 19

2.2.4 Grid Computing ... 21

2.3 The need for Grid Computing Systems ... 23

2.4 Characteristics of a Grid .. 24

2.4.1 Distribution and Sharing .. 24

2.4.2 Self-similarity ... 25

2.4.3 Dynamic and diversified .. 25

2.4.4 Self-manageable ... 26

2.5 Grid Architecture ... 26

2.5.1 Grid Fabric Layer ... 27

2.5.2 Grid Connectivity Layer .. 27

2.5.3 Grid Resource Layer .. 27

2.5.4 Grid Collective Layer .. 28

2.5.5 Grid Application Layer ... 28

2.6 Types of Grid ... 28

2.6.1 Traditional Grid ... 28

2.6.2 Computational Grid ... 29

2.6.3 Data Grid .. 29

2.6.4 Storage Grid ... 30

2.6.5 Peer to Peer Grid (P2P-G).. 30

2.6.6 E-Science Grids ... 30

2.6.7 Enterprise Grids ... 31

2.6.8 Desktop Grids .. 31

2.7 Types of Resource in a Grid .. 31

2.7.1 Computational Resources .. 31

2.7.2 Data Storage Resource ... 32

2.7.3 Communication .. 33

2.8 Scheduling problems in grid systems .. 34

2.8.1 Characteristics of grid scheduling .. 35

2.8.1.1 The dynamic structure of the computational grid 35

2.8.1.2 The high heterogeneity of resources .. 35

2.8.1.3 The high heterogeneity of jobs .. 35

xiv

2.8.1.4 The high heterogeneity of interconnection networks 36

2.8.1.5 The existence of local schedulers .. 36

2.8.1.6 The existence of local policies on resources .. 36

2.8.1.7 The job-resource requirements .. 36

2.8.1.8 The large scale of the grid system .. 37

2.8.1.9 Security .. 37

2.8.2 A general definition and terminology .. 37

2.8.3 Phases of scheduling in grids ... 41

2.9 Types of scheduling in grids .. 43

2.9.1 Independent scheduling ... 43

2.9.2 Grid workflows .. 43

2.9.3 Centralized, hierarchical and decentralized scheduling 44

2.9.4 Static scheduling versus dynamic scheduling .. 44

2.9.5 Space-sharing and time-sharing approaches .. 45

2.9.6 Immediate versus batch mode scheduling ... 45

2.9.7 Adaptive scheduling... 46

2.9.8 Scheduling in data grids ... 46

2.10 Computational models for grid scheduling .. 46

2.10.1 Expected time to compute model ... 47

2.10.2 Total processor cycle consumption model ... 48

2.10.3 Grid information system model ... 49

2.10.4 Cluster and multi-cluster grids model .. 50

2.11 Resource allocation and Job scheduling algorithms 50

2.11.1 Resource Allocation Approaches ... 51

2.11.2 Job Scheduling ... 55

2.12 Grid system performance and optimization criteria 62

2.13 Chapter Summary .. 63

CHAPTER 3

GRID SCHEDULING MODEL .. 65

3.1 Chapter Overview .. 65

3.2 Grid Scheduling ... 65

3.2.1 Resource Discovery ... 67

xv

3.2.2 Resource Allocation ... 67

3.2.3 Job Execution ... 68

3.3 Proposed Grid Scheduling Model .. 68

3.3.1 Resource Model ... 69

3.3.2 Job Model... 69

3.3.3 Performance Metrics .. 70

3.3.3.1 Waiting time... 70

3.3.3.2 Turnaround time ... 70

3.3.3.3 Response time .. 71

3.3.3.4 Bounded Slowdown Time.. 71

3.3.3.5 Machine Completion Time .. 72

3.3.3.6 Maximum Stretch Time of a job .. 72

3.3.4 Grid scheduling policy ... 73

3.3.5 Programming Model .. 74

3.3.6 Performance Evaluation Strategy .. 74

3.4 Proposed Grid Resource Allocation Method ... 76

3.4.1 Linear Programming Model ... 77

3.4.2 Modified Least Cost Method (MLCM) ... 79

3.5 Proposed Job Scheduling Algorithms .. 80

3.5.1 Multilevel Hybrid Scheduling Algorithm (MH) 81

3.5.2 Dynamic Multilevel Hybrid Scheduling Algorithm using Median (MHM)

 .. 83

3.5.3 Dynamic Multilevel Hybrid Scheduling Algorithm using Square root

(MHR) .. 83

3.5.4 Multilevel Dual Queue Scheduling Algorithm (MDQ) 84

3.5.5 Dynamic Multilevel Dual Queue Scheduling Algorithm using Median

(MDQM) .. 86

3.5.6 Dynamic Multilevel Dual Queue Scheduling Algorithm using Square

Root (MDQR) .. 87

3.6 Chapter Summary .. 87

xvi

CHAPTER 4

GRID WORKLOAD ANALYSIS ... 89

4.1 Chapter Overview .. 89

4.2 The need of workload analysis tool ... 90

4.3 Framework of Web based simulator (SyedWSim) .. 90

4.3.1 Visualization module ... 91

4.3.2 Timing module ... 92

4.3.3 Simulation engine module ... 92

4.4 Design and Development of SyedWSim ... 93

4.4.1 CV2DChartPanel ... 94

4.4.2 CVApplet ... 94

4.4.3 CVToolBar ... 94

4.4.4 Dataset.. 94

4.5 GUI of SyedWSim ... 95

4.6 Practical application of statistical theory ... 96

4.7 Statistical analysis of workloads using SyedWSim ... 97

4.7.1 Users Characteristics ... 99

4.7.2 Groups Characteristics .. 101

4.7.3 Grid Jobs Characteristics .. 104

4.8 Chapter Summary .. 108

CHAPTER 5

PERFORMANCE ANALYSIS OF GRID RESOURCE ALLOCATION METHODS

.. 109

5.1 Chapter Overview .. 109

5.2 Baseline Approaches .. 109

5.3 Theoretical Performance Analysis of Grid Resource Allocation Methods ... 110

5.3.1 Grid Resource Allocation Scenario I ... 110

5.3.1.1 Modified Least Cost Method ... 111

5.3.1.2 Min-Min Method ... 114

5.3.1.3 Max-Min Method ... 115

5.3.1.4 Vogel’s Approximation Method .. 117

xvii

5.3.1.5 Divisible Load Theory ... 118

5.3.1.6 First Come First Served ... 120

5.4 Resource Allocation Simulator Design and Development 121

5.5 Performance analysis and evaluation ... 123

5.5.1 Simulation Data ... 123

5.5.2 Grid Resource Allocation Scenario I ... 123

5.5.3 Grid Resource Allocation Scenario II .. 123

5.5.4 Grid Resource Allocation Scenario III .. 124

5.5.5 Grid Resource Allocation Scenario IV .. 124

5.5.6 Grid Resource Allocation Scenario V .. 125

5.5.7 Grid Resource Allocation Scenario VI .. 125

5.5.8 Grid Resource Allocation Scenario VII ... 126

5.5.9 Grid Resource Allocation Scenario VIII .. 126

5.5.10 Grid Resource Allocation Scenarios IX-XI ... 126

5.6 Results and Discussions ... 126

5.7 Chapter Summary .. 130

CHAPTER 6

PERFORMANCE ANALYSIS OF JOB SCHEDULING ALGORITHMS 131

6.1 Chapter Overview .. 131

6.2 Base line approaches .. 131

6.3 Proposed Scheduling Algorithms .. 132

6.4 Homogeneous Implementation of Job Scheduling Algorithms 132

6.5 Scheduling Simulator Design and Development ... 133

6.6 Performance Analysis .. 134

6.6.1 Experimental Setup .. 134

6.6.2 Simulation Data ... 135

6.6.3 Performance Metrics .. 136

6.6.4 Results and Discussion .. 136

6.6.4.1 Average Waiting Times Analysis .. 138

6.6.4.2 Average Turnaround Time Analysis .. 144

6.6.4.3 Average Response Time Analysis ... 150

6.6.4.4 Average Slowdown Time Analysis ... 156

xviii

6.6.4.5 Total Completion Time Analysis ... 162

6.6.5.6 Maximum Job Stretch Time Analysis.. 168

6.6.4.7 Performance Analysis of Scheduling Algorithms by Changing Time

............Quantum ... 174

6.6.5.8 Summary of Performance Analysis ... 177

6.7 Chapter Summary .. 179

CHAPTER 7

Conclusions and Future Work ... 181

7.1 Chapter Overview .. 181

7.2 Research Contributions .. 181

7.3 Research Achievements ... 185

7.4 Limitations and Future work .. 186

REFERENCES .. 188

LIST OF PUBLICATIONS ... 203

APPENDIX A

Grid Scheduling Algorithms .. 205

A.1 Proposed Resource Allocation Method ... 205

A.1.1 Procedure MLCM .. 206

A.2 Proposed Job Scheduling Algorithms .. 207

A.2.1 Resource Allocation and Job Distribution Strategy 209

A.2.2 Procedure Multilevel Hybrid Scheduling and Dynamic Multilevel Hybrid

Scheduling.. 210

A.2.3 Procedure Multilevel Dual Queue Scheduling and Dynamic Multilevel

Dual Queue Scheduling ... 213

APPENDIX B

Format of Real Grid Workloads .. 217

B.1 Format of LCG1 workload ... 217

B.2 Format of AuverGrid workload ... 228

xix

APPENDIX C

Comparison of Job Scheduling Algorithms ... 241

xx

ALI
LIST OF FIGURES

Figure 1.1: The flow of the research activities .. 9

Figure 1.2: Thesis organization.. 11

Figure 2.1: The SMP architecture .. 16

Figure 2.2: The NUMA architecture .. 17

Figure 2.3: Architecture of a cluster .. 18

Figure 2.4: K Computer [2] ... 20

Figure 2.5: Operating systems used in the Top500 [2] .. 20

Figure 2.6: The multi-cluster grid architecture .. 22

Figure 2.7: The layered grid architecture and its relationship to the internet protocol

...................architecture adapted from [21] .. 26

Figure 2.8: A classification of grid resources [58] .. 34

Figure 2.9: Steps of a general grid scheduler [73] ... 41

Figure 3.1: Phases of grid Scheduling ... 67

Figure 3.2: Grid scheduling model .. 69

Figure 3.3: Grid Scheduling Architecture .. 73

Figure 3.4: Performance Evaluation Strategy .. 75

Figure 3.5: Resource Allocation Model ... 77

Figure 3.6: Block Diagram of MH ... 81

Figure 3.7: Process State Diagram of H ... 82

Figure 3.8: Block Diagram of MDQ .. 84

Figure 3.9: Process State Diagram of DQ .. 85

Figure 4.1: Framework of SyedWSim ... 91

Figure 4.2: Work flow diagram of SyedWSim .. 92

xxi

Figure 4.3: Class Diagram of SyedWSim .. 93

Figure 4.4: GUI of SyedWSim .. 95

Figure 4.5 (a): The user jobs for LCG1 ... 98

Figure 4.5 (b): The user jobs for AuverGrid .. 98

Figure 4.6(a): The user jobs for LCG1 .. 99

Figure 4.6(b): The user jobs for AuverGrid ... 99

Figure 4.7(a): Top 15 users for LCG1 ... 100

Figure 4.7(b): Top 20 users for AuverGrid .. 100

Figure 4.8(a): The Group jobs for LCG1 ... 101

Figure 4.8(b): The Group jobs for AuverGrid ... 101

Figure 4.9(a): Groups versus Number of Users for LCG1 .. 102

Figure 4.9(b): Groups versus Number of Users for AuverGrid 102

Figure 4.10(a): Top 15 Groups for LCG1 .. 103

Figure 4.10(b): Top 20 Groups for AuverGrid .. 103

Figure 4.11(a): Job counts for LCG1 ... 104

Figure 4.11(b): Job counts for AuverGrid ... 104

Figure 4.12(a): Total runtime per period for LCG1 ... 105

Figure 4.12(b): Total runtime per period AuverGrid ... 105

Figure 4.13(a): The autocorrelation function(ACF) of the job counts - LCG1 106

Figure 4.13(b): The autocorrelation function(ACF) of the job counts - AuverGrid .. 106

Figure 4.14(a): Fast Fourier transformation(FFT) applied to the autocorrelation of job

.........................counts - LCG1 ... 107

Figure 4.14(b): Fast Fourier transformation(FFT) applied to the autocorrelation of job

.........................counts for AuverGrid .. 107

Figure 5.1: Comparison of MLCM and Min-Min ... 129

Figure 6.1: Block diagram of master-slave architecture .. 132

xxii

Figure 6.2(a): Average waiting times of five algorithms for synthetic workload of

........................1000 processes ... 138

Figure 6.2(b): Average waiting times of twelve algorithms for synthetic workload of

........................1000 processes ... 138

Figure 6.2(c): Average waiting time of five algorithms for synthetic workload of 2000

........................processes .. 139

Figure 6.2(d): Average waiting time of twelve algorithms for synthetic workload of

........................2000 processes ... 139

Figure 6.3(a): Average waiting time of five algorithms for 10% workload of LCG1

.. 140

Figure 6.3(b): Average waiting times of twelve algorithms for 10% workload of

.........................LCG1... 140

Figure 6.3(c): Average waiting times of five algorithms for 20% workload of LCG1

.. 141

Figure 6.3(d): Average waiting times of twelve algorithms for 20% workload of

.........................LCG1... 141

Figure 6.4(a): Average waiting times of five algorithms for 3% workload of

..........................AuverGrid .. 142

Figure 6.4(b): Average waiting times of twelve algorithms for 3% workload of

.........................AuverGrid ... 142

Figure 6.4(c): Average waiting times of five algorithms for 5% workload of

..........................AuverGrid .. 143

Figure 6.4(d): Average waiting times of twelve algorithms for 5% workload of

.........................AuverGrid ... 143

Figure 6.5(a): Average turnaround times of five algorithms for synthetic workload of

.......................1000 processes .. 144

Figure 6.5(b): Average turnaround times of twelve algorithms for synthetic workload

.......................of 1000 processes .. 144

xxiii

Figure 6.5(c): Average turnaround times of five algorithms for synthetic workload of

.......................2000 processes .. 145

Figure 6.5(d): Average turnaround times of twelve algorithms for synthetic workload

.......................of 2000 processes .. 145

Figure 6.6(a): Average turnaround times of five algorithms for 10% workload of

........................LCG1.. 146

Figure 6.6(b): Average turnaround times of twelve algorithms for 10% workload of

........................LCG1.. 146

Figure 6.6(c): Average turnaround times of five algorithms for 20% workload of

.........................LCG1... 147

Figure 6.6(d): Average turnaround times of twelve algorithms for 20% workload of

.........................LCG1... 147

Figure 6.7(a): Average turnaround times of five algorithms for 3% workload of

.........................AuverGrid ... 148

Figure 6.7(b): Average turnaround times of twelve algorithms for 3% workload of

........................AuverGrid .. 148

Figure 6.7(c): Average turnaround times of five algorithms for 5% workload of

.........................AuverGrid ... 149

Figure 6.7(d): Average turnaround times of twelve algorithms for 5% workload of

........................AuverGrid .. 149

Figure 6.8(a): Average response times of five algorithms for synthetic workload of

........................1000 processes ... 150

Figure 6.8(b): Average response times of twelve algorithms for synthetic workload of

.......................1000 processes .. 150

Figure 6.8(c): Average response times of five algorithms for synthetic workload of

........................2000 processes ... 151

Figure 6.8(d): Average response times of twelve algorithms for synthetic workload of

........................2000 processes ... 151

xxiv

Figure 6.9(a): Average response times of five algorithms for 10% workload of LCG1

.. 152

Figure 6.9(b): Average response times of twelve algorithms for 10% workload of

.........................LCG1... 152

Figure 6.9(c): Average response times of five algorithms for 20% workload of LCG1

.. 153

Figure 6.9(d): Average response times of twelve algorithms for 20% workload of

.........................LCG1... 153

Figure 6.10(a): Average response times of five algorithms for 3% workload of

......................... AuverGrid ... 154

Figure 6.10(b): Average response times of twelve algorithms for 3% workload of

.......................... AuverGrid ... 154

Figure 6.10(c): Average response times of five algorithms for 5% workload of

.......................... AuverGrid ... 155

Figure 6.10(d): Average response times of twelve algorithms for 5% workload of

......................... AuverGrid ... 155

Figure 6.11(a): Average slowdown times of five algorithms for synthetic workload of

.........................1000 processes .. 156

Figure 6.11(b): Average slowdown times of twelve algorithms for synthetic workload

.........................of 1000 processes .. 156

Figure 6.11(c): Average slowdown times of five algorithms for synthetic workload of

.........................2000 processes .. 157

Figure 6.11(d): Average slowdown times of twelve algorithms for synthetic workload

.........................of 2000 processes .. 157

Figure 6.12(a): Average slowdown times of five algorithms for 10% workload of

.......................... LCG1... 158

Figure 6.12(b): Average slowdown times of twelve algorithms for 10% workload of

..........................LCG1.. 158

xxv

Figure 6.12(c): Average slowdown times of five algorithms for 20% workload of

.......................... LCG1... 159

Figure 6.12(d): Average slowdown times of twelve algorithms for 20% workload of

......................... LCG1.. 159

Figure 6.13(a): Average slowdown times of five algorithms for 3% workload of

......................... AuverGrid .. 160

Figure 6.13(b): Average slowdown times of twelve algorithms for 3% workload of

......................... AuverGrid .. 160

Figure 6.13(c): Average slowdown times of five algorithms for 5% workload of

......................... AuverGrid .. 161

Figure 6.13(d): Average slowdown times of twelve algorithms for 5% workload of

......................... AuverGrid .. 161

Figure 6.14(a): Total completion times of five algorithms for synthetic workload of

......................... 1000 processes ... 162

Figure 6.14(b): Total completion times of twelve algorithms for synthetic workload of

.........................1000 processes .. 162

Figure 6.14(c): Total completion times of five algorithms for synthetic workload of

......................... 2000 processes ... 163

Figure 6.14(d): Total completion times of twelve algorithms for synthetic workload of

.........................2000 processes .. 163

Figure 6.15(a): Total completion times of twelve algorithms for 10% workload of

.......................... LCG1... 164

Figure 6.15(b): Total completion times of twelve algorithms for 10% workload of

......................... LCG1... 164

Figure 6.15(c): Total completion times of twelve algorithms for 20% workload of

......................... LCG1... 165

Figure 6.15(d): Total completion times of five algorithms for 20% workload of LCG1

.. 165

xxvi

Figure 6.16(a): Total completion times of five algorithms for 3% workload of

.......................... AuverGrid .. 166

Figure 6.16(b): Total completion times of twelve algorithms for 3% workload of

.......................... AuverGrid ... 166

Figure 6.16(c): Total completion times of five algorithms for 5% workload of

......................... AuverGrid ... 167

Figure 6.16(d): Total completion times of twelve algorithms for 5% workload of

......................... AuverGrid ... 167

Figure 6.17(a): Maximum Job Stretch times of five algorithms for synthetic workload

.........................of 1000 processes .. 168

Figure 6.17(b): Maximum Job Stretch times of twelve algorithms for synthetic

......................... workload of 1000 processes ... 168

Figure 6.17(c): Maximum Job Stretch times of five algorithms for synthetic workload

..........................of 2000 processes ... 169

Figure 6.17(d): Maximum Job Stretch times of twelve algorithms for synthetic

......................... workload of 2000 processes ... 169

Figure 6.18(a): Maximum Job Stretch times of five algorithms for 10% workload of

......................... LCG1.. 170

Figure 6.18(b): Maximum Job Stretch times of twelve algorithms for 10% workload

......................... of LCG1 ... 170

Figure 6.18(c): Maximum Job Stretch times of five algorithms for 20% workload of

......................... LCG1.. 171

Figure 6.18(d): Maximum Job Stretch times of twelve algorithms for 20% workload

......................... of LCG1 ... 171

Figure 6.19(a): Maximum Job Stretch times of five algorithms for 3% workload of

......................... AuverGrid .. 172

Figure 6.19(b): Maximum Job Stretch times of twelve algorithms for 3% workload of

.........................AuverGrid ... 172

xxvii

Figure 6.19(c): Maximum Job Stretch times of five algorithms for 5% workload of

......................... AuverGrid .. 173

Figure 6.19(d): Maximum Job Stretch times of twelve algorithms for 5% workload of

..........................AuverGrid .. 173

Figure 6.20: Average waiting times of scheduling algorithms by changing the Time

......................Quantum ... 174

Figure 6.21: Average turnaround times of scheduling algorithms by changing the

......................Time Quantum ... 175

Figure 6.22: Average response times of scheduling algorithms by changing the Time

.....................Quantum .. 175

Figure 6.23: Average slowdown times of scheduling algorithms by changing the Time

.....................Quantum .. 176

Figure 6.24: Total completion times of scheduling algorithms by changing the Time

.....................Quantum .. 176

Figure 6.25: Job stretch times of scheduling algorithms by changing the Time

.......................Quantum .. 177

Figure 7.1 Relationship between simulators .. 181

xxviii

ALI
LIST OF TABLES

Table 3.1: Representation of main variables .. 78

Table 4.1: Trace LCG1 .. 97

Table 5.1: Workload Demands .. 110

Table 5.2: Processor Capacities ... 110

Table 5.3: Resource Allocation Scenario I .. 111

Table 5.4: Resource Allocation by MLCM ... 112

Table 5.5: Processor Allotment by MLCM ... 113

Table 5.6: Resource Allocation by Min-Min ... 114

Table 5.7: Resource Allocation by Max-Min .. 116

Table 5.8: Resource Allocation by VAM .. 117

Table 5.9: Resource Allocation by DLT .. 119

Table 5.10: Resource Allocation by FCFS .. 120

Table 5.11: Performance Results of Resource Allocation Methods for Scenario I ... 121

Table 5.12: Stepwise execution of MLCM for Scenario I ... 122

Table 5.12: Computational costs using synthetic workload traces 127

Table 5.13: Computational costs using real workload traces of LCG1 128

Table 6.1: Experimental Setup ... 134

Table 6.2: Simulation Data .. 135

Table C.1: Average waiting times (seconds) of scheduling algorithms for synthetic

...................workload of 1000 processes .. 242

Table C.2: Average waiting times (seconds) of scheduling algorithms for synthetic

...................workload of 2000 processes .. 243

xxix

Table C.3: Average waiting times (seconds) of scheduling algorithms for ‘10%’

................... workload of LCG1 ... 244

Table C.4: Average waiting times (seconds) of scheduling algorithms for ‘20%’

................... workload of LCG1 ... 245

Table C.5: Average waiting times (seconds) of scheduling algorithms for ‘3%’

................... workload of AuverGrid .. 246

Table C.6: Average waiting times (seconds) of scheduling algorithms for ‘5%’

....................workload of AuverGrid .. 247

 Table C.7: Average turnaround times (seconds) of scheduling algorithms for

.................. synthetic workload of 1000 processes ... 248

Table C.8: Average turnaround times (seconds) of scheduling algorithms for synthetic

..................workload of 2000 processes ... 249

Table C.9: Average turnaround times (seconds) of scheduling algorithms for ‘10%’

.............workload of LCG1 .. 250

Table C.10: Average turnaround times (seconds) of scheduling algorithms for ‘20%’

....................workload of LCG1 ... 251

Table C.11: Average turnaround times (seconds) of scheduling algorithms for ‘3%’

.....................workload of AuverGrid ... 252

Table C.12: Average turnaround times (seconds) of scheduling algorithms for ‘5%’

.....................workload of AuverGrid ... 253

Table C.13: Average response times (seconds) of scheduling algorithms for synthetic

....................workload of 1000 processes ... 254

Table C.14: Average response times (seconds) of scheduling algorithms for synthetic

....................workload of 2000 processes ... 255

Table C.15: Average response times (seconds) of scheduling algorithms for ‘10%’

.....................workload of LCG1 .. 256

Table C.16: Average response times (seconds) of scheduling algorithms for ‘20%’

.....................workload of LCG1 .. 257

xxx

Table C.17: Average response times (seconds) of scheduling algorithms for ‘3%’

.....................workload of AuverGrid ... 258

Table C.18: Average response times (seconds) of scheduling algorithms for ‘5%’

.....................workload of AuverGrid ... 259

Table C.19: Average slowdown times (seconds) of scheduling algorithms for

.......................synthetic workload of 1000 processes .. 260

Table C.20: Average slowdown times (seconds) of scheduling algorithms for

.......................synthetic workload of 2000 processes .. 261

Table C.21: Average slowdown times (seconds) of scheduling algorithms for ‘10%’

.....................workload of LCG1 .. 262

Table C.22: Average slowdown times (seconds) of scheduling algorithms for ‘20%’

.....................workload of LCG1 .. 263

Table C.23: Average slowdown times (seconds) of scheduling algorithms for ‘3%’

.....................workload of AuverGrid ... 264

Table C.24: Average slowdown times (seconds) of scheduling algorithms for ‘5%’

.....................workload of AuverGrid ... 265

Table C.25: Total completion times (seconds) of scheduling algorithms for synthetic

.....................workload of 1000 processes .. 266

Table C.26: Total completion times (seconds) of scheduling algorithms for synthetic

.....................workload of 2000 processes .. 267

Table C.27: Total completion times (seconds) of scheduling algorithms for ‘10%’

......................workload of LCG1 ... 268

Table C.28: Total completion times (seconds) of scheduling algorithms for ‘20%’

......................workload of LCG1 ... 269

Table C.29: Total completion times (seconds) of scheduling algorithms for ‘3%’

......................workload of AuverGrid .. 270

Table C.30: Total completion times (seconds) of scheduling algorithms for ‘5%’

......................workload of AuverGrid .. 271

xxxi

Table C.31: Maximum job stretch times (seconds) of scheduling algorithms for

......................synthetic workload of 1000 processes ... 272

Table C.32: Maximum job stretch times (seconds) of scheduling algorithms for

.......................synthetic workload of 2000 processes .. 273

Table C.33: Maximum job stretch times (seconds) of scheduling algorithms for ‘10%’

.....................workload of LCG1 .. 274

Table C.34: Maximum job stretch times (seconds) of scheduling algorithms for ‘20%’

.....................workload of LCG1 .. 275

Table C.35: Total completion times (seconds) of scheduling algorithms for ‘3%’

......................workload of AuverGrid .. 276

Table C.36: Maximum job stretch times (seconds) of scheduling algorithms for ‘5%’

.....................workload of AuverGrid ... 277

Table C.37: Average waiting times (seconds) of scheduling algorithms for ‘10%’

......................workload of LCG1 by changing time quantum using ‘64’ CPUs 278

Table C.38: Average turnaround times (seconds) of scheduling algorithms for ‘10%’

.....................workload of LCG1 by changing time quantum using ‘64’ CPUs 278

Table C.39: Average response times (seconds) of scheduling algorithms for ‘10%’

......................workload of LCG1 by changing time quantum using ‘64’ CPUs 278

Table C.40: Average slowdown times (seconds) of scheduling algorithms for ‘10%’

.....................workload of LCG1 by changing time quantum using ‘64’ CPUs 279

Table C.41: Total completion times (seconds) of scheduling algorithms for ‘10%’

......................workload of LCG1 by changing time quantum using ‘64’ CPUs 279

Table C.42: Maximum job stretch times (seconds) of scheduling algorithms for ‘10%’

.....................workload of LCG1 by changing time quantum using ‘64’ CPUs 279

1

ALI
CHAPTER 1

 INTRODUCTION

1.1 Chapter Overview

A grid is a computational system consisting of large number of geographically

distributed and heterogeneous resources that provides dependable, pervasive,

consistent, and inexpensive access to high-end computational powers, beyond the

capacity of even the largest parallel computer system. Resource allocation and job

scheduling are the key components of grid, which play an important role in the

efficient and effective execution of various kinds of scientific and engineering

applications.

This chapter presents the motivations and general context of thesis. First, it gives

chapter overview, and then section 1.2 presents the background of grid scheduling.

Section 1.3 highlights the motivation to do research in this area. The problem

statement is furthermore detailed in section 1.4. The research questions, essentially to

be answered, to solve the stated problem are discussed in section 1.6. Section 1.7 of

this chapter then deals with the list of the research objectives necessary to design new

scheduling algorithms as well as workflow of those activities. In Section 1.8, a

description of the methodology and activities carried out to conduct the research are

presented. Section 1.8 highlights the research scope of this thesis. A road map of

thesis is presented in section 1.9. This chapter then is concluded in section 1.10.

1.2 Background

Computational approaches [1] have been widely used to solve several complex

problems in different fields, including high-energy physics, earth system sciences,

2

bioinformatics, biomedical science, geosciences, astronomy and financial modeling.

Computers meanwhile are used for modeling and simulation purposes in complex

scientific, engineering and commerce problems, e.g., diagnosing medical conditions,

controlling industrial equipment, forecasting the weather, managing stock portfolios

etc.

A number of powerful parallel systems have been built with increasing number of

processors and multi-core solutions in order to meet the computational demands of

various scientific applications. The Top500 maintains the world’s top computing

machines [2]. To date, the K Computer with 548352 cores is one of the best super

computers in world [3]. In spite of the huge amount of parallelism, currently available

in a single institution, current applications like biomedical applications still need more

computational power for execution. This then has motivated the development of a

new computing paradigm called grid Computing.

Today, grids have been utilized in various scientific applications in which a large

amount of data needs to be shared, managed and processed. Efficient management of

distributed resources such as data, scientific instruments and devices for computation

is vital for supporting complex scientific experiments while running the application in

grid environments [4].

Malaysia currently has been developing the DBRAIN system for diagnosis,

therapeutics and treatment of dementia-affected people with the support of grid-driven

bio-computing platforms. DBRAIN is part of the national road map for knowledge

grid [5]. Similarly, the Mayo Clinic is also developing a system for linking its own

medical database with large number of external public and private data sources in

order to provide more-effective treatments for the patients [6]. Other important

scientific applications also include brain activity analysis [7], particle physics [8],

aerospace design optimization [9], earth simulation etc. For these applications, grids

have been used to provide feasibility to solve much larger-scale problem that usually

cannot be solved on a single computer or site.

Moreover, multimedia companies can also take advantage of grid for development

of animation software, especially for purposes related to visualization and rendering.

3

Another application is in the area of public safety, where surveillance and tracking

analysis as well as the collection of data can easily be carried out using a

computational grid [10].

A multitude of jobs for generating and processing large datasets is commonly

present in scientific and engineering applications. Assigning specific jobs to the

appropriate resources in order to achieve effective and efficient execution can be

performed by the computational grid [11], [12].

Additionally, utilization of the immense computing power available in the grid

can enable the nations to make the command and control centers set up for stronger

and the more effective monitoring of natural disasters. At this point, it can be utilized

in climatic studies through simulation in order to get early detection by studying the

natural phenomena [10].

1.3 Motivation

A grid is an infrastructure for resource sharing. At present, many scientific

applications require high performance in processing, which can only be achieved by

using the computational grid.

For the selection and allocation of grid resources to current and future

applications, resource management and job scheduling components are playing a very

vital role for computational grids. They constitute the building blocks for making

grids available to the society. The efficient and effective scheduling policies, when

assigning different jobs to specific resources, are very important for a grid to process

high computing intensive applications [13], [14].

A number of interesting challenges have been introduced to scheduling by grid

computing in which the scheduling policies not only can manage the various

resources needed in computing, but also can make the decisions regarding the

dynamic execution of jobs. Optimization of the grid performance is dependent on the

scheduling policies [11], [13], [15], [16], [17]. In order to obtain a grid environment,

which works with high performance, the effective and efficient resource management

4

is a must. Due to the high dynamicity, scalability and heterogeneity of a grid, some

challenges then arise in the development of algorithms for scheduling to be used

along with grid computing [18].

In literature most of the grid scheduling algorithms proposed, are static in nature

and work in centralized manner. However, these algorithms fail to work efficiently in

heterogeneous, dynamic and fully distributed grid environment where the

requirements of jobs and resources are difficult to predict [18], [19], [20].

To achieve high performance, there is a need to understand the factors that can

affect the performance of application due to scheduling. This research work gets the

motivation from the above mentioned factors which in turn prompted to design

efficient and effective scheduling algorithms for dynamic grid computing

environment.

1.4 Research Problem

Grid computing is the enabling technology for high performance in scientific and

large-scale computing applications and introduces a number of fascinating issues to

scheduling. Grid scheduling in turn acts as a vital component of a grid infrastructure.

Grid scheduling plays a critical role in the efficient and effective management of

resources to achieve high performance on computational grid [1], [21], [22], [23],[24],

[25].

The performance of a grid can significantly be impacted by proper grid

scheduling. Scheduling is difficult and challenging in grid computing due to

distributed, dynamic, heterogeneous and unpredictable nature of grid resources. The

scheduling problem can be viewed as a multivariate optimization problem, where the

set of tasks is being assigned to a set of resources to optimize the overall execution

time. Grid scheduling problem is NP-Complete in nature [26]. This scheduling

problem is extensively studied and various heuristics have been proposed in the

literature. Until recently, there no algorithms have been found with the ability to

5

provide an optimal solution for each instance in such problems within reasonable time

[27], [28], [29].

Several challenges in grid scheduling make the implementation of practical

systems to be quite difficult. A grid scheduling system must meet the functional

requirements of heterogeneous domains (e.g., user domains, application domains, and

network domains) in which these requirements sometimes become incompatible with

one another. Moreover, a grid scheduling system must also satisfy non-functional

requirements, such as reliability, efficiency (in terms of time consumption),

performance, effectiveness in resource utilization, and scalability [13], [27], [28],

[29]. Till now, no such algorithm exists, which could meet the above mentioned

aspects of scheduling. Thus, it is essential to introduce new grid scheduling

algorithms for effective utilization of resources and efficient execution of

applications.

Four aspects of the research problem are stated below:

Firstly, propose a grid scheduling model, which can reflect every aspect of

scheduling algorithm. Secondly, design of a new web based simulator to perform the

statistical analysis of different grid workload traces, and can provide the realistic basis

for evaluation of resource allocation and job scheduling algorithms as per the

proposed grid scheduling model. Thirdly, design a new grid resource allocation

method and compare its performance with some remarkable algorithms on different

workload traces as per the proposed grid scheduling model. Finally, design new job

scheduling algorithms and compare their performances with some remarkable

algorithms on different workload traces as per the proposed grid scheduling model.

1.5 Research Questions

The performance of a grid scheduler is found to be strongly dependent on scheduling

policies and the characteristics of jobs such as number of tasks, priority of tasks or the

run-time of tasks [25]. In this thesis, an attempt to provide the answers to the

following questions has been made:

6

1. What model to consider for designing and evaluating new grid resource

allocation and job scheduling algorithms?

To design new grid scheduling algorithms (resource allocation and job

scheduling), a suitable scheduling model is required. There is need to design a new

dynamic grid scheduling model based on the standard procedures [30], [31], [32],

[33]. The proposed grid scheduling model will provide the basis for designing and

development of resource allocation and job scheduling algorithms; and will also

facilitate this research in evaluating the performance of grid scheduling algorithms on

the standard benchmark practices.

2. How can an efficient and effective utilization of grid resources be made while

minimizing the cost of computation?

Grid resource allocation is an NP complete problem [26]. There is a need to

design and develop an optimized resource allocation method, which will ensure an

efficient allocation of resources and lower the computational cost in terms of time.

3. How can an efficient and fair job scheduler be made to maximize the

performance and efficiency of a grid?

There is a need to design and develop an efficient and fair job scheduler, which

would be responsible for the fair distribution of resources among user jobs, and ensure

the efficient execution of those user jobs.

4. How can the proposed grid resource allocation method and job scheduling

algorithms be evaluated?

 A strategy of performance evaluation for testing and validating the proposed

resource allocation and job scheduling algorithms on a grid under different workload

traces is needed and should be designed using the standard benchmark procedures as

detailed in [31], [32] , [33]. This question can be realized in three more dimensions as

detailed below:

7

(a) How can the statistical analysis of grid workload traces be performed?

Realistic workloads traces are required to measure the efficiency, performance

and scalability of scheduling algorithms. The result of a performance evaluation

depends strongly on the workload used [24], [32], [33], [34]. The use of a workload

that incorrectly represents the real situation may result in inaccurate performance

measurements. Therefore, it is necessary to analyze the specific characteristic of the

jobs (statistical analysis) that may have a strong impact on the grid scheduling

policies [33]. Development of a web-based simulator is required to make this study

accurate and user friendly.

(b) How can grid scheduling policies be evaluated on different architectures?

It is desirable to do a performance analysis to the extent that the results are

applicable to different grid architectures. Since there is no de-facto standard for grid

architectures, the results of a performance analysis on one system do not necessarily

hold for other systems, especially since grid architecture is complex and large with

several hardware and software layers [33].

(c) What is the performance of grid scheduling policies under different grid

workload traces?

Different grid scheduling algorithms must be compared under synthetic and real

workload traces [33], [34] of various sizes to draw the conclusion.

1.6 Research Objectives

To answer the research questions stated in the previous section, a number of technical

objectives need to be achieved as a part of this research work, as presented below:

1. To propose a dynamic grid scheduling model to provide the basis for design

and evaluation of resource allocation and job scheduling algorithms.

8

2. To propose new grid resource allocation method to optimize the utilization of

resources and lower the cost of computation.

3. To propose new grid job scheduling algorithms that will possess a high degree

of performance, efficiency and scalability.

4. To design and develop a web-based simulator to study the nature of the

various grid workload traces.

5. To evaluate the proposed grid resource allocation method for different grid

computing scenarios using simulation.

6. To evaluate the proposed job scheduling algorithms on an experimental grid

using synthetic and real workload traces.

1.7 Research Methodology and Activities

The research objectives are realizable by considering the following research

methodology and activities:

1. Conducting an extensive literature survey of work in specific areas of

distributed computing, grid computing, operating system and operation

research:

a. Grid resource management

b. Grid-wide resource sharing

c. Transportation methods

d. Static and dynamic workload distribution

e. Adaptive load-balancing

f. Divisible load scheduling

g. Flexible (dynamic) partitions of nodes for users

h. Static and dynamic job scheduling

2. Constructing the grid scheduling model focusing on the issues of grid

scheduling.

3. Designing and developing a web-based simulator for statistical analysis of

grid workload traces.

4. Formulating the mathematical model for the grid resource allocation problem.

9

5. Designing and development of a new grid resource allocation method.

6. Performing a computer simulation to validate the grid resource allocation

method.

7. Performing a comparative performance analysis of the new grid resource

allocation method with other well known methods using synthetic and real

workload traces.

8. Formulating the mathematical model for the grid job scheduling problem.

9. Designing and developing new grid job scheduling algorithms.

10. Performing computer simulation to validate the grid job scheduling

algorithms.

11. Conducting a comparative performance analysis of new the grid job

scheduling algorithms with other well known algorithms on an experimental

grid using synthetic and real workload traces.

12. Conclude from the above steps.

The flow of the research activities is presented in Figure 1.1.

Figure 1.1: The flow of the research activities

10

1.8 Research Scope

This thesis focuses on improvement of some existing resource allocation and job

scheduling algorithms, towards the ultimate goal of enhancing the performance of

grid. Prime scopes of this research are as follows:

1. Designing and development of grid scheduling model for dynamic grid

scheduling environment. This scheduling model provides the foundation for

designing, development and evaluation of resource allocation and job

scheduling algorithms. To develop this model, the basis assumption is that, the

resources are already discovered. Here, the resource signifies processor and

bandwidth only.

2. Designing and development of a web-based simulator for grid workload

analysis. The web-based simulator provides a comprehensive characterization

of grid workload traces. Grid workload traces have been used for evaluation of

resource allocation and job scheduling algorithms. The applicability of this

simulator is limited to different workload traces in grid workload format

(GWF) only.

3. Designing, development and evaluation of the new resource allocation method

for an optimum utilization of resources. Software has been developed for

comparative performance analysis of various grid resource allocation methods

using synthetic and real grid workload traces, but yet to be tested for real life

applications. Here, to evaluate the performance of resource allocation

methods, the “computational cost” has been considered as the only parameter.

4. Designing, development and evaluation of the new job scheduling algorithms

for efficient and effective execution of jobs. From the more practical

perspective, proposed algorithms have been evaluated by comparing with

other well known scheduling algorithms for various scheduling performance

parameters on an experimental computational grid under dynamic grid

scheduling environment using synthetic and real workload traces. The goal is

to minimize the average waiting time, average turnaround time, average

response time, average bounded slowdown time, maximum total completion

11

time and maximum stretch time. Though the above algorithms have been

designed for grid environment, but the load distribution by these algorithms

has been done in a centralized manner, not in a truly distributed way. Also the

performances of the algorithm are yet to be tested for real life applications.

1.9 Structure of Thesis

This thesis is structured into seven chapters. Figure 1.2 represents organization of

thesis.

Figure 1.2: Thesis organization

Chapter 1 begins by introducing the whole research and also is added with a brief

background on all concepts involved in this work, motivation of the novel approach,

the problem statement, research question, objectives, research scope, and relevant

research activities.

12

An overview of background study of various computing architecture, grid

computing and grid scheduling are presented in Chapter 2 in which several related

works and review are covered. This chapter includes types of grids, the resource

types in grids, background of the scheduling problems, the types of scheduling

algorithms, and the computational models for grid scheduling. This chapter also

focuses on the recent approaches of job scheduling and resource allocation for solving

scheduling issues in grid computing. Finally, grid system performance and

optimization criteria have been highlighted in this chapter.

The grid scheduling model and proposed scheduling algorithms are elaborated in

Chapter 3. This chapter introduces a grid scheduling model with some basic

assumptions and presents the linear programming model for grid resource allocation.

This chapter proposes new algorithms for resource allocation and job scheduling. This

chapter also includes the performance metrics; which will be considered for

evaluation of scheduling algorithms. Proposed performance evaluation strategy based

on the benchmarks is also included in this chapter.

Chapter 4 presents the need of workload analysis tool. This chapter is

concentrated in a discussion about development of a web based simulator (i.e.,

SyedWSim) and statistical analysis of grid workload traces.

Chapter 5 describes the comparative performance analysis of the new method for

grid resource allocation with other well-known grid resource allocation methods using

simulation. Theoretical performance analysis of the proposed and various grid

resource allocation methods are also thoroughly explained in this chapter. This

chapter also presents a new simulator which has been developed to produce a

comprehensive simulation of a number of grid resource allocation methods.

Chapter 6 presents a comparative performance analysis of proposed scheduling

algorithms with other various job scheduling algorithms. This chapter includes an

extensive experimentation for evaluation of scheduling algorithms on an experimental

grid using synthetic and real grid workload traces; taken from leading computational

centers. This chapter also includes the homogenous implementation of new as well as

other scheduling algorithms. The scheduling simulator’s design and development is

13

also discussed in this chapter. The detailed performance analysis of new and other job

scheduling algorithms is also presented in this chapter.

Finally, Chapter 7 concludes thesis with a discussion of the main contributions in

this and future research directions in the area of grid scheduling.

1.10 Chapter Summary

This chapter presents the motivation, research problems, research questions, research

objectives, methodologies as well as activities, research scope and structure of thesis.

The main issue with grid computing is to manage the resources properly and schedule

the jobs more efficiently and effectively. The main aim of this research is to design

and evaluate new algorithms for efficient resource allocation and job scheduling on

computational grid.

14

15

ALI
CHAPTER 2

BACKGROUND AND RELATED RESEARCH

2.1 Chapter Overview

This chapter presents the background study of various computing architecture, grid

computing and grid scheduling. It is organized as follows: Section 2.2 presents

various computing architecture for high performance and section 2.3 shows the need

for grid computing systems. Characteristics and architecture of grids are discussed in

section 2.4 and section 2.5 respectively. Section 2.6 discusses the types of grids

followed by the explanation about the resource types in grids presented in section 2.7.

Section 2.8 then explains the scheduling problems in detail. Section 2.9 discusses the

types of scheduling in a grid. Section 2.10 is about the computational models for grid

scheduling. Section 2.11 focuses on the algorithms of job scheduling and resource

allocation for solving scheduling issues in grid computing. This chapter is concluded

by highlighting grid system performance and optimization criteria as presented in

section 2.12.

2.2 Parallel and Distributed Computing Architectures

Problems associated with scheduling on distributed environments and parallel

machines become more understandable with better knowledge of the advancement of

parallel and distributed architectures.

This section provides a brief description of present architectures, moving through

the simple multiprocessors computers to supercomputers resulting in distributed

environments such as grids. Every kind of architectures extends another one to

16

provide more computing power. The hierarchical structure of the different platforms

is presented in these following sections.

2.2.1 Multiprocessor Computers

The very first family of parallel machines is Symmetric Multiprocessing (SMP)

computers [35]. A computer enters into this family if each of the computing elements

shares the exactly identical data utilizing a single main memory. Most modern

operating systems can easily take advantage of these structures [36]. Figure 2.1 below

presents the architecture of a SMP computer.

Figure 2.1: The SMP architecture

SMP architectures are very well designed to run the small-scale parallel

applications. Each thread or process can run using a processing element although all

processes have an access to similar data from the main memory. The application not

only takes advantages of the parallelism but also avoids the context switching inherent

to the execution of a number of applications in mono-processor architectures.

However, programming on SMP architecture requires more programming

paradigms [37] than just a very simple sequential development and thus helps to make

the development more challenging. Higher-level APIs such as OpenMP [38] are

aiming at reducing the difficulty of programming of these kinds of platforms.

Having an individual memory space makes it possible for very easy data sharing

among the computing elements. However, as compared to the memory, the processing

elements are capable of processing, storing and distributing data more rapidly.

17

With the development in processing speed, the memory accesses have been unable to

keep up with the demands of the computing elements consequently leading the

number of processors on such platforms to be limited in use. To cope with this

bandwidth constraint, new architectures called Non-Uniform Memory Access

(NUMA) computers were designed. In practice, the bandwidth required by the

memory and the buses to send the data quickly adequate for the processors is not

achievable, thus NUMA features distributed memory access [39]. Several memory

banks are hierarchically connected to various processors, yet every single processor

can gain access to all memories through a fast communication link. Figure 2.2

schematizes this distributed memory.

Figure 2.2: The NUMA architecture

Even though all memories are available for every process, the amount of time

needed to collect the data locally could immensely vary depending on the location of

the data themselves. Moreover, if another memory bank holds the data, this could give

rise to latencies.

NUMA architectures are possibly harder to program than SMP in that a user could

localize the data in the memory by him/herself to gain a maximum performance [40]

thereby increasing the difficulty in programming. However, since NUMA

architectures are supported by Linux 1, Windows 2 and Solaris 3 - the main operating

systems, it is still possible for applications to be programmed as if they were on an

SMP computer but without the advantage of localizing the data in the memory.

