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ABSTRACT 

Modeling landslide susceptibility usually does not include multi temporal factors, e.g. 

rainfall, especially for medium scale. Landslide occurrences in Cameron Highlands, 

in particular, and in Peninsular Malaysia, in general, tend to increase during the peak 

times of monsoonal rainfall.  Due to the lack of high spatial resolution of rainfall data, 

Normalized Different Vegetation Index (NDVI), soil wetness, and LST (Land Surface 

Temperature) were selected as replacement of multi temporal rainfall data. This 

research investigated their roles in landslide susceptibility modeling.  

In doing so, four Landsat 7 Enhanced Multi Temporal Plus (ETM+) images 

acquired during two peak times of rainy and dry seasons were used to derive multi 

temporal NDVI, soil wetness, and LST. Topographic, geology, and soil maps were 

used to derive ‗static‘ factors namely slope, slope aspect, curvature, elevation, road 

network, river/lake, lithology, soil geology lineament maps. Landslide map was used 

to derive weighting system based on spatial relationship between landslide 

occurrences and landslide factor using bivariate statistical method. A non-statistical 

weighting system was also used for comparison purpose. Different scenarios of data 

processing were applied to allow evaluation on the roles of multi temporal factors in 

landslide susceptibility modeling in terms of the accuracy of the landslide 

susceptibility maps (LSMs), the appropriate weighting system of the models, the 

applicability of the model, the ability to confirm the relation between landslide 

occurrences and rainfall.  

The results show that the average accuracy of LSMs produced by the developed 

models with inclusion of multi temporal factors is 49.1% on the overall. Addition of 

LST tends to improve the accuracy of LSMs. NDVI can be a suitable replacement for 

rainfall data since it can explain the relation between landslides occurrences and 

rainfall cycle. Statistical-based weighting system produced more accurate LSMs than 

non-statistical-based one and is applicable for landslide susceptibility modeling 

elsewhere. Significant causative factors were proven to produce more accurate LSMs.   
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ABSTRAK 

Model kecenderungan tanah runtuh biasanya tidak melibatkan faktor-faktor multi 

temporal, contohnya hujan, terutamanya untuk skala pertengahan. Kejadian tanah 

runtuh terutamanya di Cameron Highlands dan amnya di Semenanjung Malaysia 

lebih cenderung meningkat semasa kemuncak musim tengkujuh. Disebabkan 

ketiadaan data hujan dengan resolusi spasial tinggi, data Normalized Different 

Vegetation Index (NDVI), kebasahan tanah, dan suhu permukaan tanah (LST) telah 

dipilih sebagai pengganti data hujan. Kajian ini menyiasat peranan data multi 

temporal dalam pemodelan kecenderungan tanah runtuh.  

Untuk melakukan kajian ini, empat imej satelit Landsat 7 Enhanced Multi 

Temporal Plus (ETM+) yang telah diperolehi dalam dua masa kemuncak musim 

hujan dan kemarau digunakan untuk menjana multi temporal NDVI, kebasahan tanah, 

dan LST. Peta-peta topografi, geologi, dan tanah telah digunakan untuk faktor-faktor 

tanah runtuh ‗statik‘ iaitu peta cerun, aspek cerun, kelengkungan, ketinggian, jaringan 

jalan raya, sungai/tasik, jenis batuan, tanah, dan lineamen geologi. Peta tanah runtuh 

digunakan untuk menerbitkan perhubungan spasial antara kejadian tanah runtuh dan 

faktor tanah runtuh menggunakan kaedah bivariate statistik. Satu 

sistem pemberat bukan statistik juga digunakan untuk tujuan perbandingan. Senario 

pemprosesan data berbeza-beza diaplikasikan untuk membolehkan penilain terhadap 

peranan faktor multi temporal dalam pemodelan kecenderungan tanah runtuh dari 

segi ketepatan peta, system pemberat yang sesuai untuk model, kebolehgunaan 

model, keupayaan model untuk mengesahkan perhubungan antara kejadian tanah 

runtuh dan hujan.  

Keputusan menunjukkan bahawa purata ketepatan peta yang dihasilkan oleh 

model dengan penyertaan faktor multi temporal adalah 49.1% pada keseluruhan. 

Penambahan LST cenderung untuk meningkatkan ketepatan peta peta. NDVI boleh 

menjadi pengganti yang sesuai bagi data hujan kerana ianya dapat menjelaskan 
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hubungan antara kejadian tanah runtuh dan kitaran hujan. Sistem pemberat 

berasaskan statistik menghasilkan peta lebih tepat daripada system pemberat 

berasaskan bukan statistik dan boleh digunakan untuk pemodelan kerentanan tanah 

runtuh di tempat lain. Faktor-faktor ketara penyebab tanah runtuh telah terbukti 

menghasilkan peta yang lebih tepat.    
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CHAPTER 1  

INTRODUCTION 

1.0 Background of Study 

Landslide is the movement of rock mass, debris or earth down a slope as defined by 

Cruden [1]. Intense or prolonged rainfall, earthquakes, and various human activities 

may cause landslides. Landslides cause damage to properties and loss of lives. One of 

efforts to reduce damages/casualties resulting from landslides is by providing a 

landslide susceptibility map (hereinafter referred to as LSM). Such a map shows 

likelihood of a landslide occurring in a particular area on the basis of local terrain 

conditions. Such a map ranks slope stability of a particular area into categories that 

range from very stable to very unstable based on the conditions of local terrain. To 

have such a map, susceptibility of an area should be modeled by considering all 

possible landslide contributing factors. By having good landslide susceptibility, 

hazard, and risk models, steps for mitigation and avoidance from unwanted 

consequences of mass movement can be optimized.  

In providing LSM, researchers mostly incorporate landslide causative factors that 

can be called as ‗static contributing factors‘, such as slope, slope aspect, soil, 

lithology, geology, etc. These factors are treated or assumed to be constant during the 

period of study. In fact, some factors change by time especially due to rainfall cycle. 

Examples of works for landslide susceptibility modeling using static factors can be 

found in Anbalagan [2] and Saha, et al. [3] for landslide cases in India; Peloquin and 

Gwyn [4] for landslide cases in Bolivia; Ayalew and Yamagishi [5] for the cases in 

Japan; Hervas, et al. [6] for the cases in Italy; and Lee and Pradhan [7], Talib [8], 

Omar, et al. [9], Lee and Pradhan [10], Pradhan and Lee [11], Pradhan and Lee [12] 

for the cases in Malaysia.  
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Most of landslide occurrences were reported to be induced by rainfall, e.g. either 

by intense or prolonged rainfall. Therefore, it is important to have rainfall data 

included in the modeling landslide susceptibility. Other important spatial data related 

to rainfall may be included in the modeling such as, pore pressure, ground water 

table, vegetation index in the form of Normalized Difference Vegetation Index 

(NDVI), surface soil wetness, and land surface temperature (LST). However, 

involving these data acquired from only one epoch of data acquisition means that 

these data are treated as static contributing factors. The fact that rainfall has a cycle in 

a year and some factors such as vegetation and soil are responsive to rainfall seasons 

makes the inclusion of such data acquired at different time of acquisition with respect 

to rainfall cycle in the modeling becomes important. In addition, the number of 

landslide occurrences tends to be more frequent during rainy seasons. 

 

Fig. 1.1 Rainfall cycle and landslide occurrences in PM 

Source: Rainfall data from www.worldclimate.com; Landslides data from JKR [13] 

In Peninsular Malaysia (hereinafter referred to as PM) where landslides are 

typically induced by rainfall, modeling landslide susceptibility taking into account the 

rainfall factor becomes a necessity. Moreover, the rainfall system acting on this area 

is governed by monsoonal system which brings two rainy and dry seasons. Fig. 1.1 

shows average rainfall of selected cities in PM, for example Tapah, Batu Gajah, Ipoh 

(all located in Perak), Subang Jaya (Kuala Lumpur), Cameron Highlands (Pahang), 

Senai (Johor Bharu), Bayan Lepas, and Penang Hill (Penang), against landslide 
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occurrences number within PM. The relation between the number of landslide 

occurrences and rainfall intensity is apparent. During rainy seasons (April-May and 

October-January) the number of landslide occurrences is relatively greater than that 

of dry seasons (February-March and June-August).  

 

Fig. 1.2 Weather stations in PM 

Source: Suhaila and Jemain [14] 

Involving rainfall map in landslide susceptibility model of medium scale 

(1:25.000 to 1:50.000) requires such data to have sufficient spatial resolution 

especially when blended with remote sensing data such as Landsat 7 ETM+ 

(Enhanced Thematic Mapper Plus) satellite images spatial resolution of 30 m. The 

availability of rainfall map with adequate spatial resolution, e.g.30 m, for medium 

scale, unfortunately, is doubted even though it is available in multi temporal version. 

Fig. 1.2 shows the distribution of weather stations in PM which is quite sparse. If the 

area in the box is used as a study area and rainfall data is interpolated from its 

surrounding rainfall stations, there will be no sufficient spatial resolution of rainfall 

data due to its sparse distribution. Rainfall data derived from TRMM (Tropical 

Rainfall Measuring Mission) satellite can be the solution of this problem. However, 

the spatial resolution of this data is low that is about 5 km with swath width of 247 
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km. Detail information regarding this satellite mission can be found in 

http://trmm.gsfc.nasa.gov/.  

There are spatial data that may be used as alternative replacement for rainfall 

data. Pore pressure and ground water table level are considered to experience direct 

effect from rainfall. Prolonged and high rainfall tends to increase the level of ground 

water table level. However, these data are not appropriate for medium scale landslide 

susceptibility mapping. Another alternative is by using spatial data such as NDVI, 

soil wetness, and Land Surface Temperature derived from Landsat 7 ETM+ satellite 

mission. The relation between rainfall and these three factors is, indeed, complex or 

not straightforward. The investigation confirming the correlation of rainfall and 

NDVI can be found such as in Davenport and Nicholson [15] and Xia, et al. [16]; 

rainfall and soil moisture in Korres, et al. [17], Zribi, et al. [18], Kyoung-Wook, et al. 

[19], Nash, et al. [20], and Findell and Eltahir [21]; rainfall and LST in Iijima, et al. 