18

2.2.2 Clusters

When a set of various computers are joined closely to work together, it is known as a

cluster of computers [41], [42], each of which in that cluster individually is called as

node and controlled by a single operating system, which in fact might be unaware

that the node belongs to the cluster. A node in a cluster is usually an SMP machine. A

common example of a cluster is shown in Figure 2.3.

Figure 2.3: Architecture of a cluster

Clusters do not have a central memory, which is easily accessed by all the

processes, yet some clusters use distributed file systems such as NFS. However, this

type of solution, due to its tardiness, might cause too much delay. As far as the

application is concerned, access to the memory among the various nodes is fully

determined by the programmers involved in programming the parallel applications.

For example, the most popular method that programmers use to send data between

nodes is the Message Passing Interface (MPI) [43], a basic API, providing a variety of

communication methods for sending and receiving data across various processes

spread out among the computing nodes. The Parallel Virtual Machine (PVM) [44] in

addition is another notable communication library.

 When some independent computers are joined together, they can form a less

expensive, more expandable, and more reliable cluster than one server handling

multiple processes. In fact, the nodes in a cluster can still continue working without

any interruption, even when one node stops functioning. Moreover, since each node is

unaware of the others, a user could expand the system with as many other nodes as

19

user desires; at this point a cluster is more expandable than a single computer. Several

thousands of computing nodes could possible make up one cluster [41],[42].

2.2.3 Supercomputers

Supercomputers firstly developed in the 80’s to perform processing procedures on a

large scale nowadays are at the forefront of technological advances. Those firstly

were installed with anywhere from four to sixteen processors, and until recently there

has been an increase in the number of processors installed in the computers. Today a

supercomputer could have as many as a few hundred of thousand cores. The Top500

contains the basic standing of supercomputers [2]. The standing of all systems is on

the basis of speed, meaning that systems are ranked according to how fast they can

run the standard application known as LINPAC, which was a created in order to find

solutions for a system of full of linear equations. Supercomputers receive their

standing in regards to the floating point operations per second (FLOPS) that they

achieve. In June 2010, the Cray Jaguar with 224,256 cores was considered to be the

fastest computer achieving a top performance at 1.759 PFLOPS [2], [3].

The 2011 International Supercomputing Conference in Hamburg in June 2011

introduced a new standing for supercomputers in which the K computer system was

put at the top of the TOP500 list. Intriguingly, the K computer system, even though

not completed yet, is even more powerful than a combination of the five listed

systems coming after it. It, while being in the building stage still, has nearly double

the number of cores as any other systems listed in the TOP500. Presently, it has

68,544 CPUs containing eight cores, a total of 548,352 cores, all held in 672 computer

racks. Moreover, this unfinished system obtained the best LINPAC standard

performance in the world at 8.162 petaflops (quadrillion floating-point operations per

second); making it to be the TOP500’s number one [2], [3].

Besides, it also has a 93.0% ratio of computing efficiency, which is registered as a

superior standard for systems. Japan's Ministry of Education, Culture, Sports, Science

and Technology (MEXT) introduced the High-Performance Computing Infrastructure

(HPCI), which the K computer is a part of. Furthermore, its name comes from "Kei",

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

is the Ins

Computer is presented in Figure 2.4 below.

The clusters of today’s su

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

to obtain the highest performance possibl

required

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

operating system found in all the operating system

Top500. It can be seen that from 1998 more than 90% of the market has been

controlled by Linux.

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

is the Institute for Physical and Chemical Research

Computer is presented in Figure 2.4 below.

The clusters of today’s su

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

to obtain the highest performance possibl

required [3].

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

operating system found in all the operating system

Top500. It can be seen that from 1998 more than 90% of the market has been

controlled by Linux.

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

titute for Physical and Chemical Research

Computer is presented in Figure 2.4 below.

The clusters of today’s su

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

to obtain the highest performance possibl

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

operating system found in all the operating system

Top500. It can be seen that from 1998 more than 90% of the market has been

controlled by Linux.

Figure 2.5: Operating systems

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

titute for Physical and Chemical Research

Computer is presented in Figure 2.4 below.

Figure 2.4:

The clusters of today’s supercomputers are very finely tuned and joined together

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

to obtain the highest performance possibl

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

operating system found in all the operating system

Top500. It can be seen that from 1998 more than 90% of the market has been

Operating systems

20

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

titute for Physical and Chemical Research

Computer is presented in Figure 2.4 below.

Figure 2.4: K Computer

percomputers are very finely tuned and joined together

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

to obtain the highest performance possible, dispersion of network topologies are

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

operating system found in all the operating system

Top500. It can be seen that from 1998 more than 90% of the market has been

Operating systems used in the Top500

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

titute for Physical and Chemical Research [2], [3]. The layout of the K

Computer [2]

percomputers are very finely tuned and joined together

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

e, dispersion of network topologies are

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

operating system found in all the operating systems of the supercomputers in the

Top500. It can be seen that from 1998 more than 90% of the market has been

used in the Top500

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

. The layout of the K

percomputers are very finely tuned and joined together

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

e, dispersion of network topologies are

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

s of the supercomputers in the

Top500. It can be seen that from 1998 more than 90% of the market has been

used in the Top500 [2]

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

. The layout of the K

percomputers are very finely tuned and joined together

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

e, dispersion of network topologies are

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

s of the supercomputers in the

Top500. It can be seen that from 1998 more than 90% of the market has been

which in Japanese means 10^16 (ten quadrillions); standing for the aim of the

computer which is to perform at a rate of 10 petaflops. The K Computer can be found

at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe. RIKEN

. The layout of the K

percomputers are very finely tuned and joined together

very closely enabling them to handle the huge number of processors involved.

Communication plays an extremely important role in these types of computers; thus,

e, dispersion of network topologies are

Linux, obviously presented in Figure 2.5 taken from [10], is the most common

s of the supercomputers in the

Top500. It can be seen that from 1998 more than 90% of the market has been

21

Even though supercomputers, due to their ability to find the solutions for big

problems, could provide very well benefit, the cost is still unaffordable for small and

medium sized businesses. The expense of the hardware itself is not the main issue, but

the system maintenance is the one. A supercomputer commonly is to be housed in an

entire building designed just for that purpose. A suitable construction for this must

have an adequate amount of energy to continuously run the computer system, while

overheating simultaneously must be controlled by utilizing the proper infrastructure

necessary to keep such a structure cool. As a result of such the huge costs required,

supercomputers then are only affordable for very big businesses or organizations [3].

2.2.4 Grid Computing

Distributed and heterogeneous resources need to be collected if the organizations

lacking for the processing resources are going to be able to use the huge processing

power of supercomputers. When a collection of individual systems is presented to the

users as a singular and incorporated system, it is known as a ‘distributed system’. In

such a system, the software and hardware elements of the joined computers talk to

each other and organize their actions by message passing [45].

In [1], Foster and Kesselman describe the meaning of ‘computational grid’ to

present the distributed computing architecture. An electrical power grid, as its name

implies, is as with the power grid that everyone can independently access the grid

even though the actual source is unknown. In computational grids, instead of electric

power being accessed, processing power, storage and such are the accessed resources.

Foster and Kesselman firstly introduced the grid by defining it as “a hardware and

software infrastructure that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities.” The framework for the

supercomputer belongs to a variety of combined organizations but none of the

company entirely has a complete control over the grid[1].

Their first description introduced the grid as a collection of resources owned by a

set of different groups, yet nothing was presented to clarify the guidelines on how

these groups would share the resources they mentioned. Hence, the authors added to

22

their description in [21] by introducing the idea of Virtual Organization (VO) in

handling this specific matter: “grid computing is concerned with coordinated resource

sharing and problem solving in dynamic, multi-institutional virtual organizations.”

Active, multi-group virtual organizations face large scale issues for which it is vital to

find solutions for; computing by grid in turn allows for the sharing, choosing and

gathering of geographical resources in order to obtain these solutions.

Since the resources involved in these systems are spread over a large geographical

area, the grid gives a resizable VO that allows the resources available to be easily

shared among multiple individuals or organizations. A VO can be considered as a

domain; however, no control, centralized point or relationships of trust also indicate a

lack of knowledge regarding the combined systems. The VO does, however, have the

usual objectives it must constantly follow. The primary components of a VO are the

information providers and service providers such as application, storage and CPU

cycle servers as well as the individual users of the system. In fact, a VO is not an

actual environment such as an office and can be considered more a network[21].

Foster gives a basic description of the three primary elements of architecture that

make it to be a grid [46]. A computational grid is a system, which:

1. Organizes resources, which are not centrally controlled.

2. Uses common, open, general-purpose protocols and interfaces.

3. Delivers nontrivial qualities of service.

Grids in the High Performance Computing (HPC) society usually contain multiple

clusters [47], [48].

Figure 2.6: The multi-cluster grid architecture

23

As shown in Figure 2.6, multi-cluster systems are parallel machines or clusters

that are joined by fast networks covering a broad area. In a situation where

organizations are held within a single VO, it is normal for individuals in the group to

have one or more of their own clusters available for the group’s use. Furthermore, it is

possible that various software and scheduling policies to be used to handle individual

clusters. However, resources are always openly and clearly accessed; basic

Application Programming Interfaces (APIs) or some types of middleware are used for

this purpose. In this way, in regards to the three conditions mentioned above, a grid

which contains multiple clusters already fits the criteria. While the application of a

multi-cluster grid in the HPC is very common; grids of other types are also used [47],

[48].

2.3 The need for Grid Computing Systems

A need for more and more processing power for both research and business seems to

be endless even though the available processing power has been increasing at an

astonishing speed for quite some time. This is especially true by considering the

potential new projects in both areas of science and business, which recently will need

immense processing power. The rate of increase in network bandwidth is growing

faster at a rate than that of processor speed; thus making logical to join multiple

computers that can use processing power efficiently [46]. At present, grid computing

is deemed to be the most efficient method to do this.

An article published in The New York Times claimed that “All Science Is

Computer Science" [49]; this statement was made as works done in various areas of

science such as biology and physics depend on simulations which are continually

complicated. The need for greater processing power hence comes to be more relevant

than before. While greater vision is still important to emerge with fresh ideas for work

in these fields, as far as processing power is concerned, any experiment needing to be

performed are still limited. Grid computing is vital as far as technology for processing

can aid in advancing science in all fields.

24

The prevailing technology used for resource sharing on large scale is grid

computing [21]. It raises the processing ability of a system; even is often used to find

solutions for scientific big and complicated problems and processing resources which

are spread out according to geography. Research and development of the grid

computing is slowly but steadily increasing in that many large-scale, complicated

scientific problems are still unsolvable using common networks. A grid computing

system connects the available computing resources, such as computers, applications,

and storages devices to attain the high processing and lower the processing time of

applications [1], [50].

Grid computing over the past few years has played a vital role in achieving

advancements in computing-intensive areas such as medicine, physics and

meteorology. Collaborative/e-Science Computing [51], [52] and Data-Intensive

Computing [53] are good examples of computing infrastructure, and well known for

their ability to provide optimized processing [18], [54], [55], [56], [57].

2.4 Characteristics of a Grid

It is vital to understand the grid’s characteristics in order to create a more appropriate

grid system because in many ways, it is different from the traditional computing

infrastructure most commonly used. The following sub sections present the

characteristics of a grid.

2.4.1 Distribution and Sharing

Distribution [15], [58] is one of the most significant characteristics of the grid. It is

related to the various resources that could be databases, computers, digital libraries

and other scientific tools in various geographical locations.

Grids, not centralized but rather distributed, suffer from issues involving

computation for this particular feature. This problem then requires the grid’s

management system to solve issues involving control of resources, scheduling of jobs,

25

security transmission, use of systems in real-time and the possibility that some forms

of intervention may be needed by the users [14].

Resources throughout the grid, while being well distributed, are also completely

shareable; this means that any user becoming a part of the grid has a complete access

to all the resources of the grid. The arrangement of sharing resources is the base

concept of the grid system as represented by the statement, “Sharing is the purpose of

the grid and without it the grid is meaningless” [21], [59]. This concept is

comprehensive and allows for a computer in one place not only to be able to complete

a job at some distant locations, but also to allow all the computers to share data such

as models, databases and results as they are processed.

Furthermore, with the support of the management system of the grid, the physical

feature is the distribution while the logical one refers to the implementation of

sharing.

2.4.2 Self-similarity

Self-similarity [1], [60] is present extensively in social as well as in natural

phenomena. Similar to the grid, almost all systems of a complex nature have several

special features. Components in the local part of the grid are quite equal to those in

the global part of the grid; thus both the global and local areas possess the similar

features. The idea of recursion expresses this to a certain degree.

2.4.3 Dynamic and diversified

Today’s grid structure is dynamic meaning that certain resources once present in the

grid might not be present any longer or even suddenly stop working. Furthermore,

resources previously not in the grid might become a part of the grid later. Dynamism

in this situation is the increase and decrease of resources.

The grid’s resources are both heterogeneous and diversified. For this the grid

system must solve problems such as communications between different operating

systems.

26

2.4.4 Self-manageable

The resources in a grid are owned by a particular organization or user; therefore the

highest administration rights belong to the owner. The grid itself cannot have the

direct control over the resources but can manage the resources.

2.5 Grid Architecture

There are five basic elements, which make up the architecture of the protocol for

the grid [21]. It has layered architecture similar to Internet protocol architecture.

Figure 2.7 presents a diagram of the two architectures side by side.

Figure 2.7: The layered grid architecture and its relationship to the internet protocol
architecture adapted from [21]

The following are the five layers of grid architecture, which are described in the

following sub sections.

1. Grid Fabric Layer

2. Grid Connectivity Layer

3. Grid Resource Layer

4. Grid Collective Layer

5. Grid Application Layer

27

2.5.1 Grid Fabric Layer

The fabric layer is made up by the resource-specific and site-specific components and

possesses low-end and high-end computers, which include networks and clusters, as

well as scientific tools, and resource management mechanisms. Examples of those

components could possibly include a support for interfaces and advanced reservation,

which helps with services at higher levels when they need to assign (co-schedule)

resources in an interesting manner with a possibility to obtain. Examples of these

mechanisms could possibly include resource management, interfaces, and advanced

reservation that would possibly help to provide higher-level services to aggregate and

co-scheduling resources in interesting ways that would be impossible to achieve the

network’s quality of service in some routers. Fabric layer also provides administer

sharing activities for resources at higher levels [21]

2.5.2 Grid Connectivity Layer

This layer deals with authenticating and authorizing protocols and core

communication protocols for grid-specific network transactions. The resources of the

fabric layer utilize these communication protocols for data exchange. Some elements

of security are also provided by the connectivity layer including delegation, single

sign on and the user-based trust relationship [21].

2.5.3 Grid Resource Layer

The connectivity layer is expanded upon by the resource layer, which assigns the

protocols (APIs and SDKs) in regards to securing the negotiation, initiation, control

monitoring, accounting, and payment of sharing operations related to individual

resources. Moreover, it provides management of remote processes, co-allocation of

resources, access to storage, information security, and Quality of Service such as

reservation and trading of resources [21], [61].

28

2.5.4 Grid Collective Layer

The focus of the collective layer is on protocol and services such as APIs and SDKs;

these are all associated with resource collections. Directory services are facilities that

the users can use to search for resources and current load that are readily accessible.

Services such as co-allocation, brokering and scheduling allows the users to ask for

resources to schedule their jobs from among the suitable resources, which are at hand.

Some facilities are to monitor resource or network failures, current resource load and

overload, and provide intrusion detection etc; known as monitoring and diagnostics

services. Reducing response time and cost while optimizing reliability comes to be

possible since data replication services copy data thus making the performance of data

accessing to be improved [21].

2.5.5 Grid Application Layer

The application layer, the last layer in the grid architecture, is made up of users’

applications, which have been created using grid-enabled languages such as HPC++,

and message passing systems like MPL Specific grid-aware application enforced with

grid services, grid fabric mechanisms, and application toolkit components [21].

2.6 Types of Grid

Grid systems can be differently categorized as follows:

2.6.1 Traditional Grid

It is a closed network of computers providing its access only to a few consumers and

can be managed by a single administrator. Traditional grids[62] for instance are often

built for a specific purposes such as NASA information power grid [63] - established

for research that is only open to scientists and engineers working for NASA.

Traditional grids are mostly of homogenous nature and can offer maximum

performance for their single user ownership. On the other hand, these grid systems

have minimal flexibility for being built for specific purposes.

29

2.6.2 Computational Grid

It consists of resources that are explicitly designed to achieve high computing power

and has mostly high-performance computing server. A computational grid is a system

that provides higher aggregated computational power than any single personal

machine. According to the usage of the computing power, computational grids have

been further divided into two subcategories: distributed supercomputing and high

throughput. A distributed supercomputing grid makes use of the parallel execution of

applications over multiple machines simultaneously to minimize the overall execution

time. On the other hand, the goal of the high throughput grid is to maximize the

completion rate of a set of jobs while utilizing available idle computing cycles as

much as possible [14], [18], [57], [58].

Computational grids have been designed with the objective of maximizing the

computational power enabling to run complex scientific application through the

sharing [18], [57].

2.6.3 Data Grid

The purpose of the data grids is to provide large scale computing infrastructure to the

next generation applications, which will support high demanding computation and

analysis of shared databases across widely distributed scientific communities [14],

[18], [57], [58].

Data grids not only deal with large-scale data repositories, access, sharing but also

deal with large amounts of distributed data belonging to different organizations. Grid

data are stored in different locations in which the consumer are not concerned where

the data are and how they can access it. For example, more than two hospitals

working on a heart disease research require a large amount of data. For this, they can

build data grid and share data by this way. In such types of grid, a number of

algorithms have been designed to maximize the performance and efficiency of grid-

enabled applications. In addition, data copy and transfer are key procedures which

help to attain high computing throughput [18], [57].

30

2.6.4 Storage Grid

A storage grid offers a mechanism to combine the spare storage resources in grid

environments and provides services like users transparent and secure storage[64]. For

example, Network Attached Storage (NAS) and Storage Area Network (SAN)

provide shared storage for a number of servers and multiple protocols, and

furthermore, more than 30 terabytes of Premium and Enhanced storage have been

provided by the UC Berkeley Storage Area Network (SAN) to more than 20 clients

and 100 TB expected in future. Advantages of SAN technology are to enhance

availability, maximum performance, and better monitoring through centralized

administration[65].

2.6.5 Peer to Peer Grid (P2P-G)

As well as on grid technologies, P2P-G is based on Peer to Peer - a resource sharing

method available at the edge of the internet through ad hoc overlay networks by

means of symmetric communication. A P2P computer network is determined by the

computing power and bandwidth of the computing nodes participating in the network.

In P2P, instead of creating a large scale network, like the internet, one can be directly

connected to the specific system that can provide the desired computing power, thus

an overhead could be prevented. Only computers running the same type of software

can be joined to meet their demands. P2P is supposed to be a variant of data grids as

its aim is also for data exchange. Tasks are allocated to grid nodes in a decentralized

way [66]. P2P grid furthermore possesses the properties of reliability and robustness

and is widely used in many cases [67].

2.6.6 E-Science Grids

E-Science grids are built to solve various emerging problems of science and

engineering by providing support to the computational infrastructure. UK e-Science

grid, EGEE grid computing, German D-grid, the Dutch e-Science grid and French

Grid'5000 are several representative examples of e-Science grids [18], [57], [68].

31

2.6.7 Enterprise Grids

At present, grid computing has become an important component of business. E-

business should be able to satisfy the growing needs of consumers. It should have the

capability to adjust itself with marketplace dynamically and efficiently [18], [57].

Furthermore, enterprise grids share resources transparently and enable execution

of several projects at large scale enterprise. However, the great and innovative issues

on how computing power is used appear in enterprise grids. These grids posses high

potential to solve business issues by providing global access to enterprise computing

services and data [18], [57], [69]. Popular examples of enterprise grids are IBM grid,

Sun grid engine, Oracle grid and HP grid.

2.6.8 Desktop Grids

It is a new type of enterprise grids consisted of hundreds or thousands of desktop

machines. It provides high processing power by using idle cycles of desktop machines

in small enterprises or institutions. A number of idle machines can be used to setup a

Desktop grid for the small scale institution. This grid is very easy to build, and unique

from administrative perspective. It is easier to control due to less volatility and

heterogeneity of resources [18], [57], [70], [71].

2.7 Types of Resource in a Grid

Various types of resource available in the grid include computation, databases, data

and storage, special equipment, software and licenses, communications links,

capacities, architectures, and policies [18], [21], [57].

2.7.1 Computational Resources

The most important and common resource in the grid, Computational resources can

be various in architecture, software platform, speed and connectivity. They allow

CPU scavenging to make good utilization of resources. When any computer gets free

32

and idle, it then notifies its state to the grid. With the help of this, users are motivated

to join the grid environment. Computational grid combines the processing power from

the distributed computing nodes and also grants the computational power to process

complex jobs. Computational resources meet the business requirement for instant

access to resources on demand [58]. In the grid system, the use of the computation

resources is made by three following major mechanisms[18], [57].

a. Existing parallel applications can run on the grid.

b. Applications or job can be divided into tasks, each of which can execute in

parallel fashion on different machines in the grid.

c. Application simultaneously can run several times on various different

machines.

2.7.2 Data Storage Resource

The second most common resource in grid, data grid as the secondary storage such as

HDD and type driver is to increase capacity, or memory attached to the processor,

performance, sharing and reliability of data. Data grid grants an access to the datasets

as well as scalable storage. Catalogued, Replicated, as well as even diverse datasets

are being stored in different positions for data grid to create an illusion of mass

storage. Using a unified file system such as Andrew File System (AFS) and Network

File System (NFS) with the storage on multiple machines will increase the capacity.

These advanced file systems can duplicate sets of data. An intelligent grid scheduler

meanwhile can help to choose a suitable storage device to hold the data depending on

usage job patterns. Furthermore, in grid method, journaling can be implemented by

grid file system as a result of a more reliable data recovery after the failures. Then the

data are shared and updated by plenty of users, and grid file system executes

advanced synchronization mechanism to decrease contention between these users.

Also data striping in writing or reading consecutive records to/from different physical

devices overlap the access for faster throughput [14], [18], [57].

33

2.7.3 Communication

It is another resource in the grid when some jobs require a lot of data to be processed

since bandwidth can be critical resource that can limit utilization of the grid for such

jobs. Sometimes VPNs are needed to overcome potential network failures as well as

huge data traffic. In an inter-grid, by assuming that a search engine is going to be

developed and should access the external Internet to provide connectivity among the

grid machines; these connections in this case will add the new total available

bandwidth for accessing the Internet rather than sharing the same communications

path [18], [57],[72].

Meanwhile, software and licenses, architecture, capacities, special equipment as

well as policies characterize a different kind of resources. The cost for installation of

too expensive software on each grid machine can increase. To avoid this, this

software is installed on some particular machines in which jobs require this software

to be sent [18], [57].

This method then can reduce the cost for an organization. On the other hand, some

software licensing arrangements permit the software to be installed on all of the

machines but may limit the number of software instances that can be simultaneously

executed at any given time. This limitation is enforced by license management

software [18], [57], [58].

Because of the heterogeneous as well as the dynamic nature of the grid, it often

has different operating systems, capacities, devices, architectures, and policies. Each

item stands for a different kind of resource while the grid allocates jobs to machines

since it can use this special equipment, architecture, capacities and policies as criteria.

For instance, there are numerous types of software running on different architectures

such as Sun Ultra, SGI origin, x86, etc. At this point, users must consider such

characteristics while assigning the jobs to machines in the grid [18], [57], [58].

In general, categories of grid resources are shown in Figure 2.8. A grid resource

can comprise of resource ID, resource name, performance criteria, and cost (price)

[58].

34

Figure 2.8: A classification of grid resources [58]

2.8 Scheduling problems in grid systems

Grid computing is progressing well but still has many fascinating issues that need to

be addressed. Of the challenges, two major considerations that need to improve are

performance and efficiency – those becoming the overall aims of grid scheduling as a

very important high computational mechanism for the efficient and effective

scheduling of the applications and optimization of the utilization of resources in the

grid [18], [57], [58].

As a core component of grid infrastructure, grid scheduling is responsible for an

efficient and effective utilization of heterogeneous and distributed resources. Grid

scheduling is a process of ordering both tasks on computing (or “computer”)

resources, and communication between them – also known as the allocation of

computation and communication over time [18], [27], [57], [58].

Due to the very dynamic and unpredictable nature of grid resources, scheduling is

becoming very challenging in grid computing. Its problem can be viewed as a

multivariate optimization problem, where the application being assigned to a set of

machines is to optimize the overall execution time. The job scheduling problem is an

NP-Complete problem [18], [26], [29], [73], [74], [75].

35

2.8.1 Characteristics of grid scheduling

Grid scheduling problem is one of the most researched issues in optimization domain.

Many characteristics in the grid environment however make the challenge to be

different and more demanding than traditional distributed systems. The followings are

a few of these characteristics [18], [57].

2.8.1.1 The dynamic structure of the computational grid

Unlike conventional distributed systems, resources in a grid system can enter or leave

the grid unpredictably. This dynamicity occurs due to connection failure with the

system or machine is turned off, or the operating system is modified, and so forth. As

long as the resources cross various administrative domains, there is absolutely no

control over the resources[18], [57].

2.8.1.2 The high heterogeneity of resources

A grid system consists of number of computational resources of various processing

capabilities. These computing resources could possibly become available from

desktops, laptops, clusters, and supercomputers. Now a day’s grid infrastructures are

not so adaptable and flexible but heterogeneity is the most important characteristics in

grid [18], [57].

2.8.1.3 The high heterogeneity of jobs

Jobs arriving at any grid system are diverse and heterogeneous when considering their

computational demands. Some jobs might be demanding high computing power for

their processing whilst others may require few units of processing to meet their

demands. In truly dynamic environment, the grid system is not aware of jobs arriving

in the system [18], [57].

36

2.8.1.4 The high heterogeneity of interconnection networks

A number of participating computers in grid are linked together using different

network topologies. Transmission cost is an important parameter to measure the

performance of grid. Thus, the heterogeneity of interconnection networks is also

necessary to consider in design of grid [18], [57].

2.8.1.5 The existence of local schedulers

Grids are expected to be constructed by the ``contribution'' of computational resources

throughout organizations, universities, companies and individuals. Many of these

resources could ultimately be managing local applications and use their local

schedulers such as Condor system. In these cases, a single possible requirement is

usually to use the local scheduler [18], [57].

2.8.1.6 The existence of local policies on resources

As the grid resources are owned by different organization; that’s why an individual

can’t fully control the resources of grid. Computing demands of companies or

individuals are changing, can’t be predicted. In some cases, companies would like to

minimize the contribution of their resources to grid. There is need for planning to

make use of resources effectively, like access of resources, pay- per -use, available

storage, etc. [18], [57].

2.8.1.7 The job-resource requirements

Present grid schedulers consider full availability and compatibility of resources while

doing scheduling. In real situations, numerous restrictions and incompatibilities could

possibly be base on job and resource specifications [18], [57].

37

2.8.1.8 The large scale of the grid system

Grid system is large scale computing infrastructure and dynamic in nature. Many

applications, tasks or jobs are joining the grid system over time. Consequently, there

is need to design and develop a grid scheduler to make an efficient execution of jobs

and effective management of resources. A number of attempts have been made to

propose different types of schedulers to meet the growing demands of applications,

and support scalability [18], [57].

2.8.1.9 Security

Security is also one of demanding issue in grid scheduling [58]. Security can be

observed from two perspectives. Firstly, task, application or job could have their own

security demands. Secondly, computing node might have its own security demands.

When one application is running on one node; then other grid nodes could not see it

[18], [57], [58].

2.8.2 A general definition and terminology

A grid scheduler can be defined in different ways depending on the organization as

well as the characteristics of a grid system. In a scenario, a grid scheduler is actually

running permanently as follows: receiving new jobs from users, looking into the

available resources from the grid, selecting the most likely resources in line with the

performance criteria, availability, reliability and performance. Then, finally grid

scheduler generates a mapping of jobs to the selected resources. The following

terminology have been introduced for scheduling in the grid systems [18], [29], [57],

[58].

 Job: A job is defined as a set of tasks with different processing

demands and has different requirements of resources like number of

CPUs, memory, number of nodes, software libraries, etc. A job is also

linked with a set of constraints. A job may has one task in the most

simplest situation [14], [18], [29], [57].

38

 Application: An application is a computer program to solve a

computational problem in grid environment. It might require splitting of

the computation into jobs; and then jobs are assigned to different

computational nodes in a grid. Application is specified by the various

computational resources and set of constraints; which are specified in the

application description [14], [18], [29], [57].

 Task: It represents a computational unit (typically a program and

possibly related data) running on a grid node. However, a unique

definition of its concept is absolutely not found in literature. It is usually

known as an indivisible schedulable unit. Tasks might be categorized into

dependent tasks (grid workflows) and independent tasks [14], [18], [29],

[57].

 Resource: A resource is a fundamental entity for the computation. Grid

scheduler assigns and processes applications, jobs or tasks on resources.

Resources have their unique features such as memory, CPU

characteristics, software, etc. Some of the attributes of resources change

over time like processing speed and workload. In addition, resources might

belong to different administrative domains. That’s why various policies

have been implied on usage and access of resources [14], [18], [29], [57].

 Specifications: Task, job and application demands are generally

specified using high-level specification languages. Likewise, the resource

characteristics are shown employing specification languages. One such

language would be the ClassAds language [14], [18], [29], [57].

 Resource pre-reservation: Pre-reservation is a well known

mechanism in grid scheduling. It is demanded in two situations; firstly,

when tasks have demands on completion times and secondly, when a lot of

dependencies are involved in the execution of the workflow. Negotiation

and agreement protocols are the main components of advance reservation,

which further involve resource providers and consumers [18], [29], [57].

39

 Planning: A planning would be the assignment of jobs, tasks, or

applications on the computational resources [14], [18], [29], [57].

 Grid scheduler: According to performance optimization criteria, grid

scheduler is responsible for mapping of jobs, tasks or applications to grid

resources. Grid schedulers have been categorized into various levels

depending upon their functionality in grid like super-schedulers, local

schedulers, cluster schedulers, meta-schedulers and enterprise schedulers.

The grid scheduler interacts with other parts of grid in systematic way:

Grid information system (GIS), local resource management systems and

network management systems. All these types of schedulers have their

specific but conflicting goals. Different scheduler interact and coordinate

with each other in order to run the job, task or application in seamless

manner [14], [18], [29], [57].

 Super scheduler: This scheduler is responsible for centralized scheduling

by which local job schedulers are utilized for reservation and allocation of

resources in the grid environment. Local schedulers have their own queues

and manage the execution of jobs at resource level. The super scheduler

manages the key activities like service level agreement, advance

reservation and negotiation [18], [57].

 Meta-scheduler: This scheduler is also known as metabroker. This

scheduler is originated when a single job or application is allocated to

more than one resource in the grid environment. As compared with super

scheduler, it is responsible to make coordination among the local

schedulers of the particular machines to compute an overall schedule.

Carrying out the load balancing across multiple systems is really a primary

objective here [18], [29], [57].

 Local/ cluster scheduler: This scheduler is responsible for mapping of

jobs to the resources belonging to the same local area network (LAN). As

handling the local resources and the local job queuing system, this

40

scheduler then is a type of ``close to resource'' scheduler [14], [18], [29],

[57].

 Enterprise scheduler: This kind of scheduler comes up in large

enterprises having computational resources distributed in several

enterprise departments. It utilizes the various local schedulers from the

same enterprise [14], [18], [57].

 Immediate mode scheduling: In immediate mode scheduling, tasks are

immediately planned when they join the grid system [18], [57].

 Batch mode scheduling: Tasks in batch mode scheduling are categorized

into different batches. Then scheduler makes allocation of these batches to

the resources[18], [57].

 Non-preemptive/preemptive scheduling: This type of scheduling deals

whether an application, job or task can be interrupted during execution or

not. In the non-preemptive mode, an application, job or task allocated to a

resource, must be completed fully without any interruption at resource

level. In other words, the resource cannot be taken back from application,

job or task during execution [18], [57]. Preemption is permitted in the

preemptive mode scheduling. The current execution of job, task or

application can be interrupted depending upon the different criteria like

job priorities, resource optimization etc [18], [57].

 Cooperative scheduling: In this scheduling, with the synergy of

procedures, rules, and grid users, a feasible schedule can be computed

[18], [57].

 High-throughput schedulers: The core objective of this scheduler is to

maximize the throughput of the grid. Throughput is average number of

jobs or tasks completed per unit of time. These schedulers are also referred

as the task-oriented schedulers because they are mainly focused on task

performance requirements [18], [41] ,[57].

41

 Resource-oriented schedulers: Optimizing resource usage is the aim of

this kind of scheduler. Hence these schedulers refer to the resource-

oriented schedulers, focus of which is within resource performance

requirements [18], [57].

 Application-oriented schedulers: These schedulers are involved to

optimize the scheduling of jobs in such a way to satisfy a user's

performance criteria. In order to attain the most effective performance of

applications, these schedulers have to consider the application specificity

as well as system details. Another thing, the interaction with the user need

be considered as well [18], [57].

2.8.3 Phases of scheduling in grids

The grid scheduler has to follow a sequence of steps in order to carry out the

scheduling process. Grid scheduling process can be divided into three main phases (1)

Resource Discovery; (2) Resource Allocation; and (3) Job scheduling. In [76], [77],

[73], the general architecture of a grid scheduler is described.

Figure 2.9: Steps of a general grid scheduler [73]

Resource Discovery is an important task within grid resource management

system. In fact, in realistic grid applications, it may generally infeasible for users to

42

manually find and specify all the needed resources to meet the demands of jobs.

Therefore, Resource Discovery requires a systematic way to express application

requirements with respect to the resource information available in the grid

Information System (GIS). A schema to describe the attributes of the systems in

understanding the values mean for different systems, therefore, is required. This is an

area of ongoing research with considerable argument about how to represent a schema

(using LDAP, XML, SQL, etc.) and what structure should be inherent to the

descriptions. Another important problem regards authorization filtering, which also

needs a secure and scalable user accounting system. The availability of secure GIS

publishing mechanisms would possibly allow publishing user to directly account for

information in the GIS, from which this information should be automatically

accessible to the scheduler [73], [75].

Resource Selection is the second phase in grid scheduling. This phase determines

the best one from the list of suitable resources filtered from the first phase. This

procedure of determination then needs the detailed dynamic information about the

resources that are ranked on the basis of performance in this phase that is by

facilitating the scheduler to choose the best ones out of all possible ones that ensure

high performance in the execution of applications. Resource selection could be quite

simple for sequential jobs, but very complex for parallel applications. In the second

phase, the selection of the best match of jobs to resources is an NP-complete problem

[18], [26], [29], [73], [74], [75].

Meanwhile, the Job Execution, the third phase of grid scheduling, could be very

complex for various intermediary steps, like staging of files, advance reservation, etc.

demanded from the preparation of a job run. In addition, due to the dynamic nature of

grids, in which resource availability is changing constantly, a support of an automatic

assignment of tasks to resources is necessary. Job execution and monitoring of the

progress of job execution are two main activities of this phase. If job execution is not

making adequate progress or is not meeting the required service level, then the grid

scheduler may stop and reschedule the job execution. Such rescheduling becomes

extensively harder for job executing in parallel on multiple sites. Dynamic scheduling

algorithms are more demanding to perform such kinds of activities. Once the

43

allocation takes place; job monitoring starts by keeping the information about the

execution progress as well as possible failures of jobs, and facilitating the grid

scheduler to make the scheduling and rescheduling decisions accordingly [75], [74].

2.9 Types of scheduling in grids

There are number of types of scheduling exist in the grid system. Each scheduling

type is based on some specific goals. An application might have different demands

like task independent or dependent, batch or immediate mode etc. Each grid system

has their own characteristics like centralized or decentralized approach, utilization of

local schedulers, dynamics and so on. Grid scheduling has been divided into different

types depending upon the needs of applications and grid characteristics[18], [29],

[57]. The primary types of scheduling so far developed in the grid environments are

as follows.

2.9.1 Independent scheduling

Scientific applications demand high computing power to process large amount of

data. Computational grids has the capability to make parallel computation of various

scientific applications. Each application or job is divided into different independent

tasks. Scheduler makes allocation of tasks to various computational resources. Each

task can execute independently at resource level. Computational grid has played a

vital role in the efficient execution of various scientific applications like biomedical,

digital animation, oil exploration, aviation, financial fields, etc. [18], [29], [57].

2.9.2 Grid workflows

Many scientific applications in grid have a lot of dependencies in their solution flow.

Jobs or processes are dependent on one another. It is possible the output of one

job/process might be the input for the next job/process. Each job can be divided into

set of dependent tasks. The applications, which are composed of dependent tasks/jobs,

are known as grid workflows [29]. These applications are very complex and make use

44

of grid computing in their controlled and efficient execution [78], [79]. Besides the

efficiency, robustness is another major consideration in the grid workflows [18], [29],

[57].

2.9.3 Centralized, hierarchical and decentralized scheduling

Grid scheduling is also divided from the management perspective like centralized,

hierarchical and decentralized.

In centralized scheduling, grid scheduler keeps the information about all the

resources and their state. It’s very easy to control and manage the resources. But this

type of scheduler is suffering from the scalability perspective and therefore is not

suitable for large scale computational grid. Another issue with this scheduler, it might

have single point of failure [18], [29], [57], [80], [81].

In hierarchical scheduling, schedulers can be organized in hierarchical way. The

scheduler at the bottom in hierarchy keeps information about all grid resources and

state of each resource. This scheduler has also the issues of scalability and fault

tolerance. This scheduler is much better and more fault tolerant than centralized

ones[18], [29], [57], [80], [81].

The autonomous grid sites make more challenging and complicated scheduling of

application, job or tasks. There is not central control exists in decentralized or

distributed scheduling. The local schedulers perform an important role in

decentralized schedulers. The local users or other grid schedulers make request for

scheduling of applications/jobs, which are delivered to local schedulers. Then local

scheduler usually control and maintain the state of the job queue. Decentralized

scheduling is more effective and practical for real grid environment but might be less

effective than centralized one [18], [29], [57].

2.9.4 Static scheduling versus dynamic scheduling

Basically there are two important factors which highlight the dynamics of grid

scheduling – (1) the dynamic of job execution, which indentifies the different

45

situations like failure of job execution, or stopping of job execution due to arrival of

high priority job; and (2) The dynamics of resources, by which resources can join or

leave the grid environment at any time. Numbers of resource are not fixed in grid

system and vary over time. In addition, the local policies on using of resources could

change with time; grid workload can significantly fluctuate over time and so forth.

These two factors describe the behavior of the grid scheduler. If these factors are not

present in grid scheduler, it means grid scheduling is static otherwise dynamic. As an

illustration, in the static case, there is no job failure and resources are suspected

available at all times (e.g. in Enterprise grids). Even though being unrealistic for many

grids, it might be useful to take into account for batch mode scheduling: the number

of jobs and resources is known as fixed during short intervals of time (time interval

between two successive activations of the scheduler) and the computing capacity is

deemed to be unchangeable. Other variants are possible to consider for example, just

the dynamics of resources but not that of jobs [18], [29], [57].

2.9.5 Space-sharing and time-sharing approaches

Grid job scheduling policies can be generally divided into space-sharing and time-

sharing approaches. Processors in time-sharing policies are temporally shared by jobs,

while in space-sharing policies, are exclusively allocated to a particular job till its

completion [82].

2.9.6 Immediate versus batch mode scheduling

These very well-known methods are mainly explored in distributed computing and

also very helpful for grid scheduling. In immediate mode, jobs are planned once

joining the system without waiting for the next time interval when the scheduler get

activated or the job arrival rate is small, thus making resources available to execute

jobs immediately. In batch mode, tasks are jointly grouped in batches and scheduled

like a group. Batch scheduling conversely could acquire much better advantage of job

and resource characteristics in determining which job to map to which resource since

they dispose of the time interval between two successive activations of the scheduler

[18], [57].

46

2.9.7 Adaptive scheduling

The overtime changeability of the grid computing environment demands adaptive

scheduling techniques [83] that will well consider about both the current and future

status of the resources with the goals of detecting and avoiding performance

deterioration. Rescheduling considerably is a kind of adaptive scheduling in which

running jobs are modeled to more suitable resources. [84] considered a type of grid

applications with more and more independent tasks (Monte Carlo simulations,

parameter-space searches, etc.), also known as task farming applications. For these

applications with loosely coupled tasks, the authors designed a general adaptive

scheduling algorithm. [85] stress the advantages of the grid system's capability to

realize the state of the resources, and afterwards introduce a strategy for system

adaptation in which grid jobs are managed, using an adaptable Resource Broker. [86]

meanwhile described a scheduling algorithm developed on top of the GridWay

framework, which utilizes the internally adaptive scheduling [18], [57].

2.9.8 Scheduling in data grids

Grid computing environments are making possible applications that actually work on

distributed data as well as around various data centers. In such applications, it is

crucial not only to assign tasks, jobs or application to the most effective and reliable

nodes but also to reduce data movement and ensure a quick access to data. Simply,

data location is significant in this type of scheduling. Actually, the effectiveness of the

large computing capability of the grid might be compromised by slow data

transmission that could be impacted by both network bandwidth and readily available

storage resources. Thus, data generally should be ``close'' to tasks to attain efficient

access[18], [57].

2.10 Computational models for grid scheduling

How to define the grid scheduling problem then is becoming the main significant

issue here. For this purpose, the most important and useful computational models are

47

presented in the following section, presenting their usefulness in the grid computing

domain, particularly for resource allocation and scheduling [18], [57].

2.10.1 Expected time to compute model

In this model [87] the assumption is to dispose of estimation or prediction of the

computational load of every task (e.g. in millions of instructions), the computing

capability of every resource (e.g. in millions of instructions per second, MIPS), and an

estimation of the past load of the resources. Furthermore, the Expected Time to

Compute (ETC) matrix of size number of tasks by number of machines in which each

location of ETC[t][m] indicates the expected time to compute task ‘t’ at resource ‘m’,

is supposed to become known or computable in this model. In the simplest of

situations, the entries ETC[t][m] might be computed by dividing the workload of task

‘t’ by the computing capacity of resource ‘m’. This formulation is generally feasible

for being possible to know the computing capability of resources while the

computation demand for the tasks (task workload) could be known from requirements

provided by the user from historical data or from predictions [18], [57], [88].

The ETC matrix model can describe various degrees of heterogeneity in a

distributed computing environment through consistency of computing that identifies

the coherence among execution times obtained by a machine with those acquired by

the rest of the machines for a set of tasks. This feature is especially interesting for grid

systems that purposively are to join in a single large virtual computer various

resources, which range from laptops and PCs to clusters and supercomputers.

Consequently, three types of consistency of computing environment, namely

consistent, inconsistent and semi-consistent could be defined using the attributes of

the ETC matrix [18], [57].

An ETC matrix is assumed to be consistent if each pair of machines is mi and mj,

mi executes a job more quickly than mj, and mi executes all the jobs faster than mj. In

comparison in an inconsistent ETC matrix, a machine mi may execute some jobs

faster than some other machine mj and a few jobs slower than the same machine mj.

48

Partially consistent ETC matrices are inconsistent matrices using a consistent

submatrix of the predefined size [18], [57].

Furthermore, the ETC matrices are categorized based on the degree of job

heterogeneity, machine heterogeneity and consistency of computing. Job

heterogeneity means the degree of variance of execution times for all jobs in a given

machine and machine heterogeneity means the variance of the execution times of all

machines for the given job [18], [57].

From the explanation above, it could be observed that formalizing the problem

instance is simple under the ETC model as it includes a vector of tasks workloads, a

vector of computing capability of machines and the matrix ETC. It seems simple to

define various optimization criteria within this model to evaluate the quality of a

schedule. It is worth noting that incompatibilities amongst tasks and resources can be

expressed in the ETC model; for instance, a value of + to ETC[t][m] would signify

that task ‘t’ is incompatible with resource ‘m’. Other restrictions of running a job on a

machine could be simulated utilizing penalties to ETC values. It is, however, more

difficult to simulate communication and data transmission costs [18], [57].

2.10.2 Total processor cycle consumption model

Despite its fascinating properties, the ETC model has an important constraint,

specifically; the computing capacity of resources is assumed the same during task

computation. This constraint becomes more apparent when it is considered that grid

systems not only do the resources to have various computing capacities but also might

change over time. The computing speed of resources may be assumed constant just

for short or very short periods. In order to remedy this, [89] presented the Total

Processor Cycle Consumption (TPCC) model - defined as the total number of

instructions the grid resources that could finish from the beginning until the finishing

time of execution of the schedule. As in the ETC model, the task workload is

specified in number of instructions and the computing capability of resources in

number of instructions computed per unit time. The total consumption of computing

power due to grid application completion is measured. Obviously, this model

49

considers that resources could change their computing speed over time, as happens in

large-scale computing systems, and as their workload is generally unpredictable [18],

[57].

 A problem instance in the TPCC model consists of the vector of task

workloads [89] and a matrix expressing the computing speed of resources. Since the

computing speed can change over time, one should fix a short time interval with the

unchanged computing speed. Then a matrix PS (Processor Speed) is built over time in

which one dimension is processor number and the other dimension is time; the

component PS[p][t] represents the processor's speed during time interval [t, t+1]. As

the availability and processing speed of a resource vary over time, the processor speed

distribution is used. This model has shown to be useful for independent and coarse-

grain task scheduling [18], [57].

2.10.3 Grid information system model

Though based on predictions, distributions or simulations, the computation models for

grid scheduling introduced so far allow for a precise explanation of problem instance.

Presently, other grid scheduling models are produced from a higher level perspective.

In the grid Information System (GIS) model the grid scheduler utilizes task (job or

application) file descriptions and resource file descriptions and also states information

of resources (CPU utilization, number of running jobs per grid resource) provided by

the GIS. The grid scheduler then computes the perfect matching of tasks to resources

in line with the up-to-date workload information of resources. This model is not only

much more practical for grid environments but also especially suited for the

implementation of simple heuristics for example First- Come First- Served, Earliest

Deadline First, Shortest Job First, etc. The problem instance in this model is

developed at any point in time from the information on task file descriptions, resource

file descriptions to the current state information on resources [18], [57].

50

2.10.4 Cluster and multi-cluster grids model

Cluster and multi-cluster grids refer to the grid model where the system consists of

various clusters. The cluster grid of an enterprise for example consists of various

clusters situated at various departments of the enterprise. One key goal of cluster grids

is to provide a common computing infrastructure at enterprise or department levels by

which computing services are distributed among different clusters. Clusters could

belong to different enterprises and institutions; that is, to autonomous sites owning

their local users (both local and grid jobs are run using resources) and usage policies

[18], [57].

The most typical scheduling problem in this model is a grid scheduler, which uses

local schedulers of the clusters. The benefit of cluster grids is to maximize the

effective use of resources and, simultaneously, increase the throughput for user tasks.

This model was used in [90] for scheduling data intensive bag-of-tasks applications.

The problem instance in this model is built at any point in time from the information

on task file descriptions; again, the assumption is how the workload of each task is

known a priori. Alternatively, the multi-cluster grid could be formally represented as a

set of clusters, each one with the information on its resources. Realizing that it is not

necessary for the grid scheduler in this model to know neither the information on

resources within a cluster nor the state information or control on each grid resource, it

is possible to minimize dependencies on grid information services and follow local

policies on resource utilization [18], [57].

2.11 Resource allocation and Job scheduling algorithms

The discussions in the previous sections reflect that grid scheduling obviously is

challenging issue in which many constraints and optimization criteria have to be

satisfied. A number of algorithms have been introduced for resource allocation and

job scheduling.

51

2.11.1 Resource Allocation Approaches

Resource allocation is one of the phases in grid scheduling. Resources are

geographically distributed between different time zones. Resource allocation is the

mapping of jobs to available resources. A job is typically divided into tasks, which are

allocated to different computers on a grid for execution. The actual execution time of

a job is dependent on the method of resource allocation, and the number and sizes of

the tasks. Hence, the resource allocation strategy plays a key role in grid scheduling

[21], [91].

Types of resource allocation policies can differently be categorized into

centralized and decentralized approaches. Traditional resource allocation uses a

centralized approach. Jobs are assigned to the appropriate processors on the basis of

the distribution strategy implemented by the resource scheduler. There are DAG

(Directed a Cyclic) node weight based (i.e., task execution time) policies which

allocate the resources to the jobs’ tasks according to their pre-assigned weights [92],

[93].

There are also cluster-based policies, which allocate the tightly coupled tasks to

the same resource to decrease the communication cost. As being static in nature, all

centralized policies cannot guarantee that the computing time of a job stays within an

acceptable range as the number of jobs and processors increases. Centralized

approaches are also not flexible enough to adapt to changes during the computing

period [94], [95].

Whilst, decentralized resource allocation policies tend to integrate the job

scheduling process and the job assignment process into a single process. These

policies distribute the jobs among servers and processors dynamically. Such policies

are widely used in grid computing. Software agents are widely used to implement

decentralized resource allocation [96], [97], [98].

In [99], the authors propose a dynamic task allocation technique based on the

“divide and conquer” principle and working in two phases. During the first phase, the

network is mapped onto a hyper-grid which in turn, during the second phase, is

successively divided up into hyper-grids of a smaller dimension. This second phase

52

works in a recursive fashion. The load-balanced hyper-grids of dimension k are

divided into hyper-grids of dimension k−1. This division process continues until their

dimensionality is equal to ‘1’. When this stage is reached, the tasks can be distributed

amongst the nodes. The proposed resource allocation technique is dynamic, mixed,

non-preemptive, adaptive and fully distributed. The contribution of this technique is

its approach to the transfer and placement of decisions.

In [99], [100], UDA (User-Directed Assignment) is proposed for task allocation.

This is the simplest task allocation strategy and maps each task in arbitrary fashion to

the computing resources with the shortest expected starting time. The user does not

need to know about status of that resource. In this case, the scheduler only helps to

map the tasks to the resources. Task execution is very dependent on the resource itself

- if the resource is lightly loaded or idle; the task may be executed immediately. The

task otherwise will be executed whenever the resource becomes available again.

Though this algorithm can be easily implemented, a critical disadvantage still emerges

as the completion time is totally random [99], [100].

Fast Greedy, also called Minimum Completion Time, maps each task in arbitrary

order to computing resources so as to deliver the shortest expected completion time

without considering the minimum execution time. In this case, as this heuristic may

result in the task to be executed for longer, it may cause the user larger costs [99]

[100].

Three well-known batch mode scheduling algorithms, Min-Min, Max-Min and

Sufferage, were proposed in [101]. They first created a list of tasks ready to be

executed called the “task prioritizing” phase. In the second phase, the tasks in the list

are scheduled to resources based on a heuristic; called the “resource selection” phase

[101], [102].

Min-Min heuristic works in two phases. Firstly; in task prioritizing phase it

constructs a list of tasks (i.e., pool) ready to be executed. The algorithm then

computes the Estimated Completion Time (ECT) of each task for each suitable

resource. The task with the minimum completion time is mapped to the specified

computing resource. A resource that can execute a task with Minimum ECT (MCT) is

53

then chosen as the most suitable resource for that task. The task and resource are then

paired. In the resource selection phase, the resource-task pair with lowest value of

MCT is scheduled first. The corresponding task is deleted from the pool, and then the

procedure will be repeated until no tasks remain. Min-min schedules the “best case”

tasks first and generates relatively good schedules. Generally speaking, besides

providing simplicity, rapidity and stability, the Min-min heuristic however possesses a

drawback that is assigning the smallest task first and then a few larger tasks execute

while several machines sit idle, resulting in poor machine utilization [99], [100],

[101], [102].

Max-min heuristic is very similar to the Min-min algorithm. The only difference

is that it schedules a resource-task pair with the highest value of MCT first [99],

[100], [101], [102].

Min-Min and Max-Min heuristics are used with an expectation that tasks assigned

to the machines can be in the earliest and fastest computation. In most of the resource

allocation scenarios, Min-Min shows an outstanding performance [103], [104].

However, the study in [105] has proved that Max-Min can show a better performance

than Min-Min when the lengths of tasks deviate greatly. For instance, with only one

long task and many short tasks, Min-Min favors to execute all short tasks first, and the

long task would be executed then while several machines sit idle. Max-Min in

contrast executes the long task first. In the meantime, it executes short tasks

concurrently with the long task. This can provide a better makespan and even a better

resource utilization rate and load balancing than Min-Min.

Sufferage heuristic, an extension of Min-min algorithm uses the Sufferage value,

which is the difference between the lowest and second lowest MCT. The pair of task

and resource with the maximum Sufferage value is scheduled first. In practice, the

algorithm gives priority to a task that would suffer the most if not being executed first

[101], [106]. The Sufferage heuristic assumes that if the task is not mapped to this

resource, the system will suffer the biggest loss. The higher the Sufferage value the

task has, the higher its priority will be.

54

The drawback of Min-Min, Max-Min and Sufferage is that they do not consider

the time required to transfer the required input files to the scheduled resource.

As an extension to Sufferage, [106] proposed the XSufferage algorithm for

parameter sweep applications – currently has been widely used in the grid

environment. The Sufferage value is computed not with one single computing

resource, but with several different resources. The Sufferage value in this algorithm is

computed taking into account the time required to transfer data file [106].

 In [83] the author proposed an adaptive scheduling system by using a Max-min

algorithm. The experimental results show that the proposed model can schedule tasks

efficiently. The proposed system is particularly good at detecting and using idle

processors. This system dynamically selects the proper scheduling strategy according

to the accuracy of the predictor, considers the dynamic characteristics of grid

applications and makes the scheduling adaptive to the grid environment.

 [93] proposed the “Scheduling algorithm for heterogeneous processors with

Different Capabilities” (SDC) based on the HEFT algorithm [107] to deal with tasks

that can only be executed by certain resources. Tasks with “scarce capable resources”

- the tasks that can be executed by few resources - are scheduled earlier so that they

will obtain the required resources before other tasks that can be executed by many

other resources [93]. However, since the ranking in HEFT based algorithms is based

on the dependency of tasks [102], the tasks with “scarce capable resources” further

down the workflow may still be blocked [93]. For example, at the beginning of a

workflow, a scarce resource ‘R’ might be allocated to an overlong task ‘T’. This can

block the tasks further down the workflow that are independent of ‘T’ but dependent

on ‘R’. In addition, the definition of scarce resources in this work (“scarce capable

resources” mentioned above) does not include the resources needed by several tasks.

This justifies the need to include the notion of resource competition into the

scheduling algorithm.

G. Murugesan proposed a resource scheduling model using DLT. The scheduling

strategy divides the load equally into portions, each of which is allocated to a separate

processor in such a way as to minimize the processing time. The author also

55

formulated an LP model for resource scheduling and conducted the experiment using

the LINDO software package. However, a few shortcomings emerge with this

resource scheduling model as it does not support the dynamic nature of the loads and

resources. A random number of methods have been used for the division of a load,

from multiple sources into equal amounts. The author also suggested that his work

can be extended so that division of the load depends upon the resource capacity[108].

TORA is Windows based software and offers modules for solutions to different

types of problems. It can be used for resource allocation problems and can be

executed in both an automated and a tutorial mode. The automated mode results in the

final solution of the problem, usually in the standard format. The tutorial mode is a

unique feature that provides an instant feedback to test the reader's understanding of

the computational details of each algorithm [109].

The following methods, relevant to resource allocation, can be used in TORA

[109], [110].

 North West Corner Method (NWCM)

 Least Cost Method(LCM)

 Vogel’s Approximation Method(VAM)

However, TORA cannot be used to solve a computational problem that involves a

large amount of jobs and processors. The procedural steps of NWCM and FCFS are

similar. The LCM and Max-Min algorithms also have identical procedures for

resource allocation.

2.11.2 Job Scheduling

Job scheduling plays a vital role in an efficient grid resource management. Most of

the parallel jobs demand a fixed number of processors, which are unchangeable

during execution [17]. Good job scheduling policies are very essential to manage grid

systems more efficiently and productively [111].

In grid scheduling, a means of estimating the execution time of a task must be

used and furthermore, information about capability and availability of each node must

56

be gathered. To match the tasks to nodes and monitor the tasks are necessary to do.

The software to perform these management functions could be located either on a

central computer, i.e., centralized, or on several computers, i.e., decentralized[112],

[113].

Each node of a grid has its own local scheduling policy. When some nodes apply

their priority policies in favor of local jobs, then global jobs making use of these

nodes will suffer from the much longer response times, thus resulting in the overall

performance of the grid to be degraded. In [114], the authors propose an adaptive site

selection algorithm for a grid scheduler based on the priority policies of local

schedulers. The experimental results show that the proposed algorithm can lower the

difference with respect to average waiting times among the sites with different

priority based scheduling policies. The proposed algorithm maintains a Remote

Queue and a Local Queue at each node of the grid [114]. The drawback of this

algorithm is too much processing time involved in accessing the large number of

queues at the distributed nodes.

 [115] proposes a compensation based scheduling approach to grid scheduling.

This approach provides the predictable execution times by monitoring grid application

performance, compares the monitored application performance with the desired

application performance, and performs corrections by dynamically allocating

additional resources. This approach has also been implemented and evaluated using

the ALiCE grid system in which its scalability has been studied using a simulation.

Experimental results then show that this approach is effective in reducing execution

time estimation misses and the total execution times of grid applications. The authors

also highlighted future work, which includes multi-resource compensation, resource

partitioning and allocation, improvement in the execution time estimator, and the use

of heuristics and dynamic methods for determining the value of a sensitivity factor in

the application execution rate formula.

Grid job scheduling policies can generally be divided into space-sharing and time-

sharing approaches. In time-sharing policies, processors are temporally shared by

jobs. In space-sharing policies, conversely, processors are exclusively allocated to a

single job until its completion. The well known space-sharing policies are First Come

57

First Served (FCFS), Backfilling, Job Rotate Scheduling Policy (JR), Multilevel

Opportunistic Feedback (MOF), Shortest Job First (SJF), Shortest Remaining Time

First (SRTF), Longest Job First (LJF), Priority (P) and Non Preemptive Priority (P-

NP) approaches. The famous time-sharing scheduling policies on the other hand are

Round Robin (RR) and Proportional Local Round Robin Scheduling [82], [116],

[117]. For completeness, the most commonly used algorithms will now be explained.

The FCFS is the simplest and non preemptive CPU scheduling algorithm. For this

algorithm the ready queue is maintained as a FIFO queue. Each new process is added

to the tail of the ready queue and then the algorithm dispatches processes from the

head of the ready queue for execution by the CPU. A process terminates and is

deleted from the system after completing its task, it. The next process is then selected

from the head of the ready queue [118], [119].

The SJF algorithm takes the processes using the shortest CPU time first. For this

algorithm the ready queue is maintained in order of CPU burst length with the shortest

burst length at the head of the queue. A new process submitted to the system is linked

to the queue in accordance with its CPU burst length. The algorithm dispatches

processes from the head of the ready queue for execution by the CPU. Similar with

the one in FCFS, when a process has completed its task, it terminates and is deleted

from the system. The next process is then dispatched from the head of the ready queue

[119].

The SRTF algorithm is the preemptive flavor of the SJF algorithm. For this

algorithm, the ready queue is maintained in order of CPU burst length with the

shortest burst length at the head of the queue. When a new process is submitted to the

system, the algorithm then checks if the new process requires less time than that

remaining of the ‘active’ process, if so, then preemption occurs and becomes the new

process’s turn for execution, if not, it is linked to the queue in accordance with its

CPU burst length. The algorithm dispatches processes from the head of the ready

queue for execution by the CPU. Again, when a process has completed its task, it

terminates and is deleted from the system. The next process is then dispatched from

the head of the ready queue [119].

58

The LJF algorithm takes the processes that use the longest CPU time first. For this

algorithm the ready queue is maintained in order of CPU burst length with the longest

burst length at the head of the queue. A new process submitted to the system is linked

to the queue in accordance with its CPU burst length. The algorithm dispatches

processes from the head of the ready queue for execution by the CPU. Having

completed its task, a process terminates and is deleted from the system. The next

process is then dispatched from the head of the ready queue [117], [119], [120].

Round-robin scheduling [50], [119] is a simple way of scheduling in which all

processes form a circular array and the scheduler gives control to each process at a

time. The ready queue for this algorithm is maintained as a FIFO queue. A process

submitted to the system is linked to the tail of the queue. The algorithm dispatches

processes from the head of the ready queue for execution by the CPU. Processes

being executed are preempted on expiry of a time quantum, which is a system-defined

variable. A preempted process is linked to the tail of the ready queue. When a process

has completed its task, i.e., before the expiry of the time quantum, it terminates and is

deleted from the system. The next process is then dispatched from the head of the

ready queue. This algorithm produces a good response time as compared to other

scheduling algorithms.

In the priority scheduling algorithm; the processes are prioritized in accordance

with their operational significance. For this algorithm, the ready queue is maintained

in the order of the system-defined priorities. Every process is assigned a priority and a

new process submitted to the system is linked to the process in the ready queue

having the same or a higher priority. The algorithm dispatches processes from the

head of the ready queue for execution by the CPU. When a process has completed its

task, it terminates and is deleted from the system. The next process afterward is

dispatched from the head of the ready queue. If the priority criterion for execution is

the order of arrival of the jobs into the system, then the priority scheduling behaves

like FCFS scheduling. Alternatively, if the priority criterion is such that the jobs with

shorter CPU burst lengths are assigned higher priorities, then this makes the priority

scheduling behave like SJF scheduling [119].

59

[121] proposes a Self-Adjustment-Round-Robin (SARR) scheduling approach

based on a dynamic-time-quantum algorithm. For this algorithm, the ready queue is

managed as a FIFO queue. A process can execute up to the value of a computed time

quantum for each round. This approach computes the time quantum, which is

repeatedly adjusted according to the CPU burst time of the now-running processes

and calculated by taking the median of the remaining CPU times of all processes in

the ready queue. The minimum value for the time quantum used in the algorithm is 25

units.

In [122] the author proposed a Round Robin Priority Algorithm modified version

of the round robin scheduling algorithm. This algorithm allows the user to assign

priority to each process in the system and includes the concept of intelligent time

slicing depending on two aspects - the process priority and the context switch. The

time slice is computed for each process using range, process priority, total number of

priorities and total number of processes in the ready queue. Range is computed by

taking the average of the least and the longest CPU burst times in the ready queue and

processes are assigned to the CPU for execution on the basis of priority and can

execute up to the computed time slice for one time. The proposed algorithm has

shown the good performance measures as compared to the round robin scheduling

algorithm for different set of processes. The author also developed a web based

simulation framework to study and evaluate the performance of various scheduling

algorithms [122].

In [123], by the authors, a variant of the round robin scheduling algorithm was

proposed. This simple round robin scheduling algorithm cannot be implemented in

real time operating systems as it can cause too many context switches and results in a

larger waiting time and turnaround time. This algorithm introduced the concept of an

intelligent time slice - a combination of the original time slice, priority component,

shortness component for CPU burst time and a context switch component. The

proposed algorithm computes the time slice for each process manages the ready queue

as the FIFO queue and executes each process for the computed intelligent time slice in

a circular fashion.

60

A variant of the priority scheduling algorithm was also proposed in [124] . For

this algorithm, the ready queue is maintained as a priority queue. Priority refers to

some fixed ranges of numbers such as 0 to 9 (for 10 processes in the ready queue).

The lowest number indicates the highest priority process and each process in the

ready queue holds a priority number. The algorithm selects the highest priority

process for execution on the CPU. If two or more processes hold the same priority,

the process with the least CPU burst time will then be selected. While, if the processes

have the same priority level and equal CPU burst time, then the proposed scheduling

algorithm breaks the tie by using the FCFS scheduling algorithm. Experimental

results shows that the proposed algorithm results in reduced average waiting time and

average turnaround time as compared to existing priority scheduling algorithms [124].

The SRBRR (Shortest Remaining Burst Round Robin) scheduling algorithm is a

variant of the RR scheduling algorithm proposed in [125]. The ready queue for this

algorithm is maintained based on SJF. The SRBRR algorithm is compared with the

RR scheduling algorithm using different case studies. The SRBRR algorithm

produces better results in terms of reducing the number of context switches, average

waiting time and average turnaround time in comparison to the RR algorithm. In

[125], the dynamic time quantum technique has been used for scheduling of jobs.

Time quantum is computed by taking the median of the remaining burst time of

processes in the ready queue. SRBRR favors the shortest job for execution.

Several scheduling policies have been implemented in modern resource

management systems for high performance computing. The first come first serve

(FCFS) with backfilling [126], [127] is the most commonly used; as on average, a

good utilization of the system and good response times of the jobs are achieved.

However, with certain job characteristics, other scheduling policies might be superior

to FCFS. For example, for mostly long running jobs, the longest job first (LJF) is

beneficial, while the shortest job first (SJF) is used with mostly short jobs [128].

In [116], the authors have extended the working of basic space sharing techniques

like FCFS, SJF and LJF, and proposed an SJF-backfilled scheduling heuristic. The

main theme of this research was to backfill the shortest job first (length) to reduce the

job killing probability. The proposed method also considers the reservation order of

61

jobs in making the scheduling decisions. In this way, the authors have achieved the

advantages of both the backfilling and the SJF scheduling policies.

In [129], the authors proposed the idea of ‘backfilling’ - a space sharing policy

that allows a scheduler to make better utilization of available resources by running

jobs in a prioritized order. Smaller jobs are assigned a higher priority than larger

queued jobs. It also requires that all job service times must be known before a

scheduling decision is made. The proposed method has been evaluated using the IBM

SP2 system.

In [130], the authors have performed an analysis of the processor scheduling

algorithms using a simulation of a Grid computing environment. Three space-sharing

scheduling algorithms (FCFS, SJF and P) have been considered for simulation.

[82] proposes Grid level resource scheduling with a Job Grouping strategy in

order to maximize the resource utilization and minimize the processing time of jobs.

The author has performed an experimental performance analysis of three space-

sharing policies (FCFS, JR and MOF) and two time-sharing policies (Global Round

Robin and Proportional Local Round Robin Scheduling). A combination of the Best

Fit and RR scheduling policies is applied at the local level to achieve better

performance. With RR, a fixed time quantum is given to each process, present in the

circular queue, for fair distribution of jobs. It is also concluded that time-sharing

scheduling policies perform better than space-sharing scheduling policies. The RR

scheduling policy is extensively used for job scheduling in grid computing [82] [131].

In [132], the author introduced a dynamic scheduling model for parallel machines

from an implementation perspective. The proposed model of a parallel job is based on

a penalty factor. [132] also addresses open issues for the researchers. First, theoretical

and experimental analysis of the idle regulation is needed with more variations of job

scheduling strategies (largest job first, backfill etc.) and optimization criteria from

both a user and a system perspective. Second, there is a need for an analysis of the

system in dynamic scheduling environment that supports dependent jobs and jobs that

can arrive at any moment.

62

2.12 Grid system performance and optimization criteria

Several performance requirements and optimization criteria have to be considered for

grid scheduling. The grid scheduling is a multi-objective problem in its general

formulation.

Grid performance criteria acquire account of CPU usage of grid resources, load

balancing, system usage, queuing time, response time, cumulative throughput, waiting

time and throughput, turnaround time. In fact, other criteria can be considered for

characterizing a grid system's performance such as deadlines, missed deadlines,

fairness, user priority, resource failure, and so on. Scheduling optimization criteria

comprise of makespan, flow time, resource utilization, load balancing, matching

proximity, turnaround time, total weighted completion time, lateness, weighted

number of tardy jobs, weighted response time, etc. Both performance criteria and

optimization criteria are suitable for any grid system; however, their success is

dependent also on the considered model for example batch system, interactive system,

and so on.

Two fundamental issues that have to be considered for the performance evaluation

and comparison of grid scheduling algorithms are firstly, representative workload

traces are required to produce dependable results, and secondly, a good testing

environment should be set up, most commonly through simulations [133]. A standard

workload should be used as a benchmark for evaluating scheduling algorithms [134],

[135].

Grid Workload Archive played a key role in providing the grid workload traces

for research purpose. Grid Workloads Archive (GWA) project is a platform for

workload data exchange and a community center for the grid resource management

and scheduling scientists. The GWA collects grid workloads (traces) from various

contributors, and presents them to the public in a standard format (GWF). Theoretical

analysis is difficult to apply for grid scenarios, and an extensive work has been done

on different aspects in grid scheduling by using simulations[133]. Several simulations

environments had been created to facilitate the evaluation. All of these simulation

tools used discrete event-based simulations.

63

Grid scheduling algorithms cannot be designed without a good understanding of

how today’s grids are used, and of their performance. In addition, existing grid

schedulers cannot be evaluated without understanding the characteristics of real grid

workloads [136], [137], [138], [139]. Researchers have put a lot of efforts into real

workload collection [140], [141], analysis[142], [143], and modelling [144], [145].

Workload characterization is important in order to understand the system

performance. There is also a need for a tool to facilitate the researchers in performing

the statistical analysis of the grid workload traces, and evaluating and improving the

performance of grid schedulers. In this perspective, the study of the nature of real grid

workloads is a vital step for improving the quality of existing grid schedulers.

Most of the resource allocation methods and job scheduling algorithms

highlighted in the literature have not been evaluated using real workload traces. The

aim of this thesis in turn is to propose new grid scheduling algorithms and evaluate

their efficiency, performance and scalability in comparison to other well-known grid

scheduling algorithms by simulation using real workload traces.

2.13 Chapter Summary

This chapter shows a survey of various computing architecture, grid systems and the

grid scheduling problem. A number of computational models have been discussed for

the grid scheduling problems. This chapter also classifies mechanisms developed and

applied in numerous grid scheduling systems according to the taxonomy. Different

types of scheduling based on different criteria, such as a static versus dynamic

environment, centralized versus distributed etc. are identified. Various approaches for

resource allocation and scheduling in grids are presented then. This chapter reveals

the complexity of the scheduling problem in computational grids.

64

65

ALI
CHAPTER 3

GRID SCHEDULING MODEL

3.1 Chapter Overview

Scheduling is a fundamental issue in achieving high performance on computational

grids. In this chapter, a grid scheduling model has been proposed. This chapter also

presents the Linear Programming model for grid resource allocation. Besides

proposing new algorithms for resource allocation and job scheduling, this chapter also

presents the performance metrics, which will be considered for the evaluation of

different scheduling algorithms. A performance evaluation strategy based on the

proposed grid scheduling model is also included in this chapter.

The organization of this chapter is as follows: Section 3.2 presents the system of

grid scheduling followed by Section 3.3 that presents the grid scheduling model and

its components. Section 3.4 presents the new resource allocation method and Section

3.5 discusses the proposed job scheduling algorithms. The conclusion of the chapter at

last is provided in Section 3.6.

3.2 Grid Scheduling

Grid systems are characterized by resource multiplicity and system transparency.

Each grid system consists of a number of widely distributed and heterogeneous

resources interconnected by a network. Besides providing communication facilities,

grid enables resource sharing. A process may be executed remotely if the expected

performance measure is better. From the user’s perspective, the grid resources act like

a virtual system. Therefore, when a user submits a process for execution, grid

scheduler is responsible for controlling the assignment of resources to processes and

66

assigning the process to suitable computing node of the grid system according to

allocation strategy.

Grid scheduler is the core component of a grid and is responsible for efficient and

effective utilization of heterogeneous and distributed resources. Grid scheduling can

be defined as a process of ordering tasks on computing resources and ordering

communication between them, also known as the allocation of computation and

communication over time [27].

A valid schedule is the assignment of tasks to specific time intervals of resources,

such that no two tasks use same resources simultaneously, or the resource usage

does not exceed the resources' capacities [146]. The schedule of tasks is optimal when

minimizing a given optimality criterion (objective function). A scheduling problem is

specified by a set of machines, a set of tasks, an optimality criterion, environmental

specifications, and other possible constraints. The solution of a scheduling problem is

an optimal schedule in the environment that satisfies all constraints. The functionality

and performance of a grid scheduler much depends on the available features of the

underlying local resource management systems. Now, this scheduling problem is

shown to NP complete in nature [26], [147], means no deterministic algorithm exists

which can solve this problem in polynomial time.

Therefore, these schedulers must be capable of collecting information describing

the computational resources in grid as well as that of describing their current state and

usage. Grid resource allocation and scheduling components are important for building

computational grids, and also responsible for the selection and allocation of grid

resources to current and future applications. Three main phases[26] of grid scheduling

are following:

1. Resource Discovery

2. Resource Allocation

3. Job Execution.

The different phases as mentioned above are shown in Figure 3.1.

67

Figure 3.1: Phases of grid Scheduling

3.2.1 Resource Discovery

Being an important activity in grid scheduling, resource discovery in realistic grid

applications is not feasible for users to find and specify the required resources at the

time of jobs’ composition. An efficient mechanism for this is needed by resource

discovery to define the application requirements with respect to the resource

information vector stored in the Grid Information System (GIS). Therefore, a schema

to describe the attributes of the systems, in order to understand what the values mean

for different systems, is necessarily to be proposed.

3.2.2 Resource Allocation
Phase two is resource allocation, involving a selection of feasible resources and

mapping of jobs to resources. This selection procedure needs detailed dynamic

information about the resources by accessing local resource description repository or

querying performance systems. This information can be used to rank resources and

allow the scheduler to choose the ones that should ensure high performance in the

execution of applications. One the other hand, resource selection can be quite simple

for sequential jobs, this task could become particularly complex for parallel

applications. In the second phase, the selection of the optimal match of jobs to

resources is an NP-complete problem [18], [26], [29], [73], [74], [75].

68

3.2.3 Job Execution

Third phase of this scheduling is job execution, which includes job execution at

resource level. The Job Execution phase can be very complex since the preparation of

a job execution can require various intermediary steps, such as, staging of files,

advance reservation, etc. In addition, due to the dynamic nature of grids, in which

resource availability can change constantly, a support of an automatic way to assign

tasks to resources is necessary. One of the main activities of this phase regards the

monitoring of the progress of an application execution. If a job execution does not

make sufficient progress or meet the required service level, the scheduler may stop the

job execution and then reschedule it. Such rescheduling is significantly harder for

parallel job executing on multiple sites. Dynamic scheduling algorithms are required

to perform this kind of operations. Once the allocation is complete, the monitoring

system will inform about the execution progress as well as possible failures of jobs,

depending on the scheduling policy that will be rescheduled or migrated to other

resources [73], [74].

Grid scheduler uses several different algorithms at each phase for efficient and

effective utilization of grid resources and to maximize the throughput of the grid.

Proper grid scheduling can have a significant impact on the performance of the

system. Thus, the aim of this thesis in turn is to provide new algorithms for effective

resource allocation and job scheduling.

3.3 Proposed Grid Scheduling Model

To design new grid scheduling algorithms, a suitable scheduling model is required.

Proposed grid scheduling model is an extension of the generic grid scheduling model

[30], and it comprises of six components as shown in Figure 3.2. Further details on

the six components are described in the following sub sections.

69

Figure 3.2: Grid scheduling model

3.3.1 Resource Model

Resource model describes the characteristics of resources. Different types of resource

and their characteristics have already been discussed in chapter 2. In proposed grid

scheduling model, only processor as resource has been considered and it was assumed

that each processor forms a node of cluster or grid system. Therefore, the terms such

as resource, node and processor are interchangeably used to have same meaning

throughout in this thesis.

3.3.2 Job Model

Job model represents the characteristics of user jobs. In proposed grid scheduling

model, each job can be divided into set of tasks that are assumed to be independent.

Two type of jobs (i.e.; synthetic and real workload traces) have been used in

scheduling. Each workload trace is set of independent jobs, tasks or applications.

Each job is expressed as tuple of:

<Job ID, Submit time, Run Time, NumberofProcessors, User ID, Group ID…>

Job model is very important component of grid scheduling model that has strong

significance in evaluating scheduling algorithms. Real jobs traces have been taken

from the leading computational centre for the evaluation purposes and jobs have been

analyzed and characterized in chapter 4.

70

3.3.3 Performance Metrics

Performance metrics are another important component of proposed grid scheduling

model in choosing the criteria of optimality. In grid scheduling model, performance

metrics include the average waiting time, average turnaround time, average response

time, average bounded slowdown time, machine completion time and maximum job

stretch time. The optimality of resource allocation and job scheduling algorithms can

be achieved by minimizing the performance metrics measures. Each performance

metric has been discussed in the following sub sections. Here, ‘i’ denotes the process

id and ‘n’ specifies the total number of processors.

3.3.3.1 Waiting time

It is the time for which a process waits from its submission to completion in the local

and global queues [119], [148]. Mathematically, it can be written as:

[݅]݁݉݅ܶ݃݊݅ݐܹ݅ܽ = –[݅]݁݉݅ܶ݊݋݅ݐ݈݁݌݉݋ܥ [݅]݁݉݅ܶ݊݋݅ݏݏܾ݅݉ݑܵ − [݅]݁݉݅ܶ݊ݑܴ

Waiting time can be expressed in terms of Turnaround time:

[݅]݁݉݅ܶ݃݊݅ݐܹ݅ܽ = [݅]݁݉݅ܶ݀݊ݑ݋ݎܽ݊ݎݑܶ − [݅]݁݉݅ܶ݊ݑܴ

Average waiting time can be written as:

= ݁݉݅ܶ݃݊݅ݐܹ݅ܽ݁݃ܽݎ݁ݒܣ
∑ ௡ [݅]݁݉݅ܶ݃݊݅ݐܹ݅ܽ
௜ୀଵ

݊

3.3.3.2 Turnaround time

The Turnaround time of the job is defined as the time difference between the

completion time and release time [119], [148]. Flow time of the job is also known as

the Turnaround time [146]

Mathematically, Turnaround time can be expressed as:

[݅]݁݉݅ܶ݀݊ݑ݋ݎܽ݊ݎݑܶ = – [݅]݁݉݅ܶ݊݋݅ݐ݈݁݌݉݋ܥ [݅]݁݉݅ܶ݊݋݅ݏݏܾ݅݉ݑܵ

Average turnaround time can be written as:

71

= ݁݉݅ܶ݀݊ݑ݋ݎܽ݊ݎݑܶ݁݃ܽݎ݁ݒܣ
∑ ௡[݅]݁݉݅ܶ݀݊ݑ݋ݎܽ݊ݎݑܶ
௜ୀଵ

݊

3.3.3.3 Response time

It is the amount of time taken from when a process is submitted until the first response

is produced [119], [148]. In interactive grid applications, response time is a very

important parameter. Mathematically, it can be expressed as:

[݅]݁݉݅ܶ݁ݏ݊݋݌ݏܴ݁ = – [݅]݁݉݅ܶݐݎܽݐܵ [݅]݁݉݅ܶ݊݋݅ݏݏܾ݅݉ݑܵ

Average response time can be written as:

= ݁݉݅ܶ݁ݏ݊݋݌ݏܴ݁݁݃ܽݎ݁ݒܣ
∑ ௡[݅]݁݉݅ܶ݁ݏ݊݋݌ݏܴ݁
௜ୀଵ

݊

3.3.3.4 Bounded Slowdown Time

Bounded slowdown [149] of a job can be expressed as

[݅]ܦܮܵܤ = ,1)ݔܽ݉ ோ௨௡்௜௠[௜]ାௐ௔௜௧௜௡௚்௜௠[௜]
௠௔௫(ோ௨௡்௜௠[௜],௧௛௥௘௦௛௢௟ௗ)

)

Turnaround time can be written as:

[݅]݁݉݅ܶ݀݊ݑ݋ݎܽ݊ݎݑܶ = [݅]݁݉݅ܶ݃݊݅ݐܹ݅ܽ + [݅]݁݉݅ܶ݊ݑܴ

Bounded slowdown of a job can be expressed in terms of Turnaround time:

[݅]ܦܮܵܤ = ,1)ݔܽ݉ ்௨௥௡௔௥௢௨௡ௗ்௜௠[௜]
௠௔௫(ோ௨௡்௜௠[௜],௧௛௥௘௦௛௢௟ௗ)

)

Although a threshold of ‘10’ seconds has been used in many research works in the

context of parallel jobs, scheduling to limit the impact of very short jobs on the

average bounded slowdown. In this research, a threshold of ‘60’ seconds will be used

for experiment as recommended by [149]. It is due to the longer time possibly taken

in grid scenarios jobs. Average bounded slowdown of finished jobs is a dynamic

performance metric which can be expressed as:

72

௥௘௦௢௨௥௖௘ܦܮܵܤ ܩܸܣ =
∑ ௦(݅)ܦܮܵܤ
௜ୀଵ

ݏ

where ‘s’ is number of finished jobs

3.3.3.5 Machine Completion Time

Machine Completion time is defined as the time for which a machine ‘m’ will finalize

the processing of the previously assigned tasks as well as of those already planned

tasks for the machine. This parameter also measures the previous workload of a

machine [18].

The ݁݉݅ݐ_ݕ݀ܽ݁ݎ[݉] is the time when machine ‘m’ will finish the previous

assigned tasks. Machine Completion time requires both ready time for a machine and

expected time to complete the jobs/tasks assigned to the machine. This parameter is

important to measure the processed workload so far for computing node.

Mathematically, Machine Completion Time can be written as:

[݉]݊݋݅ݐ݈݁݌݉݋ܿ = [݉]݁݉݅ݐ_ݕ݀ܽ݁ݎ + ෍ [݅]݁݉݅ܶ݊ݑܴ
௜∈௝௢௕௦

3.3.3.6 Maximum Stretch Time of a job

Stretch of a job, also called slowdown of a job, is defined as the flow of a job over the

processing time. In order to avoid the starvation situation from the grid system, it is

also required to minimize the stretch of each job rather than the sum of stretches of all

jobs. This motivates to compute another performance parameter, i.e. Maximum

Stretch time of job (Stretchmax) [149], [150].

[݅]ℎܿݐ݁ݎݐܵ =
[݅]݁݉݅ܶ݊݋݅ݐ݈݁݌݉݋ܥ − [݅]݉݅ܶ݊݋݅ݏݏܾ݅݉ݑܵ

[݅]݉݅ܶ݊ݑܴ

ℎ௠௔௫ܿݐ݁ݎݐܵ = ݅∀[݅]ℎܿݐ݁ݎݐܵ}ݔܽ݉ ∈ {ݏܾ݋ܬ

73

3.3.4 Grid scheduling policy

Grid scheduling policy consists of following components:

 Resource allocation algorithm

It is the way to find suitable resources for allocation and jobs’ mapping, tasks

or applications to processors.

 Job scheduling algorithm

 It is the way in which jobs, tasks or applications are being executed on

processors.

Most of the scheduling approaches follow two levels of scheduling architecture

[76] as shown in Figure 3.3.

Figure 3.3: Grid Scheduling Architecture

In the proposed approach, the scheduling of jobs will be performed at two levels

such as global level, i.e., grid level and local level.

 At the grid level, jobs are allocated to computing resources using resource

allocation method. In order to improve the resource allocation strategy, a

number of resource allocation methods have been evaluated using simulation

74

for a variety of grid resource allocation scenarios. This thesis has proposed a

new method, called the Modified Least Cost Method (MLCM), for allocation

of tasks to computing nodes aimed to minimize the computational cost in

terms of time.

 At the local level, jobs are managed by the scheduler to execute the jobs or

tasks on processors of the parallel and distributed machines. In this context,

this thesis has proposed a number of scheduling algorithms, including

Multilevel Hybrid Scheduling (MH), Multilevel Dual Queue Scheduling

(MDQ), Dynamic Multilevel Hybrid Scheduling (i.e., MHM and MHR) and

Dynamic Multilevel Dual Queue Scheduling (i.e., MDQM and MDQR). As

scheduling is NP complete problem, a number of algorithms have been

proposed to reach the optimality.

3.3.5 Programming Model

Programming model provides an environment to interact with the scheduler and

describe detailed features of an application programming. Java and MPJ-express API

(Application Programming Interface) have been selected for the development of

scheduling simulators. The MPJ-express is widely used Java message passing library

that allows writing and executing parallel applications for distributed and multi-core

systems [151].

3.3.6 Performance Evaluation Strategy

Performance evaluation is the most critical step in testing and validating the efficiency

and performance of scheduling algorithms. As per the standard practices [31],

scheduling algorithms need to be evaluated using synthetic and real workload traces.

Real workload traces have a strong impact in the performance evaluation of grid

scheduling algorithms.

This thesis has presented the performance evaluation strategy, which has been

designed using the standard practices [31], as shown in Figure 3.4.

75

Figure 3.4: Performance Evaluation Strategy

The proposed performance evaluation strategy has been carried through the

following activities:

1. Two types of workload (i.e.; synthetic and real workload traces) have been

used in the grid scheduling evaluation. The synthetic workload traces have

been produced using the Monte Carlo distribution method, meanwhile the

real workload traces have been obtained from the grid workload archive

[34].

76

2. ‘SyedWSim’, a new web-based simulator, has been presented in this thesis

for analysis of grid workload traces. Detailed discussion on grid workload

analysis is presented in Chapter 4.

3. The workload trace files have been produced by taking the workload

segments from the whole workload traces and used as an input to the

developed simulators for evaluation of resource allocation methods and

job scheduling algorithms.

4. Proposed resource allocation method and other well known methods have

been evaluated by simulation for the synthetic and real workload traces.

5. Proposed job scheduling algorithms and other well known algorithms have

been evaluated using the synthetic and real workload traces on an

experimental computational grid.

6. Results have been collected from the simulation and experimental grid.

7. Detailed comparative performance analysis of resource allocation methods

has been carried out.

8. Detailed comparative performance analysis of job scheduling algorithms

has been performed.

3.4 Proposed Grid Resource Allocation Method

Operation research is widely used in the grid scheduling models to achieve the

optimum solution [18], [74], [152], [153]. In operation research, the transportation

problem is a special type of Linear Programming problem. Transportation problem

deals with the situation in which products are transported from a number of sources to

a number of destinations. The objective is to minimize the total transportation cost of

distributing all products from their sources to the destinations. The unit transportation

cost is the cost of transporting one unit of the product from a source to a destination

[110].

Grid resource allocation, a special case of Linear Programming (LP)

transportation problem, is the issue of assigning tasks from a number of jobs to a

number of processors at the minimum ‘allocation’ cost. The source and destination

77

correspond to job and processor respectively in the transportation problem. The

following section presents a Linear programming model for grid resource allocation

problem with the objective of minimizing the allocation cost. In this model, the cost is

the total time to perform the following operations:

 Transfer in: Transfer of jobs to the resource

 Waiting Time: Time spent in the resource queue

 Computation Time: Actual time to execute the job

 Transfer out: Transfer of output files to the user.

3.4.1 Linear Programming Model

A grid is a computing system to process a number of jobs using a number of

resources. In this study, the computational grid system is assumed to be composed of

‘n’ processors.

Let J be a set of ‘m’ jobs and P be a set of ‘n’ processors, as shown below:

}, …, J, JJ = {J m21
}, …, P, PP = {P n21 where 1 n  ; 1 m 

Figure 3.5: Resource Allocation Model

Figure 3.5 shows the mapping of jobs to processors. Each job is made up of a

number of independent tasks, for which a job can be allocated to different processors.

The variables used in the proposed resource allocation model can be defined as

follows.

78

 Each job splits into r tasks. Mathematically it can be written as follows:

} … T, T= {TJ
iiriii 21 where 1ir

 Xij is the number of units of processing from job i to be executed on processor j.

 Ai is the number of units of processing making up job i.

 Bj is the number of units of processing that the processor j has been available.

 Cij is the unit cost associated with allocating job i to processor j. This is made up

of the transportation time and the time to execute one unit of processing. In what

follows, Cij will be referred as the ‘allocation cost’.

 Tik is the number of units of processing making up the kth task of job i.

 Xijk is a Boolean variable which is set to ‘1’ if the kth task of job i is executed by

processor j. If this task is not executed by processor j, the variable is set to ‘0’

then.

The main variables relevant to the grid resource allocation problem can be

represented in Table 3.1.

Table 3.1: Representation of main variables

Jobs\Processors P1 P2 …… Pn
Size of Job

(Workload) (A)

J1 C11 C 12 …… C 1n A1

J2 C 21 C 22 C 2n A2

:

:

:

:

:

Jm C m1 C m2 …… C mn Am

Processor

Availability (B)
B1 B2 …… Bn

79

The grid resource allocation problem is an LP problem. The objective function

and the set of constraints are as follows:

Minimize

ijkik

m

1i

n

1j

r

1k
ijmin XTCZ

i


  

 (3.1)

Subject to

 0m ; 0n ; 0ir

0ijC ; 0ikT

 10,X ijk  (3.2)


 


n

j

r

k
iijkik

i

AXT
1 1

 ; i=1, 2, 3… m (3.3)


 


m

i

r

k
jijkik

i

BXT
1 1

 ; j=1, 2, 3… n (3.4)

Eq. (1) is the objective function (1) that is to minimize the computational cost (i.e,

minZ). The minimization is subjected to a number of constraints stated in Eq. (2) – (4).

The value of Xijk in (2) indicates whether or not the kth task of job i is executed by

processor j. Constraint in Eq. (3) ensures that all the tasks for each job have been

allocated.

Constraint in Eq. (4) ensures that the total quantity of processing units allocated to

the job(s) must satisfy the processor availabilities.

3.4.2 Modified Least Cost Method (MLCM)

This section presents a new method (i.e.; MLCM) for allocating jobs to processors in

grids to minimize the total allocation cost.

The Least Cost Method (LCM) is a well-known transportation method in

Operations Research and used to find out the number of goods to be transported from

each source to each destination in such a way that transportation cost will be

minimized. LCM always matches a source with a destination using the least cost from

80

the transportation table. If the least cost is not unique then it chooses the

source/destination combination that can transport the maximum amount of

goods[110].

Proposed MLCM is a practical application of LCM with minor modifications for

grid resource scheduling. In the resource allocation table, each job corresponds to a

source and each processor corresponds to a destination. The cost for each job is given

with respect to each available processor. MLCM introduces a new strategy for finding

the least cost cell in the resource allocation table. Both LCM and MLCM favor the

selection of the cell with the least allocation cost for mapping of a job to a processor.

If the least cost is not unique then there is a tie. LCM breaks this tie by selecting the

cell which can process the largest workload. MLCM however breaks the tie by

selecting the cell which does not include the next least cost in its corresponding row

or column. If a tie still occurs then MLCM breaks it by selecting the least cost cell

which can process the smallest workload. MLCM not only makes maximum usage of

the least cost cells for task-processor allocation to minimize the total allocation cost

but also keeps in consideration all other next available least cost cells while making

the scheduling decisions for further allocation. The detailed procedural steps of the

MLCM are given in the Appendix A.

3.5 Proposed Job Scheduling Algorithms

Grid scheduling is an NP complete problem, i.e., no such deterministic algorithm

exists which can generate an optimum result in polynomial time. Here, a number of

approaches for efficient execution of user jobs in the grid environment have been

presented - Multilevel Hybrid scheduling algorithms (MH) and Multilevel Dual

Queue Scheduling algorithms (MDQ) have been proposed in this research work.

These scheduling algorithms are based on a fixed time quantum value. To predict the

demand of grid jobs in a dynamic scheduling environment however is not simple. The

dynamic scheduling means jobs that are arriving in the system with different

processing demands. However, algorithm based on the fixed time quantum cannot be

a feasible solution to cater dynamic demands of processing for user jobs. To support

the dynamicity of users jobs; two variants of MH - Dynamic Multilevel Hybrid

81

Scheduling Algorithm using Median (MHM) and Dynamic Multilevel Hybrid

Scheduling Algorithm using square root (MHR) have been proposed in this thesis.

This research work also proposed two more variants of MDQ, namely Dynamic

Multilevel Dual Queue Scheduling Algorithm using Median (MDQM), Dynamic

Multilevel Dual Queue Scheduling Algorithm using Square root (MDQR). For

completeness, each proposed scheduling algorithm is explained as follows:

3.5.1 Multilevel Hybrid Scheduling Algorithm (MH)

Multilevel Hybrid scheduling algorithm (MH) uses master-slave architecture as

shown in Figure 3.6. MH works in the two phases:

 Phase 1: MH uses the Round Robin(RR) allocation strategy for job

 distribution among the slave processors

 Phase 2: MH uses the proposed Hybrid Scheduling Algorithm (H) on

 each slave processor (i.e., computing node) for computation.

Figure 3.6: Block Diagram of MH

For H the ready queue is maintained in order of CPU burst length with the least

burst length at the head of the queue. Two numbers are maintained. The first

number, ݐ௟௔௥௚௘ , shows the burst length of the largest process in the ready queue, while

the second one, ݐ௘௫௘௖ , represents a running total of the execution time of all processes

(since a reset was made). A new process submitted to the system is linked to the

82

queue in accordance with its CPU burst length. The process state diagram of H is

shown in Figure 3.7.