[22], Berg, et al. [23], Kulawardhana [24], and Hu and Feng [25]. These data 

experience changes due to seasonal rainfall. Furthermore, series of these spatial data 

that coincide with rainfall cycle can be extracted from the satellite mission whose 

repeat period is 16 days.  

Previous works on Landslide susceptibility modeling abroad mostly involves only 

static factors as mentioned earlier. This is also the case of local studies in Malaysia. 

The number of publications on landslide susceptibility modeling taking into account 

multi temporal factors is quite rare as reported by Terlien [26].  Van Asch, et al. [27] 

emphasized that for the case of rainfall-induced landslides, the temporal 

activity/variation should be involved. However, investigation on the role of multi 

temporal factors, e.g. NDVI, soil wetness, and LST, on the modeling of landslide 

susceptibility has not been investigated yet. Agostoni, et al. [28], Guzzetti [29] and 

Guzzetti, et al. [30] incorporated multi temporal factors in order to improve the 

landslide hazard models. Van Asch and Van Steijn [31] and Van Beek and Van Asch 

[32] added that the actual landslide hazard is strongly linked to the temporal 

frequency of triggering events, meaning that multi temporal factors are important to 

take into account. By having multi temporal factors involved in landslide 

susceptibility modeling, the possible expansion and depreciation of susceptible areas 
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to landslide due to the changing environmental factors and the relation of the large 

number of landslide occurrences during rainy seasons can be explained. 

There are two things highlighted from information mentioned previously: a 

research gap and, at the same time, an opportunity in modeling landslide 

susceptibility. Briefly, the gap is the absent of investigation on landslide susceptibility 

that takes multi temporal factors into account. Meanwhile, the opportunity is the 

application of rainfall related spatial data derived from Landsat images for use in 

landslide susceptibility modeling as the replacement of the rainfall data. This research 

accommodates these two factors.  

 

Fig. 1.3 Rainfall cycle and landslide occurrences in Cameron Highlands 

Source: Landslides data from JKR [13]; Rainfall data from MMD [33] 

Implementation of these two factors requires a case study. Cameron Highlands 

(CH), located in Pahang State, Malaysia, is selected for the case study for several 

reasons. This region is considered as a landslide prone area referring to the record of 

landslide occurrences compiled by JKR [13] from 1967-2007. The climate is 

characterized by two distinctive rainy seasons during which most of landslide 

occurrences took place. As shown in Fig. 1.3, two distinctive rainy seasons governed 

by monsoonal systems are associated with a number of landslide occurrences 

compiled from 1961-2007. Another reason is that the human activities e.g. land use 

conversion from forest to for example, infrastructures development and farming are 
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quite obvious so that it may worsen the stability of the hill slopes. In addition, the 

place is famous in term of plantation/farming activities and products. As a 

consequence, it increases the demand of expansion for plantation/farming area. This 

is how this place attracts many researches for studying landslides. 

1.1 Problem Statements  

The main problem that motivates the author to conduct this research is the absence of 

multi temporal factors in landslide susceptibility modeling.  In relation to this 

problem, there are two main issues that need to be resolved as follows:  

1. Landslide susceptibility modeling rarely involves multi temporal factors. In 

fact, the trend of landslide occurrences either in PM or CH is apparently 

associated with multi temporal factor that is multi temporal rainfall.  

2. The inclusion of multi temporal rainfall related factors derived from Landsat 

images, i.e. DVI, soil wetness, and LST, as replacement of rainfall map in 

landslide susceptibility model has not been investigated as far as they are 

concerned.  

1.2 Research Objectives and Expected Outcomes 

The main objective of this research is to develop landslide susceptibility models of 

Cameron Highlands that incorporate environmental factor changes in form of 

different conditions of NDVI, soil wetness, and LST, due to monsoonal rainfall 

system.  

By setting up the above main objective, the outcomes of the research are set to 

cover the following partial objectives:  

1. To produce multi temporal landslide susceptibility maps showing different 

environmental factors, i.e. NDVI, soil moisture, and LST, and comparing 

maps. 

2. To evaluate the developed landslide susceptibility maps including accuracy of 

the maps, appropriate weighting system, roles of multi temporal 
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environmental factors, identification of possible expansion or contraction of 

areas susceptible to landslides, and identification of significant and 

insignificant factors.  

3. To evaluate the developed model and the approach the model developed by 

testing their applicability to another case study.  

4. To draw recommendations on assessment of landslide susceptibility that 

incorporates environmental changes.  

1.3 Scope of Study 

This research is focused on modeling landslide susceptibility of Cameron Highlands 

taking into account multi temporal environmental factors. To strictly focus on the 

objective of the research, the scope of the study was set as follows: 

1. In regard to the outcome of the modeling, the medium scale, 1:25000 to 1:50000, 

is chosen to suit to the scale of topographic map and it is the appropriate scale 

used to accommodate remote sensing data with medium spatial resolution, e.g. 

Landsat images  with 15-30 m resolution.  

2. This research is emphasized on modeling landslide susceptibility rather than 

landslide hazard. The explanation regarding these two terms is given in section 

2.1. To produce landslide Susceptibility maps (LSMs), geotechnical aspect was 

not involved. Otherwise, spatial relationship between landslide causative factors 

and landslide inventory map was used. 