Figure 3.7: Process State Diagram of H

H dispatches processes from the head of the ready queue for execution by the

CPU. Processes being executed are preempted on expiry of a time quantum, which is

a system-defined variable. Following preemption ݐ௘௫௘௖ is updated as follows:

௘௫௘௖ݐ = ௘௫௘௖ݐ + ݉ݑݐ݊ܽݑݍ

The numbers are then compared.

If ݐ௘௫௘௖ < ௟௔௥௚௘ then the preempted process is linked to the tail of the readyݐ

queue. The next process is dispatched from the head of the ready queue.

If ݐ௘௫௘௖ ≥ ௟௔௥௚௘ then the process with the largest CPU burst length is given aݐ

turn for execution. Upon preemption, the ready queue is sorted on the basis of SJF.

The value of ݐ௟௔௥௚௘ is reset to the burst length of the largest PCB, which is lying at

the tail of the queue, and ݐ௘௫௘௖ is reset to 0. The next process is dispatched from the

head of the ready queue. When a process has completed its task; it is terminated and

deleted from the system. ݐ௘௫௘௖ is updated as follows:

௘௫௘௖ݐ = ௘௫௘௖ݐ + ݁ݐ݈݁݌݉݋ܿ ݋ݐ ݁݉݅ݐ

83

The numbers are then compared and the actions taken are the same as those for a

preempted process.

The performance of MH scheduling algorithms is based on the value of a fixed

time quantum. If the value of the time quantum is too small then MH results in too

many context switches. If the value of the time quantum is too large then MH also

loses its efficiency and behaves like the First Come First Served Scheduling

Algorithm (FCFS). It means that in the MH it is necessary to know the nature and

processing demands of jobs for setting the value of time quantum. In next following

two sections, dynamic approaches have also been proposed to resolve the issues of the

fixed time quantum encountered in MH. The proposed variants of the Multilevel

Hybrid Scheduling Algorithm (namely Dynamic Multilevel Hybrid Scheduling

Algorithm using Median (MHM) and Dynamic Multilevel Hybrid Scheduling

Algorithm using Square root (MHR)) are as follows:

3.5.2 Dynamic Multilevel Hybrid Scheduling Algorithm using Median (MHM)

MHM is an extension of and works similarly as MH, yet, instead of fixed time

quantum; it uses a dynamic time quantum approach. MHM computes the dynamic

time quantum using the median of CPU times of processes in the ready queue. The

dynamic time quantum approach has been taken from[121].

= ݉ݑݐ݊ܽݑܳ ݁݉݅ܶ ,ଵܥ)݊ܽ݅݀݁݉ ,ଶܥ ,ଷܥ … . (௡ܥ

where C୧ is the CPU time of Process i and i ranges from ‘1’ to ‘n’.

3.5.3 Dynamic Multilevel Hybrid Scheduling Algorithm using Square root
(MHR)

MHR algorithm is another variant of MH that calculates the dynamic time quantum

using square root of the average of CPU times of processes in the ready queue. MHR

also computes the time quantum for each round and executes processes for the

computed dynamic time quantum value. The objective of this approach is to reduce

the number of context switches in the system.

84

= ݉ݑݐ݊ܽݑܳ ݁݉݅ܶ ,ଵܥ)݃ݒ൫ܽݐݎݍݏ ,ଶܥ ,ଷܥ … . ௡)൯ܥ

Where ܥ௜ is the CPU time of Process i and i ranges from ‘1’ to ‘n’.

Proposed dynamic scheduling algorithms (MHM and MHR) will radically solve

the fixed time quantum problem encountered in MH.

3.5.4 Multilevel Dual Queue Scheduling Algorithm (MDQ)

MDQ is based on a master/ slave architecture. A block diagram of MDQ is shown in

Figure 3.8. MDQ also works in two phases:

 Phase 1: MDQ employs a Round Robin(RR) allocation strategy for

 job distribution among slave processors

 Phase 2: Dual Queue scheduling algorithm (DQ) is used on each slave

 processor for computation. Once a computation is done at the

 slave processor, then notification is sent to the master processor

Figure 3.8: Block Diagram of MDQ

A process state diagram of DQ is shown in Figure 3.9.

85

Figure 3.9: Process State Diagram of DQ

For the DQ algorithm, the ready queue comprises of two queues – the waiting

queue and the execution queue. The waiting queue is maintained as an FIFO queue.

A new process submitted to the slave is linked to the tail of the waiting queue.

Whenever the execution queue is empty, all processes in the waiting queue are moved

to the execution queue, leaving the waiting queue empty. The execution queue is

maintained in order of CPU burst length, with the shortest burst length at the head of

the queue. Two numbers are maintained. The first number, ݐ௟௔௥௚௘ , shows the burst

length of the largest process in the ready queue (waiting queue and execution queue

combined) while the second one, texec , represents a running total of the execution time

of all processes (since a reset was made). The algorithm dispatches processes from

the head of the execution queue for execution by the CPU. Processes being executed

are preempted on expiry of a time quantum, which is a system-defined variable.

Following preemption, texec is updated as follows:

௘௫௘௖ݐ = ௘௫௘௖ݐ + ݁ݐ݈݁݌݉݋ܿ ݋ݐ ݁݉݅ݐ

The numbers are then compared. If ݐ௘௫௘௖ < ௟௔௥௚௘ , then the preempted processݐ

is linked to the tail of the execution queue. The next process is dispatched from the

head of the execution queue.

86

If ݐ௘௫௘௖ ≥ ௟௔௥௚௘ , then the process with the largest CPU burst length is given aݐ

turn for execution. Upon preemption, all processes in the waiting queue are moved to

the execution queue that leaves the waiting queue empty. The execution queue is then

sorted on the basis of SJF.

The value of ݐ௟௔௥௚௘ is reset to the burst length of the largest process and texec is

reset to ‘0’. The next process is dispatched from the head of the execution queue.

Once a process has completed its task, it is terminated and deleted from the system.

The following ݐ௘௫௘௖ is then updated as follows:

௘௫௘௖ݐ = ௘௫௘௖ݐ + ݁ݐ݈݁݌݉݋ܿ ݋ݐ ݁݉݅ݐ

The performance of MDQ is also dependent on the value of a fixed time quantum.

The much smaller the values of fixed quantum are, the much more context switches of

MDQ will be. The MDQ loses its efficiency and behaves like the First Come First

Served scheduling algorithm (FCFS) if the value is too large. The following sections

present two more variants of MDQ (Dynamic Multilevel Dual Queue scheduling

algorithm using Median (MDQM) and Dynamic Multilevel Dual Queue scheduling

algorithm using Square Root (MDQR)). In these dynamic approaches, the value of

time quantum value has been computed that depends on the processing demands of

user jobs.

3.5.5 Dynamic Multilevel Dual Queue Scheduling Algorithm using Median
(MDQM)

Proposed MDQM algorithm is a variant of MDQ. MDQM works as similarly as

MDQ. However, MDQM uses a dynamic time quantum approach instead of fixed

time quantum one and additionally computes the dynamic time quantum by taking the

median of CPU times of processes in the ready queue. The dynamic time quantum

approach is described in the details in [121].

= ݉ݑݐ݊ܽݑܳ ݁݉݅ܶ ,ଵܥ)݊ܽ݅݀݁݉ ,ଶܥ ,ଷܥ … . (௡ܥ

Where ܥ௜ is the estimated CPU time of process i, and i ranges from ‘1’ to ‘n’.

87

3.5.6 Dynamic Multilevel Dual Queue Scheduling Algorithm using Square
Root (MDQR)

Proposed MDQR algorithm is another variant of MDQ. MDQR computes the

dynamic time quantum value using the square root of the average of CPU times of

processes in the ready queue. MDQR also computes the time quantum for each round

and executes processes for the computed dynamic time quantum value. This approach

is aimed to reduce number of context switches in the system.

= ݉ݑݐ݊ܽ݊ݑܳ ݁݉݅ܶ ,ଵܥ)݃ݒܽ)ݐݎݍݏ ,ଶܥ ,ଷܥ … . ((௡ܥ

Where ܥ௜ is the estimated CPU time of process i, and i ranges from ‘1’ to ‘n’.

Proposed dynamic scheduling algorithms (MDQM and MDQR) aimed to solve

the fixed time quantum problem encountered by MDQ.

The detailed procedural steps of the proposed job scheduling algorithms are given

in the Appendix A.

3.6 Chapter Summary

This chapter presents a grid schedule model in which its components have been

thoroughly explained. For grid resource allocation, here, the Linear Programming

model been used in designing and developing the new resource allocation method is

proposed as well. The new algorithms for grid resource allocation and job scheduling

have been proposed in this chapter, in which for evaluation of grid job scheduling

algorithms, some performance metrics are applied. This chapter has also presented the

proposed performance evaluation strategy based on the standard practices for

evaluation of grid scheduling algorithms. The strategy has been used for both analysis

of grid resource allocation method and job scheduling algorithms. The details

experimental results are provided in chapter 5 and chapter 6 respectively then.

88

89

ALIALI
CHAPTER 4

GRID WORKLOAD ANALYSIS

4.1 Chapter Overview

Grid computing is becoming the most demanding platform for solving large-scale

scientific problems. Grid scheduling is the core component of a grid infrastructure.

Grid scheduling plays a key role in the efficient and effective execution of grid jobs.

In this context, understanding the characteristics of real grid workloads is a crucial

step for improving the quality of an existing grid scheduler, and in guiding the design

of new scheduling solutions. Towards this goal, this chapter presents a new web based

simulator for the statistical analysis of grid workload traces. This web-based simulator

provides a comprehensive characterization of the real workload traces. Metrics that

have been characterized include system utilization, job arrival rate and inter-arrival

time, job size (degree of parallelism), job runtime, data correlation and Fourier

analysis. This simulator provides a realistic basis for experiments in resource

management and evaluations of different job scheduling algorithms in grid

computing.

The structure of this chapter is as follows: Section 4.2 presents the need of

workload analysis tool. Section 4.3 describes the design and development of the web-

based simulator. Section 4.4 is about the GUI of the web-based simulator. Section 4.5

describes practical applications of statistical theory. Section 4.6 is about the statistical

analysis of real workload traces using developed simulator and section 4.7 concludes

the chapter summary.

90

4.2 The need of workload analysis tool

New grid scheduling components cannot be designed without a good understanding of

the working of existing grids. Also, existing grid schedulers cannot be accurately

evaluated without understanding the characteristics of real grid workloads [137],

[138], [139], [154] . In this perspective, the study of the nature of real grid workloads

is a vital step for improving the quality of existing grid schedulers.

Different researchers use different programs for analyzing the workload traces. A

number of approaches have been developed for statistical analysis of workload traces.

In this work, an alternative web based approach to simulate such environments that

uses resource utilization traces from real deployments has been developed. This

simulator works on the statistical analysis of grid workload traces. A detailed analysis

of any real grid workload trace can be obtained to quantify the performance of the

grid systems from different perspectives, e.g. users, groups and individual jobs

characteristics. This simulator takes the real trace as input in the grid workload format

(GWF) [34], [155] and produces a variety of graphs to analyze the characteristic of

workloads. SyedWSim also been used to analyze two well-known traces from two

real scientific grid environments [34], [155], namely LCG1 and AuverGrid.

In the following sections, proposed simulation technique and results from

developed SyedWSim have been discussed. The results from the SyedWSim have

been compared and verified with the results available [34], [155].

4.3 Framework of Web based simulator (SyedWSim)

This section presents the framework for implementing a web based system,

SyedWSim, for statistical analysis of workload traces. The goal of this framework is

to visualize the performance statistics of grid from various perspectives and also

provides the realistic basis for evaluation of grid scheduling algorithms. Framework

of SyedWSim is shown in Figure 4.1.

91

Figure 4.1: Framework of SyedWSim

SyedWSim frame work consists of following modules

1. Visualization module

2. Timing module

3. Simulation engine module

4.3.1 Visualization module

Visualization module provides a web-based interface to the user. It takes real

workload trace (also called resource utilization trace) in the GWF format [34],

workload percentage and interval size as input. It provides a number of options to

users to choose to perform statistical analysis of workload trace from user, groups and

jobs perspectives. Visualization module sends the user inputs to the simulation engine

module for analysis purposes.

On receiving the computed statistical performance measures from the simulation

engine, visualization module displays them graphically in an interactive way. This

module has provided the user a number of features, like zooming, color palette etc, to

visualize the statistical measures in a friendly way. Tooltip shows the relevant

statistics at the mouse cursor position for each diagram, for each available option in

SyedWSim.

4.3.2

Timing mod

engine module

It uses the trace files at runtime to generate data depicting how the model dynamics

are changing under timing constrains. These

visualized and evaluated by visualization

4.3.3

Simulation engine module

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

analysis purposes.

characterizes the workload from user

perspective. It makes use of

different statistical measures e.g.,

etc.

Workflow diagram of SyedWSim is shown in Figure 4.2.

 Timing mod

Timing module depicts the system’s dynamic behaviour. It

engine module and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

are changing under timing constrains. These

visualized and evaluated by visualization

 Simulation engine module

Simulation engine module

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

analysis purposes.

characterizes the workload from user

ctive. It makes use of

different statistical measures e.g.,

Workflow diagram of SyedWSim is shown in Figure 4.2.

Timing module

depicts the system’s dynamic behaviour. It

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

are changing under timing constrains. These

visualized and evaluated by visualization

Simulation engine module

Simulation engine module is the core module of the SyedWSim.

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

analysis purposes. It uses the input workload trace and

characterizes the workload from user

ctive. It makes use of a number of

different statistical measures e.g.,

Workflow diagram of SyedWSim is shown in Figure 4.2.

Figure 4.

depicts the system’s dynamic behaviour. It

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

are changing under timing constrains. These

visualized and evaluated by visualization

Simulation engine module

is the core module of the SyedWSim.

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

It uses the input workload trace and

characterizes the workload from user’s perspective, group

a number of

different statistical measures e.g., auto

Workflow diagram of SyedWSim is shown in Figure 4.2.

Figure 4.2: Work flow

92

depicts the system’s dynamic behaviour. It

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

are changing under timing constrains. These performance measures

visualized and evaluated by visualization module.

is the core module of the SyedWSim.

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

It uses the input workload trace and

perspective, group

a number of functions to characterize the workload using

uto correlation

Workflow diagram of SyedWSim is shown in Figure 4.2.

ork flow diagram of SyedWSim

depicts the system’s dynamic behaviour. It works with th

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

performance measures

is the core module of the SyedWSim.

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

It uses the input workload trace and

perspective, group’s perspective and grid jobs

functions to characterize the workload using

orrelation function, Fourier transformation

Workflow diagram of SyedWSim is shown in Figure 4.2.

diagram of SyedWSim

works with the

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

performance measures can also be

is the core module of the SyedWSim. It models the impact

of different scheduling policies on grid performance under various loads and pol

It converts a source workload file into a relational data structure at runtime for

It uses the input workload trace and timing model, and

s perspective and grid jobs

functions to characterize the workload using

unction, Fourier transformation

diagram of SyedWSim

e Simulation

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

can also be

It models the impact

of different scheduling policies on grid performance under various loads and policies.

It converts a source workload file into a relational data structure at runtime for

model, and

s perspective and grid jobs

functions to characterize the workload using

unction, Fourier transformation

Simulation

and makes use of the jobs’ time units, as given in the workload file.

uses the trace files at runtime to generate data depicting how the model dynamics

can also be

It models the impact

icies.

It converts a source workload file into a relational data structure at runtime for

model, and

s perspective and grid jobs

functions to characterize the workload using

unction, Fourier transformation

The core functionality of the

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload d

corresponding time stamp associated with it.

characteristics, groups’ characteristics and

4.4 Design and Development of

‘SyedWSIM’ has been designed

SyedWSim is shown in Figure 4.

Class diagram has shown the object oriented design of SyedWSim.

descriptions of

The core functionality of the

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload d

corresponding time stamp associated with it.

characteristics, groups’ characteristics and

Design and Development of

‘SyedWSIM’ has been designed

SyedWSim is shown in Figure 4.

Class diagram has shown the object oriented design of SyedWSim.

descriptions of its components

The core functionality of the

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload d

corresponding time stamp associated with it.

characteristics, groups’ characteristics and

Design and Development of

‘SyedWSIM’ has been designed

SyedWSim is shown in Figure 4.3

Figure 4.3:

Class diagram has shown the object oriented design of SyedWSim.

its components are as follows:

93

The core functionality of the SyedWSim

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload d

corresponding time stamp associated with it.

characteristics, groups’ characteristics and grid

Design and Development of SyedWSim

‘SyedWSIM’ has been designed and developed

3.

3: Class Diagram of SyedWSim

Class diagram has shown the object oriented design of SyedWSim.

are as follows:

SyedWSim simulator is as follows: The main

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload d

corresponding time stamp associated with it. Finally, SyedWSim models to the users’

grid jobs’ characteristics.

SyedWSim

developed using Java.

lass Diagram of SyedWSim

Class diagram has shown the object oriented design of SyedWSim.

are as follows:

simulator is as follows: The main

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload d

Finally, SyedWSim models to the users’

jobs’ characteristics.

using Java. The class diagram of

lass Diagram of SyedWSim

Class diagram has shown the object oriented design of SyedWSim.

simulator is as follows: The main

simulator loop operates on a timer that records time in the simulated system. When

reading the input trace file, the simulator uses this timer to access workload data at the

Finally, SyedWSim models to the users’

jobs’ characteristics.

The class diagram of

Class diagram has shown the object oriented design of SyedWSim.

simulator is as follows: The main

simulator loop operates on a timer that records time in the simulated system. When

ata at the

Finally, SyedWSim models to the users’

The class diagram of

Class diagram has shown the object oriented design of SyedWSim. The

94

4.4.1 CV2DChartPanel

This class includes graph drawing functionality for all features of the SyedWSim

related to the grid users, virtual organizations and jobs. It interacts with all other

classes of the SyedWSim and produces output depicting the nature of the workload

under analysis. This class includes 13 methods (namely AddVisualizationMethod1,

AddVisualizationMethod2, etc.) as shown in Figure 4.3, and each method corresponds

to each feature available with SyedWSim (i.e. user & total jobs, user & log(total jobs),

etc.) as highlighted by ‘Options’ in Figure 4.4.

4.4.2 CVApplet

It is a web based applet file, which executes on a client browser. It includes a

visualization class that extends the functionality of the Java Applet class. It also

includes all visual components and provides all visual interfaces to interact with the

SyedWSim.

4.4.3 CVToolBar

This class provides a toolbar, which includes a list of options allowing the user to

experiment with the SyedWSim for workload analysis.

4.4.4 Dataset

This class file is used to download the dataset from the original text file, which is in

GWF format, and to construct the dynamic data structure at runtime.

Open source codes are also being used in the development of SyedWSim. The

‘JTransforms’ package [156] has been used to apply the Fast Fourier Transform (FFT)

to the values obtained by the autocorrelation function. A ‘GUI’ package, entitled

JChart2D [157], is also used to produce the 2D Chart. The JChart2D is used for

displaying the data contained in an ITrace2D. JChart2D inherits a number of features

from javax.swing.JPanel. The package has facilitated for displaying the variety of

95

graphs. Another open source math package, entitled Commons Math [158], is also

used for mathematical and statistical calculations.

4.5 GUI of SyedWSim

SyedWSim is a web-based application which facilitates this research for analysis of

grid workload traces and also provides the realistic basis for evaluation of grid

scheduling algorithms. SyedWSim provides a user-friendly way to perform large-

scale simulations of multi-grid environments. The snapshot of graphical user interface

of SyedWSim is shown in Figure 4.4.

Figure 4.4: GUI of SyedWSim

96

4.6 Practical application of statistical theory

Two statistical analysis techniques have been implemented in SyedWSim. One

implemented technique is autocorrelation whilst the second one is Fourier analysis.

Autocorrelation is the cross-correlation of data with itself. It is a function to find the

similarity between a list of observations, and the same list offset by a certain ‘lag.’ It

is a mathematical tool to find repeating patterns and to study the correlation structure

of single process. Fourier transforming the autocorrelation function (ACF) yield the

power spectrum [133], [159].

Fast Fourier transformation (FFT) is a systematic way to perform Fourier

transformation in short time on large amount of data. From the theory of the theory of

Fourier analysis, it is known that periodicity shows up as peaks in the frequency

domain. Real world data, however, seldom exhibits perfectly periodic behavior. In

most situations, pseudo-periodic signals are observed instead, potentially arising from

various sources of noises and time varying nature of generation schemes. From this

perspective, it is necessary to use quantitative methods to measure the degree of

periodicity in the data. Periodicity in a process can be detected and quantified using

power spectrum based methods [133], [159].

Besides studying how events of the same process are correlated with each other, it

is also important to reveal the correlation between events of distinct random

processes. The simplest way of investigating is to plot samples of both variables and

visually identify if any pattern exists. Self similar and long range dependent (LRD)

processes are two important classes of generally scaling processes and LRD is highly

relevant in context of this research work. In network traffic, both inter arrival and

count based measure to be useful in analyzing the scaling behavior [133], [159].

From performance evaluation perspective, it is also desirable to include users and

groups (virtual organizations) in the grid workload analysis since most of the policy

rules are based on their names[133], [159].

97

4.7 Statistical analysis of workloads using SyedWSim

Grid workload archive [34] is an example repository for grid workload traces. In

[159], a comprehensive statistical analysis has been carried out for a variety of

workload traces on clusters and grids.

The workload analysis focuses on three aspects: user characteristics, group

characteristics and system-wide characteristics (e.g., system utilization, job arrival

rate, job characteristics). SyedWSim facilitates in a quick analysis of grid workload

traces for the expert user and provides a detailed view of one grid.

This research work has reproduced the graphs of [159] to study the behavior of

the dynamic nature of workloads ‘LCG1’ and ‘AuverGrid’[34] , using ‘SyedWSim’.

Details about the format of workload traces LCG1 and AuverGrid are shown in

appendix ‘B’. The number of jobs arriving in a particular period is its ‘job count’. In

the following analysis, trace job entries that have a negative runtime or a negative

number of allocated processors have been dropped. The input GWF format of the

LCG1 trace is shown in Table 4.1.

The format of the trace is described as follows. Description of columns 1, 2, 4, 5,

12 and 13 correspond to Job Id, Submit time, Run time, User Id and Group Id

respectively. Some columns of the trace are filled with ‘-1’. This means that the data

are not given. Only the first three of the 188,041 jobs are shown in Table 4.1. One or

more jobs were submitted by a user. There are different groups of users. As an

Table 4.1: Trace LCG1

1 2 4 5 12 13 16 17 18

Job ID Submit time
Run

Time
NProcs

User

ID

Group

ID

Partition

ID

Orig

Site ID

Last Run

Site ID

1 1132444805 83 1 U1 G1 1 SWF SWF

2 1132444808 3611 1 U2 G2 2 SWF SWF

3 1132444817 205 1 U1 G1 3 SWF SWF

…

98

example, the first job in the trace means user U1, who is a member of group G1,

submitted job 1. The submit time of each job is given in seconds, and this is in

chronological order. The time of the first job is 1132444805. The time between a

job’s submit time and the submit time of the succeeding job is referred to as the ‘inter-

arrival time.’ For example, job 1 was submitted at time 1132444805 whilst job 3,

which was the next job for the G1, was submitted at time 1132444817. The gap

between this pair of jobs, i.e. the inter-arrival time, is 12.

Figure 4.5 (a): The user jobs for LCG1

Figure 4.5 (b): The user jobs for AuverGrid

Figure 4.5(a, b) shows the user input for the workload traces LCG1 and

AuverGrid respectively. The 100% workload has been used as input for processing

and analysis purpose using SyedWSim. The total numbers of jobs in LCG1 and

AuverGrid are 188041 and 404176, respectively. The set interval sizes for LCG1 and

AuverGrid are ‘64’ and ‘1024’ seconds respectively. The number of jobs arriving in

each interval, referred to as the ‘job counts’.

99

4.7.1 Users Characteristics

Firstly, this research work has analyzed the workload traces from the user’s

perspective using SyedWSim. Following figures have shown the users jobs and top

users for LCG1 and AuverGrid workloads.

Figure 4.6(a): The user jobs for LCG1

Figure 4.6(b): The user jobs for AuverGrid

Figure 4.6(a, b) shows the number of jobs per user for LCG1 and AuverGrid.

The jobs submitted by some users are of a different order to those submitted by

others. For LCG1, Figure 4.6(a) shows that user ‘U1’ has submitted 60658 jobs,

while user ‘U2’ has submitted 3305 jobs; and so on.

LCG1

AuverGrid

100

Figure 4.7(a): Top 15 users for LCG1

Figure 4.7(b): Top 20 users for AuverGrid

Figure 4.7(a, b) shows the magnitudes of the top 15 and top 20 users for LCG1 and

AuverGrid respectively.

User ‘U1’ is the topmost user in LCG1, who submitted ‘60658’ jobs to the system

for execution. While ‘U2’, ‘U15’, ‘U15’, ‘U19’ are the next top ranked users with

17697, 13624, 8449, 5485 jobs respectively.

User ‘U3034S2’ is the top most user of AuverGrid, who submitted ‘18021’ jobs to

the system for execution. Following next top ranked user are ‘U3034S2’, ‘U247’,

‘U45’, ‘U256’, ‘U257’ with 18021, 16218, 11259, 11083, 9781 jobs respectively.

60658
LCG1

AuverGrid

101

4.7.2 Groups Characteristics

Secondly, this research has analyzed the grid workloads from groups (virtual

organizations) perspective. SyedWSim has produced the graphs to portray the

statistics for the demands of various groups belonging to the LCG1 and AuverGrid

grids.

Figure 4.8(a): The Group jobs for LCG1

Figure 4.8(b): The Group jobs for AuverGrid

Figure 4.8(a, b) shows the number of jobs per group for LCG1 and AuverGrid

respectively. Group ‘G1’ in LCG1 had submitted the maximum number of jobs for

execution (i.e., 68893).

AuverGrid

LCG1

102

Figure 4.9(a): Groups versus Number of Users for LCG1

Figure 4.9(b): Groups versus Number of Users for AuverGrid

Figure 4.9(a, b) shows the number of users for each group. Group ‘G1’ in LCG1 had

‘18’ number of users. While Group ‘G3’ in AuverGrid had the ‘159’ number of users.

LCG1

AuverGrid

103

Figure 4.10(a): Top 15 Groups for LCG1

Figure 4.10(b): Top 20 Groups for AuverGrid

Figure 4.10(a, b) shows the magnitudes of the top 15 and top 20 groups for LCG1 and

AuverGrid respectively.

Group ‘G1’ in LCG1 had submitted the maximum number of jobs for execution

(i.e., 68893). While ‘G4’, ‘G6’, ‘G16’, ‘G2’ are the next top ranked groups with

49292, 25993, 14372, 8477, 4563 jobs respectively.

While group ‘G3’ is the top most group of AuverGrid, who submitted ‘145508’

jobs to the system for execution. Following next top ranked groups are ‘G4’, ‘G2’,

‘G1’, ‘G7’ and ‘G8’ with 88681, 37792, 24311, 15924, 13790, 11903 jobs

respectively.

LCG1

AuverGrid

4.7.3 Grid

Finally, SyedWSim has been applied to characterize the dynamic nature of

also make in

Count process is introduced to describe job arrival. Count process is formed by

dividing the time axis into equally

a sequence of job counts.

for Time

Figure 4.1

traces.

Grid Jobs Characteristics

Finally, SyedWSim has been applied to characterize the dynamic nature of

make in-depth study of LCG1 and AuverGrid grids.

Count process is introduced to describe job arrival. Count process is formed by

dividing the time axis into equally

a sequence of job counts.

for Time interval (i.e.; ‘T’)

Figure 4.11(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

traces. This Figure shows the continues and random pattern of

Jobs Characteristics

Finally, SyedWSim has been applied to characterize the dynamic nature of

depth study of LCG1 and AuverGrid grids.

Count process is introduced to describe job arrival. Count process is formed by

dividing the time axis into equally

a sequence of job counts. The values ‘64’ and ‘128’ seconds have been taken as inputs

interval (i.e.; ‘T’) for analysis of

Figure 4.1

Figure 4.1

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

This Figure shows the continues and random pattern of

AuverGrid

Jobs Characteristics

Finally, SyedWSim has been applied to characterize the dynamic nature of

depth study of LCG1 and AuverGrid grids.

Count process is introduced to describe job arrival. Count process is formed by

dividing the time axis into equally spaced contiguous intervals of time ‘T’ to produce

The values ‘64’ and ‘128’ seconds have been taken as inputs

for analysis of

Figure 4.11(a): Job

Figure 4.11(b): Job counts for AuverGrid

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

This Figure shows the continues and random pattern of

LCG1

AuverGrid

104

Finally, SyedWSim has been applied to characterize the dynamic nature of

depth study of LCG1 and AuverGrid grids.

Count process is introduced to describe job arrival. Count process is formed by

spaced contiguous intervals of time ‘T’ to produce

The values ‘64’ and ‘128’ seconds have been taken as inputs

for analysis of LCG1 and AuverGrid traces respectively.

Job counts for LCG1

Job counts for AuverGrid

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

This Figure shows the continues and random pattern of

Finally, SyedWSim has been applied to characterize the dynamic nature of

depth study of LCG1 and AuverGrid grids.

Count process is introduced to describe job arrival. Count process is formed by

spaced contiguous intervals of time ‘T’ to produce

The values ‘64’ and ‘128’ seconds have been taken as inputs

LCG1 and AuverGrid traces respectively.

counts for LCG1

Job counts for AuverGrid

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

This Figure shows the continues and random pattern of

Finally, SyedWSim has been applied to characterize the dynamic nature of

Count process is introduced to describe job arrival. Count process is formed by

spaced contiguous intervals of time ‘T’ to produce

The values ‘64’ and ‘128’ seconds have been taken as inputs

LCG1 and AuverGrid traces respectively.

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

 the job counts.

Finally, SyedWSim has been applied to characterize the dynamic nature of jobs and

Count process is introduced to describe job arrival. Count process is formed by

spaced contiguous intervals of time ‘T’ to produce

The values ‘64’ and ‘128’ seconds have been taken as inputs

LCG1 and AuverGrid traces respectively.

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

job counts.

and

Count process is introduced to describe job arrival. Count process is formed by

spaced contiguous intervals of time ‘T’ to produce

The values ‘64’ and ‘128’ seconds have been taken as inputs

(a, b) shows the distribution of job counts for the LCG1 and AuverGrid

Figure 4.12

traces. For LCG1, the

‘510461’ seconds; with

While the

seconds; with an average value of

Figure

Figure 4.1

2(a, b) shows

For LCG1, the

seconds; with

While the CPU runtime

seconds; with an average value of

Figure 4.12(a):

Figure 4.12(b):

(a, b) shows the CPU runtime

For LCG1, the CPU runtime

seconds; with an average value of

CPU runtime is seen in the in the range of

seconds; with an average value of

105

: Total runtime per period for LCG1

 Total runtime per period AuverGrid

CPU runtime

CPU runtime is observed in the range of

average value of ‘

is seen in the in the range of

seconds; with an average value of ‘25186.27’

LCG1

AuverGrid

105

Total runtime per period for LCG1

Total runtime per period AuverGrid

CPU runtime demand for the LCG1 and AuverGrid

observed in the range of

‘4632.86’ seconds.

is seen in the in the range of

‘25186.27’ seconds in the AuverGrid.

AuverGrid

Total runtime per period for LCG1

Total runtime per period AuverGrid

for the LCG1 and AuverGrid

observed in the range of

seconds.

is seen in the in the range of ‘0’ seconds to

in the AuverGrid.

for the LCG1 and AuverGrid

observed in the range of ‘0’ seconds to

seconds to ‘1575814’

in the AuverGrid.

for the LCG1 and AuverGrid

seconds to

‘1575814’

Figure 4.1

Autocorrelation of a process describes the correlation between different data

time ‘T’

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

Periodicity is clearl

in ACF with respect to time interval is not exponential and exhibit slow decay,

preserving the same pattern

dependencies.

range dependency. The strength of regular interval peaks can also be analyzed in the

magnitude of Fourier co

structure

Figure 4.13

Figure 4.13(b)

Autocorrelation of a process describes the correlation between different data

‘T’. An autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

Periodicity is clearl

in ACF with respect to time interval is not exponential and exhibit slow decay,

preserving the same pattern

dependencies. This behavior can als

range dependency. The strength of regular interval peaks can also be analyzed in the

magnitude of Fourier co

structure and periodicity.

3(a): The autocorrelation function(ACF) of the job counts

(b): The autocorrelation function(ACF) of the job counts

Autocorrelation of a process describes the correlation between different data

autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

Periodicity is clearly detected by the equally spaced peaks in the ACF plot

in ACF with respect to time interval is not exponential and exhibit slow decay,

preserving the same pattern

This behavior can als

range dependency. The strength of regular interval peaks can also be analyzed in the

magnitude of Fourier co-efficient

and periodicity.

The autocorrelation function(ACF) of the job counts

The autocorrelation function(ACF) of the job counts

Autocorrelation of a process describes the correlation between different data

autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

y detected by the equally spaced peaks in the ACF plot

in ACF with respect to time interval is not exponential and exhibit slow decay,

preserving the same pattern in the regular intervals shows the long range

This behavior can also be

range dependency. The strength of regular interval peaks can also be analyzed in the

efficient. Figure 4.1

106

The autocorrelation function(ACF) of the job counts

The autocorrelation function(ACF) of the job counts

Autocorrelation of a process describes the correlation between different data

autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

y detected by the equally spaced peaks in the ACF plot

in ACF with respect to time interval is not exponential and exhibit slow decay,

in the regular intervals shows the long range

o be analyzed in frequency domain for short

range dependency. The strength of regular interval peaks can also be analyzed in the

Figure 4.13 (a, b)

The autocorrelation function(ACF) of the job counts

The autocorrelation function(ACF) of the job counts

Autocorrelation of a process describes the correlation between different data

autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

y detected by the equally spaced peaks in the ACF plot

in ACF with respect to time interval is not exponential and exhibit slow decay,

in the regular intervals shows the long range

analyzed in frequency domain for short

range dependency. The strength of regular interval peaks can also be analyzed in the

(a, b) has shown the correlation

AuverGrid

LCG1

The autocorrelation function(ACF) of the job counts - LCG1

The autocorrelation function(ACF) of the job counts - AuverGrid

Autocorrelation of a process describes the correlation between different data

autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.1

y detected by the equally spaced peaks in the ACF plot

in ACF with respect to time interval is not exponential and exhibit slow decay,

in the regular intervals shows the long range

analyzed in frequency domain for short

range dependency. The strength of regular interval peaks can also be analyzed in the

has shown the correlation

AuverGrid

LCG1

LCG1

AuverGrid

Autocorrelation of a process describes the correlation between different data points in

autocorrelation of the job counts at different lags has been performed.

Figure 4.12(a, b) shows the autocorrelation plots for LCG1 and AuverGrid.

A number of grid job characteristics have been observed in the Figure 4.13 (a, b).

y detected by the equally spaced peaks in the ACF plot. The decay

in ACF with respect to time interval is not exponential and exhibit slow decay,

in the regular intervals shows the long range

analyzed in frequency domain for short

range dependency. The strength of regular interval peaks can also be analyzed in the

has shown the correlation

in

autocorrelation of the job counts at different lags has been performed.

(a, b).

. The decay

in ACF with respect to time interval is not exponential and exhibit slow decay,

in the regular intervals shows the long range

analyzed in frequency domain for short

range dependency. The strength of regular interval peaks can also be analyzed in the

has shown the correlation

Figure 4.1

Figure 4.1

Fourier analysis has been applied

autocorrelation output. This is shown in Figure 4.1

peaks in the frequency domains.

identify whether the

dependencies or not.

graph. Figure 4.1

range dependencies.

In summary,

diversity of correlation structures, including short range dependency, pseudo

periodicity, and long range dependence. Long

4.14(a): Fast Fourier transformation(FFT) applied to the autocorrelation of job

Figure 4.14(b): Fast Fourier transformation(FFT) applied to the autocorrelation of job

Fourier analysis has been applied

autocorrelation output. This is shown in Figure 4.1

peaks in the frequency domains.

whether the

dependencies or not.

Figure 4.14(a, b) shows that both workload also posses the properties of short

range dependencies.

In summary, Figures 4.1

diversity of correlation structures, including short range dependency, pseudo

periodicity, and long range dependence. Long

Fast Fourier transformation(FFT) applied to the autocorrelation of job

Fast Fourier transformation(FFT) applied to the autocorrelation of job
counts for Auver

Fourier analysis has been applied

autocorrelation output. This is shown in Figure 4.1

peaks in the frequency domains.

 LCG1 and AuverGrid

 Multiple harmonics in power spectrum as observed in FFT

(a, b) shows that both workload also posses the properties of short

Figures 4.11(a, b) to

diversity of correlation structures, including short range dependency, pseudo

periodicity, and long range dependence. Long

107

Fast Fourier transformation(FFT) applied to the autocorrelation of job
counts - LCG1

Fast Fourier transformation(FFT) applied to the autocorrelation of job
counts for Auver

Fourier analysis has been applied by applying the FFT on the values of the

autocorrelation output. This is shown in Figure 4.1

peaks in the frequency domains. FFT has been applied on the workload traces to

LCG1 and AuverGrid

ultiple harmonics in power spectrum as observed in FFT

(a, b) shows that both workload also posses the properties of short

(a, b) to 4.14

diversity of correlation structures, including short range dependency, pseudo

periodicity, and long range dependence. Long

LCG1

AuverGrid

107

Fast Fourier transformation(FFT) applied to the autocorrelation of job
LCG1

Fast Fourier transformation(FFT) applied to the autocorrelation of job
counts for AuverGrid

by applying the FFT on the values of the

autocorrelation output. This is shown in Figure 4.14(a, b).

FFT has been applied on the workload traces to

LCG1 and AuverGrid posses the properties of short range

ultiple harmonics in power spectrum as observed in FFT

(a, b) shows that both workload also posses the properties of short

4(a, b) indicate that job arrivals show a

diversity of correlation structures, including short range dependency, pseudo

periodicity, and long range dependence. Long-range dependence can result in a large

AuverGrid

Fast Fourier transformation(FFT) applied to the autocorrelation of job

Fast Fourier transformation(FFT) applied to the autocorrelation of job

by applying the FFT on the values of the

(a, b). This Figure has shown the

FFT has been applied on the workload traces to

posses the properties of short range

ultiple harmonics in power spectrum as observed in FFT

(a, b) shows that both workload also posses the properties of short

(a, b) indicate that job arrivals show a

diversity of correlation structures, including short range dependency, pseudo

range dependence can result in a large

Fast Fourier transformation(FFT) applied to the autocorrelation of job

Fast Fourier transformation(FFT) applied to the autocorrelation of job

by applying the FFT on the values of the

Figure has shown the

FFT has been applied on the workload traces to

posses the properties of short range

ultiple harmonics in power spectrum as observed in FFT

(a, b) shows that both workload also posses the properties of short

(a, b) indicate that job arrivals show a

diversity of correlation structures, including short range dependency, pseudo

range dependence can result in a large

Fast Fourier transformation(FFT) applied to the autocorrelation of job

Fast Fourier transformation(FFT) applied to the autocorrelation of job

by applying the FFT on the values of the

Figure has shown the

FFT has been applied on the workload traces to

posses the properties of short range

ultiple harmonics in power spectrum as observed in FFT

(a, b) shows that both workload also posses the properties of short

(a, b) indicate that job arrivals show a

diversity of correlation structures, including short range dependency, pseudo

range dependence can result in a large

108

performance degradation, whose effects should be taken into consideration for

evaluation of scheduling algorithms. The real grid workloads LCG1 and AuverGrid

have shown rich correlation and scaling behavior, which are different from

conventional parallel workloads and cannot be captured by simple models such as

Poisson or other distribution based methods. LCG1 and AuverGrid will play a key

role in the performance evaluation of scheduling algorithms.

4.8 Chapter Summary

This chapter presents a web-based simulator for analysis of grid workload traces. The

analysis of real workload traces, from scientific grids, can aid in a wide variety of

parallel processing research. For experiments, two multi-clusters grid environments

have been analyzed, AuverGrid and the LCG1, using SyedWSim. A thorough analysis

has been conducted to study the nature of real workload traces. This simulator allows

the user to analyze any real workload trace if it is in the grid Workload Format. Real

workload traces play an important role in future grid scheduling studies. Real

workload traces have been used as input to the scheduling simulator for performance

evaluation of grid resource allocation and job scheduling algorithms, and the details

of simulation and experimental results have been thoroughly explained in Chapter 5

and Chapter 6 respectively.

109

ALI
CHAPTER 5

PERFORMANCE ANALYSIS OF GRID RESOURCE ALLOCATION

METHODS

5.1 Chapter Overview

Chapter 3 has proposed a new method, the Modified Least Cost Method (MLCM), for

efficient and effective utilization of grid resources. This chapter has evaluated the

performance of proposed MLCM and other resource allocation methods using

simulation on synthetic and real workload traces. To facilitate this research, a

simulator has been developed which has produced a comprehensive simulation of a

number of grid resource allocation methods.

The structure of the chapter is as follows: Section 5.2 describes the baseline

approaches for resource allocation on a grid. Theoretical performance analysis of the

grid resource allocation methods is thoroughly explained in section 5.3. Section 5.4

describes the design and development of simulator. Section 5.5 focuses on the

experimental results and a discussion and section 5.6 concludes the chapter.

5.2 Baseline Approaches

Following widely used approaches have been considered and simulated for the

comparative performance analysis with the proposed MLCM:

 Min-Min algorithm [99], [100], [101] , [102]

 Max-Min algorithm [99], [100], [101] , [102]

 Vogel Approximation method (VAM) [110]

110

 First Come First Served (FCFS) [110]

 Divisible Load Theory method (DLT) [108]

5.3 Theoretical Performance Analysis of Grid Resource Allocation Methods

This sections describes a theoretical performance analysis of proposed method,

MLCM, with respect to other grid resource allocation methods, using resource

allocation scenarios I.

The resource allocation scenario I has been formulated as per Table 3.1. All of

the variable values for job workload (Ai), processor availability (Bj) and allocation

costs (Cij) are fairly inserted.

5.3.1 Grid Resource Allocation Scenario I

In this scenario, the grid consists of six processors (resources) namely P1, P2, P3, P4,

P5 and P6 with six jobs (sources) J1 , J2 , J3, J4, J5 and J6 trying to utilize the grid.

The workload demands are shown in Table 5.1.

Table 5.1: Workload Demands

Jobs (J) J1 J2 J3 J4 J5 J6

Workload (A) 66 55 45 40 50 70

The processor capacities are represented in Table 5.2.

Table 5.2: Processor Capacities

Processors (P) P1 P2 P3 P4 P5 P6

Processor Availability (B) 80 70 65 50 80 100

The Resource Allocation Table 5.3 has been formulated from Table 5.1 and 5.2.

111

Table 5.3: Resource Allocation Scenario I

J\P P1 P2 P3 P4 P5 P6 A

J1 15 17 19 21 23 14 66

J2 11 9 13 8 14 16 55

J3 18 17 22 8 25 10 45

J4 16 14 12 9 18 13 40

J5 22 18 13 13 11 15 50

J6 33 16 17 24 20 10 70

B 80 70 65 50 80 100

To recap, the allocation cost (Cij) is the cost associated with allocating one unit of

processing from job i to processor j. These are also shown in Table 5.3.

The jobs have workloads of 66, 55, 45, 40, 50 and 70, as shown in column ‘A’.

The processors have capacities of 80, 70, 65, 50, 80 and 100, as shown in row ‘B’.

Formally, the grid can be specified by:

, 10}}17, 24, 20 {33, 16, , 11, 15},18, 13, 1313}, {22, 2, 9, 18, {16, 14, 1
, 10}, 22, 8, 25 {18 ,17 ,,14 ,16 },,9 ,13 ,8 14 } ,{11 , 21, 23, 15, 17, 19C[6][6]={{

0} 50, 80,100, 70, 65,B [6] = {8
0} 40, 50, 76, 55, 45,A [6] = {6

n=6
m=6

The problem is to find out which tasks should be allocated to which processors so

as to minimize the overall computational cost. There are a number of methods

available to find out the computational cost. Firstly, new MLCM will be used to solve

the problem. Then, various other resource allocation methods will be applied to solve

it.

5.3.1.1 Modified Least Cost Method

Table 5.4 shows the detailed resource allocation using the MLCM for scenario I given

in Table 5.3.

112

Table 5.4: Resource Allocation by MLCM

J\P P1 P2 P3 P4 P5 P6 A

J1
15

(36)

17 19 21 23 14

(30)
66

J2
11 9

(50)

13 8

(5)

14 16
55

J3
18 17 22 8

(45)

25 10
45

J4
16 14

12

(40)

9 18 13
40

J5
22 18 13 13 11

(50)

15
50

J6
33 16 17 24 20 10

(70)
70

B 80 70 65 50 80 100

MLCM is the iterative procedure. The detailed steps of getting from Table 5.3 to

Table 5.4 by applying the MLCM procedure given in appendix ‘A’ are as follows:

1. MLCM searches for the least cost value from each row and column of the

allocation matrix. In the first iteration, the least cost value is ‘8’.

2. MLCM selects the lowest value from allocation matrix i.e. ‘8’. As ‘8’ occurs

at two places; MLCM favors selection of the cell which does not include the

next least cost value in its corresponding row/column. A tie appears for this

case. Now MLCM breaks this tie by selecting the cell (3, 4) which can host

minimum workload. ‘45’ units of J2 are allocated to P4.

3. MLCM reduces the processor availability and workload demand by the

allocated value i.e. ‘45’ units

4. In the second and subsequent iterations, MLCM then searches for the next

least allocation cost cell, i.e. cell (2, 4), corresponding to J2 and P5. Five units

of J2 are allotted to it. ‘50’ units of J2 are assigned to P2 and ‘70’ units of J6

113

are allotted to P6. Thirty units of J1 are allocated to P6 and ‘40’ units of J4 are

assigned to P3. Then, the remaining ‘36’ units of J1 are allotted to P1.

5. The overall cost is calculated by using equation (3.1) as follows:

15x36 + 14x30 + 9x50 + 8x5 + 8x45 + 12x40 +11x50 + 10x70 =3540

Following are the selected least cost cells (Job Id, Processor Id) for the job

allocations by applying the MLCM:

{(3,4),(2,4),(2,2),(6,6),(5,5),(4,3),(1,6),(1,10)}

Table 5.5: Processor Allotment by MLCM

Jobs Tasks Processor Allotted

J1
T11 P6

T12 P1

J2
T21 P2

T22 P4

J3 T31 P4

J4 T41 P3

J5 T51 P5

J6 T61 P6

Table 5.6 shows the mapping of the tasks, of each job, to processors. Job J1 is

divided into two tasks; i.e. T11 and T12. The tasks T11 and T12 are mapped to processors

P6 and P1 respectively. Job J2 is also divided into two tasks; i.e. T21 and T22. While

tasks T21 to T22 are assigned to processors P2 and P4 respectively.