3. The term ‗environmental changes‘ is limited to the change of NDVI, soil wetness, 

and LST derived from Landsat satellite images as response to rainfall cycle. The 

selection of multi temporal Landsat images was attempted to fit to the peak time 

of two rainy and dry seasons with the additional constraint that was, satellite 

image availability that meet the said requirements were collected for further data 

processing. Standard image processing procedures were applied during image 

processing. 
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4. The temporal factors, i.e. NDVI, soil wetness, and LST, derived from Landsat 

satellite images were not calibrated. In other words, ground truthing of these 

factors were not conducted.  

5. The study area is set to fit to a sheet of topographic map with the size of 30 km x 

30 km and scale of 1:25000. Besides CH, the study area also covers part of Kinta 

(Perak), Batang Padang (Perak), and Gua Musang (Kelantan). 

6. The landslide data/map used for map validation is assumed to be the accurate one. 

The map was mainly prepared by Malaysian Remote Sensing Agency (ARSM).  

7. For analysis using Geographic Information System (GIS) tool, weighted sum was 

chosen as the overlay method. There is no advance method applied for this study. 

In landslide hazard study, there is no single method proven to be superior 

applicable for any areas and for any types of landslides. Selection of methods 

appears less importance than the availability, quality, resolution and abundance of 

input data as suggested by Guzzetti [29]. 

8. Penang Island was selected as the test site of the applicability of the developed 

model. This place is categorized as a landslide prone area. The relevant data are 

available such as record of landslide or slope failure, required spatial, and the 

corresponding Landsat 7 ETM+ satellite images.  

9. LST used in this study is in form of brightness temperature due to the absence of 

required parameters.  

1.4 Contributions of Research 

The research works have benefits for various stake holders dealing with landslide 

susceptibility modeling or slope stability studies in Malaysia. The contributions of 

this research are summarized as follows:  

1. The developed landslide susceptibility maps. 

This work is a manifestation of individual awareness and contribution to have a 

partnership with related stake holders, such as slope branch of Public Work 

Department and respective local authority in Cameron Highlands, in reducing risk 

and loss caused by landslide. A number of landslide susceptibility maps, either 
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constructed with or without multi temporal environmental factors, will be useful 

for a better land use planning.  

2. The recommended procedures to model landslide susceptibility.  

This research complements other‘s works and enriches the insight of landslide 

hazard studies. This research covers complete procedures for landslide 

susceptibility modeling beginning with site investigation, preparation of spatial 

data, treatments of remote sensing data to be used with other spatial data, 

derivation of weightage system, GIS analysis and verification of the results. The 

research shows the procedures to assess the significance of landslide contributing 

factors. This is important step in looking for efficient procedures in landslide 

hazard modeling. The research also shows the roles of additional multi temporal 

factors in the landslide susceptibility modeling and procedure to assess their 

significance on the accuracy of LSM. For Department of Civil Engineering, 

Universiti Teknologi PETRONAS, this research lays an important foundation for 

further study on landslide susceptibility modeling.  

1.5 Thesis Organization 

The thesis is organized into five chapters. Chapter 1 describes reviews of background 

of the research and highlights the gaps, problems, and challenges that are compressed 

as the problem statement. This chapter also highlights objectives of the research, 

scope of the study, contributions of the research, and the thesis layout.  

Chapter 2 provides a review of relevant literatures on landslide susceptibility 

modeling, and the methods; landslide causative factors; cases of landslide 

susceptibility modeling; landslide cases in Malaysia and Cameron Highlands in 

particular; basic of remote sensing and image processing; and GIS and its roles in 

landslide susceptibility studies. 

Chapter 3 explains the research methodology that is the procedure of all stages to 

achieve the objectives. It consists of description of study area, hardware and software 

used, data preprocessing and GIS analysis. Data preprocessing includes preparation of 

all spatial data originated from topographic map, soil map, and geology map, so that 
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the data are in the same reference system. Image preprocessing of satellite image is 

meant to remove geometric and atmospheric errors of Landsat images. From the 

corrected images, land use land cover, multi temporal NDVI, soil wetness, and LST 

are derived. This chapter describes the procedures of selection of weighting system, 

designing scenarios for landslide susceptibility modeling, map validation and 

accuracy assessment, evaluation of significant role all causative factors, and test of 

the applicability of the developed model.   

Chapter 4 contains the results and discussions of the work accomplished. It covers 

the discussion of developed rating weight systems selection, produced landslide 

susceptibility maps that incorporate multi temporal factors, validation of the models, 

significant role each causative factors including static and multi temporal factors and 

result of applicability test of the developed model. All results and discussions are 

focused to answer the objectives. Summary of this chapter is presented in the final 

section. 

Chapter 5 provides conclusions of the research works that confirm and answer all 

objectives based on the findings during the research work. The chapter also suggests 

some recommendations for future works. 
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CHAPTER 2  

LITERATURE REVIEW 

2.0 Overview 

This chapter contains reviews of relevant literature on landslide hazard modeling 

including the terminologies, causative factors, and the methods of assessment. The 

review also covers previous works on this matter, either local or international case 

studies.  The relevant literature on the basic theory of Geographic Information System 

(GIS), Remote Sensing, image processing, estimation of NDVI, soil wetness and 

LST, and the application of these disciplines in landslide studies area, are presented.    

2.1 Landslide Hazard Studies: Terminologies and Associated Concepts 

As stated earlier, the term landslide means the movement of a mass of rock, debris or 

earth down a slope as defined by Cruden [1]. The term also includes slope failures as 

added by Highland and Bobrowsky [34]. The movement of a mass of rock can be a) 

falling, b) toppling, c) sliding, d) spreading, or e) flowing as shown in Fig. 2.1.  

In studying landslide hazard, there are some terminologies and concepts 

associated with this matter. The terms  used in this research are mainly taken from 

Gilbert, et al. [35] and Guzzetti [36]. Some importance definitions are given below: 

1. Landslide susceptibility refers to the likelihood of a landslide occurring in an 

area on the basis of local terrain or environmental conditions. Susceptibility 

does not consider the temporal probability or time frame of failures. Most of 

approaches in assessing and mapping landslide susceptibility are based on 

accurate evaluation of the spatial distribution of both factors, i.e. geo-

environmental factors and landslides.  
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Fig. 2.1 Type of mass movement  

Souce: Sassa [37] 

2. Landslide hazard refers to the potential for occurrence of a damaging 

landslide within a given area and within a specified period of time. Such 

damage could include loss of life or injury, property damage, social and 

economic disruption, or environmental degradation. Guzzetti [36] extended 

the definition that includes ‗the magnitude of the event‘. Thus, the definition 

incorporates the concepts of location, time, and magnitude of landslide 

hazard. Landslide hazard )( LH  is formulated by International Association for 

Engineering Geology and the environment (IAEG) and Varnes [38] as 

multiplication of probability of landslide size (AL), probability of temporal 

occurrence (NL),  and landslide susceptibility (LS). The equation is as follows: 
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      LSNPAPH LLL       (2.1) 

 Landslide susceptibility (LS) is a component of landslide hazard (HL). 

3. Landslide risk refers to the probability of harmful consequences, the 

expected number of lives lost, persons injured, extent of damage to property 

or ecologic systems, or disruption of economic activity, within a landslide 

prone area. The risk may be individual or societal in scope, resulting from the 

interaction between hazard and individual or societal vulnerability. 

4. Element at risk refers to the population, public and private infrastructure, 

economic activities, ecologic values, etc., at risk in a given area. 

5. Specific landslide risk means the expected degree of loss due to a particular 

landslide, based on risk estimation—the integration of frequency analysis and 

consequence analysis. Specific landslide risk )( SR  is formulated by IAEG 

and Varnes [38] as follows: 

LLS VHR         (2.2) 

To determine risk, one needs to know landslide hazard (HL) and landslide 

vulnerability (VL). 

6. Landslide vulnerability reflects the degree of loss to a given element (or set 

of elements) within the area affected by the hazard, expressed on a scale of 0 

(no loss) to 1 (total loss); vulnerability is shaped by physical, social, 

economic, and environmental conditions. 

7. Slope instability hazard zonation is defined by Varnes [38] as the mapping 

of areas with an equal probability of landslide occurrences within a specified 

period of time. Landslide instability hazard zonation is simply called as 

landslide hazard zonation (LHZ) as suggested by Gilbert, et al. [35] and most 

of relevant literature.  

In term of mapping, there are various types of landslide hazard maps as the result 

of stage of landslide studies. The definitions of landslide hazard maps are adopted 

from AGS [39], UN [40], and Varnes [38]. Some important landslide map definitions 

are given below: 
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1. A landslide inventory map shows the locations and outlines of landslides. A 

landslide inventory is a map represents a single event or multiple events. 

Small-scale maps may show only landslide locations, whereas large-scale 

maps may distinguish landslide sources from deposits, classify different kinds 

of landslides, and show other relevant data.  

2. A landslide susceptibility map ranks slope stability of an area into categories 

that range from stable to unstable. Many susceptibility maps use a color 

scheme that relates warm colors (red, orange, and yellow) to unstable and 

marginally unstable areas and cool colors (blue and green) to more stable 

areas. 

3. A landslide hazard map indicates the annual probability of landslides 

occurring throughout an area. An ideal landslide hazard map shows not only 

the chances that a landslide may form at a particular place, but also the 

chances that a landslide from farther upslope may strike that place. 

4. A landslide risk map shows the expected annual cost of landslide damage 

throughout an area. Risk maps combine the probability information from a 

landslide hazard map with an analysis of all possible consequences (property 

damage, casualties, and loss of service). 

In most of literature the terms ‗susceptibility‘ and ‗hazard‘ are often used 

incorrectly as synonymous terms as explained by Guzzetti [36] whereas both terms 

have different meaning. ‗Landslide susceptibility‘ is more in probability of ‗spatial‘ 

occurrence of slope failures based on terrain parameter conditions or in other words it 

is an estimate of ‗where‘ landslides likely to occur. Meanwhile, besides predicting 

‗where‘ a slope failure will occur, the term ‗landslide hazard‘ forecasts ‗when‘ or 

‗how frequently‘ it will occur, and ‗how large‘ it will be. Thus, landslide hazard is 

more difficult to deal with than landslide susceptibility. Moreover, susceptibility is 

the spatial component of the hazard.  