T31, T41, T51 and T61 are tasks of the Jobs J3, J4, J5 and J6 respectively. Tasks T31

to T61 are mapped to P4, P3, P5 and P6 respectively. For this resource allocation

scenario, each job’s demand is met using the MLCM. The allocation sequence of each

task to a processor by the MLCM is shown below:

114

T31  P4, T21  P4, T22  P2, T61  P6, T61  P6, T51  P5, T41  P3, , T11  P6 ,

T12  P1

5.3.1.2 Min-Min Method

The Min-Min method begins with the set of all unmapped jobs. Next, row minima

(e.g. Rmin) are computed by taking the least allocation cost value from each row of the

resource allocation Table 5.3. Next, the job with the overall minimum allocation cost

from Rmin is selected. Following this, the job workload (i.e. task) is assigned partially

or fully to the corresponding available processor depending upon the processor

availability at run time. Last, the newly mapped task is removed from the task list, and

the procedure repeats until all tasks are mapped [103], [104], [105]. Table 5.6 shows

the detailed resource allocation by using the Min-Min method.

Table 5.6: Resource Allocation by Min-Min

J\P P1 P2 P3 P4 P5 P6 A

J1
15

(36)

17

19

21 23

14

(30)
66

J2
11

9

(5)

13 8

(50)

14 16
55

J3
18

17

(15)

22

8

25 10

(30)
45

J4
16 14

12

(40)

9

18

13
40

J5
22 18 13

13

11

(50)

15
50

J6
33 16

17 24

20

10

(70)
70

B 80 70 65 50 80 100

115

The detailed procedural steps describing the resource allocation by Min-Min are

as follows:

1. Min-Min searches for the minimum value from each row of the allocation matrix.

In the first iteration, rows minima are 14, 8, 8, 9, 11 and 10 respectively.

2. Min-Min selects the lowest value from row minima i.e. ‘8’. ‘8’ occurs at two

places. Min-Min favors selection of the cell which can host maximum workload

i.e. (2, 4). ‘50’ units of J2 are allocated to P5.

3. Min-Min reduces the processor availability and workload demand by the allocated

value i.e. ‘50’ units

4. In the next and subsequent iterations, Min-Min then searches for the unallocated

cells with the least allocation cost from each row of the allocation matrix. Then,

Min-Min selects the least value from row minima and allocates the job to the

processor while satisfying the scheduling constraints as discussed in chapter 3.

Following are the selected least cost cells (Job Id, Processor Id) for job allocation

by applying the Min-Min method:

{(2, 4), (2, 2), (3, 6), (6, 6), (5, 5), (4, 3), (1, 1),(6, 2)}

The total computational cost using the Min-Min algorithm for the given resource

allocation scenario is ‘3705’ units.

5.3.1.3 Max-Min Method

The Max-Min method is very similar to Min-Min. It also begins with the set of all

unmapped jobs. Next, the row minima (e.g. Rmin) are computed by selecting the least

allocation cost value from each row of the resource allocation Table 5.3. Next, the job

with the overall maximum allocation cost from Rmin is selected. Following this, the

job workload (i.e. task) is allocated to the corresponding processor depending upon

the processor availability at run time. Last, the newly mapped task is removed from

the task list, and the process repeats until all tasks are mapped [103], [104], [105].

116

Table 5.7: Resource Allocation by Max-Min

J\P P1 P2 P3 P4 P5 P6 A

J1
15

17

19

21 23

14

(66)
66

J2
11

(45)

9

13 8

(10)

14 16
55

J3
18

(11)

17

(34)

22

8

25 10

45

J4
16 14

12

9

(40)

18

13
40

J5
22 18 13

13

11

(50)

15
50

J6
33 16

(36)

17 24

20

10

(34)
70

B 80 70 65 50 80 100

Table 5.7 shows the detailed resource allocation using the Max-Min method to

solve the resource allocation problem given in Table 5.3.

The detailed procedural steps describing the resource allocation using Max-Min

are as follows:

1 Max-Min searches for the minimum value from each row of the allocation matrix.

In the first iteration, rows minima are 14, 8, 8, 9, 11 and 10 respectively.

2 Max-Min selects the maximum value from row minima i.e. ‘14’.

3 Max-Min allocates ‘66’ units of J1 to P6.

4 Max-Min reduces the processor availability and workload demand by allocated

value i.e. ‘66’ units

5 In the next and subsequent iterations, Max-Min searches for the unallocated cell

with the least allocation cost from each row of the allocation matrix. Max-Min

then selects the maximum value from row minima and continues allocation, and

so on.

117

Following are the marked cells (Job Id, Processor Id) for job allocation by

applying the Max-Min algorithm:

{(1, 6), (5, 5), (6, 6), (6, 2), (4, 4), (2, 4), (2,2),(2,1), (3,1)}

The total computational cost by the Max-Min algorithm for the given resource

allocation scenario is ‘4067’ units.

The TORA optimization tool has been used to compute the allocation cost for

resource allocation scenario I. Procedural steps for the LCM are similar to the Max-

Min algorithm. The LCM also yields the same computational cost i.e. ‘4067’ units.

5.3.1.4 Vogel’s Approximation Method

This section describes the resource allocation by Vogel’s Approximation Method

(VAM) [109], [110], . Table 5.8 shows the detailed resource allocation using VAM to

solve grid resource allocation scenario given in Table 5.3.

Table 5.8: Resource Allocation by VAM

J\P P1 P2 P3 P4 P5 P6 A

J1
15

(26)

17

(15)

19

21 23

14

(25)
66

J2
11

9

(55)

13 8

14 16
55

J3
18

17

22

8

(40)

25 10

(5)
45

J4
16 14

12

9

(10)

18

(30)

13
40

J5
22 18 13

13

11

(50)

15
50

J6
33 16

17 24

20

10

(70)
70

B 80 70 65 50 80 100

118

The procedural steps to solve the resource allocation scenario I are as stated below:

1. VAM computes row penalties and column penalties:

a. Row penalties are computed by subtracting the least cost value from

the next least cost value in the same row. In the first iteration, row

penalties are as follows: {1, 1, 2, 3, 2, 6}

b. Column penalties are computed by subtracting the least cost value

from the next least cost value in the same column. In the first iteration,

column penalties are as follows:{4, 5, 1, 0, 3, 0}

2. VAM selects the maximum value from row penalties and column penalties i.e.

‘6’ corresponding to J6.

3. VAM allocates the ‘70’ units of J6 to P6 and reduces the processor availability

(B) and workload demand (A) by ‘70’ units.

4. In the second and subsequent steps, VAM computes the row penalties and

column penalties for resource allocation matrix and continues allocation.

The total computational cost by VAM for the given resource allocation scenario I

is ‘3740’ units.

5.3.1.5 Divisible Load Theory

This section presents the computational results using the Divisible Load Theory

(DLT) method as described in [108].

DLT method divides the load equally into portions, each of which can be

allocated to a separate processor. DLT method is used for fair and equal distribution

of load among grid nodes. A number of of methods have been introduced for the

division of a load, from multiple sources into equal amounts. Random number method

has been used in [108] for the distribution of load.

For DLT method another notation (i.e. Si) is introduced which denotes the number

of partitions of Job i. The detailed resource allocation by the DLT method is shown in

Table 5.9.

119

Table 5.9: Resource Allocation by DLT

J\P P1 P2 P3 P4 P5 P6 A S

J1
15

(22)

17

(22)

19 21 23 14

(22)
66 3

J2
11

(11)

9

(11)

13

(11)

8

(11)

14

(11)

16
55 5

J3
18 17

(15)

22 8

(15)

25 10

(15)
45 3

J4
16 14

(10)

12

(10)

9

(10)

18 13

(10)
40 4

J5
22 18 13 13

(25)

11

(25)

15
50 2

J6
33 16 17

(35)

24 20 10

(35)
70 2

B 80 70 65 50 80 100

The procedural steps of the DLT method to solve the grid resource allocation

scenario I are as detailed below:

1. The DLT method divides the load into portions of equal sizes. J1 is divided

into ‘3’ portions; each of the size ‘22’ units, J2 is divided into ‘5’ portions and

so on.

2. The DLT method selects the first job from the Job list and finds the least

unallocated cells from the first row. The DLT allocates ‘3’ portions of J1 to

the three available least cost cells i.e. (1, 6), (1, 1) and (1, 2) respectively.

3. The DLT method reduces the processor availability and workload demand by

the allocated values.

4. In next and subsequent iterations, the DLT method selects the next job and

finds the available unallocated least cost cells in the job’s corresponding row

and continues with the allocation.

The total computational cost by the DLT method for the given resource allocation

scenario is ‘4167’ units.

120

5.3.1.6 First Come First Served

Table 5.10 shows the detailed resource allocation using FCFS to solve the grid

resource allocation scenario given in Table 5.3.

Table 5.10: Resource Allocation by FCFS

J\P P1 P2 P3 P4 P5 P6 A

J1
15

(66)

17

19

21 23

14

66

J2
11

(14)

9

(41)

13 8

14 16
55

J3
18

17

(29)

22

(16)

8

25 10

45

J4
16 14

12

(40)

9 18 13
40

J5
22 18 13

(9)

13

(41)

11

15
50

J6
33 16

17 24

(9)

20

(61)

10

70

B 80 70 65 50 80 100

Detailed steps of FCFS for resource allocations are as follows:

1 FCFS selects the first job from the Job list. It matches the job demand with the

first available processor from the available processor list. For example, the

demand of J1 is ‘66’ units which can be satisfied by the P1.

2 FCFS allocates ‘66’ units of J1 to P1.

3 FCFS reduces the processor availability and workload demand by the allocated

value i.e. ‘66’ units. Then, FCFS selects the Job J2. ‘14’ units of J2 are allocated

to P1 while the remaining ‘41’ units of J2 are assigned to P2. Then, FCFS selects

the next job from the Job list and finds the available processor for allocation and

so on.

121

The total computational cost using the FCFS algorithm for the given resource

allocation scenario is ‘4924’ units.

The allocation cost to solve the resource allocation scenario I is also computed by

the North West Corner method (NWCM) (Taha, 2002) using the TORA optimization

tool. Procedural steps for NWCM are similar to the FCFS resource allocation method.

NWCM also yields the same computational cost i.e. ‘4924’ units.

The overall computational cost of using each method to solve resource allocation

scenario I is shown in Table 5.11.

Table 5.11: Performance Results of Resource Allocation Methods for Scenario I

Resource Allocation Method Computational Cost

MLCM 3540

Min-Min 3705

Max-Min 4067

VAM 3740

DLT 4167

FCFS 4924

5.4 Resource Allocation Simulator Design and Development

In order to evaluate the effectiveness of our approach, a resource allocation simulator

is developed. The simulation software comprises two parts. One part takes grid

resource allocation scenario as input. Each scenario is described by values of m, n, A, B

and Cij.

The second part of the simulation solves the resource allocation problem using

different grid resource allocation methods. In this software; MLCM, Min-Min,

Max-Min, Vogel’s Approximation Method (VAM), DLT and FCFS methods have

been programmed for simulation and evaluation purposes.

122

Developed simulator produces the comprehensive simulation for each resource

allocation method. The developed simulator displays the mapping of job(s) to

processor(s) at each step during resource allocation. The stepwise execution of the

MLCM to solve grid resource allocation scenario I is shown in Table 5.12.

Table 5.12: Stepwise execution of MLCM for Scenario I

Step No. Least Cost
Cell

Least Cost
Value

Allocated
Job

Workload

Remaining
Job

Demand

Processor
Availability

1 (2, 3) 8 45 0 5

2 (1, 3) 8 5 50 0

3 (1, 1) 9 50 0 20

4 (5, 5) 10 70 0 30

5 (4, 4) 11 50 0 30

6 (3, 2) 12 40 0 25

7 (0, 5) 14 30 36 0

8 (0, 0) 15 36 0 44

The simulator shows the least cost cell for each iteration. It also shows how much

workload has been allocated to a processor in every step during job execution. It also

shows remaining job demand and processor availability at each iteration. Total

computational cost computed by the simulator for Grid resource allocation scenario I is

‘3540’.

It should be noted that only job metadata is passed to the simulator. The simulator

processes the metadata for the list of jobs that have been assigned to it. The simulator

is written in Java and makes use of the ‘MPJ express’ API.

123

5.5 Performance analysis and evaluation

5.5.1 Simulation Data

All grid resource allocation methods have been tried with several grid resource

allocation scenarios. A number of resource allocation scenarios have been produced

using the Monte Carlo method except scenario II. The resource allocation scenario II

is taken from [108]. In scenarios I to VIII, the Monte Carlo method has been applied

to fairly distribute the numbers to workload demands (i.e. Ai), processor availabilities

(i.e. Bj) and the costs of allocation (i.e. Cij). Moreover, scenarios IX to XII have used

real workload traces of LCG1. All of these scenarios have been used in simulation for

performance evaluation of different grid resource allocation methods.

5.5.2 Grid Resource Allocation Scenario I

In this resource allocation scenario, the grid is defined by ‘6’ jobs and ‘6’ processors.

Input specifications for the simulator are as follows:

m=6

n=6

A [6] = {66, 55, 45, 40, 50, 70}

B [6] = {80, 70, 65, 50, 80, 100}

C[6][6]={{15, 17, 19, 21, 23, 14}, {11, 9, 13, 8, 14, 16},

 {18, 17, 22, 8, 25, 10}, {16, 14, 12, 9, 18 ,13},

 {22, 18, 13, 13, 11, 15}, {33, 16, 17, 24, 20, 10}}

5.5.3 Grid Resource Allocation Scenario II

In this scenario, the grid consists of five processors with four jobs. Input

specifications for the simulator are shown below:

m=4

n=5

A[4] = {6, 9, 6, 8}

124

B[5] = {12, 12, 12, 12, 12}

C[4][5]={{8, 9, 2, 8}, { 8, 8, 9, 2} , {8, 8, 8, 9},{2, 8, 8, 8}, {9, 2, 8, 8}}

5.5.4 Grid Resource Allocation Scenario III

In this resource allocation scenario, the grid is defined by ‘8’ jobs and ‘8’ processors.

Input specifications for the simulator are as follows:

m=8

n=8

A [8] = {70, 80, 55, 60, 60, 75, 45, 80}

B [8] = {90, 95, 65, 60, 75, 90, 55, 25}

C[8][8]={{15,16,19,21,23,14,11,9},{13,8,14,16,18,17,22,13},

 {25,10,16,14,12,9,8,13},{22,9,13,13,11,15,33,10},

 {17,24,20,10,15,10,19,21},{9,14,11,9,13,8,12,16},

 {18,16,22,8,22,10,16,9}, {12,9,18,13,24,7,13,13}}

5.5.5 Grid Resource Allocation Scenario IV

In this scenario, the grid consists of ‘16’ jobs and ‘8’ processors. The costs of

allocations are taken in the range of ‘10’ to ‘100’. Formally, the input specification

can be written as:

m=16

n=8

A [16] = {70,80,55,50,60,65,25,90,70,80,55,60,40,45,35,50}

B [8] = {100, 150, 90, 100, 100, 90,150,250}

C[16][8]={{18,90,63,54,36,25,54,57},{74,48,86,72,18,20,54,98},

 {11,33,23,82,26,10,37,67},{12,85,56,35,75,37,37,14},

 {62,43,79,16,60,60,18,77},{17,74,62,25,19,52,11,96},

 {63,49,66,56,77,18,35,23}, {96,54,25,10,18,38,13,47},

 {53,46,74,17,72,35,68,41}, {42,80,18,79,79,40,26,40},

 {92,62,86,84,16,67,15,93}, {32,74,88,10,75,14,49,41},

125

 {85,61,60,73,43,68,17,12}, {44,34,70,26,75,64,53,74},

 {56,47,28,12,64,38,79,78}, {76,83,74,47,65,63,79,67}}

5.5.6 Grid Resource Allocation Scenario V

This resource allocation scenario is a variant of resource allocation scenario IV.

Workload demands and processor capacities are identical to the values given in

resource allocation scenario IV. But the costs of allocations are taken in the range of

‘0’ to ‘25’ units instead of ‘10’ to ‘100’. Formally, the input specification can be

written as:

m=16

n=8

A[16] = {70,80,55,50,60,65,25,90,70,80,55,60,40,45,35,50}

B[8] = {100, 150, 90, 100, 100, 90,150,250}

C[16][8]={{9,4,17,15,24,3,10,0},{16,8,5,13,18,24,0,20},{9,8,16,20,23,6,1,0}

 {19,17,13,10,2,16,14,9},{3,7,2,17,11,23,12,21},

 {20,23,21,4,6,18,12,17},{5,18,6,24,19,6,22,11},

 {22,7,4,6,13,18,5,12},{18,9,13,15,24,10,5,10},

 {12,18,7,20,20,17,0,6}, {13,7,15,20,24,19,18,16},

 {13,18,5,17,8,16,6,11,22},{5,12,11,13,18,14,22,24},

 {17,1,8,1,2,17,7,2},[160,3,15,22,11,23],{19,24,6,3,18,21}}

5.5.7 Grid Resource Allocation Scenario VI

In this scenario, the grid consists of ‘16’ processors (i.e. n=16) and ‘50’ jobs

(i.e. m=50). Processors have capacities in the range of ‘50’ to ‘200’ units. Workload

demand for each job varies from ‘10’ to ‘40’ units. The costs of allocations (Cij) vary

from ‘10’ to ‘50’ units.

126

5.5.8 Grid Resource Allocation Scenario VII

In this scenario, the grid consists of ‘32’ processors (i.e. n=32) and ‘100’ jobs

(i.e. m=100). Processors have capacities in the range of ‘150’ to ‘500’ units.

Workload demand for each job varies from ‘20’ to ‘100’ units. The costs of

allocations are taken in the range of ‘10’ to ‘50’ units.

5.5.9 Grid Resource Allocation Scenario VIII

This scenario is a variant of grid resource allocation scenario VII. In this scenario, the

same workload and the cost of allocation have taken as used before in resource

allocation scenario VII. However, processors have processing capabilities in the range

of ‘150’ to ‘400’ units.

5.5.10 Grid Resource Allocation Scenarios IX-XI

Grid resource allocation scenarios IX to XII are composed of real workload traces of

LCG1. First ‘500’, ‘1000’ and ‘2000’ jobs of LCG1 have been used as workload in

the composition of resource allocation scenarios IX, X and XI respectively. Resource

allocation methods have been evaluated using ‘32’, ‘64’ and ‘128’ number of CPUs.

In addition, Monte Carlo method has been applied to fairly distribute the processing

capabilities among the processors in the range of ‘200’ to ‘6900’ units. The costs of

allocations (Cij) have been varied from ‘10’ to ‘59’ units.

5.6 Results and Discussions

Firstly, theoretical analysis of resource allocation methods is performed by taking

resource allocation scenario I. Then, experimental performance analysis of resource

allocation methods is conducted using developed simulator for the same resource

allocation scenario I. The same computational costs are obtained for each method

using theoretical analysis as well as by simulation.

127

Details experimentation has been performed using developed simulator to solve

resource allocation scenarios numbered II to XII to evaluate the efficiency of proposed

MLCM in comparison to other well known grid resource allocation methods. The

computed computational costs for each method and for first eight scenarios based on

synthetic workload traces are shown in Table 5.12.

Table 5.12: Computational costs using synthetic workload traces

 Resource Allocation Method

 MLCM Min-Min Max-Min VAM DLT FCFS

Scenario I 3540 3705 4067 3740 4167 4924

Scenario II 160 160 202 160 162 214

Scenario III 4735 4735 5880 5245 5754 6125

Scenario IV 2500 2915 3590 5260 9875 11750

Scenario V 8139 8219 8347 11940 15634 23332

Scenario VI 20235 20665 22685 33390 38722 42690

Scenario VII 52824 52179 52273 76328 110223 125400

Scenario VIII 52685 52914 52824 76676 112154 135958

The MLCM produces best results as compared to all other resource allocation

methods for scenario I.

The MLCM, Min-Min and VAM produce the same and least computational costs

for the resource allocation scenario II. MLCM and Min-Min also produce the same

and least computational cost for the scenario III.

Resource allocation scenario V is a variant of resource allocation scenario IV. In

scenario IV; the costs of allocations are in the range of ‘10’ to ‘100’. While in the

resource allocation V, the costs of allocations vary from ‘0’ to ‘25’. MLCM produces

128

the best results for both scenarios IV and V for a different range of costs of

allocations.

MLCM produces the best results as compared to other resource allocation

methods for resource allocation scenario VI as well. The computational costs

computed by Min-Min and Max-Min are slightly higher than the values computed by

MLCM.

Resource allocation scenario VIII is a variant of resource allocation scenario VII.

In both scenarios, the grid consists of ‘32’ processors and ‘100’ jobs. In scenario VII,

processors have more processing capacities i.e. in the range of ‘150’ to ‘500’ units.

While in scenario VIII, processing capabilities of processors are in the range of ‘150’

to ‘400’ units. Min-Min and Max-Min produce slightly less computational cost as

compared to MLCM for scenario VII. But, MLCM produces the best computational

results as compared to all other resource allocation methods for resource allocation

scenario VIII. It is evident that MLCM performs well and produces the lower

computational cost in comparison to other resource allocation methods even if the

grid consists of processors with less processing capability.

First top three base line approaches, i.e., MinMin, MaxMin and VAM have been

selected from Table 5.12, and then compared with proposed MLCM using real

workload traces of LCG1 under increasing workload and varying the number of

CPUs. The computed performance results, for each resource allocation method, for

scenarios IX to XI are shown in Table 5.13.

 Table 5.13: Computational costs using real workload traces of LCG1

Scenario
Workload

Size

Number

of CPUs
MLCM MinMin MaxMin VAM

IX 500 32 13120101 13131779 13204195 13123186

X 1000 64 15088100 15090821 15094020 15073094

XI 2000 128 30802089 30802933 30807914 30801173

129

 Table 5.13 shows that MLCM has shown the best computational cost compared

to other resource allocation methods. Min-Min has shown the higher computational

cost than MLCM for real workload traces of LCG1. Moreover, MLCM has shown the

optimal performance when the number of jobs increased from ‘500’ to ‘1000’ and

then ‘2000’ using ‘32’, ‘64’ and ‘128’ CPUs respectively.

In summary, in eight out of twelve scenarios, MLCM is superior to Min-Min, in

two scenarios they are equivalent, and in one scenario, Min-Min is superior. Max-Min

also results in less computational cost but shows poor performance as compared to

MLCM and Min-Min. The DLT method and FCFS produce the highest computational

cost for all resource allocation scenarios. VAM results in less cost for simple resource

allocation scenarios but produces high computational cost for complex scenarios.

Figure 5.1 shows a graph derived from Table 5.12.

Figure 5.1: Comparison of MLCM and Min-Min

Figure 5.1 shows the comparative performance analysis of MLCM and Min-Min

methods. From experimental results, it is evident that MLCM yields the small

improvement in computational cost over Min-Min method for a variety of resource

allocation scenarios.

130

5.7 Chapter Summary

This chapter has evaluated the performance of MLCM for a variety of grid workload

scenarios. The performance of MLCM was compared with other known ones using

simulation for different grid resource allocation scenarios of diverse nature.

Experimental results have shown that MLCM yields improvements in terms of

performance and results in lower computational cost in terms of time as compared to

other resource allocation strategies. It has experimentally proven that MLCM is a

promising technique to use in grid environment, when dealing with tasks allocation.

131

LI
CHAPTER 6

PERFORMANCE ANALYSIS OF JOB SCHEDULING ALGORITHMS

6.1 Chapter Overview

This chapter presents a comparative performance analysis of proposed scheduling

algorithms with other widely used job scheduling algorithms. An extensive

experimentation have been carried out for evaluation of scheduling algorithms on an

experimental grid using synthetic and real grid workload traces, taken from leading

computational centers.

This chapter is organized as follows: Section 6.2 presents the baseline approaches

considered for the experiment. Section 6.3 highlights the list of proposed scheduling

algorithm in this work. The homogenous implementation of new scheduling

algorithms is detailed in section 6.4. In section 6.5, the scheduling simulator’s design

and development are discussed. Section 6.4 describes the detailed performance

analysis of the grid scheduling algorithms. Section 6.5 concludes the chapter.

6.2 Base line approaches

Baseline approaches considered for the experiment are as follows:

 First Come First Served (FCFS) [117], [119], [120]

 Shorted Process Next (SPN) [117], [119], [120]

 Longest Job First (LJF) [117], [119], [120]

 Priority(P) [117], [119], [120]

 Round Robin (RR) [50] ,[117], [119], [120]

 Proportional Local Round Robin (PLRR)[82]

132

 Self Adjustment Round Robin (SARR) [121]

 Intelligent Time slice for Round Robin (NIR) [123]

 Round Robin Priority (NRR) [122]

 A New Multilevel CPU Scheduling algorithm (MR) [124]

 Shortest Remaining Burst Round Robin (SRBRR) [125]

6.3 Proposed Scheduling Algorithms

Proposed scheduling algorithms considered for the experiment are as under:

1. Multilevel Hybrid scheduling algorithms (MH)

2. Multilevel Dual Queue Scheduling algorithms (MDQ)

3. Dynamic Multilevel Hybrid Scheduling Algorithm using

Median(MHM)

4. Dynamic Multilevel Hybrid Scheduling Algorithm using square

root(MHR)

5. Dynamic Multilevel Dual Queue Scheduling Algorithm using Median

(MDQM)

6. Dynamic Multilevel Dual Queue Scheduling Algorithm using Square

root (MDQR)

6.4 Homogeneous Implementation of Job Scheduling Algorithms

Master-slave architecture has been employed for implementation of proposed and

other job scheduling algorithms, shown in Figure 6.1.

Figure 6.1: Block diagram of master-slave architecture

Master

Slave 1 Slave 2 Slave 3

133

In this architecture, one processor is dedicated as the master processor among the

cluster nodes. The master processor is responsible for distribution of the workload

among the slave processors using round robin allocation strategy (i.e. 1, 2, 3…. n, 1)

for parallel computation.

The same algorithm, either MHM or MHR, is used on each slave processor. Once

the computation is complete, the results are sent to the master processor.

6.5 Scheduling Simulator Design and Development

The MPJ-express is widely used Java based message passing library that allows

writing and executing parallel applications for distributed and multicore systems[151].

A Java based simulator has been developed using MPJ-express API to evaluate

the efficiency of proposed and other scheduling algorithms. In this approach, the

scheduling simulator communicates with grid nodes by message passing. The

metadata for each process includes its ID, its arrival time, its CPU time and the

number of slaves to choose (jobs have to be divided between them). The simulation

software encounters the arrival time for each process and then sends processes to the

system. The software has two main programs; first program runs on the master node

(SimM) and another program runs on each slave processor (SimS). SimM accepts a

workload and distributes among slave processors using RR. SimM receives

notification from each slave processor for each job (or part of a job) that has

completed. Each slave runs SimS and computes the average waiting time, the average

turnaround time, the average response times and other performance parameters. SimS

processes the metadata for the list of processes that have been assigned to it. Upon

completion of a process, SimM is informed. SimS keeps a detailed record of the

processes being executed on each slave (process ID, submit time, CPU time, time

quantum, priority, start time and completion time).

All slaves use the same scheduling algorithm that is input by the user of SimM.

The user can select one of a range of algorithms including the newly developed ones

such as MHM, MHR, MH, MDQ, MDQM and MDQR, and existing ones such as

134

FCFS, SJF, RR, P etc. The purpose of the simulator is to produce a comparative

performance analysis of scheduling algorithms.

6.6 Performance Analysis

This section presents a detailed comparison of proposed scheduling algorithms with

the well-known scheduling approaches.

6.6.1 Experimental Setup

The experiments have been performed using High Performance Computing facility at

High Performance Computing Center of Universiti Teknologi PETRONAS. The SGI

ALTIX 4700 machine has been used as experimental grid. It is a single image system,

which is achieved via hardware architecture. The computing blades are inter-

connected via NUMA-Link. It consists of 128 cores (64 Dual Core processors) and

each blade has 32GB of local memory. The ‘hpc.local’ was used as the default

execution site for job submission. A detailed experimental setup is shown in

Table 6.1.

Table 6.1: Experimental Setup

Name Type Location Configuration

gillani Shell

terminal

Lab

Workstation

Intel Core 2 Duo CPU 2.0GHZ

2 GB Memory

hpc.local Execution

site

HPC

facility

CPUs: 128 cores (64 Dual Core processors)

CPU MHz : 1.6 GHz

arch : IA-64, EPIC based

Model: Itanium2 9030 series

Operating System: Suse Linux Enterprise Server

 11(SLES 11)

Memory: 1Tera Byte Distributed Shared

Network connectivity: 100Mbps

 (local connectivity)

135

6.6.2 Simulation Data

In the scheduling experiment, a number of complex synthetic and real workload traces

have been used to demonstrate the scheduling capability of each algorithm from

different perspective. Real workload traces have been taken from the leading

computational centers [161], [162] which are publicly available on grid workload

archive [34] for the experimental purposes to evaluate the performance of scheduling

algorithms. These workload traces facilitates the experimental simulation for this

research. The characteristics of the workload traces have been thoroughly discussed in

Chapter 4. These real workload traces possess the properties of self-similarity, pseudo

periodicity and long-range dependencies. Table 6.2 shows that simulation data.

Table 6.2: Simulation Data

Sl. No Data Type Total number of Jobs Number of CPUs

1 Synthetic workload 1000 jobs {16, 32, 64}

2 Synthetic workload 2000 jobs {16, 32, 64}

3 Real workload trace 18804 (10% of LCG1) {16, 32, 64, 128}

4 Real workload trace 37608(20% of LCG1) {16, 32, 64, 128}

5 Real workload trace 12125(3% of AuverGrid) {16, 32, 64, 128}

6 Real workload trace 20208(5% of AuverGrid) {16, 32, 64, 128}

136

Two synthetic workload traces (i.e., Sl. No.: 1-2) have been produced using the

Monte Carlo method. The CPU burst times have been distributed among workload

jobs in the range of ‘15’ to ‘16787’ units. Priorities have been distributed among jobs

in the range of ‘0’ to ‘9’. Moreover, the traces (i.e., Sl. No.: 3-4) are taken from a real

Grid workload i.e., ‘LCG1’ whilst two traces (i.e., Sl. No.: 5-6) have been taken from

‘AuverGrid’ for the experiment. Priority attribute is missing in the real grid workload

traces of LCG1 and AuverGrid[34]. The Monte Carlo method has been applied to

inject priorities in workload traces for each job in the range of ‘0’ to ‘15’. In

scheduling experimentation, lowest number indicates the highest priority and vice

versa.

6.6.3 Performance Metrics

Performance metrics for evaluation of the grid scheduling algorithms include the

average waiting time, average turnaround time, average response time, average

slowdown, total completion time and maximum stretch time of the job. The core

objective of scheduling algorithm is to minimize the values of each performance

parameter to attain the optimal solution. Average response time is the most

demanding parameter from the user’s perspective whilst other five performance

parameters are needed to be minimized from the system’s perspective to achieve high

computing power for job or application processing.

6.6.4 Results and Discussion

According to proposed performance evaluation strategy, experiments have been

performed in three phases on an experimental grid for comparative performance

analysis of grid scheduling algorithms.

In the first phase, a series of experiments have been performed for synthetic

workload traces of small and medium sized workload by varying the number of CPUs

successively from ‘16’ to ‘64’. The efficiency, scalability and performance have been

evaluated in dynamic grid environment. Experimentation used ‘50’ units as a fixed

time quantum for this experimental phase.

137

In the second phase, experiments have been performed using ‘LCG1’.

Experimentation includes the efficiency, performance and scalability test of

scheduling algorithms under an increased real workload and increased processors

availability. Two data sets have been formed, first by using ‘10%’, and second by

using ‘20%’ of the LCG1 workload (i.e. 18804, and 37608 processes), respectively.

The ‘runtime’ attribute is given for each process in ‘LCG1’. The ‘runtime’ is taken as

CPU time in this experiment. A series of experiments have carried on experimental

grid by varying the number of CPUs successively from ‘16’ to ‘64’. This

experimental phase also used ‘50’ units as the fixed time quantum.

Similarly, in the third phase, a number of experiments have been carried out for

various scheduling algorithms using ‘AuverGrid’, a real workload trace. These

experiments also include the efficiency, performance and scalability test of scheduling

algorithms under an increasing real workload. Two data sets have been formulated,

first by using 3%, and second by using ‘5%’ of the AuverGrid workload, i.e., ‘12125’,

and ‘20208’ processes, respectively. In this phase, experimentation has also been

performed by varying the number of CPUs from ‘16’ to ‘128’. Experimentation has

used ‘50’ units as the fixed time quantum.

Furthermore, all job scheduling algorithms have been evaluated in the dynamic

grid environment. Dynamic grid environment means all jobs are appearing in the

system during simulation will not remain fixed over time as some new jobs are

arriving. In the following sections, experimental results from the scheduling

experiment on a grid are discussed in details. Details experimental results have also

been shown in appendix ‘C’.

138

6.6.4.1 Average Waiting Times Analysis

Figure 6.2(a): Average waiting times of five algorithms for synthetic workload of 1000
processes

Figure 6.2(b): Average waiting times of twelve algorithms for synthetic workload of 1000

processes

Figure 6.2 (a, b) shows the average waiting time computed by each scheduling

algorithm for synthetic workload trace of ‘1000’ processes under the increased

number of processors successively from ‘16’ to ‘64’. Results from the above figures

show that MH, MHR have shown the shortest average waiting times as compared to

other algorithms. In addition, the average waiting times computed by SPN and MR

scheduling algorithms are slightly higher than those values for MH and MHR. Figure

6.2(a, b) also presents that MHM, MDQM, MDQR, MDQ, RR, NIR, SARR and

SRBRR have produced the higher average waiting time measures than MH, MHR,

SPN and MR. Moreover, the PLRR, P, NRR, FCFS and LJF have shown the worst

performance w. r. t. waiting times.

139

Figure 6.2(c): Average waiting time of five algorithms for synthetic workload of 2000
processes

Figure 6.2(d): Average waiting time of twelve algorithms for synthetic workload of 2000
processes

Figure 6.2(c, d) shows the average waiting times for each scheduling algorithm

for synthetic workload of ‘2000’ processes. Each scheduling algorithm has shown the

same pattern in representing average waiting times in Figure (c, d) as observed in

Figure 6.2(a, b). All scheduling algorithms have shown the relative average waiting

measures under the increased synthetic workload from ‘1000’ processes to ‘2000’

processes. Moreover, all scheduling algorithms also have shown the improvement

w. r. t. average waiting times by varying the number of CPUs from ‘16’ to 64’. As a

result, proposed MH and MHR have shown the best average waiting time measures,

relative performance, and support true scalability, under the increased synthetic

workload and number of processors, in dynamic scheduling environment.

140

Figure 6.3(a): Average waiting time of five algorithms for 10% workload of LCG1

Figure 6.3(b): Average waiting times of twelve algorithms for 10% workload of LCG1

Figure 6.3(a, b) illustrates the average waiting times for scheduling algorithm

using LCG1 workload trace of ‘18804’ processes. It has been found that MH, MHR,

SPN and MR scheduling algorithms have shown the best performance while

producing the shortest average waiting times as compared to other scheduling

algorithms. It also presents that MHM, MDQM, MDQR, MDQ, RR, NIR, SARR and

SRBRR are at par in performance but result in higher average waiting time measures

as compared to those for MH, MHR, SPN and MR. Moreover, the PLRR, P, NRR,

FCFS and LJF have shown the worst performance w. r. t. the average waiting time

measures. The LJF has shown to have the longest average waiting times. All

scheduling algorithms have shown the improvement w. r. t. average waiting times by

varying number of CPUs successively from ‘16’ to ‘128’. As a result, MH and MHR

have shown the best average waiting times for ‘10%’ workload of LCG1.

141

Figure 6.3(c): Average waiting times of five algorithms for 20% workload of LCG1

Figure 6.3(d): Average waiting times of twelve algorithms for 20% workload of LCG1

Figure 6.3(c, d) shows the average waiting times for scheduling algorithm using

LCG1 workload trace of ‘37608’ processes. It has been found that all scheduling

algorithms have shown the same pattern for average waiting time measures, as

obtained in Figure 6.3(a, b). All scheduling algorithm have shown the relative results

w. r. t. average waiting time measures by increasing the workload from ‘10%’ to

‘20%’ of LCG1 workload.

Finally, all scheduling algorithms show scalability, as they maintain performance

by increasing the workload and by varying the number of CPUs. Out of all

scheduling algorithms, MH and MHR have shown the best average waiting times for

both workload traces of LCG1.

142

Figure 6.4(a): Average waiting times of five algorithms for 3% workload of AuverGrid

Figure 6.4(b): Average waiting times of twelve algorithms for 3% workload of AuverGrid

Figure 6.4 (a, b) shows the average waiting times computed for each scheduling

algorithm using AuverGrid workload trace of ‘12125’ processes using ‘16’ to ‘128’

processors. This figure portrays that MH, MHR, SPN and MR scheduling algorithms

have shown the best performance in resulting the shortest average waiting times

compared to other scheduling algorithms. Figure 6.4 (a, b) also shows that MHM,

MDQM, MDQR, MDQ, RR, NIR, SARR and SRBRR are at same performance level,

but result in higher average waiting time measures as compared to those for MH,

MHR, SPN and MR.

Moreover, the PLRR, P, NRR, FCFS and LJF have shown the worst performance

w. r. t. the average waiting time measures. The LJF has shown to have the longest

average waiting times.

143

Figure 6.4(c): Average waiting times of five algorithms for 5% workload of AuverGrid

Figure 6.4(d): Average waiting times of twelve algorithms for 5% workload of AuverGrid

Figure 6.4 (c, d) shows the average waiting time computed for each scheduling

algorithm using AuverGrid workload trace of ‘20208’ processes and also has shown

the same performance pattern, as obtained in Figure 6.4(a, b). All scheduling

algorithms have shown scalability under increasing workload of AuverGrid from

‘3%’ to ‘5%’ and by varying the number of processors from ‘16’ to ‘128’. In addition,

the same performance patterns have been observed in Figure 6.4(a, b, c, d) for

AuverGrid workload traces as found in Figure 6.2(a, b, c, d) and Figure 6.3(a, b, c, d)

when analyzed for synthetic and LCG1 workload traces. However, from Figure 6.2(a,

b, c, d) - Figure 6.4(a, b, c, d), it is observed that the obtained values of average

waiting times for each algorithm is independent of the type of workload, size of

workload and the number of CPUs used for computation. The MH and MHR have

shown the best average waiting times for all types of traces under dynamic grid

environment.

144

6.6.4.2 Average Turnaround Time Analysis

Figure 6.5(a): Average turnaround times of five algorithms for synthetic workload of 1000
processes

Figure 6.5(b): Average turnaround times of twelve algorithms for synthetic workload of 1000
processes

Figure 6.5 (a, b) shows that MH and MHR produces the shortest average

turnaround times compared to all other scheduling algorithms for synthetic workload.

It can also be interpreted that SPN, MHM and MR show better performance w. r. t.

average turnaround times but higher than the values those for MH and MHR. It is

observed that MDQM, MDQR, MDQ, RR, NIR, SARR and SRBRR have shown the

similar type of results w. r. t. the average turnaround time measures. However, it is

found that P, NRR, FCFS and LJF show the worst performance, out of which LJF has

the longest average turnaround times. Moreover, all scheduling algorithms have

shown the improvement w. r. t. average turnaround time measures under increasing

the number of CPUs successively from ‘16’ to ‘64’.

145

Figure 6.5(c): Average turnaround times of five algorithms for synthetic workload of 2000
processes

Figure 6.5(d): Average turnaround times of twelve algorithms for synthetic workload of 2000
processes

Figure 6.5 (c, d) shows the average turnaround times computed for each

scheduling algorithm using synthetic workload trace of ‘2000’ processes. It can be

observed that all scheduling algorithms have shown relative measures of average

turnaround times, as observed and analyzed from Figure 6.5 (a, b). Figure 6.5 (a, b, c,

d) shows that all scheduling algorithms have shown the relative performance under

the increasing workload. It also shows that all scheduling algorithms have shown

improvement w. r. t. average turnaround times by increasing the number of CPUs

successively from ‘16’ to ‘64’. Hence, all scheduling algorithms have shown

scalability in dynamic scheduling environment. As a result, MH and MHR have

shown the best average turnaround times for synthetic workload traces.

146

Figure 6.6(a): Average turnaround times of five algorithms for 10% workload of LCG1

Figure 6.6(b): Average turnaround times of twelve algorithms for 10% workload of LCG1

Figure 6.6(a, b) shows the average turnaround times computed for each

scheduling algorithm using ‘10%’ workload of LCG1. The values for average

turnaround times computed by MH and MHR are found shorter than those for the

other grid scheduling algorithms. This figure also shows that SPN, MHM and MR

have shown better performance w. r. t. the average turnaround times. With respect to

the average turnaround time’s measures, MDQM, MDQR, MDQ, RR, NIR, SARR

and SRBRR have shown similar performance.

Furthermore, it is found that P, NRR, FCFS and LJF scheduling algorithms have

the worst performances, which result in longer turnaround times, out of which LJF

has shown the longest average turnaround time measures.

147

Figure 6.6(c): Average turnaround times of five algorithms for 20% workload of LCG1

Figure 6.6(d): Average turnaround times of twelve algorithms for 20% workload of LCG1

Figure 6.6(c, d) shows the average turnaround times computed for each

scheduling algorithm using ‘20%’ workload of LCG1. Results have shown the same

pattern, as seen and analyzed from Figure 6.6(a, b) obtained for ‘10%’ workload of

LCG1. It is observed that all scheduling algorithms have shown the relative

performance measures of average turnaround times under the increasing workload of

LCG1 from ‘10%’ to ‘20%’. Moreover, all scheduling algorithms have shown the

reduced values of average turnaround times under increasing the number of CPUs

successively from ‘16’ to ‘128’. All scheduling algorithms have shown support for

scalability under the increased workload and varied number of CPUs in dynamic

scheduling environment. Out of seventeen scheduling algorithms, MH and MHR have

shown the best average turnaround times.

148

Figure 6.7(a): Average turnaround times of five algorithms for 3% workload of AuverGrid

Figure 6.7(b): Average turnaround times of twelve algorithms for 3% workload of AuverGrid

The average turnaround times computed for each scheduling algorithm using

AuverGrid workload trace of ‘12125’ processes are shown in Figure 6.7(a, b). MH

and MHR have shown the shorter average turnaround times compared to the other

grid scheduling algorithms. SPN, MHM and MR have shown better average waiting

time measures but longer than those for MH and MHR. Figure 6.7(a, b) also shows

that SPN, MHM and MR have better performance w. r. t. the average turnaround

times. In order to show the average performance w. r. t. the average turnaround times,

MDQM, MDQR, MDQ, RR, NIR, SARR and SRBRR are found most suiTable

candidates. Furthermore, it is found that P, NRR, FCFS, PLRR and LJF scheduling

algorithms have shown the worst performance. All scheduling algorithms have

shown improved average turnaround time measures by increasing CPUs.

149

Figure 6.7(c): Average turnaround times of five algorithms for 5% workload of AuverGrid

Figure 6.7(d): Average turnaround times of twelve algorithms for 5% workload of AuverGrid

Figure 6.7(c, d) shows the average turnaround time for each scheduling algorithm

for ‘5%’ workload of AuverGrid. Each scheduling algorithm has shown relative

performance under the increased workload from ‘3%’ to ‘5%’ of AuverGrid

workload. Moreover, Figure 6.7(a, b, c, d) has shown the same performance pattern

w. r. t. average turnaround time measures for each scheduling algorithm, as observed

in Figure 6.5(a, b, c, d) and Figure 6.6(a, b, c, d) for synthetic and LCG1 workload

traces respectively. Finally, Figure 6.5(a, b, c, d)- Figure 6.7(a, b, c, d) shows that all

scheduling algorithms posses that relative performance w. r. t. average turnaround

time measures independent of the type of the workload, the workload size and the

number of CPUs used in the experimentation. It is also found that each algorithm

supports true scalability under the increased workload and varied number of CPUs in

the dynamic grid scheduling environment. In summary, MH and MHR have shown

best average turnaround times.

150

6.6.4.3 Average Response Time Analysis

Figure 6.8(a): Average response times of five algorithms for synthetic workload of 1000
processes

Figure 6.8(b): Average response times of twelve algorithms for synthetic workload of 1000
processes

Figure 6.8(a, b) shows the average response times computed for the scheduling

algorithms using synthetic workload traces of ‘1000’ processes. It is clear from the

figure that average response times computed by the RR, NIR, MDQ and SARR are

shorter than other scheduling algorithms. In addition, MDQR, SRBRR, MDQM, MH

and MHR are found to be at good level w. r. t. the average response times. Moreover,

the SPN, MR, MHM have shown the longer response times whilst PLRR, P, NRR,

FCFS and LJF have shown the worst performance w. r. t. average response time

measures. In addition, LJF is found to have the longest average response times.

Finally, Figure 6.8(a, b) shows that all scheduling algorithms have shown

improvement w. r. t. the response time measures by increasing the number of CPUs

successively from ‘16’ to ‘64’.

151

Figure 6.8(c): Average response times of five algorithms for synthetic workload of 2000
processes

Figure 6.8(d): Average response times of twelve algorithms for synthetic workload of 2000
processes

Figure 6.8(c, d) shows the average response times computed for the scheduling

algorithms using synthetic workload traces of ‘2000’ processes. It can be seen from

the figures that average response times computed by the scheduling algorithms have

shown the same pattern, as observed and analyzed in Figure 6.8(a, b) for synthetic

workload trace of ‘1000’ processes. Figure 6.8(a, b, c, d) shows that all scheduling

algorithms have shown the improvement w. r. t. the average response time measures

by increasing the number of CPUs successively from ‘16’ to ‘64’. Finally, all

scheduling algorithms support scalability while maintaining the performance under

the increased synthetic workload from ‘1000’ to ‘2000’ processes. Moreover, all

scheduling algorithms have shown improvement w. r. t. the response times under the

increased number of CPUs. As a result, RR, NIR, MDQ and SARR have shown

shorter average response times than other scheduling algorithms.