The reason that landslide hazard is more difficult to deal with than landslide 

susceptibility has made the number of publications on the study of landslide 

susceptibility abundance such as studies done by Agostoni, et al. [28], Ahmad, et al. 

[41], Anbalagan [2], Ayalew and Yamagishi [5], Chuanhua and Xueping [42], 
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Gahgah, et al. [43], Hong, et al. [44], Komac [45], Lee and Pradhan [10], Lee and 

Pradhan [7], Lee and Sambath [46], and Liao [47], even though these investigations 

are mostly entitled as landslide hazard study or assessment. This is what Brabb [48] 

found in most of literatures that landslide hazard (map) is often represented as 

landslide susceptibility (map). Guzzetti [36] added that literature on landslide hazard 

frequently discusses methods and techniques to model landslide susceptibility rather 

than landslide hazard. From this point of view, the author would like to emphasize 

that this research deals with landslide susceptibility mapping rather than landslide 

hazard mapping.  

2.2 Landslide Triggering and Causative Factors 

A Combination of landslide causative factors and one single triggering factor may 

lead to a landslide occurrence. For every case of landslide event there will be 

causative factors and, at least, a triggering factor. Like ‗susceptibility‘ and ‗hazard‘ 

terms, the terms ‗landslide triggering‘ and ‗landslide causative‘ factors are often used 

as synonymous. In fact there is a subtle difference between both concepts. Landslide 

causative factors are the reason why a landslide occurs at a particular area. These 

factors are responsible to the vulnerability of the slope to failure. Landslide triggering 

factor is a single stimulus that initiates a landslide event. Storm, extreme rainfall or 

prolonged rainfall, earthquake/seismicity, snow melting, and human activity are well 

known as landslide triggering factors as described by Gilbert, et al. [35], Guzzetti 

[29], Van Westen, et al. [49] and Carrara, et al. [50]. As an example, the rainfall 

intensity and the migration of the center of the rainstorm were found as the triggering 

factor for landslide in Lantau Island, Hongkong, as reported by Zhou, et al. [51].  

To assess landslide susceptibility, it is importance to understand the main 

conditions causing landsliding which are commonly known as landslide causative 

factors or simply written in this thesis as causative factors. A comprehensive review 

of causative factor can be found in Varnes [38]. The causative factors that cause slope 

instability are numerous and varied. The factors interact in complex and subtle ways. 

The basic causes of slope instability consist of inherent factors within the rock or soil, 

constant factors such as inclination, temporal factors such as ground water levels, 
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transient factors such as seismic vibration, and imposing factors such as construction 

or human activities. Beside inherent factors, there are factors producing unfavorable 

changes such as those that change stress in slope conditions (e.g. the stress vary due 

to erosion, fluctuation of ground water, change in land use, removal lateral support of 

slopes during cuts for roads, house sites, excavation, etc.) and those that change 

strength of materials in slopes (e.g. weathering and other physical and chemical 

actions). Varnes [38] further explained that inherent factors include geology, 

geomorphology, vegetation, hydrology conditions, and climate. Hutchinson [52] 

summarized terrain attributes (causative factors) associated with landslide shown in 

Table 2.1. 

Even though the number of causative factors is quite large, only few causative 

factors are important ones as concluded by Hutchinson [52]. This is why the number 

of causative factors used by the investigators on landslide hazard assessment (LHA) 

varies. For examples, Liao [47] used six causative factors namely, soil moisture, land 

use land cover, geology, soil, and slope gradient, for LHA mapping in Washington 

County and Crawford county, United Stated. Pachauri and Pant [53] included eight 

causative factors namely geotechnical factor, distance from active fault, slope angle, 

relative relief, geological formation, land cover, distance from ridge top, and road 

density, for landslide hazard studies in Himalayas. A local study conducted by Lee 

and Pradhan [7] on landslide hazard mapping in Selangor, Malaysia, used ten 

causative factors i.e. slope, slope aspect, curvature, distance to drainage, geology, 

soil, distance to lineament, land use land cover, and NDVI. The underlying reasons in 

regard with the number of causative factors used/chosen were not clearly stated in 

these publications. In the following, the description of the importance of some 

causative factors is discussed.  

2.2.1. Geology 

Many published literatures on LHA involve geology information as a causative factor 

for landslide hazard assessment such as the investigations done by Anbalagan [2], 

Chaco´n, et al. [54], Lee and Talib [55], Fell, et al. [56], Lee and Pradhan [7] and 

Suzen [57]. Jadda, et al. [58] found that the geology is the important landslide 
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causative factor during the investigation of LHA in Central Alborz, Iran. Varnes [38] 

explained that the simplest utilization of geology information is in form of a general 

geology map, showing geologic formations with accompanying tabular data stating 

the relative stability of the geology units.  

Table 2.1 Category of terrain attributes associated with landslide 

Category/Causative Factors Example  

Bedrock geology Bedrock type 

Quaternary geology Glacial geology 

Geomorphology Slope gradient and aspect 

Weathering Physical, chemical, and biological weathering 

Erosion Surface erosion, gullying, and seepage erosion 

Climate Precipitation and freeze-thaw 

Vegetation Vegetation type and root strength 

Hydrogeology  Runoff, snow melt and groundwater 

Geotechnics  Geochemistry, shear strength, and swelling shrinkage 

Volcanic activity Ash accumulation and lava flows 

Natural dams Glaciers and ice sheets 

Seismicity  Earthquake and shaking 

Human activity Land use 

Source: Hutchinson [52] 

Causative factors related to geology information are available as lithology and 

structure. Lithology includes the composition, fabric, texture or other attributes that 

affect the physical or chemical behavior of rocks and engineering soils as stated by 

Varnes [38]. Structure includes the features of inhomogeneity and discontinuity in 

rocks or soils at scale larger than a hand specimen including stratigraphic sequence, 

attitude of layering, gross changes in lithology, bedding planes, faults/geology 

lineaments, and folds. Slope stability is governed by the degree of fracturing and 

shearing. Geology fault/lineament also plays an important role in causing slope 

instability. For examples, areas with highly faulted zones in central Japan and 

southern Italy tend to have high occurrence of slope failures. Investigation conducted 

by Carrara, et al. [59] found that in the Umbria-Marche Apennines, the number of 

landslides is abundant along the major thrust. In constructing landslide hazard map in 
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Aglar River area, a tributary of the River Yamuna in Himalayas, Pachauri and Pant 

[53] considered the distance from active faults or geology lineament. The areas near 

active faults were classified into five groups and were given maximum weight values 

based on the closeness to the active faults. The closer the distance from active faults 

the higher the weight values.  

Type of soil is also an important factor controlling slope stability. The progressive 

weakening of slope forming material due to natural processes such as weathering and 

tectonic uplift may cause slopes instable as reported by Zhou, et al. [51]. Soil is 

unconsolidated mineral matter and located on the earth surface. Soil is originated 

from underlying bedrock and characterized by the presence of layering that plays an 

important role is mass movement processes. Soil depth also plays a role in 

influencing the total mass of the over burden which induces landslides as described 

by Pande, et al. [60]. Soil information is therefore frequently involved in LHA. For 

examples, Anbalagan [2] involved soil and rock types as a group of lithology and soil 

depth map as well during construction of landslide hazard zonation map of the 

mountainous areas of Himalaya. Using the author‘s experience, the type of soils and 

rocks was ranked based on the degree of fracture and strength.  

2.2.2. Geomorphology 

The presence or absence of former landslides is an important key if one would 

consider geomorphology factors in LHA as suggested by Varnes [38]. Past landslides 

would be the best guide to investigate the future behavior of the study area. Among 

the important aspects of geomorphology are slope and slope aspect. Carrara, et al. 

[61] added curvature factor as another aspect while DeGraff and Romesburg [62] 

included elevation factor in the landslide hazard model.  

More practical and visual descriptions on slope, slope aspect, and curvature terms 

can be found in ESRI [63]. Slopes of a hill describe the steepness of hill slope. Slope 

aspect is defined as a compass direction a hill faces while curvature is used to explain 

the physical characteristics of drainage basin such as erosion and runoff process. 

Slope contributes the overall rate of movement downslope the hill. Slope aspect 
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shows the direction of flows. Curvature of terrain is shown as convex, concave, 

peaks, and flat surface. Sloping surfaces that are convex in the cross-sectional 

direction are called as ridges. Those having convex cross-section and convex 

longitudinal direction are called peaks. Meanwhile, pits are indicated by concave 

curvatures as described by Kumar, et al. [64].  Curvature affects the acceleration and 

deceleration of flow and, therefore, influences erosion and deposition. The curvature 

forms, i.e. convex or concave, influence the convergence and divergence of flow. 

This information is useful to identify the areas where the flow will accumulate and 

possible landslide or debris locations.  

2.2.2.1 Slope gradient 

Slope gradient is an important causative factor. The shape of slopes affects the 

direction of and the amount of surface runoff or subsurface drainage down the slopes. 

For hazard zoning purpose, Varnes [38] stated that the steepness of slopes is 

important to consider due to its relation with the strength of slope-forming material. 

Slope gradient is usually classified into ranges of degree or percent. However, the 

interrelation between slope gradient and slope instability is complex. The steepest 

slope gradients do not always mean as the most prone slopes to landslide. Steep 

slopes are usually occupied by very resistant/competent rock causing the slopes more 

stable than comparatively gentle slopes of weak material. Havenith, et al. [65] added 

that landslide body and scarp usually occur in areas with relatively small slope angels. 

The preferential location of landslides at small slope angles is not caused by the slope 

angel itself but related with complex interaction between slope angle and the 

environment.  