152

Figure 6.9(a): Average response times of five algorithms for 10% workload of LCG1

Figure 6.9(b): Average response times of twelve algorithms for 10% workload of LCG1

Average response times computed for the scheduling algorithms using ‘10%’

workload of LCG1, are shown in Figure 6.9(a, b). It is found that that average

response times computed by the RR, NIR, MDQ and SARR are shorter than other

scheduling algorithms. Average response times for each algorithm have decreased by

increasing the number of CPUs. It also shows that MDQR, SRBRR, MDQM, MH and

MHR algorithms produces better average response time compared to other

algorithms. However, the SPN, MR, MHM, PLRR have shown the longer response

times whilst P , NRR, FCFS and LJF have shown the worst performance w. r. t.

average response time measures, out of which LJF results in the longest average

response times. All scheduling algorithms have shown the improvement w. r. t.

average response time measures by increasing the number of CPUs successively from

‘16’ to ‘128’.

153

Figure 6.9(c): Average response times of five algorithms for 20% workload of LCG1

Figure 6.9(d): Average response times of twelve algorithms for 20% workload of LCG1

Figure 6.9(c, d) shows the average response times computed for the scheduling

algorithms using ‘20%’ workload of LCG1. From the Figure 6.9(a, b), it is clear that,

performance pattern is more or less same w. r. t. average response measures for each

scheduling algorithm, using ‘10%’ workload of LCG1.

By increasing the workload of LCG1 from ‘10%’ to ‘20%’, all scheduling

algorithms have shown relative performance. Moreover, all scheduling algorithms

have shown the scalability under the increasing workload of LCG1 and by varying the

number of CPUs. Finally RR, NIR, MDQ and SARR have shown the best average

response times compared to other scheduling algorithms for both workload traces of

LCG1 under dynamic grid scheduling environment.

154

Figure 6.10(a): Average response times of five algorithms for 3% workload of AuverGrid

Figure 6.10(b): Average response times of twelve algorithms for 3% workload of AuverGrid

Figure 6.10(a, b) shows the average response times computed for each scheduling

algorithm using AuverGrid workload trace of ‘12125’ processes. It is found that

average response times computed by the MDQ and MDQR are shorter than other

scheduling algorithms. The average response times obtained by MR are slightly

higher than the values for MDQ and MDQR. RR has shown the poor average

response times compared to the values for MDQ, MDQR and MR as depicted in

Figure 6.10(a, b). Average response times computed by SARR, SRBRR, MDQM,

MH and MHR algorithms are higher than those for MDQ and MDQR; and have

shown deviation in results in comparison with MR and RR. However, the SPN, NIR

and MHM have shown the longer response times whilst P, PLRR, NRR, FCFS and

LJF have shown the worst performance w. r. t. average response time measures. All

scheduling algorithms have shown the improvement w. r. t. average response times by

varying the number of CPUs successively from ‘16’ to ‘128’.

155

Figure 6.10(c): Average response times of five algorithms for 5% workload of AuverGrid

Figure 6.10(d): Average response times of twelve algorithms for 5% workload of AuverGrid

Figure 6.10(c, d) has shown the same performance pattern of average response

times for each scheduling algorithm using ‘5%’ workload of AuverGrid, as observed

in Figure 6.10(a, b) for each algorithm using ‘3%’ workload of AuverGrid. RR, NIR,

MDQ and SARR have shown the best performance compared to other scheduling

algorithms using synthetic and LCG1 workload traces under dynamic scheduling

environment as depicted in Figure 6.8 (a, b, c, d) and Figure 6.9(a, b, c, d). RR has

shown the poor average response times for AuverGrid workload traces as shown in

Figure 6.10(a, b, c, d). The probable reason in this is, too many jobs were arrived in

the queue within a very short time interval and queue size had become very large. In

this situation, RR could not give better response to processes, that is why it has shown

the poor average response times[163]. Finally, all scheduling algorithms, except RR,

have shown relative average response times independent of type of the workload,

workload size and number of CPUs.

156

6.6.4.4 Average Slowdown Time Analysis

Figure 6.11(a): Average slowdown times of five algorithms for synthetic workload of 1000
processes

Figure 6.11(b): Average slowdown times of twelve algorithms for synthetic workload of 1000
processes

The average slowdown times computed for each scheduling algorithm using

synthetic workload trace of ‘1000’ processes are depicted in Figure 6.11(a, b). It is

demonstrated that MH and MHR produces the shortest average slowdown time

compared to other scheduling algorithms. MHM, RR, NIR, MDQ, MDQR and SARR

have shown better average slowdown times but higher than those for MH and MHR.

It is clear from the Figure 6.11(a, b) that MDQM, SPN, MR and SRBRR seems to

have average performance w. r. t. the average slowdown times. Furthermore, the

PLRR, P, NRR, FCFS and LJF have shown the worst performance w. r. t. average

slowdown times, out of which LJF has resulted in the longest average slowdown

times.

157

Figure 6.11(c): Average slowdown times of five algorithms for synthetic workload of 2000
processes

Figure 6.11(d): Average slowdown times of twelve algorithms for synthetic workload of 2000
processes

Figure 6.11(c, d) shows the average slowdown times computed for each

scheduling algorithm using synthetic workload of ‘2000’ processes. The performance

of all scheduling algorithms have followed the same patterns w. r. t. average

slowdown time measures as observed in Figure 6.11(a, b) for synthetic workload of

‘1000’ processes. Figure 6.11(a, b, c, d) shows that all scheduling algorithms have

maintained their performance under the increased synthetic workload from ‘1000’ to

‘2000’ processes. Moreover, all scheduling algorithms have shown improvement

w. r. t. average slow down times under the increasing number of CPUs successively

from ‘16’ to ‘64’. Finally, MH and MHR have shown best average slowdown times

for both synthetic workload traces under dynamic scheduling environment.

158

Figure 6.12(a): Average slowdown times of five algorithms for 10% workload of LCG1

Figure 6.12(b): Average slowdown times of twelve algorithms for 10% workload of LCG1

Figure 6.12 (a, b) shows the average slowdown times computed for each

scheduling algorithm using ‘10%’ workload of LCG1. Figure 6.12 (a, b) shows that

MH and MHR have produced the shortest average slowdown times compared to other

scheduling algorithms. Figure 6.12 (a, b) also presents that MHM, RR, NIR, MDQ,

MDQR and SARR have shown better performance w. r. t. the average slowdown

times. Figure 6.12 (a, b) also presents that MDQM, SPN, MR and SRBRR have

shown average performance w. r. t. the average slowdown times. It has also shown

that PLRR, P, NRR, FCFS and LJF have shown the worst performance while

resulting in longer average slowdown times. LJF has shown the longest average

slowdown times. As a result, MH and MHR have shown the best average slowdown

times compared to other scheduling algorithms and presented improvement w. r. t.

average slowdown times under the increasing number of CPUs successively from ‘16’

to ‘128’.

159

Figure 6.12(c): Average slowdown times of five algorithms for 20% workload of LCG1

Figure 6.12(d): Average slowdown times of twelve algorithms for 20% workload of LCG1

Figure 6.12(c, d) shows the average slowdown times computed for each

scheduling algorithm using ‘20%’ workload of LCG1. Figure 6.12(c, d) depicts that

each algorithm has shown the same performance pattern, as seen and analyzed in

Figure 6.12(a, b) for ‘10%’ workload of LCG1. Figure 6.12(a, b, c, d) shows that all

scheduling algorithms have shown the improvement in performance under the

increasing number of CPUs successively from ‘16’ to ‘128’. Moreover, these

algorithms also have shown steady performance measure of average slowdown times

under increased workload from ‘10%’ to ‘20%’ of LCG1. As a result, all scheduling

algorithms support scalability under dynamic scheduling environment. Finally, MH

and MHR have shown the best average slowdown times compared to other scheduling

algorithms for both workload traces of LCG1.

160

Figure 6.13(a): Average slowdown times of five algorithms for 3% workload of AuverGrid

Figure 6.13(b): Average slowdown times of twelve algorithms for 3% workload of AuverGrid

Figure 6.13(a, b) shows the average slowdown times computed for each

scheduling algorithm using ‘3%’ workload of AuverGrid. Figure 6.13(a, b) shows that

MH and MHR have produced the shortest average slowdown times compared to other

scheduling algorithms. It also presents that MHM, RR, NIR, MDQ, MDQR and

SARR have shown better performance w. r. t. the average slowdown times. Figure

6.13(a, b) also presents that MDQM and SPN have shown average results w. r. t. the

average slowdown times. The MR and SRBRR have shown improvement in

performance while increasing the number of CPUs from ‘16’ to ‘64’, and presented

the poor performance on ‘128’ CPUs. Figure 6.13(a, b) also shows that PLRR, P,

NRR, FCFS and LJF have shown the worst performance while resulting longer

slowdown times.

161

Figure 6.13(c): Average slowdown times of five algorithms for 5% workload of AuverGrid

Figure 6.13(d): Average slowdown times of twelve algorithms for 5% workload of AuverGrid

Figure 6.13(c, d) shows the average slowdown times obtained for each scheduling

algorithm using ‘5%’ workload of AuverGrid. This figure also shows the same

performance pattern w. r. t. average slowdown times as shown in Figure 6.13(a, b) for

‘3%’ workload of AuverGrid. All scheduling algorithms have shown relative

performance under the increasing workload of AuverGrid. Moreover, all scheduling

algorithms, with the exception of SRBRR and MR, have shown that relatively better

performance w. r. t. the average slowdown times, by increasing the number of CPUs

successively from ‘16’ to ‘128’. Figure 6.11(a, b, c, d)- Figure 6.13(a, b, c, d) shows

that all scheduling algorithms, with the exception of SRBRR and MR, have shown the

improvement in performance w. r. t. average slowdown times by increasing number

of CPUs and also depicted maintained average slowdown times under different types

of workload. As a result, MH and MHR have shown the best average slowdown

times.

162

6.6.4.5 Total Completion Time Analysis

Figure 6.14(a): Total completion times of five algorithms for synthetic workload of 1000
processes

Figure 6.14(b): Total completion times of twelve algorithms for synthetic workload of 1000
processes

Figure 6.14(a, b) depicts that MH and MHR have produced the shortest total

completion times compared to the other scheduling algorithms. Figure 6.14(a, b) also

presents that SPN, MR, MHM and MDQM have shown better total completions times

but higher than those for MH and MHR. Figure 6.14(a, b) also shows that MDQR,

MDQ, RR, NIR, SARR and SRBRR have shown longer total completion times.

Figure 6.14(a, b) also shows that PLRR, P, NRR, FCFS and LJF have shown the

longest completion times and hence the performance is worst. LJF has resulted in the

longest completion times. Moreover, all scheduling algorithms have shown

improvement in total completion times by increasing the number of CPUs

successively from ‘16’ to ‘64’.

163

Figure 6.14(c): Total completion times of five algorithms for synthetic workload of 2000
processes

Figure 6.14(d): Total completion times of twelve algorithms for synthetic workload of 2000
processes

Figure 6.14 (c, d) shows the total completion times obtained for each scheduling

algorithm using ‘2000’ process of synthetic type. Figure 6.14(c, d) shows the same

performance pattern of each scheduling algorithm as observed and analyzed in Figure

6.14(a, b). All scheduling algorithms have shown relative performance under the

increasing synthetic workload from ‘1000’ to ‘2000’ processes.

Figure 6.14(a, b, c, d) shows that all scheduling algorithms support scalability

under the increased synthetic workload from ‘1000’ to ‘2000’ processes, and varying

the number of CPUs successively from ‘16’ to ‘64’ under dynamic scheduling

environment. Finally, MH and MHR have shown the best total completion times

compared to other scheduling algorithms using synthetic workload traces.

164

Figure 6.15(a): Total completion times of twelve algorithms for 10% workload of LCG1

Figure 6.15(b): Total completion times of twelve algorithms for 10% workload of LCG1

Figure 6.15(a, b) shows the total completion times computed for each scheduling

algorithm using ‘10%’ workload of LCG1. Figure 6.15(a, b) shows that MH and

MHR have produced the shortest total completion times compared to the other

scheduling algorithms. Figure 6.15(a, b) also presents that SPN, MR, MHM and

MDQM have shown slightly higher total completion times than those for MH and

MHR. Figure 6.15(a, b) also presents that MDQR, MDQ, RR, NIR, SARR and

SRBRR have shown longer total completion times. Figure 6.15(a, b) also depicts that

PLRR, P, NRR, FCFS and LJF have shown the worst performance, resulting in longer

completion times. Moreover, all scheduling algorithms have shown improvement in

total completion times by increasing the number of CPUs for synthetic workload

trace. As a result, MH and MHR have shown best total completion times for ‘10%’

workload of LCG1.

165

Figure 6.15(c): Total completion times of twelve algorithms for 20% workload of LCG1

Figure 6.15(d): Total completion times of five algorithms for 20% workload of LCG1

Figure 6.15(c, d) shows the total completion times computed for each scheduling

algorithm using ‘20%’ workload of LCG1. Results has shown the same performance

pattern of total completion times for each scheduling algorithm as seen and analyzed

in Figure 6.15(a, b) for ‘10%’ workload of LCG1. Figure 6.15(a, b, c, d) shows that

all scheduling algorithms have shown reduced total completion times with increasing

number of CPUs successively from ‘16’ to ‘128’.

Moreover, all scheduling algorithms have shown relative performance under the

increasing workload of LCG1, i.e., from ‘10%’ to ‘20%’ of it. As a result, all

scheduling algorithms have shown true scalability under dynamic scheduling

environment. Finally, MH and MHR have shown the best results w. r. t. the total

completion times compared to the other scheduling algorithms, under increased

workload traces of LCG1 and by varying the number of CPUs progressively.

166

Figure 6.16(a): Total completion times of five algorithms for 3% workload of AuverGrid

Figure 6.16(b): Total completion times of twelve algorithms for 3% workload of AuverGrid

Figure 6.16(a, b) shows that MR has shown the shortest total completion times

compared to other scheduling algorithms. This figure also depicts that MH and MHR

have shown the longer completion times than the values for MR but shorter

completion times than the values for other scheduling algorithms. Figure 6.16(a, b)

also presents that MHM and MDQM have shown longer total completion times than

MR, MH and MHR. At ‘128’ CPUs, SPN has shown the worst total completion times

because load balancing algorithm has not been applied for workload distribution

among grid nodes. Some of the processors have become heavily loaded for execution,

resulted in the longer total completion times. This figure also presents that MDQR,

MDQ, RR, NIR, SARR and SRBRR have shown longer total completion times than

MH, MHR, MR, MHM and MDQM. This figure also depicts that PLRR, P, NRR,

FCFS and LJF have shown the worst performance w. r. t. total completion times.

167

Figure 6.16(c): Total completion times of five algorithms for 5% workload of AuverGrid

Figure 6.16(d): Total completion times of twelve algorithms for 5% workload of AuverGrid

Figure 6.16(c, d) has shown the same performance pattern w. r. t. total

completion times as observed in Figure 6.16(a, b). All scheduling algorithms have

shown relative total completion times for 3-5% of AuverGrid workload using ‘16’ to

‘128’ CPUs. As a result, MR has shown the best total completion times. The values of

total completion times for MH and MHR are longer than the values for MR but

shorter than the values for other scheduling algorithms. Figure 6.14(a, b, c, d) and

Figure 6.15(a, b, c, d) shows that MH and MHR have shown best total completion

times for synthetic and LCG1 workload traces whilst Figure 6.16(a, b, c, d) represents

that MR has shown the best total completion times for AuverGrid traces. SRBRR

also has shown the best total completion times using ‘128’ CPUs for AuverGrid

workload traces. Moreover, all scheduling algorithms, with the exception of SPN,

show that relative total completion time independent of workload conditions and

support scalability.

168

6.6.5.6 Maximum Job Stretch Time Analysis

Figure 6.17(a): Maximum Job Stretch times of five algorithms for synthetic workload of 1000
processes

Figure 6.17(b): Maximum Job Stretch times of twelve algorithms for synthetic workload of
1000 processes

Figure 6.17(a, b) show the maximum job stretch times computed using synthetic

workload trace of ‘1000’ processes. Figure 6.17(a, b) shows that MH and MHR have

produced the best maximum job stretch times compared to the other scheduling

algorithms. Figure 6.17(a, b) also shows that RR, NIR, MDQ, MDQR, SARR, MHM

and MDQM have shown better maximum job stretch times but longer than those for

MH and MHR. Figure 6.17(a, b) also depicts that SPN, MR and SRBRR have shown

average results w. r. t. the maximum job stretch times. Figure 6.17(a, b) also shows

that P, PLRR, NRR, FCFS and LJF have shown the worst maximum job stretch times.

Moreover, all scheduling algorithms have shown improvement in maximum job

stretch times under the increasing number of CPUs successively from ‘16’ to ‘64’ for

synthetic workload of ‘1000’ processes.

169

Figure 6.17(c): Maximum Job Stretch times of five algorithms for synthetic workload of 2000
processes

Figure 6.17(d): Maximum Job Stretch times of twelve algorithms for synthetic workload of
2000 processes

Figure 6.17(c, d) shows the maximum job stretch times computed for each

scheduling algorithm using synthetic workload of ‘2000’ processes. Figure 6.17(c, d)

shows the same result pattern for the maximum job stretch times as observed in

Figure 6.17(a, b) for the synthetic workload of ‘1000’ processes. It means all

scheduling algorithms have shown relative performance w. r. t. maximum job stretch

times for increased synthetic workload traces. In addition, all scheduling algorithms

have shown improvement in maximum job stretch times by increasing the number of

CPUs successively from ‘16’ to ‘64’. As a result, all scheduling algorithms have

shown scalability under dynamic scheduling environment; and MH and MHR have

shown the best maximum job stretch times for synthetic workload traces.

170

Figure 6.18(a): Maximum Job Stretch times of five algorithms for 10% workload of LCG1

Figure 6.18(b): Maximum Job Stretch times of twelve algorithms for 10% workload of LCG1

The maximum job stretch times for each scheduling algorithm using ‘10%’

workload of LCCG1 are shown in Figure 6.18(a, b). It can be depicted that MH and

MHR have shown the shorter maximum job stretch times compared to the other

scheduling algorithms. In addition, RR, NIR, MDQ, MDQR, SARR, MHM and

MDQM have shown the average measures of maximum job stretch times. SPN and

MR have shown the longer values for total completion times. However, Figure 6.18(a,

b) shows fluctuation in experimental values presenting the performance of SRBRR.

The SRBRR has shown the worst maximum job stretch times on 64 CPUs. Figure

6.18(a, b) also shows that P, PLRR, NRR, FCFS and LJF have produced the longest

maximum job stretch times. As a result, all scheduling algorithms except SRBRR

have shown the improvement in maximum job stretch times for ‘10%’ workload of

LCG1. In addition, MH and MHR have shown the best maximum job stretch times.

171

Figure 6.18(c): Maximum Job Stretch times of five algorithms for 20% workload of LCG1

Figure 6.18(d): Maximum Job Stretch times of twelve algorithms for 20% workload of LCG1

Figure 6.18(c, d) shows the maximum job stretch times computed for each

scheduling algorithm using ‘20%’ workload of LCG1. Figure 6.18(c, d) depicts all

scheduling algorithms, with the exception of SRBRR and SARR, have shown the

improvement in maximum job stretch times under the increasing number of CPUs

successively from ‘16’ to ‘128’. All scheduling algorithms, except SRBRR and

SARR, have shown the same performance pattern presenting maximum job stretch

times as observed in Figure 6.18(a, b) for ‘10%’ workload of LCG1. All scheduling

algorithms, except SRBRR and SARR, have shown steady maximum job stretch

times under the increasing workload of LCG1 and represented improvement in values

of job stretch times by increasing the number of CPUs. As a result, MH and MHR

have shown the best maximum job stretch times for traces of LCG1.

172

Figure 6.19(a): Maximum Job Stretch times of five algorithms for 3% workload of AuverGrid

Figure 6.19(b): Maximum Job Stretch times of twelve algorithms for 3% workload of
AuverGrid

Figure 6.19(a, b) presents that MH and MHR have produced the shortest

maximum job stretch times compared to the other scheduling algorithms. Moreover,

Figure 6.19(a, b) also shows that RR, NIR, MDQ, MDQR, SARR, MHM and MDQM

have shown better maximum job stretch times but longer than the values computed by

MH and MHR. Figure 6.19(a, b) also depicts that SPN, MR and SRBRR have shown

average measures for the maximum job stretch times. Figure 6.19(a, b) also shows the

fluctuation in line for presenting the maximum job stretch times for SPN. The SPN

has shown the worst performance on ‘128’ CPUs. Figure 6.19(a, b) also present that

P, PLRR, NRR, FCFS and LJF have produced the longest maximum job stretch times.

As a result, MH and MHR have shown the best maximum job stretch times by

increasing the number of CPUs successively from ‘16’ to ‘128’, using ‘3%’ workload

of AuverGrid.

173

Figure 6.19(c): Maximum Job Stretch times of five algorithms for 5% workload of AuverGrid

Figure 6.19(d): Maximum Job Stretch times of twelve algorithms for 5% workload of
AuverGrid

Figure 6.19(c, d) shows that each scheduling algorithm has shown the same

pattern for maximum job stretch times as observed in Figure 6.19(a, b) for ‘3%’

workload of AuverGrid. It means all scheduling algorithms, except SPN, have shown

the relative measures of maximum job stretch times under the increasing workload of

AuverGrid. Figure 6.17(a, b, c, d)- Figure 6.19(a, b, c, d) have concluded that MH and

MHR have shown best maximum job stretch times under different types of workload

and varied number of CPUs. It is also clear from this figure that P, PLRR, NRR,

FCFS and LJF have shown the worst maximum job stretch times. Finally all

scheduling algorithms, except SPN, have shown the support for scalability for

maximum job stretch times under the various workload conditions and by varying the

number of CPUs successively from ‘16’ to ‘128’.

174

6.6.4.7 Performance Analysis of Scheduling Algorithms by Changing Time Quantum

The RR, MH and MDQ scheduling algorithms work on a fixed time quantum value.

It has been shown that very small value of fixed time quantum will result in improved

average response time but it may produce many context switches. At the same time,

very high value of the fixed time quantum will result in the less efficient performance.

Proposed dynamic scheduling algorithms namely MHM, MHR, MDQM and MDQR

use a dynamic time quantum strategy instead of a static one and they maintain system

performance in dynamic scheduling environment. The value of the time quantum is

computed at runtime considering the runtime demands of user jobs as well as the total

number of present jobs in the system. Performance parameters have been computed

using each scheduling algorithm for ‘10%’ workload of LCG1 using 64 processors

and varying the time quantum from ‘50’ to ‘5000’ seconds as shown in Figure 6.20.

Figure 6.20: Average waiting times of scheduling algorithms by changing the Time Quantum

Figure 6.20 shows the average waiting times for RR, MH and MDQ scheduling

algorithms under the fixed time quantum in the range of ‘50’ to ‘500’ seconds. Each

scheduling algorithm has resulted longer average waiting times by increasing the

values of time quantum. MH has shown the best average waiting times, as compared

to RR and MDQ, for workload trace of LCG1. RR has shown the worst performance

w. r. t. waiting times under increased values of time quantum. As a result, MH, MDQ

and RR have shown longer average waiting times under the increasing values of time

quantum.

175

Figure 6.21: Average turnaround times of scheduling algorithms by changing the Time
Quantum

Figure 6.21 shows the average turnaround times for RR, MH and MDQ using

time quantum in the range of ‘50’ to ‘500’. Each of these scheduling algorithms has

shown longer average turnaround times under the increasing values of time quantum.

RR has shown the worst performance at time quantum of ‘5000’ seconds. MH and

MDQ have also shown poor performance while representing higher values with

increase of time quantum value.

Figure 6.22: Average response times of scheduling algorithms by changing the Time
Quantum

Average response times for RR, MH and MDQ scheduling algorithms have been

portrayed using different values of time quantum in Figure 6.22. Each scheduling

algorithm has resulted in longer average response times with increase in the values of

time quantum. RR and MDQ have shown the best performance at ‘50’ seconds of

time quantum and worst performance at ‘5000’ seconds. MH also has shown longer

176

average response times (i.e., 52955.7157, 53836.9771, 54642.5696 and 56083.6974

seconds) under the increasing time quantum from ‘50’ to ‘5000’ seconds.

Figure 6.23: Average slowdown times of scheduling algorithms by changing the Time
Quantum

 Figure 6.23 shows the average slowdown times of RR, MH and MDQ scheduling

algorithms using ‘10%’ workload of LCG1 under varied value of time quantum from

‘50’ to ‘5000’ seconds. Each algorithm has shown the longer average slowdown times

under the increasing value of time quantum. RR has shown the worst performance

w. r. t. slowdown times whilst MH represented the best at time quantum of ‘5000’

seconds

Figure 6.24: Total completion times of scheduling algorithms by changing the Time Quantum

Figure 6.24 shows the total completion times for RR, MH and MDQ scheduling

algorithms under increasing value of time quantum from ‘50’ to ‘500’. Each

algorithm has resulted longer total completion times with the increase of time

177

quantum. MH has shown the best total completion times, as compared to RR and

MDQ, for workload trace of LCG1. RR has shown the worst total completion times

under increased values of time quantum. As a result, MH, MDQ and RR have shown

longer average total completion times by increasing the value of time quantum.

Figure 6.25: Job stretch times of scheduling algorithms by changing the Time Quantum

Figure 6.25 illustrates the job stretch times of RR, MH and MDQ scheduling

algorithms using ‘10%’ workload of LCG1 under the increased value of time quantum

from ‘50’ to ‘5000’ seconds. Each algorithm has shown the longer job stretch times

with increase of time quantum value. MH has shown the best job stretch times whilst

RR has shown the worst at time quantum of ‘5000’ seconds. Moreover, RR, MH and

MDQ have shown longer job stretch times by varying the value of time quantum.

Finally, RR, MH and MDQ have shown poor performance under the increasing values

of time quantum for ‘10%’ workload of LCG1. Out of these three, MH has shown the

best whilst RR has shown the worst results for all performance parameters.

6.6.5.8 Summary of Performance Analysis
The detailed analysis of proposed and other scheduling algorithms have been

performed under different workload conditions in dynamic scheduling environment.

Section 6.6.5.1- section 6.6.5.7 reveals that the proposed scheduling algorithms

namely MH, MHR and MDQ are acceptable for the scheduling of jobs on

computational grid. These proposed ones have the capabilities to replace the existing

approaches as they have shown the significant improvement for all performance

factors. The experimental results based on the performance evaluation criteria have

178

shown that MH and MHR have shown the best average waiting time, average

turnaround time, average slowdown time and job stretch time for different types of

workload and increased number of CPUs. MR has shown the best total completion

times for AuverGrid workload traces whilst MH and MHR have shown the best total

completion times for LCG1 and synthetic workload traces. The RR and MDQ have

shown the best average response time for different types of workloads, with the

exception of AuverGrid workload traces. RR has produced worst average response

times for AuverGrid workload traces because of the nature of those traces. For job

execution using AuverGrid workload traces, too many jobs arrived during very short

time-interval, as a result queue size has become very large. RR could not respond to

user jobs for long time, and delay occurred which has produced longer average

response times. The MH, MHR and MDQ scheduling algorithms have shown the best

performance under the increasing number of CPUs, and relative performance under

different workloads (synthetic, LCG1 and AuverGrid) conditions.

Section 6.6.5.7 represents that performance and efficiency of scheduling

algorithms, i.e., RR, MH and MDQ are also dependent on the value of time quantum.

These three algorithms have shown decaying in performance under the increasing

values of time quantum from ‘50’ to ‘5000’ for ‘10%’ workload of LCG1. RR has

shown the best performance parameters at ‘50’ seconds of time quantum, and shown

the worst performance results at ‘5000’ seconds of time quantum. MH has shown the

best performance for each performance parameters compared to RR and MDQ, but

represented poor performance measures under the increasing values of time quantum.

The performance of proposed job scheduling algorithms (MH, MHR and MDQ)

are independent of the type of the workload, the workload sizes and the number of

CPUs used in the experiments. These proposed scheduling algorithms markedly

outperform than other grid scheduling algorithms. A significant improvement has

achieved in all of the performance parameters. They are adaptive to grid dynamics,

and possess a high degree of performance, efficiency and scalability. It has been

demonstrated and concluded that MH and MHR are better scheduling algorithms from

system perspective while MDQ and RR are better choices from user perspective.

179

6.7 Chapter Summary

This chapter has presented comparative performance analysis of proposed scheduling

algorithms compared to existing approaches. These algorithms have been evaluated

using simulator on an experimental grid using synthetic and real workload traces (i.e.,

LCG1 and AuverGrid) under dynamic scheduling environment.

Experimental results shows that the MH and MHR scheduling algorithms have

shown the best average waiting times, average turnaround times, average slowdown

times, total completion times and maximum job stretch times compared to other

scheduling algorithms under different workload conditions. MR also has shown the

best total completion times for AuverGrid workload traces. MHR can show its better

performance than MH due to its non-affected performance by the value of a fixed

time quantum. Experimental results also exhibit that RR and MDQ have shown the

best average response times compared to other approaches.

It has been experimentally concluded that MH and MHR are scheduling policies

from the system point of view. RR and MDQ works well from the user perspective

due to its short average response times. Furthermore, it is also concluded that the MH,

MHR and MDQ are scalable, i.e. the relationship between each performance measure

(e.g. average waiting time) and the workload size is very nearly linear.

180

I

181

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Chapter Overview

This chapter focuses on the main contributions of this thesis, limitations in this work,

and possible future direction.

The structure of this chapter is as follows: Section 7.2 describes the main

contribution of this thesis. Section 7.3 outlines the limitations and possible future

work on grid scheduling problems addressed in this thesis, as well as possible

alternatives to improve them.

7.2 Research Contributions

This thesis has presented a grid scheduling model. In addition, new algorithms for

efficient and effective resource allocation and job scheduling on computational grid

are proposed in this thesis. Additionally, this work has presented three simulators to

evaluate the efficiency of proposed algorithms compared with existing approaches.

Relationship between these simulators is shown in Figure 7.1.

Figure 7.1 Relationship between simulators

182

The web-based simulator (i.e., SyedWSim) is for statistical analysis of grid

workload traces. SyedWSim has been used to characterize the real workload traces

(i.e., LCG1 and AuverGrid) from user, groups and grid system perspective. The real

grid workloads traces have shown rich correlation structure and scaling behavior, and

have been used in this work for performance evaluation of resource allocation and job

scheduling algorithms.

Two simulators namely ‘Resource allocation simulator’ and ‘Job scheduling

simulator’ have been developed to evaluate the efficiency, performance and

scalability of proposed and existing algorithms for resource allocation and job

scheduling respectively. These simulators have used the synthetic and real workload

traces as input for evaluation purposes. Resource allocation simulator has produced

the comprehensive simulation for each resource allocation method. This simulator has

shown the mapping of job(s) to processor(s) at each step during resource allocation

activity. Job scheduling simulator has facilitated this research by evaluating the

efficiency and performance of each scheduling algorithm on an experimental grid

using a large number of synthetic and real workload traces in dynamic grid scheduling

environment. This simulator has the tendency to communicate with grid nodes

physically by message passing API (i.e., MPJ-express) and distribute the workload

among computing nodes (i.e., slave processors), and perform the computation using

each scheduling algorithm at each node. Finally it would the different performance

parameters (i.e., waiting times, turnaround times etc) from the participating nodes and

then compute the average performance measures (i.e., average waiting time, average

turnaround time etc) at system level.

In this work, baseline and proposed approaches considered for resource allocation

are listed as follows:

Baseline Approaches Proposed Method

 Min-Min algorithm

 Max-Min algorithm

 Vogel Approximation method

(VAM)

 Modified Least Cost Method

(MLCM)

183

 First Come First Served (FCFS)

 Divisible Load Theory method

(DLT)

This thesis has proposed MLCM for allocation of tasks to computing resources

efficiently. The performance, efficiency and scalability of MLCM have been

evaluated and compared with other baseline approaches using simulation for different

grid resource allocation scenarios that are composed of synthetic and real workload

traces (i.e., LCG1). Experiments have been conducted under the increased number of

CPUs from ‘5’ to ‘128’ by varying the size of workload and by varying the computing

capabilities of each processor in the simulation setup. Experimental results have

shown that MLCM performs well and produces the lower computational cost (in

terms of time) in comparison to other resource allocation methods for a variety of

resource allocation scenarios. Out of all the algorithms, MLCM has shown the shorter

computational cost by increasing the number of CPUs and relative performance under

increased workload. Experimental results have also depicted that Min-Min has shown

slightly shorter computational cost than MLCM in one particular case where the grid

environment mostly consisted of processors having higher computing power. In

summary, in eight out of eleven scenarios, MLCM is superior to Min-Min, in two

scenarios they are equivalent, and in one scenario, Min-Min is superior. As a result,

MLCM has shown best computational cost and supports scalability

In this work, baseline and proposed approaches considered for jobs scheduling are

listed below:

Baseline Approaches Proposed Scheduling Algorithms

 First Come First Served

(FCFS)

 Shorted Process Next (SPN)

 Longest Job First (LJF)

 Priority(P)

 Round Robin (RR)

 Proportional Local Round

Robin (PLRR)

 Multilevel Hybrid scheduling algorithms

(MH)

 Multilevel Dual Queue Scheduling

algorithms (MDQ)

 Dynamic Multilevel Hybrid Scheduling

Algorithm using Median(MHM)

 Dynamic Multilevel Hybrid Scheduling

Algorithm using square root(MHR)

184

 Self Adjustment Round Robin

(SARR)

 Intelligent Time slice for

Round Robin (NIR)

 Round Robin Priority (NRR)

 Multilevel CPU Scheduling

algorithm(MR)

 Shortest Remaining Burst

Round Robin (SRBRR)

 Dynamic Multilevel Dual Queue

Scheduling Algorithm using Median

(MDQM)

 Dynamic Multilevel Dual Queue

Scheduling Algorithm using Square root

(MDQR)

Experiments have been performed to evaluate the efficiency, performance and

scalability of proposed and existing scheduling algorithms using simulation on an

experimental grid for synthetic and real grid workload traces under dynamic

scheduling environment. Performance evaluation criteria was based on the following

six metrics: average waiting time, average turnaround time, average response time,

average bounded time, flow time and job stretch time. One out of six metrics i.e.,

average response time was required to minimize from user perspective whilst other

five were needed to minimize from system perspective. These performance metrics

have been computed for each scheduling algorithm under the increasing workload and

varying the number of CPUs successively; and using variety of workloads (i.e.,

synthetic, LCG1, AuverGrid).

The experimental results based on the performance evaluation criteria have shown

that MH and MHR have shown the best average waiting time, average turnaround

time, average slowdown time, total completion time and job stretch time. The RR and

MDQ have shown the best average response time for different types of workloads,

with the exception of AuverGrid workload traces. RR has produced worst average

response times for AuverGrid workload traces because too many jobs arrived during

very short time-interval; as a result queue size has become very large. RR could not

respond to user jobs for long time and delay occurred which has produced longer

average response times. The MH, MHR and MDQ scheduling algorithms have shown

the best performance under the increasing number of CPUs and relative performance

under different workloads (synthetic, LCG1 and AuverGrid) conditions.

185

The performance of proposed job scheduling algorithms (MH, MHR and MDQ)

are independent of the type of the workload, the workload sizes and the number of

CPUs used in the experiments. These proposed algorithms are adaptive to grid

dynamics and also possess a high degree of performance, efficiency and scalability. It

has been demonstrated and concluded that MH and MHR are better scheduling

algorithms from system perspective while MDQ and RR are better choices from user

perspective.

7.3 Research Achievements

The main achievements from this research are mentioned as follows:

1. Grid scheduling model is proposed for designing and evaluation of grid

scheduling algorithms.

2. A web based simulator (i.e.; SyedWSim) has been designed and developed for

analysis and characterization of grid workload traces.

3. A new grid resource allocation method (i.e.; MLCM) is proposed which has

shown efficient utilization of resources and lowered the cost of computation.

4. MLCM has shown the optimal computational cost compared to other grid

resource allocation methods for different resource allocation scenarios. It has

experimentally proven that MLCM is a promising technique to use in grid

environment, when dealing with tasks allocation.

5. New job scheduling algorithms including Multilevel Hybrid Scheduling (MH),

Multilevel Dual Queue Scheduling (MDQ), Dynamic Multilevel Hybrid

Scheduling (i.e., MHM and MHR) and Dynamic Multilevel Dual Queue

Scheduling (i.e., MDQM and MDQR) are proposed for efficient and fair job

execution

6. The proposed algorithms have been evaluated by comparing with other well

known scheduling algorithms for various scheduling performance metrics

using synthetic and real workload traces in dynamic grid scheduling

environment. Experimental results demonstrated that MH, MHR and MDQ

have shown better performance, efficiency and scalability. MH and MHR have

186

shown better performance from system perspective whilst MDQ has produced

better performance from user perspective.

7.4 Limitations and Future work

In proposed scheduling algorithms the task dependencies have not been considered.

There are many constraints which can be included in the scheduling process, but as an

immediate future work, task dependencies will be considered in the grid scheduling

algorithms.

The developed algorithms can be deployed in real time environment to attain high

computing power for processing of complex scientific and engineering problems.

Campus wide grid can be one of its potential applications. Engineers and scientist

would be able to execute their high computing demanding applications on campus

wide grid in an efficient and effective way.

Security is also another significant aspect in design of grid scheduling model.

Security can be seen from two perspectives. Firstly; tasks could be allocated to secure

nodes within the grid. Secondly; the tasks running at the resource will not be able to

see or access other data in the other specific node of grid. The existing security

approaches are actually practiced at various levels of grid systems and work

independently of the grid schedulers. It is also really worth challenging to integrate

the security/ trust level as one of the aims in the grid scheduling model. Security can

also be one of the considerations in the enhancement of grid scheduling algorithms.

 Agent technology is suitable for a computational grid because of the dynamic,

heterogeneous, and autonomous nature of the grid. At present, there is need to design

and develop robust grid scheduling framework using agent technology. Proposed

scheduling algorithms can be integrated with this framework to provide robust and

reliable solution. Later on, this framework can be deployed in a real time environment

to attain high computational power for processing of scientific and engineering

applications in a robust fashion.

187

Cloud computing is another important advancement in the high performance

computing domain. Although there is no precise definition of cloud computing, most

cloud computing infrastructure, by making usage of virtualization approaches, allow

users to set-up customized computing environments on demand. Amazon EC2 and

Google App Engine are two of the more important cloud computing services with the

former offering cloud infrastructure (hardware) and the later offering platform

(software). Although virtualization approaches make the resources appear

homogenous, the actual resources remain distributed. Therefore, cloud computing can

be viewed as another platform on which propose scheduling algorithms can be

utilized to run applications.

188

ALI
REFERENCES

[1] I. F. a. C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure, 1999.

[2] Top500 Supercomputing. Available: http://www.top500.org/ [Jul. 02, 2011].

[3] Supercomputer "K computer" Takes First Place in World. Available:

http://www.fujitsu.com/global/news/pr/archives/month/2011/20110620-

02.html [Jul. 02, 2011].

[4] S. M. Anthony Mayer, Nathalie Furmento,William Lee, Murtaza

Gulamali,Steven Newhouse,John Darlington, "Workflow Expression:

Comparison of Spatial and Temporal Approaches," in Proceedings of the

Workflow in Grid Systems Workshop, GGF-10, Berlin, 2004.

[5] Dbrain. (2011). Available: http://www.dementia.com.my [June. 12, 2010].

[6] Mayoclinic. (2011). Available: http://www.mayoclinic.com/ [May. 04, 2010].

[7] Neurogrid. Economic and On Demand "Brain Activity Analysis" on the World

Wide Grid Using Nimrod-G and Gridbus Technologies. Available:

http://www.gridbus.org/neurogrid/ [May. 02, 2010].

[8] PPDG, "Particle Physics Data Grid."

[9] Geodise. Geodise: Aerospace Design Optimisation. Available:

www.geodise.org [May. 02, 2010].

[10] MIMOS. Grid Computing -The Technology. Available:

http://www.mimos.my/technology-thrust-areas/grid-computing/about-us4/

[Aug. 15, 2009].

[11] R. Buyya, D. Abramson, and J. Giddy, "Nimrod/G: an architecture for a

resource management and scheduling system in a global computational grid,"

2000, pp. 283-289 vol.1.

[12] P. Huang, H. Peng, P. Lin, and X. Li, "Static strategy and dynamic adjustment:

An effective method for Grid task scheduling," Future Generation Computer

Systems, vol. 25, pp. 884-892, 2009.

189

[13] J. Chin, M. Harvey, S. Jha, and P. Coveney, "Scientific Grid Computing: The

First Generation," Computing in Science and Engineering, vol. 7, pp. 24-32,

2005.

[14] Berstis, "Fundamentals of Grid Computing," in IBM RedBooks Paper, ed,

2002.

[15] K. Krauter, Buyya, R., Maheswaran, M., "A taxonomy and survey of grid

resource management systems for distributed computing," Softw. Pract.

Exper., vol. 32, pp. 135-164, 2002.

[16] L. Chunlin, Z. J. Xiu, and L. Layuan, "Resource scheduling with conflicting

objectives in grid environments: Model and evaluation," Journal of Network

and Computer Applications, vol. 32, pp. 760-769, 2009.

[17] E. Shmueli and D. G. Feitelson, "Backfilling with lookahead to optimize the

packing of parallel jobs," J. Parallel Distrib. Comput., vol. 65, pp. 1090-1107,

2005.

[18] F. Xhafa and A. Abraham, "Computational models and heuristic methods for

Grid scheduling problems," Future Gener. Comput. Syst., vol. 26, pp. 608-

621, 2010.

[19] R. Buyya, D. Abramson, and J. Giddy, "Grid Resource Management,

Scheduling and Computational Economy," ed.

[20] D. Ouelhadj and S. Petrovic, "A survey of dynamic scheduling in

manufacturing systems," J. of Scheduling, vol. 12, pp. 417-431, 2009.

[21] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling

Scalable Virtual Organizations," Int. J. High Perform. Comput. Appl., vol. 15,

pp. 200-222, 2001.

[22] X.-H. Sun and M. Wu, "Quality of Service of Grid Computing: Resource

Sharing," in Grid and Cooperative Computing, 2007. GCC 2007. Sixth

International Conference on, 2007, pp. 395-402.

[23] K. Krauter, K. Klaus, and M. It. (2001). A Taxonomy and Survey of Grid

Resource Management Systems for Distributed Computing. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.5054 [Sept. 11,

2008].

[24] L. Peng, S. See, Y. Jiang, J. Song, A. Stoelwinder, and H. Neo, "Performance

evaluation in computational grid environments," 2004, pp. 54-62.

190

[25] J. Yu and R. Buyya, "A Taxonomy of Workflow Management Systems for

Grid Computing," Journal of Grid Computing, vol. 3, pp. 171-200, 2005.

[26] D. Fernandez-Baca, "Allocating modules to processors in a distributed

system," Software Engineering, IEEE Transactions on, vol. 15, pp. 1427-

1436, 1989.

[27] P. W. Ramin Yahyapour, "Grid Scheduling Use Cases," 2006.

[28] V. T'Kindt and J.-C. Billaut, Multicriteria Scheduling: Theory, Models and

Algorithms: Springer, 2006.

[29] F. D. a. S. G. Akl. (2006, Scheduling Algorithms for Grid Computing: State of

the Art and Open Problems.

[30] CoreGRID. CoreGRID. Available: http://www.coregrid.net/ [Jul. 05, 2009].

[31] CoreGRID. (2007), Review of the Performance Evaluation and Benchmarking

of Grid Scheduling Systems. Available:

http://www.coregrid.net/mambo/images/stories/Deliverables/d.rms.05.pdf [Jul.

05, 2009].

[32] F. Xhafa, L. Barolli, J. A. Gonzalez, and P. Jura, "A Static Benchmarking for

Grid Scheduling Problems," presented at the Proceedings of the 2009

International Conference on Advanced Information Networking and

Applications Workshops, 2009.

[33] S. D. Anoep, "Trace-based Performance Analysis of Scheduling Bags of Tasks

in Grids," 2009.

[34] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. Epema,

"The Grid Workloads Archive," Future Generation Computer Systems, vol.

24, pp. 672-686, 2008.

[35] D. KALINSKY. Who’s Afraid of Asymmetric Multiprocessing? RTC.

Available: http://www.rtcmagazine.com/articles/view/100404 [Sept. 17,

2010].

[36] L. Lamport, "How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs," IEEE Trans. Comput., vol. 28, pp. 690-691,

1979.

[37] W. W. Gropp and E. L. Lusk, "A taxonomy of programming models for

symmetric multiprocessors and SMP clusters," in Programming Models for

Massively Parallel Computers, 1995, 1995, pp. 2-7.

191

[38] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-

memory programming," Computational Science & Engineering, IEEE, vol. 5,

pp. 46-55, 1998.

[39] N. Robertson and A. Rendell, "OpenMP and NUMA Architectures I:

Investigating Memory Placement on the SGI Origin 3000," in Computational

Science — ICCS 2003. vol. 2660, P. Sloot, et al., Eds., ed: Springer Berlin /

Heidelberg, 2003, pp. 722-722.

[40] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global arrays: a nonuniform

memory access programming model for high-performance computers," J.

Supercomput., vol. 10, pp. 169-189, 1996.

[41] R. Buyya, High Performance Cluster Computing: Architectures and Systems:

Prentice Hall PTR, Upper Saddle River, NJ, USA,, 1999.

[42] R. Buyya, "High Performance Cluster Computing: Programming and

Applications," vol. 2, 1999.

[43] Staff, "Using MPI-Portable Parallel Programming with the Message-Passing

Interface, by William Gropp," Sci. Program., vol. 5, pp. 275-276, 1996.

[44] A. B. Al Geist, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy

Sunderam, "PVM: Parallel virtual machine: A users' guide and tutorial for

networked parallel computing : By Al Geist, Adam Beguelin, Jack Dongarra,

Weicheng Jiang, Robert Manchek and Vaidy Sunderam. MIT Press,

Cambridge, MA. (1994). 279 pages. $19.95," Computers & Mathematics with

Applications, vol. 30, p. 122, 1995.

[45] A. S. T. a. M. V. Steen, Distributed Systems: Principles and Paradigms:

Prentice-Hall, 2001.

[46] I. Foster, "What is the Grid? - a three point checklist," GRIDtoday, vol. 1,

2002.

[47] A. Iosup, M. Jan, O. Sonmez, and D. H. J. Epema, "On the dynamic resource

availability in grids," presented at the Proceedings of the 8th IEEE/ACM

International Conference on Grid Computing, 2007.

[48] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, "Efficient Hierarchical

Parallel Genetic Algorithms using Grid computing," Future Gener. Comput.

Syst., vol. 23, pp. 658-670, 2007.

192

[49] G. Johnson, "All Science is Computer Science," in The New York Times, ed,

2001.

[50] S. Jang and J. Lee, "Predictive Grid Process Scheduling Model in

Computational Grid," in Advanced Web and Network Technologies, and

Applications. vol. 3842, H. Shen, et al., Eds., ed: Springer Berlin / Heidelberg,

2006, pp. 525-533.

[51] H. B. Newman, M. H. Ellisman, and J. A. Orcutt, "Data-intensive e-science

frontier research," Commun. ACM, vol. 46, pp. 68-77, 2003.

[52] F. Xhafa, C. Paniagua, L. Barolli, and S. Caballe, "A parallel grid based

implementation for real time processing of event log data of collaborative

applications," Int. J. Web Grid Serv., vol. 6, pp. 124-140, 2010.

[53] M. D. Beynon, A. Sussman, T. Kure, and J. Saltz, "Performance Optimization

for Data Intensive Grid Applications," presented at the Proceedings of the

Third Annual International Workshop on Active Middleware Services, 2001.

[54] H. Casanova and J. Dongarra, "Network enabled solvers for scientific

computing using the NetSolve system," in Algorithms and Architectures for

Parallel Processing, 1997. ICAPP 97., 1997 3rd International Conference on,

1997, pp. 17-33.

[55] J. P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder, "An enabling framework

for master-worker applications on the Computational Grid," in High-

Performance Distributed Computing, 2000. Proceedings. The Ninth

International Symposium on, 2000, pp. 43-50.

[56] J. Linderoth and S. Wright, "Decomposition Algorithms for Stochastic

Programming on a Computational Grid," Comput. Optim. Appl., vol. 24, pp.

207-250, 2003.

[57] F. Xhafa and A. Abraham, "Meta-heuristics for Grid Scheduling Problems," in

Metaheuristics for Scheduling in Distributed Computing Environments. vol.

146, F. Xhafa and A. Abraham, Eds., ed: Springer Berlin / Heidelberg, 2008,

pp. 1-37.

[58] V. B. Ferrira, J. Armstrong, M. Kendzlerski, Andreas Neukoetter, M. Takagl,

R. Bing-Wo, A. Amir, R. Murakawa, O. Hernandez, J. Magowan, and N.

Bleberstein. (2003, Introduction the Grid Computing with Globus. Available:

http://www.redbooks.ibm.com/abstracts/sg246895.html [Oct. 21, 2009].

193

[59] B. F. Z. Xu, W. Li, Grid Computing Technology: China Electronics Press,

2004.

[60] L. Smarr and C. E. Catlett, "Metacomputing," Commun. ACM, vol. 35, pp. 44-

52, 1992.

[61] Z. Lichen, "Scheduling algorithm for real-time applications in grid

environment," in Systems, Man and Cybernetics, 2002 IEEE International

Conference on, 2002, p. 6 pp. vol.5.

[62] H. Kurdi, M. Li, and H. Al-Raweshidy, "A Classification of Emerging and

Traditional Grid Systems," IEEE Distributed Systems Online, vol. 9, p. 1,

2008.

[63] K. Amin, G. von Laszewski, and A. R. Mikler, "Grid computing for the

masses: an overview," in Grid and Cooperative Computing. Second

International Workshop (GCC 2003), Shanghai, China, pp. 464-73 BN - 3 540

21988 9.

[64] Y. Deng and F. Wang, "Opportunities and challenges of storage grid enabled

by grid service," SIGOPS Oper. Syst. Rev., vol. 41, pp. 79-82, 2007.

[65] J. D. a. J. Skelton. UC Berkeley Storage Area Network (SAN). Available:

http://inews.berkeley.edu/bcc/Spring2005/san.html

[66] X. Jin, J. Liu, and Z. Yang, "Modeling Agent-Based Task Handling in a Peer-

to-Peer Grid," presented at the Proceedings of the IEEE/WIC/ACM

International Conference on Intelligent Agent Technology, 2004.

[67] A. Iamnitchi, M. Ripeanu, and I. T. Foster, "Locating Data in (Small-World?)

Peer-to-Peer Scientific Collaborations," presented at the Revised Papers from

the First International Workshop on Peer-to-Peer Systems, 2002.

[68] Escience-grid. http://www.escience-grid.org.uk/ [Mar. 07, 2010].

[69] P. Strong. (2005). Enterprise Grid Computing. Available:

http://queue.acm.org/detail.cfm?id=1080877 [Mar. 07, 2010].

[70] SZTAKI. Desktop Grid. Available: http://www.desktopgrid.hu/ [Mar. 07,

2010].

[71] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and A. A. Chien,

"Characterizing and evaluating desktop grids: an empirical study," in Parallel

and Distributed Processing Symposium, 2004. Proceedings. 18th

International, 2004, p. 26.

194

[72] V. Berstis, "IBM RedBook; Fundamentals of Grid Computing," 2002.

[73] J. M. Schopf, "Ten actions when Grid scheduling: the user as a Grid

scheduler," in Grid resource management, N. Jarek, et al., Eds., ed: Kluwer

Academic Publishers, 2004, pp. 15-23.

[74] J. a. S. Nabrzyski, Jennifer M. and Weglarz, Jan, "Grid resource management:

state of the art and future trends," 2004.

[75] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra, "New algorithms for an ancient

scheduling problem," presented at the Proceedings of the twenty-fourth annual

ACM symposium on Theory of computing, Victoria, British Columbia,

Canada, 1992.

[76] CoreGRID. (2006). Proposal of Multi-level Scheduling Models. Available:

http://www.coregrid.net/mambo/images/stories/Deliverables/d.rms.04.pdf

[May. 11, 2010].

[77] K. Czajkowski, I. Foster, and C. Kesselman, "Resource co-allocation in

computational grids," in High Performance Distributed Computing, 1999.

Proceedings. The Eighth International Symposium on, 1999, pp. 219-228.

[78] H. Yu, X. Bai, and D. Marinescu, "Workflow management and resource

discovery for an intelligent grid," Parallel Computing, vol. 31, pp. 797-811,

2005.

[79] J. Yu and R. Buyya, "A taxonomy of scientific workflow systems for grid

computing," SIGMOD Rec., vol. 34, pp. 44-49, 2005.

[80] I. M. J. Palmer "Optimal Tree Structures for Large-Scale Grids," in

Proceedings of the UK e-Science, 2005.

[81] K. Christodoulopoulos, V. Sourlas, I. Mpakolas, and E. Varvarigos, "A

comparison of centralized and distributed meta-scheduling architectures for

computation and communication tasks in Grid networks," Computer

Communications, vol. 32, pp. 1172-1184, 2009.

[82] J. Abawajy, "Job Scheduling Policy for High Throughput Grid Computing," in

Distributed and Parallel Computing. vol. 3719, M. Hobbs, et al., Eds., ed:

Springer Berlin / Heidelberg, 2005, pp. 184-192.

[83] L. Liang-Teh, L. Chin-Hsiian, and C. Hung-Yuan, "An Adaptive Task

Scheduling System for Grid Computing," in Computer and Information

195

Technology, 2006. CIT '06. The Sixth IEEE International Conference on,

2006, pp. 57-57.

[84] H. Casanova, M. Kim, J. S. Plank, and J. Dongarra, "Adaptive Scheduling for

Task Farming with Grid Middleware," presented at the Proceedings of the 5th

International Euro-Par Conference on Parallel Processing, 1999.

[85] A. Othman, P. Dew, K. Djemame, and I. Gourlay, "Adaptive grid resource

brokering," in Cluster Computing, 2002. Proceedings. 2002 IEEE

International Conference on, 2003, pp. 172-179.

[86] E. Huedo, R. S. Montero, and I. M. Llorente, "Experiences on adaptive grid

scheduling of parameter sweep applications," in Parallel, Distributed and

Network-Based Processing, 2004. Proceedings. 12th Euromicro Conference

on, 2004, pp. 28-33.

[87] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, "Task execution time

modeling for heterogeneous computing systems," in Heterogeneous

Computing Workshop, 2000. (HCW 2000) Proceedings. 9th, 2000, pp. 185-

199.

[88] S. Hotovy, "Workload Evolution on the Cornell Theory Center IBM SP2,"

presented at the Proceedings of the Workshop on Job Scheduling Strategies

for Parallel Processing, 1996.

[89] N. Fujimoto and K. Hagihara, "Near-optimal dynamic task scheduling of

precedence constrained coarse-grained tasks onto a computational grid," in

Parallel and Distributed Computing, 2003. Proceedings. Second International

Symposium on, 2003, pp. 80-87.

[90] Y. C. Lee and A. Y. Zomaya, "Practical Scheduling of Bag-of-Tasks

Applications on Grids with Dynamic Resilience," Computers, IEEE

Transactions on, vol. 56, pp. 815-825, 2007.

[91] C. Li, "Competitive proportional resource allocation policy for computational

grid," Future Generation Computer Systems, vol. 20, pp. 1041-1054, 2004.

[92] B. Rashmi and D. P. Agrawal, "Improving scheduling of tasks in a

heterogeneous environment," Parallel and Distributed Systems, IEEE

Transactions on, vol. 15, pp. 107-118, 2004.

196

[93] Z. Shi and J. J. Dongarra, "Scheduling workflow applications on processors

with different capabilities," Future Gener. Comput. Syst., vol. 22, pp. 665-675,

2006.

[94] S. Ranaweera and D. P. Agrawal, "A task duplication based scheduling

algorithm for heterogeneous systems," in Parallel and Distributed Processing

Symposium, 2000. IPDPS 2000. Proceedings. 14th International, 2000, pp.

445-450.

[95] B. Ravindran, P. Li, and T. Hegazy, "Proactive resource allocation for

asynchronous real-time distributed systems in the presence of processor

failures," J. Parallel Distrib. Comput., vol. 63, pp. 1219-1242, 2003.

[96] C. Zhu, Z. Liu, W. Zhang, W. Xiao, Z. Xu, and D. Yang, "Decentralized Grid

Resource Discovery Based on Resource Information Community," Journal of

Grid Computing, vol. 2, pp. 261-277, 2004.

[97] A. Galstyan, K. Czajkowski, and K. Lerman, "Resource Allocation in the Grid

Using Reinforcement Learning," presented at the Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent

Systems - Volume 3, New York, New York, 2004.

[98] F. de O. Lucchese, E. Huerta Yero, F. Sambatti, and M. Henriques, "An

Adaptive Scheduler for Grids," Journal of Grid Computing, vol. 4, pp. 1-17,

2006.

[99] R. Armstrong, D. Hensgen, and T. Kidd, "The relative performance of various

mapping algorithms is independent of sizable variances in run-time

predictions," in Heterogeneous Computing Workshop, 1998. (HCW 98)

Proceedings. 1998 Seventh, 1998, pp. 79-87.

[100] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D.

Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B.

Rust, and H. J. Siegel, "Scheduling resources in multi-user, heterogeneous,

computing environments with SmartNet," in Heterogeneous Computing

Workshop, 1998. (HCW 98) Proceedings. 1998 Seventh, 1998, pp. 184-199.

[101] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund, "Dynamic

matching and scheduling of a class of independent tasks onto heterogeneous

computing systems," in Heterogeneous Computing Workshop, 1999. (HCW

'99) Proceedings. Eighth, 1999, pp. 30-44.

197

[102] J. Yu, R. Buyya, and K. Ramamohanarao, "Workflow Scheduling Algorithms

for Grid Computing," in Metaheuristics for Scheduling in Distributed

Computing Environments. vol. 146, F. Xhafa and A. Abraham, Eds., ed:

Springer Berlin / Heidelberg, 2008, pp. 173-214.

[103] T. D. Braun, H. J. Siegel, N. Beck, M. Maheswaran, A. I. Reuther, J. P.

Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, "A

comparison of eleven static heuristics for mapping a class of independent tasks

onto heterogeneous distributed computing systems," J. Parallel Distrib.

Comput., vol. 61, pp. 810-837, 2001.

[104] Y. Xiaogao and Y. Xiaopeng, "A New Grid Computation-Based Min-Min

Algorithm," in Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09.

Sixth International Conference on, 2009, pp. 43-45.

[105] K. Etminani and M. Naghibzadeh, "A Min-Min Max-Min selective algorihtm

for grid task scheduling," in Internet, 2007. ICI 2007. 3rd IEEE/IFIP

International Conference in Central Asia on, 2007, pp. 1-7.

[106] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, "Heuristics for

scheduling parameter sweep applications in grid environments," in

Heterogeneous Computing Workshop, 2000. (HCW 2000) Proceedings. 9th,

2000, pp. 349-363.

[107] H. Topcuouglu, S. Hariri, and M.-y. Wu, "Performance-Effective and Low-

Complexity Task Scheduling for Heterogeneous Computing," IEEE Trans.

Parallel Distrib. Syst., vol. 13, pp. 260-274, 2002.

[108] G. a. C. Murugesan, C., "An Economical Model for Optimal Distribution of

Loads for Grid Applications," International Journal of Computer and Network

Security, 2009.

[109] H. A. Taha. TORA Optimization System. Available: http://prenhall.com/taha/

[Dec. 15, 2009].

[110] H. A. Taha, Operations Research: An Introduction, 8th ed.: Prentice Hall,

Inc., 2007.

[111] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, "Improving

parallel job scheduling by combining gang scheduling and backfilling

techniques," in Parallel and Distributed Processing Symposium, 2000. IPDPS

2000. Proceedings. 14th International, 2000, pp. 133-142.

198

[112] M. Dhodhi, "An Integrated Technique for Task Matching and Scheduling onto

Distributed Heterogeneous Computing Systems," Journal of Parallel and

Distributed Computing, vol. 62, pp. 1338-1361, 2002.

[113] S.-Y. Lee and C.-H. Cho, "Load Balancing for Minimizing Execution Time of

a Target Job on a Network of Heterogeneous Workstations," presented at the

Proceedings of the Workshop on Job Scheduling Strategies for Parallel

Processing, 2000.

[114] S. Wiriyaprasit and V. Muangsin, "The impact of local priority policies on

grid scheduling performance and an adaptive policy-based grid scheduling

algorithm," in High Performance Computing and Grid in Asia Pacific Region,

2004. Proceedings. Seventh International Conference on, 2004, pp. 343-346.

[115] Y. M. Teo, X. Wang, and J. P. Gozali, "A Compensation-based Scheduling

Scheme for Grid Computing," presented at the Proceedings of the High

Performance Computing and Grid in Asia Pacific Region, Seventh

International Conference, 2004.

[116] B. G. Lawson, E. Smirni, and D. Puiu, "Self-Adapting Backfilling Scheduling

for Parallel Systems," presented at the Proceedings of the 2002 International

Conference on Parallel Processing, 2002.

[117] D. Tsafrir, Y. Etsion, and D. G. Feitelson, "Backfilling Using System-

Generated Predictions Rather than User Runtime Estimates," Parallel and

Distributed Systems, IEEE Transactions on, vol. 18, pp. 789-803, 2007.

[118] K. Li, "Job scheduling and processor allocation for grid computing on

metacomputers," Journal of Parallel and Distributed Computing, vol. 65, pp.

1406-1418, 2005.

[119] W. Stallings, Operating Systems Internals and Design Principles: Prentice

Hall, 2004.

[120] H. Li and R. Buyya, "Model-Driven Simulation of Grid Scheduling

Strategies," presented at the Proceedings of the Third IEEE International

Conference on e-Science and Grid Computing, 2007.

[121] R. J. Matarneh, "Self-Adjustment Time Quantum in Round Robin Algorithm

Depending on Burst Time of the Now Running Processes," American Journal

of Applied Sciences, 2009.

199

[122] R. R. Yaashuwanth.C, "Design of Real Time scheduler simulator and

Development of Modified Round Robin Archetectue," IJCSNS International

Journal of Computer Science and Network Security, 2010.

[123] R. R. Yaashuwanth.C, "Intelligent Time Slice for Round Robin in Real Time

Operating System," IJRRAS, vol. 2, 2010.

[124] M. M. R. a. M. N. Akhtar, "A New Mutilevel CPU Scheduling Algorithm,"

Journal of Applied Sciences vol. 6, 2009.

[125] H. S. B. Rakesh Mohanty, Khusbu Patwari, Manas Ranjan Das, Monisha

Dash, Sudhashree, "Design and Performance Evaluation of a New Proposed

Shortest Remaining Burst Round Robin (SRBRR) Scheduling Algorithm," in

ISCET 2010.

[126] D. Lifka, "The ANL/IBM SP scheduling system," in Job Scheduling Strategies

for Parallel Processing. vol. 949, D. Feitelson and L. Rudolph, Eds., ed:

Springer Berlin / Heidelberg, 1995, pp. 295-303.

[127] J. Skovira, W. Chan, H. Zhou, and D. Lifka, "The EASY — LoadLeveler API

project," in Job Scheduling Strategies for Parallel Processing. vol. 1162, D.

Feitelson and L. Rudolph, Eds., ed: Springer Berlin / Heidelberg, 1996, pp.

41-47.

[128] D. G. Feitelson, "A Survey of Scheduling in Multiprogrammed Parallel

Systems," IBM T.J.Watson Research Center, Yorktown Heights, NY1995.

[129] A. W. Mu'alem and D. G. Feitelson, "Utilization, predictability, workloads,

and user runtime estimates in scheduling the IBM SP2 with backfilling,"

Parallel and Distributed Systems, IEEE Transactions on, vol. 12, pp. 529-543,

2001.

[130] S. S. Rawat and L. Rajamani, "Experiments with CPU Scheduling Algorithm

on a Computational Grid," in Advance Computing Conference, 2009. IACC

2009. IEEE International, 2009, pp. 71-75.

[131] R. Sharma, V. K. Soni, and M. K. Mishra, "An improved resource scheduling

approach using Job Grouping strategy in grid computing," in Educational and

Network Technology (ICENT), 2010 International Conference on, 2010, pp.

94-96.

200

[132] A. Tchernykh, D. Trystram, C. Brizuela, and I. Scherson, "Idle regulation in

non-clairvoyant scheduling of parallel jobs," Discrete Appl. Math., vol. 157,

pp. 364-376, 2009.

[133] L. Hui and R. Buyya, "Model-Driven Simulation of Grid Scheduling

Strategies," in e-Science and Grid Computing, IEEE International Conference

on, 2007, pp. 287-294.

[134] D. Feitelson and L. Rudolph, "Metrics and benchmarking for parallel job

scheduling," in Job Scheduling Strategies for Parallel Processing. vol. 1459,

D. Feitelson and L. Rudolph, Eds., ed: Springer Berlin / Heidelberg, 1998, pp.

1-24.

[135] M. Calzarossa and G. Serazzi, "Workload characterization: a survey,"

Proceedings of the IEEE, vol. 81, pp. 1136-1150, 1993.

[136] S. Chapin, W. Cirne, D. Feitelson, J. Jones, S. Leutenegger, U.

Schwiegelshohn, W. Smith, and D. Talby, "Benchmarks and Standards for the

Evaluation of Parallel Job Schedulers," in Job Scheduling Strategies for

Parallel Processing. vol. 1659, D. Feitelson and L. Rudolph, Eds., ed:

Springer Berlin / Heidelberg, 1999, pp. 67-90.

[137] C. Ernemann, B. Song, and R. Yahyapour, "Scaling of Workload Traces," in

Job Scheduling Strategies for Parallel Processing. vol. 2862, D. Feitelson, et

al., Eds., ed: Springer Berlin / Heidelberg, 2003, pp. 166-182.

[138] D. G. Feitelson, "Metric and workload effects on computer systems

evaluation," Computer, vol. 36, pp. 18-25, 2003.

[139] E. Frachtenberg and D. Feitelson, "Pitfalls in Parallel Job Scheduling

Evaluation," in Job Scheduling Strategies for Parallel Processing. vol. 3834,

D. Feitelson, et al., Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 257-282.

[140] D. Feitelson, "Workload Modeling for Performance Evaluation," in

Performance Evaluation of Complex Systems: Techniques and Tools. vol.

2459, M. Calzarossa and S. Tucci, Eds., ed: Springer Berlin / Heidelberg,

2002, pp. 114-141.

[141] S.-H. Chiang and M. K. Vernon, "Characteristics of a Large Shared Memory

Production Workload," presented at the Revised Papers from the 7th

International Workshop on Job Scheduling Strategies for Parallel Processing,

2001.

201

[142] K. Windisch, V. Lo, D. Feitelson, R. Moore, and B. Nitzberg, "A Comparison

of Workload Traces from Two Production Parallel Machines," presented at the

Proceedings of the 6th Symposium on the Frontiers of Massively Parallel

Computation, 1996.

[143] U. Lublin and D. G. Feitelson, "The workload on parallel supercomputers:

modeling the characteristics of rigid jobs," Journal of Parallel and Distributed

Computing, vol. 63, pp. 1105-1122, 2003.

[144] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan, "Modeling

of Workload in MPPs," presented at the Proceedings of the Job Scheduling

Strategies for Parallel Processing, 1997.

[145] W. Cirne and F. Berman, "A comprehensive model of the supercomputer

workload," in Workload Characterization, 2001. WWC-4. 2001 IEEE

International Workshop on, 2001, pp. 140-148.

[146] L. M. P. F. a. H. Rudov, "Model of grid scheduling problem," in In AAAI

Press Technical Reports, editor, In AAAI05 Workshop on Exploring Planning

and Scheduling for Web Services, Grid and Autonomic Computing, 2005.

[147] T. G. L. H. El-Rewini, and H. H. Ali, Task scheduling in parallel and

distributed systems: Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[148] J. Blazewicz, Ecker, K.H., Pesch, E., Schmidt, G. und J. Weglarz, Scheduling

Computer and Manufacturing Processes: Berlin (Springer), 2001.

[149] I. Rodero, F. Guim, and J. Corbalan, "Evaluation of Coordinated Grid

Scheduling Strategies," in High Performance Computing and

Communications, 2009. HPCC '09. 11th IEEE International Conference on,

2009, pp. 1-10.

[150] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, "Flow and stretch

metrics for scheduling continuous job streams," presented at the Proceedings

of the ninth annual ACM-SIAM symposium on Discrete algorithms, San

Francisco, California, United States, 1998.

[151] A. Shafi, B. Carpenter, and M. Baker, "Nested parallelism for multi-core HPC

systems using Java," Journal of Parallel and Distributed Computing, vol. 69,

pp. 532-545, 2009.

202

[152] C.-L. Li and X. Wang, "Scheduling parallel machines with inclusive

processing set restrictions and job release times," European Journal of

Operational Research, vol. 200, pp. 702-710, 2010.

[153] A. Attanasio, G. Ghiani, L. Grandinetti, E. Guerriero, and F. Guerriero,

"Operations research methods for resource management and scheduling in a

computational grid: a survey," in Advances in Parallel Computing. vol.

Volume 14, G. Lucio, Ed., ed: North-Holland, 2005, pp. 53-81.

[154] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger, U.

Schwiegelshohn, W. Smith, and D. Talby, "Benchmarks and Standards for the

Evaluation of Parallel Job Schedulers," presented at the Proceedings of the Job

Scheduling Strategies for Parallel Processing, 1999.

[155] D. Feitelson. Parallel Workloads Archive. Available:

http://www.cs.huji.ac.il/labs/parallel/workload/ [Apr. 07, 2009].

[156] JTransforms. Available:

http://sites.google.com/site/piotrwendykier/software/jtransforms

[Feb. 05, 2010].

[157] JChart2D. Available: http://jchart2d.sourceforge.net/index.shtml

[158] Commons-Math. Commons-Math: The Apache Commons Mathematics

Library. Available: http://commons.apache.org/math/index.html [Feb. 05,

2010].

[159] H. Li, "Workload dynamics on clusters and grids," The Journal of

Supercomputing, vol. 47, pp. 1-20, 2009.

[160] G. L. p. s. a. n. t. J. o. G. I. M. Gable, 6, 3–4.

[161] Worldwide LHC Computing Grid. Available: http://lcg.web.cern.ch/lcg/

[Apr. 07, 2009].

 [162] AuverGrid. Available: http://www.auvergrid.fr/ [Apr. 07, 2009].

 [163] P. Dumon. (1998). The Perfect OS. Available:

http://tunes.org/unios/stdsched.html [May. 09, 2010].

203

ALI
LIST OF PUBLICATIONS

[1] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Robust Grid Scheduling," in

2009 National Post Graduate Conference, NPC 2009.

 [2] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Hybrid Scheduling and Dual

Queue Scheduling," in Computer Science and Information Technology, 2009.

ICCSIT 2009. 2nd IEEE International Conference on, 2009, pp. 539-543.

[3] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Hybrid Resource Allocation

Method for Grid Computing," 2010 The 2nd International Conference on

Computer Research and Development (ICCRD 2010), IEEE, 7-9 May 2010,

Kuala Lumpur, Malaysia, pp. 426-431, 2010.

[4] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Analysis and evaluation of

Grid scheduling algorithms using real workload traces," The International

ACM Conference on Management of Emergent Digital EcoSystems(ACM

MEDES’10), 26-29 October 2010, Bangkok, Thailand.

[5] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Modified Least Cost Method

for Grid Resource Allocation," International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery(CyberC 2010), IEEE, 10-

11 October 2010, HuangShan, AnHui, China, pp. 218-225, 2010.

[6] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Development and Performance

Analysis of Grid Scheduling Algorithms," in Advances in Information

Technology. vol. 55, B. Papasratorn, et al., Eds., ed: Springer Berlin

Heidelberg, 2009, pp. 170-181.

[7] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Dynamic Multilevel Hybrid

Scheduling Algorithms for Grid Computing," Procedia Computer Science,

Elsevier, vol. 4, pp. 402-411, 2011.

204

[8] S. N. M. Shah, A. K. B. Mahmood, A. Oxley,"Dynamic Multilevel Dual

Queue Scheduling Algorithms for Grid Computing," in Software Engineering

and Computer Systems. vol. 179, J. Mohamad Zain, et al., Eds., ed: Springer

Berlin Heidelberg, 2011, pp. 425-440.

[9] S. N. M. Shah, A. K. B. Mahmood, A. Oxley,"SYEDWSIM: A Web Based

Simulator for Grid Workload Analysis," in Software Engineering and

Computer Systems. vol. 181, J. M. Zain, et al., Eds., ed: Springer Berlin

Heidelberg, 2011, pp. 677-692.

[10] S. N. M. Shah, A. K. B. Mahmood, A. Oxley, "Development and performance

analysis of Grid resource allocation methods," Int. J. Information Technology,

Communications and Convergence, InderScience, 2011

205

ALI
APPENDIX A

Grid Scheduling Algorithms

A.1 Proposed Resource Allocation Method

To describe the algorithm, the notations (Zmin, Smallest, Ap, Bq, Tpq, qmappingpq PT  )

used in the Modified Least Cost Method are described below:

 Zmin: It is the total allocation cost.

 Smallest: It is variable which keeps the smallest cost cell(s) from the resource

allocation table. Min function is applied to find out the smallest while ignoring

any row where the unallocated workload is zero (0iA), and any column

where the unallocated processor capacity is zero (0jB)

 Ap: remaining or total workload demand of job p corresponding to cell(p, q)

 Bq: available or total processing capability of processor q corresponding to

cell(p, q)

 Tpq: It is estimated task length of the job workload (i.e. pA) that can be

allocated to a processor Pq holding processor availability qB

 qmappingpq PT   : Mapping the task pqT of job Jp to processor Pq

 Ai =0: If all of the Ai are zero then stop as this means that a solution has been

found, otherwise continue further allocations

206

A.1.1 Procedure MLCM

Begin

Step1 initialization

0:Zmin 

Repeat

Step2 Find the least cost cell

}0,0:min{:  jiij BACSmallest  mi ,...2,1 , nj ,...2,1

 }:{ smallestCCsizecount jiji 

If (count>1) Then

 select the cell which does not include the next smallest in its

 corresponding row or column

 If a tie occurs for this case Then

 select the cell which can host the minimum job workload

 End If

End If
Step3 mapping of task to processor








q

p
pq B

A
T : If

If

qp

qp

BA
BA





qmappingpq PT  

pqpp TAA :

pqqq TBB :

pqTZZ  minmin : X Smallest

 Until 0iA i

End

207

A.2 Proposed Job Scheduling Algorithms

Let the notations used in the job scheduling algorithms are (P, n1, n2, texec , tlarge , w, k,

E, Q, W, T, Q).

 P: set of processes in the system. Formally it can be written as:

ܲ = ൛ ଵܲ, ଶܲ , ଷܲ ௡ܲ ൟ ∀ ௜ܲ ⊆ ܲ ∧ ݅ ∈ ܰ

where ‘N’ is set of natural number and ‘n’ denotes number of processes in the

ready queue.

o Each process Pi is described by its Process Control Block (PCB) which

includes process id, arrival time, CPU burst time, execution time and

state. Formally it can be represented as:

௜ܲ < ,݁݉݅ݐ݈ܽݒ݅ݎݎܽ,݀݅ ,݁݉݅ݐݑ݌ܿ ,݁݉݅ݐ݊݋݅ݐݑܿ݁ݔ݁ ݁ݐܽݐݏ >

where

 ‘id’ represents the Process id

 ‘arrivaltime’ denotes the time at which process Pi is

arrived in the system

 ‘cputime’ shows the demand by the process Pi to

execute at CPU level

 ‘executiontime’ shows time units for which process Pi is

already executed at CPU

 ‘state’ shows the current state of a process Pi.

o A process can be in one of the following states:

݁ݐܽݐݏ ∈ {0, 1, 2, 3, 4,5}

where

 ‘0’ shows that process is newly created

 ‘1’ represents that process is in ready queue (or

execution queue) and not executed yet

208

 ‘2’ shows that process is in ready queue (or execution

queue) and partially executed

 ‘3’ shows that process is successfully executed

 ‘4’ denotes that process is failed during execution

 ‘5’ represents the process in the waiting queue (for dual

queue scheduling algorithms)

o For example; if ௜ܲ ∈< 131, 201, 79, 25, 2 > then

It means process ௜ܲ possesses the following attribute values. Process id

is ‘131’; process arrived at ‘201’ clock interval, ‘79’ units of CPU time

demanded for execution, ௜ܲ is already executed for ‘25’ units of CPU

time and process in the ready queue and partially executed. Process ௜ܲ

needs ‘54’ units more for execution at CPU.

 n1 : number of processes in the waiting queue

 n2 : number of processes in the execution queue

 texec : sum of execution time of processes

 tlarge : cpu burst time of longest process in the ready queue

 w: logical counter to manage execution of longest process. if w=1; it

means a process with longest CPU time will be given a turn for execution; and

counter texec is reset to zero

 k: counter variable used to manage the flow of execution of sorted current

processes in the ready queue

 E: set of processes, which are executed successfully by the algorithm. E is

also called safe sequence of processes.

 Q: set of processes in the execution queue

 W: set of processes in the waiting queue

 TQ: denotes the time quantum. It is a user defined fixed value for MH and

MDQ scheduling algorithms; whilst TQ is dynamic value for MHM, MHR,

MDQM and MDQR.

o Dynamic Time Quantum will be computed by taking median of CPU

burst times values of present processes in the ready queue for MHM

and MDQM:

209

).,.....,.,.(321 cputimePcputimePcputimePcputimePmedianTQ n

o Dynamic Time Quantum will be computed by taking square root on

average of CPU burst times values of processes that are present in the

ready queue for MHR and MDQR:

)).,.....,.,.((321 cputimePcputimePcputimePcputimePavgsqrtTQ n

A.2.1 Resource Allocation and Job Distribution Strategy

Procedure Master_Process

Begin

1. Master process reads the workload trace file and stores into a dynamic array.

2. Using dynamic looping strategy, it distributes the part of the workload

dynamically depending upon the total number of available processors (i.e.,

computational nodes) for the computation.

3. It sends the distributed workload data to slave processors using round robin

algorithm. It maintains the counter for each processor to keep the information

about the number of jobs allocated to each slave processor.

4. Then, master process waits till the computation of performance parameters of

the scheduling algorithm (also known as slave process) at each slave processor

is over. Slave processors will send back the parameter values back to the

master.

5. It receives the performance parameters (i.e., results) computed by the

employed job scheduling algorithm at each slave processor (also called

worker).

MPI.COMM_WORLD.Recv(result, 0, 9, MPI.DOUBLE, worker, 99)

6. After receiving, it computes the summation of the values for the performance

parameters of waiting times, turnaround time, response times and slowdown

times, taken from each slave processor.

7. It also computes the maximum values, out of all the maximal values for the

total completion times as well as for the job stretch times, taken from each

slave processor.

210

8. It calculates the average values for performance factors of waiting times,

turnaround time, response times and slowdown times.

End_Master_process

A.2.2 Procedure Multilevel Hybrid Scheduling and Dynamic Multilevel Hybrid
Scheduling

Procedure MH/MHM/MHR

Phase 1: Master Process (Allocation Strategy)

Call Master_Process

Phase 2: Slave process (Job execution strategy)

Begin

Step1 initialization

Let {}:P

Let {}:E

Let 0:exect

Let 0:arg elt

Step2 Process arrivals

if new process Pi is arrived then

thenstatePIf i)0.(

set 1. statePi

iPPP 

1 nn

endif

endif

211

Step 3 Sorting of jobs

PPorithmASorting sort
AscburstimeCPU ._)(lg_

Step 4 Time quantum strategy

// user defined time quantum for MDQ

valuefixedTQ _
or

//TQ value for MHM

).,.....,.(21 cputimePcputimePcputimePmedianTQ n
 or

// TQ value for MHR

)).,.....,.((21 cputimePcputimePcputimePavgsqrtTQ n
Step 5 execution Strategy

NULL)while(P! 

set cputimePt nel .arg 

set 0w

set 1k

Begin
nkwhile)(

thenstatusPstatusPif kk)2.1.(

 thenTQcputimePif k).(

 cputimePimeexecutiontPimeexecutiontP kkk ... 

 3. statePk

 kPEE 

 kPPP 

 1 nn

 imeexecutiontPtt kexecexec .

else

212

TQimeexecutiontPimeexecutiontP kk  ..

2. statePk

imeexecutiontPtt kexecexec .

endif

endif

)1(wIf

0exect

0w

loopwhilebreak 

3 stepgoto

endif

thenttif elexec)(arg

nk 

1w

else

if (New processes arrived in P) then

loopwhilebreak 

2 stepgoto

else

1 kk

endif

endif

)_(loopinnerwend

loopwhilemainend ___

213

Step 6 Compute performance parameters

Compute performance parameters - waiting times, turnaround times, response times,

slowdown times, total completion times and maximum job stretch times

Step 7 Send results back to the master process

Send computed performance parameters (i.e., output) back to master processor whose

processor id is ‘0’.

MPI.COMM_WORLD.Isend(output, 0, 9, MPI.DOUBLE, 0, 99)

End_Slave_process

A.2.3 Procedure Multilevel Dual Queue Scheduling and Dynamic Multilevel
Dual Queue Scheduling

Procedure MDQ/ MDQM/MDQR

Phase 1: Master Process (Allocation Strategy)

Call Master_Process

Phase 2: Slave process (Job execution strategy)

Begin

Step 1 initialization

Let {}:W

Let {}:Q

Let {}:E

Let 0:exect

Let 0:arg elt

214

Step 2 Process arrivals in the waiting queue

if new process Pi is arrived then

thenstatePIf i)0.(

set 5. statePi

iPWW 

111  nn

endif

endif

Step 3 Process arrivals in the execution queue

if (execution queue is empty) or (longest process is given the turn for

execution) then

 NULL)while(W! 

thenstatePIf i)5.(

set 1. statePi

iPWW 

iPPP 

111  nn

122 nn

endif

loopwhileend __

endif

Step 4 Sorting of processes in the execution queue

QQorithmASorting sort
AscburstimeCPU ._)_(lg_

Step 5 Time quantum calculation

// user defined time quantum for MDQ

valuefixedTQ _

215

or

//time quantum for MDQM

).,.....,.(21 cputimePcputimePcputimePmedianTQ n
 or

//time quantum for MDQR

)).,.....,.((21 cputimePcputimePcputimePavgsqrtTQ n

Step 6 execution strategy

NULL)while(Q! 

set cputimePt nel .arg 

set 0w

set 1k

Begin
nkwhile)(

thenstatusPstatusPif kk)2.1.(

thenTQcputimePif k).(

cputimePimeexecutiontPimeexecutiontP kkk ... 
3. statePk

kPEE 

kPQQ 

122  nn
imeexecutiontPtt kexecexec .

else

 TQimeexecutiontPimeexecutiontP kk  ..

2. statePk

imeexecutiontPtt kexecexec .

endif

endif

216

)1(wIf

0exect

0w

loopwhilebreak 

2stepgoto

endif
thenttif elexec)(arg

nk 

1w

else

if (New processes arrived in W) then

loopwhilebreak 

2stepgoto 

else

1 kk

endif

endif

)_(loopinnerwend

loopwhilemainend ___

Step 7 Compute performance parameters

Compute performance parameters - waiting times, turnaround times, response times,

slowdown times, total completion times and maximum job stretch times

Step 8 Send results back to the master process

Send computed performance parameters (output) back to master processor (processor

id is ‘0’).

MPI.COMM_WORLD.Isend(output, 0, 9, MPI.DOUBLE, 0, 99);

End_slave_process

217

ALI
APPENDIX B

Format of Real Grid Workloads

B.1 Format of LCG1 workload

Log source: Parallel Workloads Archive

#--

Format documentation: Grid Workload Format (http://gwa.ewi.tudelft.nl/)

Field description from left to right:

1 JobID counter

2 SubmitTime in seconds, starting from zero

3 WaitTime in seconds

4 RunTime runtime measured in wallclock seconds

5 NProcs number of allocated processors

6 AverageCPUTimeUsed average of CPU time over all allocated processors

7 Used Memory average per processor in kilobytes

8 ReqNProcs requested number of processors

9 ReqTime: requested time measured in wallclock seconds

10 ReqMemory requested memory (average per processor)

11 Status job completed = 1, job failed = 0, job cancelled = 5

12 UserID string identifier for user

13 GroupID string identifier for group user belongs to

14 ExecutableID name of executable

15 QueueID string identifier for queue

16 PartitionID string identifier for partition

17 OrigSiteID string identifier for submission site

218

18 LastRunSiteID string identifier for execution site

19 JobStructure single job = UNITARY, composite job = BoT

20 JobStructureParams if JobStructure = BoT, contains batch identifier

21 UsedNetwork used network resources in kilobytes/second

22 UsedLocalDiskSpace in megabytes

23 UsedResources list of comma-separated generic resources

(ResourceDescription:Consumption)

c.q. memory usage in Gb seconds, io data transferred, and io wait time in seconds

24 ReqPlatform CPUArchitecture,OS,OSVersion

25 ReqNetwork in kilobytes/second

26 ReqLocalDiskSpace in megabytes

27 ReqResources list of comma-separated generic resources

(ResourceDescription:Consumption)

28 VOID identifier for Virtual Organization

29 ProjectID identifier for project

(fields contain -1 if not available)

1 1132444805 -1 83 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 1 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

2 1132444808 -1 3611 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

3 1132444817 -1 205 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

4 1132444819 -1 130 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

5 1132444825 -1 969 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

219

6 1132444829 -1 129 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

7 1132444830 -1 201 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 4 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

8 1132444839 -1 10707 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

9 1132444842 -1 79 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 5 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

10 1132444843 -1 1908 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

11 1132444850 -1 9885 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

12 1132444852 -1 78 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 6 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

13 1132444857 -1 74 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 7 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

14 1132444859 -1 10006 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

15 1132444859 -1 22 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 8 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

16 1132444864 -1 1972 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

220

17 1132444866 -1 73 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 9 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

18 1132444867 -1 142 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 10 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

19 1132444872 -1 5050 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

20 1132444874 -1 311 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 11 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

21 1132444881 -1 78 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 12 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

22 1132444882 -1 9951 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

23 1132444883 -1 198 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 13 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

24 1132444888 -1 77 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 14 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

25 1132444891 -1 11010 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

26 1132444892 -1 209 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 15 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

27 1132444892 -1 1483 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

221

28 1132444895 -1 199 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 16 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

29 1132444901 -1 9652 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

30 1132444902 -1 78 1 -1 -1 -1 -1 -1 -1

 U4 G4 -1 -1 17 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

31 1132444907 -1 134 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 18 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

32 1132444909 -1 856 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

33 1132444912 -1 9887 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

34 1132444914 -1 136 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 19 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

35 1132444922 -1 205 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

36 1132444929 -1 2028 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

37 1132444930 -1 67 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 18 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

38 1132444932 -1 179 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

222

39 1132444936 -1 195 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 4 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

40 1132444942 -1 9886 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

41 1132444952 -1 1032 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

42 1132444953 -1 10192 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

43 1132444956 -1 144 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 13 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

44 1132444958 -1 135 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 10 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

45 1132444964 -1 9651 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

46 1132444970 -1 139 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

47 1132444974 -1 179 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

48 1132444979 -1 139 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 20 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

49 1132444983 -1 5116 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

223

50 1132444993 -1 9711 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

51 1132444993 -1 974 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

52 1132445002 -1 18 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 21 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

53 1132445002 -1 3437 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

54 1132445003 -1 84 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 22 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

55 1132445012 -1 10590 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

56 1132445016 -1 974 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

57 1132445023 -1 192 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

58 1132445024 -1 136 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 23 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

59 1132445025 -1 138 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 23 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

60 1132445033 -1 194 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

224

61 1132445034 -1 2033 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

62 1132445042 -1 7185 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

63 1132445047 -1 137 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 10 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

64 1132445047 -1 80 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 24 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

65 1132445051 -1 1606 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

66 1132445052 -1 9579 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

67 1132445062 -1 198 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

68 1132445068 -1 906 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

69 1132445071 -1 139 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 25 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

70 1132445071 -1 74 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 23 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

71 1132445073 -1 9100 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

225

72 1132445083 -1 10784 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

73 1132445086 -1 849 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

74 1132445093 -1 10374 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

75 1132445093 -1 83 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 26 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

76 1132445095 -1 139 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 19 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

77 1132445102 -1 9830 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

78 1132445103 -1 1663 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

79 1132445111 -1 9817 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

80 1132445115 -1 80 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 27 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

81 1132445118 -1 137 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 28 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

82 1132445120 -1 916 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

226

83 1132445121 -1 138 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 2 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

84 1132445134 -1 128 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

85 1132445138 -1 75 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 30 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

86 1132445143 -1 1739 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

87 1132445144 -1 143 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

88 1132445154 -1 10883 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

89 1132445160 -1 133 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 31 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

90 1132445162 -1 1192 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

91 1132445164 -1 139 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

92 1132445173 -1 13643 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

93 1132445182 -1 134 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 32 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

227

94 1132445182 -1 13698 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

95 1132445182 -1 1420 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

96 1132445191 -1 12939 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

97 1132445201 -1 20324 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

98 1132445205 -1 200 1 -1 -1 -1 -1 -1 -1

 U1 G1 -1 -1 15 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

99 1132445207 -1 1374 1 -1 -1 -1 -1 -1 -1

 U3 G3 -1 -1 3 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

100 1132445211 -1 6940 1 -1 -1 -1 -1 -1 -1

 U2 G2 -1 -1 29 SWF SWF -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

228

B.2 Format of AuverGrid workload

System name: LPC

System info: Laboratoire de Physique Corpusculaire - Part of the LCG (Large

hadron collider Computing Grid project)

Sites: 5

Processors: 475

CPU Info: 3 GHZ Pentium IV Xeon Linux Cluster

Memory: ?

Disk space: ?

Network: ?

Log source: Local resource manager

#--

Format documentation: Grid Workload Format (http://gwa.ewi.tudelft.nl/)

Field description from left to right:

1 JobID counter

2 SubmitTime in seconds, starting from zero

3 WaitTime in seconds

4 RunTime runtime measured in wallclock seconds

5 NProcs number of allocated processors

6 AverageCPUTimeUsed average of CPU time over all allocated processors

7 Used Memory average per processor in kilobytes

8 ReqNProcs requested number of processors

9 ReqTime: requested time measured in wallclock seconds

10 ReqMemory requested memory (average per processor)

11 Status job completed = 1, job failed = 0, job cancelled = 5

12 UserID string identifier for user

13 GroupID string identifier for group user belongs to

14 ExecutableID name of executable

15 QueueID string identifier for queue

16 PartitionID string identifier for partition

229

17 OrigSiteID string identifier for submission site

18 LastRunSiteID string identifier for execution site

19 JobStructure single job = UNITARY, composite job = BoT

20 JobStructureParams if JobStructure = BoT, contains batch identifier

21 UsedNetwork used network resources in kilobytes/second

22 UsedLocalDiskSpace in megabytes

23 UsedResources list of comma-separated generic resources

(ResourceDescription:Consumption)

c.q. memory usage in Gb seconds, io data transferred, and io wait time in seconds

24 ReqPlatform CPUArchitecture,OS,OSVersion

25 ReqNetwork in kilobytes/second

26 ReqLocalDiskSpace in megabytes

27 ReqResources list of comma-separated generic resources

(ResourceDescription:Consumption)

28 VOID identifier for Virtual Organization

29 ProjectID identifier for project

(fields contain -1 if not available)

#--

1 1136070024 203761 138467 1 138371 98652 1

 259200 -1 1 U2004S1 G3 X1 Q5 1

 clrlcgce02 clrlcgce02 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1

2 1136070690 0 11 1 4 35848 1 259200 -1

 1 U1023S0 G1 X1 Q1 1 clrlcgce01 clrlcgce01

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

3 1136071207 117 201203 1 0 0 1 259200

 -1 1 U2035S1 G6 X1 Q2 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

230

4 1136071267 4406 196985 1 0 0 1 259200

 -1 1 U2035S1 G6 X1 Q2 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

5 1136071269 202516 19520 1 18731 522268 1

 259200 -1 1 U2035S1 G6 X1 Q2 1

 clrlcgce02 clrlcgce02 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1

6 1136072890 1 46 1 3 49216 1 900 -1 1

 U1018S0 G1 X1 Q2 1 clrlcgce01 clrlcgce01 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

7 1136074263 2629516 21 1 0 35712 1 5400 -1

 1 U5005S3 G1 X1 Q5 1 iut15 iut15 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

8 1136074695 1 197831 1 0 0 1 259200

 -1 1 U1033S0 G6 X1 Q4 1 clrlcgce01

 clrlcgce01 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

9 1136074754 2 197682 1 0 0 1 259200

 -1 1 U1033S0 G6 X1 Q4 1 clrlcgce01

 clrlcgce01 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

10 1136074756 2 197552 1 0 0 1 259200

 -1 1 U1033S0 G6 X1 Q4 1 clrlcgce01

 clrlcgce01 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

11 1136074814 1 197495 1 0 0 1 259200

 -1 1 U1033S0 G6 X1 Q4 1 clrlcgce01

 clrlcgce01 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

12 1136076162 197623 18799 1 18198 480484 1

 259200 -1 1 U2035S1 G6 X1 Q2 1

231

 clrlcgce02 clrlcgce02 -1 -1 -1 -1 -1 -1 -1

 -1 -1 -1 -1

13 1136076694 2627085 21 1 0 35720 1 5400 -1

 1 U5005S3 G1 X1 Q2 1 iut15 iut15 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

14 1136077528 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q3 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

15 1136077551 975 193984 1 0 0 1 259200

 -1 1 U2037S1 G4 X1 Q1 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

16 1136077775 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q2 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

17 1136077783 196002 2 1 0 0 1 900 -1

 1 U2031S1 G1 X1 Q3 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

18 1136077889 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q3 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

19 1136078195 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q2 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

20 1136078435 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q2 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

21 1136078608 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q3 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

22 1136078676 117 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q2 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

232

23 1136078802 194983 2 1 0 6376 1 5400 -1

 1 U2023S1 G1 X1 Q4 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

24 1136079148 58 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q3 1 clrlcgce01 clrlcgce01 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

25 1136203888 2499978 20 1 0 35752 1 5400 -1

 1 U5005S3 G1 X1 Q2 1 iut15 iut15 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

26 1136204188 2499722 20 1 0 0 1 172800

 -1 1 U5005S3 G1 X1 Q6 1 iut15 iut15 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

27 1136212017 2491849 20 1 0 0 1 5400 -1

 1 U5005S3 G1 X1 Q5 1 iut15 iut15 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

28 1136229063 2474476 21 1 0 0 1 900 -1

 1 U5005S3 G1 X1 Q3 1 iut15 iut15 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

29 1136237461 2466405 20 1 0 35760 1 5400 -1

 1 U5005S3 G1 X1 Q2 1 iut15 iut15 -1 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1

30 1136247692 27481 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q2 1 iut15 iut15 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

31 1136250422 24752 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q1 1 iut15 iut15 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

32 1136260866 14307 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q1 1 iut15 iut15 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

33 1136262396 12777 -1 0 -1 -1 1 -1 -1 5

 -1 -1 -1 Q1 1 iut15 iut15 -1 -1 -1 -1

 -1 -1 -1 -1 -1 -1 -1

233

34 1136272204 2 922 1 20 74696 1 172800 -1

 1 U1030S0 G1 X1 Q5 1 clrlcgce01 clrlcgce01

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

35 1136272205 1580 912 1 20 117784 1 172800

 -1 1 U2031S1 G1 X1 Q6 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

36 1136274078 1 19143 1 18070 490916 1 259200

 -1 1 U1033S0 G6 X1 Q4 1 clrlcgce01

 clrlcgce01 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

37 1136274080 2 19432 1 18657 470052 1 259200

 -1 1 U1033S0 G6 X1 Q4 1 clrlcgce01

 clrlcgce01 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

38 1136274120 1 476 1 239 961104 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

39 1136274123 1 473 1 198 937320 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

40 1136274123 1 59 1 11 7740 1 19980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

41 1136274241 1 501 1 245 965184 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

42 1136274244 1 498 1 250 956288 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

234

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

43 1136274600 1 595 1 215 958608 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

44 1136274607 0 602 1 280 935536 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

45 1136274607 0 602 1 222 984764 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

46 1136274607 1 602 1 253 950132 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

47 1136274609 1 599 1 206 951048 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

48 1136274609 1 599 1 215 951844 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

49 1136274609 1 599 1 201 943396 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

50 1136274611 1 597 1 210 953368 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

235

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

51 1136274611 1 461 1 162 938652 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

52 1136274611 1 597 1 279 949680 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

53 1136274841 1 641 1 240 951624 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

54 1136274847 2 505 1 173 944424 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

55 1136274848 1 575 1 175 951172 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

56 1136274848 1 610 1 251 952884 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

57 1136274849 1 946 1 314 959352 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

58 1136274850 0 574 1 258 959928 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

236

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

59 1136274850 0 923 1 503 977304 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

60 1136274851 1 537 1 205 941008 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

61 1136274852 1 920 1 478 983184 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

62 1136276129 1 4 1 2 0 1 5400 -1 1

 U2022S1 G1 X1 Q7 1 clrlcgce02 clrlcgce02 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

63 1136276271 1 6 1 2 0 1 5400 -1 1

 U1018S0 G1 X1 Q6 1 clrlcgce01 clrlcgce01 -1

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

64 1136276453 2 886 1 206 952520 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

65 1136276459 1 677 1 177 949400 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

66 1136276459 1 749 1 250 947544 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

237

67 1136276459 1 749 1 247 952104 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

68 1136276465 0 709 1 193 947276 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

69 1136276465 0 815 1 264 950812 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

70 1136276465 0 815 1 251 951184 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

71 1136276469 1 667 1 170 938420 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

72 1136276469 1 810 1 263 965428 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

73 1136276469 1 810 1 243 958272 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

74 1136276474 1 923 1 260 956108 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

238

75 1136276474 1 823 1 162 916344 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

76 1136276479 1 403 1 199 951268 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

77 1136276479 2 785 1 259 955508 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

78 1136276479 1 681 1 170 945340 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

79 1136276516 2 620 1 173 944720 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

80 1136276516 1 480 1 237 966640 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

81 1136276517 0 726 1 273 954628 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

82 1136276518 1 724 1 243 951976 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

239

83 1136276518 1 690 1 237 946980 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

84 1136276521 2 720 1 266 956664 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

85 1136276522 1 686 1 247 952228 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

86 1136276522 1 720 1 267 950800 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

87 1136276523 1 438 1 209 944552 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

88 1136276523 1 685 1 208 945992 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

89 1136276771 1 1856 1 8 59652 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

90 1136276771 0 1853 1 8 57124 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

91 1136276771 0 1855 1 9 59664 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

240

92 1136276772 1 436 1 208 962728 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

93 1136276773 1 1856 1 9 57172 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

94 1136276997 1 413 1 210 953524 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

95 1136276997 1 448 1 226 958916 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

96 1136276998 1 1856 1 9 86104 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

97 1136277000 1 1850 1 9 57152 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

98 1136277000 1 1854 1 10 66828 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

99 1136277003 0 1850 1 9 57172 1 31980 614400

 1 U2003S1 G3 X1 Q5 1 clrlcgce02 clrlcgce02

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

100 1136277003 0 483 1 260 952220 1 31980

 614400 5 U2003S1 G3 X1 Q5 1 clrlcgce02

 clrlcgce02 -1 -1 -1 -1 -1 -1 -1 -1 -1

 -1 -1

241

ALI
APPENDIX C

Comparison of Job Scheduling Algorithms

A total of seventeen scheduling algorithms have been compared on an experimental

Grid using synthetic, LCG1 and AuverGrid workload traces. Detailed results for each

experiment under dynamic Grid scheduling environment are shown in Table C.1 to

Table C.42.

Baseline Approaches Proposed Scheduling Algorithms

1. First Come First Served

(FCFS)

2. Shorted Process Next (SPN)

3. Longest Job First (LJF)

4. Priority(P)

5. Round Robin (RR)

6. Proportional Local Round

Robin (PLRR)

7. Self Adjustment Round Robin

(SARR)

8. Intelligent Time slice for

Round Robin (NIR)

9. Round Robin Priority (NRR)

10. Multilevel CPU Scheduling

algorithm(MR)

11. Shortest Remaining Burst

Round Robin (SRBRR)

1. Multilevel Hybrid scheduling algorithms

(MH)

2. Multilevel Dual Queue Scheduling

algorithms (MDQ)

3. Dynamic Multilevel Hybrid Scheduling

Algorithm using Median(MHM)

4. Dynamic Multilevel Hybrid Scheduling

Algorithm using square root(MHR)

5. Dynamic Multilevel Dual Queue

Scheduling Algorithm using Median

(MDQM)

6. Dynamic Multilevel Dual Queue

Scheduling Algorithm using Square root

(MDQR)

242

Table C.1: Average waiting times (seconds) of scheduling algorithms for synthetic

workload of 1000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 69410.11 31858.33 13413.73

LJF 112096.6 51320.24 21331.94

SPN 24504.02 11851.98 5965.493

P 66474.7 30353.9 13084.7

RR 46601.48 21324.58 9073.374

PLRR 66937.62 30082.4 13172.98

MH 22372.98 10045.66 4188.51

MHM 29682.45 14262 6939.979

MHR 22429.11 10074.03 4203.508

MDQ 45570.29 21136.17 9031.878

MDQM 30441.99 15702.45 7897.8

MDQR 45611.46 21140.16 9044.48

SARR 55887.71 26049.61 10983.42

NIR 46601.47 21325.36 9069.637

NRR 68021.86 27293.15 9663.937

MR 24504.02 11851.98 5965.493

SRBRR 51206.63 22405.31 10038.4

243

Table C.2: Average waiting times (seconds) of scheduling algorithms for synthetic

workload of 2000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 136016.3 62657.16 26297.68

LJF 224014 104468.5 44909.67

SPN 43285.85 20129.72 8946.296

P 132158.2 61022.03 25870.3

RR 87417.27 40215.56 16795.34

PLRR 130268.6 58864.64 25682.06

MH 41573.64 18631.26 7429.109

MHM 53936.86 25269.46 11078.94

MHR 41666.55 18680.53 7456.65

MDQ 84332.47 39494.8 16633.61

MDQM 55201.16 27313.16 13009.66

MDQR 84244.91 39525.37 16650.96

SARR 102536 49411.62 20479.99

NIR 87432.7 40217.64 16792.5

NRR 135457.5 60372.33 21642.47

MR 43285.85 20129.72 8946.296

SRBRR 93473.64 44436.3 18843.73

244

Table C.3: Average waiting times (seconds) of scheduling algorithms for ‘10%’

workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 2861611 1398768 667700 305900.6

LJF 5950838 2931544 1407113 600534.8

SPN 323441 146513.1 61139.94 30715.23

P 3082319 1499720 701431.9 294508.7

RR 674747 311521.3 134544.8 54301.88

PLRR 1690220 840228.5 409916.6 49143.2

MH 321597 144667.8 59496.62 23490.8

MHM 352893 161483.1 68453.1 33821.22

MHR 321822 144795.6 59578.99 23557.06

MDQ 659884 307613.4 133811.1 54209.95

MDQM 416628 209752.5 99178.06 52891.19

MDQR 643433 303071.8 132637.4 53971.32

SARR 767175 373983.3 176500.7 55602.99

NIR 674712 311475.1 134560.7 54296.82

NRR 2861461 1398768 667700 542306

MR 323425 146513.1 61139.94 43543.86

SRBRR 656984 323416.7 135262.3 68531.33

245

Table C.4: Average waiting times (seconds) of scheduling algorithms for ‘20%’

workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 7234327.7 3560391 1723600 809300.1

LJF 1.35E+07 6688859 3256909 1487380

SPN 721365.83 333266.9 145040.7 65122.78

P 7253238.2 3559867 1701670 766741.9

RR 1501999.7 707696.1 318016.7 135434.6

PLRR 4061030.9 2017145 1006314 585555.9

MH 713273.67 331741.2 143640 59210.78

MHM 775951.11 362058.5 159998.8 72404.8

MHR 720114.76 331928.1 143763.8 59306.99

MDQ 1468445.5 699270 316134.3 135179.3

MDQM 879428.59 448064.5 218005.2 114052.9

MDQR 1427977.4 685619.9 312595.2 134391.7

SARR 1632564.1 859121.4 454805.5 136747.2

NIR 1501856.8 707678.4 318021.7 135438.3

NRR 7234327.7 3560391 1723600 801313.4

MR 721365.83 333266.9 145040.7 65122.78

SRBRR 1361201.8 691006.7 309453.9 156396.4

246

Table C.5: Average waiting times (seconds) of scheduling algorithms for ‘3%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 5990176 2293049 471976.7 311504.6

LJF 7936983 3788116 802360.4 523327.8

SPN 4031367 1411401 234475.3 33995.62

P 5735163 2158118 426195.5 33472.82

RR 2804801 1080765 211061.6 8766.438

PLRR 5905104 2088255 418870.9 31743.93

MH 1194281 418123.7 69462.65 4278.066

MHM 1488958 553338.9 69462.65 14738.8

MHR 1196159 419250.4 69921.53 4215.228

MDQ 2781283 1075495 210723.1 8764.153

MDQM 1494964 594775.2 161109.8 17228.26

MDQR 2714622 1061980 210064.9 8792.504

SARR 3114754 1081584 211202.3 9221.532

NIR 2804578 1080691 211041.1 8766.035

NRR 5919852 2259157 429147.2 23839.38

MR 1500808 648090 130321.5 8375.194

SRBRR 2925552 1353006 301670.1 15475.23

247

Table C.6: Average waiting times (seconds) of scheduling algorithms for ‘5%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 20366598 7911017 1662774 1003045

LJF 26588893 12235615 2591624 1674649

SPN 4031367 1411401 234475.3 33995.62

P 19614256 7380762 1457589 114477.1

RR 9620467 3707025 723941.4 30068.88

PLRR 20136405 7120949 1428350 108246.8

MH 3726158 1304546 216723.5 13347.57

MHM 4749777 1765151 221585.9 47016.78

MHR 3720055 1303869 217456 13109.36

MDQ 8927919 3452339 676421.2 28132.93

MDQM 4828733 1921124 520384.6 55647.27

MDQR 8768229 3430197 678509.5 28399.79

SARR 10060654 3493517 682183.3 29785.55

NIR 9872113 3804031 742864.7 30856.44

NRR 20482689 7816685 1484849 82484.25

MR 5177788 2235910 449609.2 28894.42

SRBRR 9478788 4383740 977411.3 50139.74

248

Table C.7: Average turnaround times (seconds) of scheduling algorithms for

synthetic workload of 1000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 71773.55 34221.77 15777.17

LJF 114460 53683.67 23695.38

SPN 26867.45 14215.42 8328.93

P 68838.14 32717.33 15448.14

RR 48964.92 23688.02 11436.81

PLRR 69301.06 32445.83 15536.42

MH 24736.41 12409.1 6551.947

MHM 32045.89 16625.44 9303.416

MHR 24792.55 12437.47 6566.945

MDQ 47933.73 23499.61 11395.32

MDQM 32805.42 18065.89 10261.24

MDQR 47974.9 23503.6 11407.92

SARR 58251.15 28413.05 13346.86

NIR 48964.9 23688.79 11433.07

NRR 70385.3 29656.58 12027.37

MR 26867.45 14215.42 8328.93

SRBRR 53570.06 24768.75 12401.83

249

Table C.8: Average turnaround times (seconds) of scheduling algorithms for

synthetic workload of 2000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 138316.5 64957.39 28597.9

LJF 226314.2 106768.7 47209.89

SPN 45586.08 22429.94 11246.52

P 134458.4 63322.25 28170.52

RR 89717.49 42515.78 19095.56

PLRR 132568.8 61164.86 27982.28

MH 43873.86 20931.48 9729.33

MHM 56237.08 27569.68 13379.16

MHR 43966.77 20980.75 9756.871

MDQ 86632.69 41795.02 18933.83

MDQM 57501.38 29613.38 15309.88

MDQR 86545.13 41825.59 18951.18

SARR 104836.2 51711.84 22780.21

NIR 89732.92 42517.86 19092.73

NRR 137757.7 62672.55 23942.69

MR 45586.08 22429.94 11246.52

SRBRR 95773.87 46736.52 21143.96

250

Table C.9: Average turnaround times (seconds) of scheduling algorithms for

‘10%’ workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 2867060 1404215 673147.9 311348.5

LJF 5956286 2936992 1412561 605982.6

SPN 328889 151961 66587.78 36163.07

P 3087767 1505168 706879.8 299956.5

RR 680195 316969.2 139992.7 59749.72

PLRR 1695668 845676.4 415364.4 54073.5

MH 327045 150115.7 64944.46 28938.64

MHM 358341 166930.9 73900.94 39269.06

MHR 327270 150243.4 65026.83 29004.9

MDQ 665332 313061.2 139258.9 59657.79

MDQM 422076 215200.3 104625.9 58339.03

MDQR 648881 308519.7 138085.3 59419.16

SARR 772623 379431.1 181948.5 61050.83

NIR 680160 316923 140008.5 59744.66

NRR 2866909 1404215 673147.9 546730.7

MR 328873 151961 66587.78 47423.81

SRBRR 662432 328864.5 140710.2 73979.17

251

Table C.10: Average turnaround times (seconds) of scheduling algorithms for

‘20%’ workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 7240480.96 3566544 1729753 815453.4

LJF 1.35E+07 6695013 3263062 1493533

SPN 727519.129 339420.2 151194 71276.08

P 7259391.49 3566021 1707824 772895.2

RR 1508152.97 713849.4 324170 141587.9

PLRR 4067184.17 2023298 1012467 591709.2

MH 719368.513 337894.5 149793.3 65364.08

MHM 782104.41 368211.8 166152.1 78558.1

MHR 726268.06 338081.4 149917.1 65460.29

MDQ 1474598.8 705423.3 322287.6 141332.6

MDQM 885581.897 454217.8 224158.5 120206.3

MDQR 1434130.68 691773.2 318748.5 140545

SARR 1638717.4 865274.7 460958.8 142900.5

NIR 1508010.14 713831.7 324175 141591.6

NRR 7240480.96 3566544 1729753 807466.7

MR 727519.129 339420.2 151194 71276.08

SRBRR 1367355.14 697160 315607.2 162549.7

252

Table C.11: Average turnaround times (seconds) of scheduling algorithms for

‘3%’ workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 6009804 2312677 491604.9 324459.2

LJF 7962990 3820542 835728.3 545091.5

SPN 4097623 1477657 300731.4 121979.6

P 5754791 2177746 445823.7 53101.01

RR 2824429 1100393 230689.8 28394.63

PLRR 5924732 2107883 438499.1 51372.12

MH 1213909 437751.9 89090.84 15350.12

MHM 1508587 572967.1 89090.84 34366.99

MHR 1215787 438878.6 89549.72 15412.96

MDQ 2800911 1095123 230351.3 28392.34

MDQM 1514592 614403.4 180738 36856.45

MDQR 2734250 1081609 229693.1 28420.69

SARR 3134382 1101212 230830.4 28849.72

NIR 2824206 1100319 230669.3 28394.22

NRR 5939481 2278786 448775.4 43467.56

MR 1510877 657491.9 138800.9 91427.77

SRBRR 2945180 1372634 321298.3 168935.3

253

Table C.12: Average turnaround times (seconds) of scheduling algorithms for

‘5%’ workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 20433334 7978735 1731924 1044759

LJF 26676018 12340351 2699403 1744293

SPN 4097623 1477657 300731.4 121979.6

P 19681384 7447890 1524717 181605.5

RR 9687792 3774349 791266 97393.57

PLRR 20203337 7187881 1495282 175178.9

MH 3787398 1365786 277963.4 47892.38

MHM 4812391 1827765 284199.8 109630.7

MHR 3781099 1364913 278499.6 47934.3

MDQ 8990925 3515345 739427.7 91139.41

MDQM 4892132 1984523 583783.7 119046.3

MDQR 8831629 3493596 741908.6 91798.83

SARR 10124054 3556916 745582.3 93184.59

NIR 9941204 3873122 811955.9 99947.67

NRR 20550603 7884598 1552763 150397.8

MR 5212527 2268347 478863 315425.8

SRBRR 9542383 4447335 1041007 547350.3

254

Table C.13: Average response times (seconds) of scheduling algorithms for

synthetic workload of 1000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 69410.11 31858.33 13413.73

LJF 112096.6 51320.24 21331.94

SPN 24504.02 11851.98 5965.493

P 66474.7 30353.9 13084.7

RR 570.572 221.415 81.626

PLRR 62709.29 27564.91 12484.49

MH 18562.18 7278.342 2281.433

MHM 26810.76 13061.88 6405.51

MHR 18602.23 7313.973 2288.173

MDQ 1131.018 421.429 148.01

MDQM 22207.23 11143.99 5930.715

MDQR 1211.761 464.395 175.771

SARR 26216.1 13261.16 5711.544

NIR 563.153 226.32 82.772

NRR 60549.46 18154.49 2963.13

MR 24504.02 11851.98 5965.493

SRBRR 19794.67 10015.67 5471.248

255

Table C.14: Average response times (seconds) of scheduling algorithms for

synthetic workload of 2000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 136016.3 62657.16 26297.68

LJF 224014 104468.5 44909.67

SPN 43285.85 20129.72 8946.296

P 132158.2 61022.03 25870.3

RR 1133.856 454.1655 175.214

PLRR 121696 53524.27 24587.66

MH 35526.22 14382.46 4491.348

MHM 48188.73 22456.12 9906.094

MHR 35594.07 14435.71 4497.006

MDQ 2311.941 853.698 307.0905

MDQM 44742 20090.68 8858.263

MDQR 2415.802 954.9475 360.2245

SARR 47375.03 25127.37 10390.58

NIR 1134.045 454.5745 178.9355

NRR 133743.8 54924.55 13906.56

MR 43285.85 20129.72 8946.296

SRBRR 38979.22 19234.34 8261.744

256

Table C.15: Average response times (seconds) of scheduling algorithms for ‘10%’

workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 2861611 1398768 667700 305900.6

LJF 5950838 2931544 1407113 600534.8

SPN 323441 146513.1 61139.94 30715.23

P 3082319 1499720 701431.9 294508.7

RR 10228.1 4094.132 1425.504 450.5494

PLRR 1479992 747505.6 368478.2 407.7472

MH 311632 137110.4 52955.72 18944.28

MHM 324531 146214.8 61145.56 31013.72

MHR 311659 137169.9 52980.61 18998.3

MDQ 21620.8 8048.322 2567.438 718.2185

MDQM 278263 80734.89 31145.9 21268.49

MDQR 32521.6 13470.59 5027.868 1704.814

SARR 241779 134866.3 49683.54 1635.479

NIR 10674.2 4063.979 1436.445 449.3505

NRR 2861461 1398768 667700 542306

MR 323425 146513.1 61139.94 43543.86

SRBRR 117714 57997.54 17013.07 19493.14

257

Table C.16: Average response times (seconds) of scheduling algorithms for ‘20%’

workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 7234327.659 3560391 1723600 809300.1

LJF 1.35E+07 6688859 3256909 1487380

SPN 721365.8251 333266.9 145040.7 65122.78

P 7253238.182 3559867 1701670 766741.9

RR 17542.03345 8829.081 3322.127 1096.324

PLRR 3570384.236 1791130 904793.3 556276

MH 703884.9578 323833.9 136052.4 52747.63

MHM 750990.8151 346664.1 150966 67208.89

MHR 710635.9998 323609.3 136153.2 52860.07

MDQ 45679.90693 17821.97 6157.432 1805.267

MDQM 610903.7537 175045.7 66112.59 38830.31

MDQR 76498.2123 32106.37 12609.67 4425.426

SARR 413957.9315 298812.7 141822.2 1808.586

NIR 16877.0322 8650.061 3335.242 1097.624

NRR 7234327.659 3560391 1723600 800190.3

MR 721365.8251 333266.9 145040.7 65122.78

SRBRR 219541.7004 117339.5 36337.2 34905.39

258

Table C.17: Average response times (seconds) of scheduling algorithms for ‘3%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 5990176 2293049 471976.7 311504.6

LJF 7936983 3788116 802360.4 523327.8

SPN 3791641 1215306 130041.3 77663.49

P 5735163 2158118 426195.5 33472.82

RR 915263.2 616040 405064.4 228469.2

PLRR 1582077 554561.1 107374 192055.4

MH 1123263 360031 38524.36 9773.303

MHM 1414622 516635.1 38524.36 13666.01

MHR 1122509 351919.8 36164.43 9698.071

MDQ 8309.096 12273.83 13992.12 14398.55

MDQM 1272995 432891.5 98085.13 12751.02

MDQR 9575.527 5928.119 12694.07 14271.58

SARR 723762.4 614541.8 404763.4 227955.6

NIR 915254.9 615835.8 405081.4 228450.8

NRR 1627154 779068 104362.8 204914

MR 340881.4 182980.9 145811.9 97376.53

SRBRR 664486.1 382006 337527.6 179927.1

259

Table C.18: Average response times (seconds) of scheduling algorithms for ‘5%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 20366598 7911017 1662774 1003045

LJF 26588893 12235615 2591624 1674649

SPN 3791641 1215306 130041.3 77663.49

P 19614256 7380762 1457589 114477.1

RR 3139353 2113017 1389371 783649.2

PLRR 5394883 1891053 366145.2 654909

MH 3504581 1123297 120196 30492.7

MHM 4512644 1648066 122892.7 43594.56

MHR 3491002 1094470 112471.4 30161

MDQ 26672.2 39398.99 44914.72 46219.34

MDQM 4111774 1398240 316815 41185.78

MDQR 30928.95 19147.82 41001.86 46097.22

SARR 2337753 1984970 1307386 736296.6

NIR 3221697 2167742 1425887 804146.9

NRR 5629954 2695575 361095.4 709002.4

MR 1176041 631284 503051.1 335949

SRBRR 2152935 1237699 1093589 582963.7

260

Table C.19: Average slowdown times (seconds) of scheduling algorithms for

synthetic workload of 1000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 251.167 114.807 48.024

LJF 409.796 189.403 79.875

SPN 90.919 45.914 25.68

P 237.217 109.187 47.401

RR 25.529 10.316 4.32

PLRR 227.3 98.349 45.2

MH 4.837 2.492 1.484

MHM 16.095 11.957 10.888

MHR 4.852 2.5 1.49

MDQ 24.077 10.211 4.309

MDQM 23.44 19.76 14.216

MDQR 24.249 10.362 4.388

SARR 105.049 51.183 21.913

NIR 25.55 10.344 4.318

NRR 221.295 67.575 12.212

MR 90.919 45.914 25.68

SRBRR 170.801 72.91 31.803

261

Table C.20: Average slowdown times (seconds) of scheduling algorithms for

synthetic workload of 2000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 482.0865 220.423 91.831

LJF 797.325 370.162 160.6275

SPN 157.9445 75.1945 36.225

P 468.8215 215.6475 91.8645

RR 50.7945 20.352 8.094

PLRR 430.128 189.286 86.919

MH 8.3775 3.945 1.9725

MHM 19.6405 13.189 10.6325

MHR 8.4055 3.96 1.9825

MDQ 46.0235 19.698 8.027

MDQM 35.887 26.4775 17.5925

MDQR 46.4985 20.0065 8.161

SARR 179.796 93.618 38.8185

NIR 50.881 20.397 8.1085

NRR 474.035 193.443 49.4715

MR 157.9445 75.1945 36.225

SRBRR 292.163 133.8875 54.268

262

Table C.21: Average slowdown times (seconds) of scheduling algorithms for

‘10%’ workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 13117.9 6421.734 3064.842 1402.675

LJF 27462.7 13528.99 6493.688 2719.321

SPN 1531.28 704.8904 306.9519 167.5365

P 14292.6 6946.97 3257.16 1344.321

RR 461.224 173.932 58.80509 18.31594

PLRR 6776.4 3399.734 1678.194 16.57593

MH 55.8087 18.3688 4.426133 1.793395

MHM 62.0095 23.49495 10.20666 34.7993

MHR 55.8753 18.43656 4.524037 1.907732

MDQ 427.365 170.4546 58.87226 18.49346

MDQM 388.624 214.0648 103.0869 81.68406

MDQR 394.433 164.8052 59.13556 18.77654

SARR 1236.3 678.3175 288.2983 25.16369

NIR 461.659 173.6755 58.83833 18.30988

NRR 13117.2 6421.734 3064.842 2489.265

MR 1531.2 704.8904 306.9519 218.6111

SRBRR 2735.72 1129.372 279.9713 138.9497

263

Table C.22: Average slowdown times (seconds) of scheduling algorithms for

‘20%’ workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 34178.7 16842.9 8150.154 3829.503

LJF 62418.4 30879.95 15011.28 6812.01

SPN 3694.86 1727.869 760.8359 349.5565

P 33683.9 16533.99 7903.295 3536.74

RR 977.131 385.4179 137.728 44.34272

PLRR 17050.2 8500.956 4273.18 2625.981

MH 108.67 33.37375 8.983913 3.255478

MHM 115.478 37.50819 13.82331 28.25893

MHR 109.712 33.47426 9.103435 3.396937

MDQ 896.593 376.4444 138.0286 45.04669

MDQM 640.896 400.5188 211.1163 145.3005

MDQR 821.247 358.3647 136.7946 45.81453

SARR 2174.49 1535.133 880.2057 51.14843

NIR 975.856 385.0248 137.8052 44.35649

NRR 34178.7 16842.9 8150.154 3785.545

MR 3694.86 1727.869 760.8359 349.5565

SRBRR 6008.45 2592.881 711.1455 380.2265

264

Table C.23: Average slowdown times (seconds) of scheduling algorithms for ‘3%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 39192.75 15014.18 3124.658 2062.274

LJF 51930.4 24803.43 5311.918 3464.62

SPN 53.53066 18.66844 5.903679 8.345621

P 35194.33 13348.59 2763.564 329.015

RR 137.39 50.05443 10.39208 1.623835

PLRR 37737.99 12813.94 2675.489 291.6865

MH 15.85831 5.530474 1.748948 1.050227

MHM 154.8647 223.1314 1.748948 159.7599

MHR 16.35085 6.081485 2.272907 1.253691

MDQ 135.1559 49.42796 10.37798 1.629113

MDQM 651.6212 605.7148 424.6117 161.7068

MDQR 187.1867 70.75695 14.85897 2.050309

SARR 4421.499 60.28619 12.66202 5.276619

NIR 137.5692 50.08107 10.34359 1.622268

NRR 38261.43 14648.85 2644.199 185.32

MR 6090.147 2525.244 451.8363 102295.2

SRBRR 11871.63 5271.908 1045.917 189015.5

265

Table C.24: Average slowdown times (seconds) of scheduling algorithms for ‘5%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 133255.4 51798.93 11008.17 6640.522

LJF 173966.8 80115.08 17157.49 11086.78

SPN 53.53066 18.66844 5.903679 8.345621

P 120364.6 45652.19 9451.389 1125.231

RR 471.2478 171.6867 35.64484 5.569754

PLRR 128686.6 43695.52 9123.418 994.651

MH 49.47792 17.25508 5.456719 3.276708

MHM 494.0183 711.7891 5.579146 509.6341

MHR 50.85113 18.91342 7.068741 3.898978

MDQ 433.8504 158.6637 33.31331 5.229454

MDQM 2104.736 1956.459 1371.496 522.313

MDQR 604.6131 228.5449 47.99447 6.622499

SARR 14281.44 194.7244 40.89833 17.04348

NIR 484.2434 176.2854 36.40943 5.710384

NRR 132384.6 50685.02 9148.929 641.2072

MR 21011.01 8712.091 1558.835 352918.3

SRBRR 38464.09 17080.98 3388.772 612410.1

266

Table C.25: Total completion times (seconds) of scheduling algorithms for

synthetic workload of 1000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 7.68E+07 3.92E+07 2.08E+07

LJF 1.19E+08 5.87E+07 2.87E+07

SPN 3.19E+07 1.92E+07 1.33E+07

P 7.38E+07 3.77E+07 2.04E+07

RR 5.40E+07 2.87E+07 1.64E+07

PLRR 7.43E+07 3.74E+07 2.05E+07

MH 2.97E+07 1.74E+07 1.15E+07

MHM 3.70E+07 2.16E+07 1.43E+07

MHR 2.98E+07 1.74E+07 1.16E+07

MDQ 5.29E+07 2.85E+07 1.64E+07

MDQM 3.78E+07 2.31E+07 1.53E+07

MDQR 5.30E+07 2.85E+07 1.64E+07

SARR 6.32E+07 3.34E+07 1.83E+07

NIR 5.40E+07 2.87E+07 1.64E+07

NRR 7.54E+07 3.47E+07 1.70E+07

MR 3.19E+07 1.92E+07 1.33E+07

SRBRR 5.86E+07 2.98E+07 1.74E+07

267

Table C.26: Total completion times (seconds) of scheduling algorithms for

synthetic workload of 2000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 2.97E+08 1.50E+08 7.72E+07

LJF 4.73E+08 2.34E+08 1.14E+08

SPN 1.11E+08 6.49E+07 4.25E+07

P 2.89E+08 1.47E+08 7.63E+07

RR 1.99E+08 1.05E+08 5.82E+07

PLRR 2.85E+08 1.42E+08 7.60E+07

MH 1.08E+08 6.19E+07 3.95E+07

MHM 1.32E+08 7.51E+07 4.68E+07

MHR 1.08E+08 6.20E+07 3.95E+07

MDQ 1.93E+08 1.04E+08 5.79E+07

MDQM 1.35E+08 7.92E+07 5.06E+07

MDQR 1.93E+08 1.04E+08 5.79E+07

SARR 2.30E+08 1.23E+08 6.56E+07

NIR 1.99E+08 1.05E+08 5.82E+07

NRR 2.96E+08 1.45E+08 6.79E+07

MR 1.11E+08 6.49E+07 4.25E+07

SRBRR 2.12E+08 1.13E+08 6.23E+07

268

Table C.27: Total completion times (seconds) of scheduling algorithms for ‘10%’

workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 5.51E+10 2.76E+10 1.38E+10 7.01E+09

LJF 1.13E+11 5.64E+10 2.77E+10 1.25E+10

SPN 7.34E+09 4.01E+09 2.41E+09 1.83E+09

P 5.92E+10 2.95E+10 1.44E+10 6.79E+09

RR 1.39E+10 7.11E+09 3.79E+09 2.28E+09

PLRR 3.30E+10 1.71E+10 8.96E+09 2.06E+09

MH 7.30E+09 3.98E+09 2.37E+09 1.70E+09

MHM 7.89E+09 4.29E+09 2.54E+09 1.89E+09

MHR 7.31E+09 3.98E+09 2.38E+09 1.70E+09

MDQ 1.37E+10 7.04E+09 3.77E+09 2.28E+09

MDQM 9.09E+09 5.20E+09 3.12E+09 2.25E+09

MDQR 1.34E+10 6.95E+09 3.75E+09 2.27E+09

SARR 1.57E+10 8.29E+09 4.57E+09 2.30E+09

NIR 1.39E+10 7.11E+09 3.79E+09 2.28E+09

NRR 5.51E+10 2.76E+10 1.38E+10 1.12E+10

MR 7.34E+09 4.01E+09 2.41E+09 1.71E+09

SRBRR 1.36E+10 7.34E+09 3.80E+09 2.54E+09

269

Table C.28: Total completion times (seconds) of scheduling algorithms for ‘20%’

workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 2.76E+11 1.38E+11 6.92E+10 3.48E+10

LJF 5.13E+11 2.56E+11 1.27E+11 6.03E+10

SPN 3.15E+10 1.69E+10 9.85E+09 6.84E+09

P 2.77E+11 1.38E+11 6.84E+10 3.32E+10

RR 6.09E+10 3.10E+10 1.64E+10 9.48E+09

PLRR 1.57E+11 8.03E+10 4.22E+10 2.64E+10

MH 3.12E+10 1.69E+10 9.79E+09 6.62E+09

MHM 3.36E+10 1.80E+10 1.04E+10 7.11E+09

MHR 3.15E+10 1.69E+10 9.80E+09 6.62E+09

MDQ 5.96E+10 3.07E+10 1.63E+10 9.48E+09

MDQM 3.75E+10 2.12E+10 1.26E+10 8.68E+09

MDQR 5.81E+10 3.02E+10 1.61E+10 9.45E+09

SARR 6.58E+10 3.67E+10 2.15E+10 9.53E+09

NIR 6.09E+10 3.10E+10 1.64E+10 9.48E+09

NRR 2.76E+11 1.38E+11 6.92E+10 3.45E+10

MR 3.15E+10 1.69E+10 9.85E+09 6.84E+09

SRBRR 5.56E+10 3.04E+10 1.60E+10 1.03E+10

270

Table C.29: Total completion times (seconds) of scheduling algorithms for ‘3%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 9.23E+10 4.75E+10 2.54E+10 1.68E+10

LJF 1.22E+11 7.84E+10 4.32E+10 2.82E+10

SPN 1.15E+11 8.35E+10 6.93E+10 1.56E+11

P 8.92E+10 4.58E+10 2.48E+10 2.01E+10

RR 5.37E+10 3.28E+10 2.22E+10 1.98E+10

PLRR 9.13E+10 4.50E+10 2.48E+10 2.01E+10

MH 3.42E+10 2.47E+10 2.05E+10 1.96E+10

MHM 3.77E+10 2.64E+10 2.05E+10 1.99E+10

MHR 3.42E+10 2.48E+10 2.05E+10 1.96E+10

MDQ 5.34E+10 3.27E+10 2.22E+10 1.98E+10

MDQM 3.78E+10 2.69E+10 2.16E+10 1.99E+10

MDQR 5.26E+10 3.26E+10 2.22E+10 1.98E+10

SARR 5.74E+10 3.28E+10 2.22E+10 1.98E+10

NIR 5.37E+10 3.28E+10 2.22E+10 1.98E+10

NRR 9.15E+10 4.71E+10 2.49E+10 2.00E+10

MR 2.83E+10 1.73E+10 1.01E+10 2107101

SRBRR 5.52E+10 3.61E+10 2.33E+10 3893386

271

Table C.30: Total completion times (seconds) of scheduling algorithms for ‘5%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 3.14E+11 1.64E+11 8.95E+10 5.40E+10

LJF 4.10E+11 2.53E+11 1.39E+11 9.01E+10

SPN 1.15E+11 8.35E+10 6.93E+10 1.56E+11

P 3.05E+11 1.57E+11 8.50E+10 6.87E+10

RR 1.84E+11 1.12E+11 7.63E+10 6.79E+10

PLRR 3.11E+11 1.53E+11 8.44E+10 6.84E+10

MH 1.07E+11 7.72E+10 6.40E+10 6.12E+10

MHM 1.20E+11 8.42E+10 6.55E+10 6.33E+10

MHR 1.06E+11 7.70E+10 6.38E+10 6.10E+10

MDQ 1.71E+11 1.05E+11 7.14E+10 6.35E+10

MDQM 1.22E+11 8.69E+10 6.99E+10 6.42E+10

MDQR 1.70E+11 1.05E+11 7.18E+10 6.39E+10

SARR 1.86E+11 1.06E+11 7.18E+10 6.39E+10

NIR 1.89E+11 1.15E+11 7.83E+10 6.96E+10

NRR 3.16E+11 1.63E+11 8.61E+10 6.91E+10

MR 9.76E+10 5.96E+10 3.48E+10 7269497

SRBRR 1.79E+11 1.17E+11 7.56E+10 12614571

272

Table C.31: Maximum job stretch times (seconds) of scheduling algorithms for

synthetic workload of 1000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 1.17E+04 5716 3464

LJF 12718 6239 3477

SPN 10332 5121 2358

P 1.26E+04 6240 3107

RR 132 56 30

PLRR 11736 5716 2631

MH 19 11 6

MHM 994 987 761

MHR 19 11 6

MDQ 121 58 26

MDQM 994 987 761

MDQR 163 65 37

SARR 6086 2971 1271

NIR 136 58 30

NRR 10927 4124 974

MR 10332 5121 2358

SRBRR 10066 5417 3046

273

Table C.32: Maximum job stretch times (seconds) of scheduling algorithms for

synthetic workload of 2000 processes

Scheduling

Algorithms

Number of CPUs

16 32 64

FCFS 2.10E+04 9641 4738

LJF 24367 12122 5564

SPN 19472 8062 4738

P 2.33E+04 12609 6595

RR 246 128 37

PLRR 20964 9641 4366

MH 31 19 10

MHM 991 986 851

MHR 31 19 11

MDQ 263 125 48

MDQM 1377 1368 851

MDQR 313 138 61

SARR 9886 4356 2722

NIR 248 129 41

NRR 20283 9379 3231

MR 19472 8062 4738

SRBRR 18659 9543 4262

274

Table C.33: Maximum job stretch times (seconds) of scheduling algorithms for

‘10%’ workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 3359816 1602593 761848 372911

LJF 7063845 2857339 1542261 801865

SPN 1381162 677465 280263 157647

P 2916861 1513005 629592 558689

RR 17184 7289 1990 801

PLRR 3359816 628540 433272 724.905

MH 271 145 57 50

MHM 646 1266 2014 73975

MHR 271 145 57 87

MDQ 18172 5483 2922 500

MDQM 79858 66903 30229 73975

MDQR 20532 10216 3161 1439

SARR 459190 107625 88377 16729

NIR 17609 7579 2612 957

NRR 3359816 1602593 761848 618772.9

MR 1381162 677465 280263 199603.3

SRBRR 1131862 376086 583561 95439

275

Table C.34: Maximum job stretch times (seconds) of scheduling algorithms for

‘20%’ workload of LCG1

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 1.44E+07 6774601 3612479 1899261

LJF 1.51E+07 7529773 4255895 2466950

SPN 7599373 4094328 2070857 730452

P 1.03E+07 5357188 3046257 1592032

RR 80818 26835 7439 2843

PLRR 1.44E+07 6774601 3612479 1899261

MH 491.288 207 89 50

MHM 646 1266 2014 83999

MHR 496 207 155 190

MDQ 56019 33567 11096 3911

MDQM 176855 169186 87956 161781

MDQR 134426 37927 25632 10525

SARR 980513 1088186 626878 14397

NIR 81889 27770 6917 3351

NRR 1.44E+07 6774601 3612479 1899261

MR 7599373 4094328 2070857 730452

SRBRR 2517004 4713827 1311760 811871

276

Table C.35: Total completion times (seconds) of scheduling algorithms for ‘3%’

workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 9.23E+10 4.75E+10 2.54E+10 1.68E+10

LJF 1.22E+11 7.84E+10 4.32E+10 2.82E+10

SPN 1.15E+11 8.35E+10 6.93E+10 1.56E+11

P 8.92E+10 4.58E+10 2.48E+10 2.01E+10

RR 5.37E+10 3.28E+10 2.22E+10 1.98E+10

PLRR 9.13E+10 4.50E+10 2.48E+10 2.01E+10

MH 3.42E+10 2.47E+10 2.05E+10 1.96E+10

MHM 3.77E+10 2.64E+10 2.05E+10 1.99E+10

MHR 3.42E+10 2.48E+10 2.05E+10 1.96E+10

MDQ 5.34E+10 3.27E+10 2.22E+10 1.98E+10

MDQM 3.78E+10 2.69E+10 2.16E+10 1.99E+10

MDQR 5.26E+10 3.26E+10 2.22E+10 1.98E+10

SARR 5.74E+10 3.28E+10 2.22E+10 1.98E+10

NIR 5.37E+10 3.28E+10 2.22E+10 1.98E+10

NRR 9.15E+10 4.71E+10 2.49E+10 2.00E+10

MR 2.83E+10 1.73E+10 1.01E+10 2107101

SRBRR 5.52E+10 3.61E+10 2.33E+10 3893386

277

Table C.36: Maximum job stretch times (seconds) of scheduling algorithms for

‘5%’ workload of AuverGrid

Scheduling

Algorithms

Number of CPUs

16 32 64 128

FCFS 4.31E+07 17795355 4874222 2940306

LJF 56328718 27523277 7597035 4909032

SPN 9166762 4473588 3133244 4915792

P 4.63E+07 21696340 9276507 2081898

RR 52962.63 18422.53 4465.86 806.05

PLRR 4.30E+07 16923690 4665016 1103558

MH 446.16 221.52 156 252.72

MHM 422448.5 526401 159.5 769858.7

MHR 933 995.2 1107.16 933

MDQ 49767.84 16653.48 4208.31 735.09

MDQM 970040.1 873136.8 811511.7 560863.7

MDQR 169500.7 73078.75 17848.98 3782.33

SARR 27490611 503024.1 186325.8 22345.14

NIR 55017.6 18627.84 5491.2 982.08

NRR 4.36E+07 17171838 4483496 680789.6

MR 26506530 12321380 5942427 4234827

SRBRR 4.85E+07 24157375 12918321 7348587

278

Table C.37: Average waiting times (seconds) of scheduling algorithms for ‘10%’

workload of LCG1 by changing time quantum using ‘64’ CPUs

Scheduling

Algorithms

Time Quantum

50 1000 2000 5000

RR 134544.8 138407.5 148557.7 199256.1

MH 59496.62 60317.14 61040.83 62997.25

MDQ 133811.1 129837.8 129299.2 131936.1

Table C.38: Average turnaround times (seconds) of scheduling algorithms for

‘10%’ workload of LCG1 by changing time quantum using ‘64’ CPUs

Scheduling

Algorithms

Time Quantum

50 1000 2000 5000

RR 139992.7 143855.3 154005.6 204704

MH 64944.46 65764.98 66488.67 68445.09

MDQ 139258.9 135285.6 134747 137383.9

Table C.39: Average response times (seconds) of scheduling algorithms for ‘10%’

workload of LCG1 by changing time quantum using ‘64’ CPUs

Scheduling

Algorithms

Time Quantum

50 1000 2000 5000

RR 1425.504 17615.06 48945.55 115516.4

MH 52955.72 53836.98 54642.57 56083.7

MDQ 2567.438 33279.72 49845.27 75747.99

279

Table C.40: Average slowdown times (seconds) of scheduling algorithms for

‘10%’ workload of LCG1 by changing time quantum using ‘64’ CPUs

Scheduling

Algorithms

Time Quantum

50 1000 2000 5000

RR 58.80509 99.43363 229.5558 528.8822

MH 4.426133 6.121623 7.324399 9.112529

MDQ 58.87226 113.8643 157.1655 212.2047

Table C.41: Total completion times (seconds) of scheduling algorithms for ‘10%’

workload of LCG1 by changing time quantum using ‘64’ CPUs

Scheduling

Algorithms

Time Quantum

50 1000 2000 5000

RR 3.79E+09 3.86E+09 4.05E+09 5.00E+09

MH 2.37E+09 2.39E+09 2.40E+09 2.44E+09

MDQ 3.77E+09 3.70E+09 3.69E+09 3.74E+09

Table C.42: Maximum job stretch times (seconds) of scheduling algorithms for

‘10%’ workload of LCG1 by changing time quantum using ‘64’ CPUs

Scheduling

Algorithms

Time Quantum

50 1000 2000 5000

RR 1990 24208 47855 105850

MH 57 390 748 2748

MDQ 2922 35623 63000 32654