The ranges of high risk slopes vary from one place to another. For examples, most 

of landslide cases in Lantau Island Hongkong occurred within a slope range of 25
0
-

35
0
 in the middle and western parts of the island and 30

0
-35

0
 in the eastern part 

respectively from investigations conducted by Zhou, et al. [51]. Slopes above 40
0
 and 

above 45
0
 were set as  the highest risk slopes referring to the works conducted by 

Anbalagan [2] and Pachauri and Pant [53] respectively. Meanwhile, Lee and Pradhan 

[7] found that slope range of 16
0
-25

0
occupied by most of landslide occurrences in 
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Selangor, Malaysia. Landslides may also occur at gentle slope e.g. 9
0
-12

0
 as reported 

by Jäger and Wieczorek [66]. The different ranges of risky slope indicate that the 

typical risky slopes are different from place to place. Hence, the risky slope should be 

carefully recognized for LHA purpose. 

2.2.2.2 Slope Aspect 

Slope aspect and terrain curvature are frequently used as causative factors in LHA. 

Carrara, et al. [61] has conducted a study on analysis of digital terrain for slope 

stability. The study found that slope aspect and its curvature can be related to slope 

stability. However, researchers had different opinions about the importance role of 

slope aspect in causing slope instability. Greenbaum, et al. [67] concluded that slope 

aspects have no significant influence on landsliding. On the contrary, some authors 

such as Suzen [57] and Van Westen, et al. [68] agreed that there is a relationship 

between landslide and slope aspect. Dai and Lee [69] added that the condition of 

moisture retention and vegetation of slopes are affected by the orientation of slopes 

and in turn, these conditions can affect the soil strength. In spite of the existence of 

the relationship between slope aspect and landslides, researchers found that there is 

no single relationship between landslide and slope aspect. Moreover, the facts that 

some studies were carried in various places, e.g. some were in northern hemisphere 

countries, some were in the southern, and some were in equatorial belt, would surely 

produce different results considering the sun exposure (intensity).  

Investigators found different relation between slope aspect and landslides. 

DeGraff and Romesburg [62] pointed out that slope aspect contains information about 

the structural and basic condition of a slope including fault planes and climatic factors 

respectively. The author further made assumptions that slopes which are facing the 

sun, particularly the afternoon sun, tend to have higher soil temperature, lower soil 

moisture, less vegetation, and therefore tend to have higher erosion rate. Further 

investigation carried out by Caiyan, et al. [70] in Gorges reservoir, China, found that 

landslides mostly occurred at slopes facing south, southwest and southeast. Lineback, 

et al. [71] found that the number of landslide occurrences is larger in the wetter north-

facing slopes than in drier south facing slopes when assessing landslide potential 
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zones in Payette River, Idaho, United States. Marston, et al. [72] reported that soil 

exposed on south facing slopes tends to undergo wetting and drying cycle so that it 

contributes the increase of the number of landsides in Himalaya. Meanwhile, the 

investigation conducted by Lee and Pradhan [7] showed that high frequency of 

landslides in Selangor, Malaysia, took place in north and northwest facing slopes.  

2.2.2.3 Curvature 

Curvature also has a contribution to landsliding. The acceleration or deceleration of 

colluviums, the loose bodies of sediment, is affected by curvature. The shape of hill 

slope, i.e. concave or convex, will determine where colluviums will accumulate. 

Ahmad and McCalpin [73] stated that the abundance of colluvial slides was found in 

‗hollows‘ or concave terrain. Concave slopes behave as a channel. It contains and 

retains more water gained from rainfall for a longer period than convex slopes as 

described by Kumar, et al. [64] and Lee and Evangelista [74]. Investigation on the 

relation of curvature and landslides produced different results. Ohlmacher [75] found 

that planar plan curvature has the highest probability of landsliding in Appalachian 

Plateau and scattered regions within the Midcontinent of North America. In 

Pemalang, Indonesia, investigation on the landslide susceptibility conducted by Oh, et 

al. [76] showed that most of landslide occurrences took place in convex curvature 

areas. Similar results were reported by Lee and Talib [55] and Lee and Pradhan [7]  

that convex curvature areas were found to have more frequent landslides compared to 

concave and planar curvature areas in Penang and Selangor, Malaysia, respectively. 

Oh, et al. [77] also investigated landslide susceptibility in Pechabun area of Thailand. 

The landslide occurrences mostly occupied concave curvature areas.  

2.2.2.4 Elevation 

Elevation is one of geomorphology factors that affect slope instability. Authors are in 

different opinions about this. Asfaw [78] considered elevation as an important factor 

for a reason that precipitation and weathering are inherent factors of elevation. Chau 

and Chan [79] found that elevation as a causative factor is related to human 
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developments/activities that are concentrated at certain elevations belt. Dai and Lee 

[69] argued that at very high elevation, the terrain usually consists of weathered rocks 

whose shear strength is much higher. Meanwhile, at intermediate elevations, the 

terrain is covered by thin colluviums causing it more instable. At very low (gentle) 

elevations, the terrain is usually covered by thick colluviums or residual soils so that 

the frequency of landslides is low. Although landslides have been found to have a 

relationship with elevations, Gómez and Kavzoglu [80] argued that the relationship is 

still unclear. The author further described that the elevation influences the number of 

biophysical parameters and anthropogenic activities, and the soil characteristics are 

affected by the elevation. Gao and Lao [81] introduced an empirical formula relating 

possibility of landslide P(H) at a particular place with height factor as follows: 

    106/001847.028229.1 32 HHHP      (2.3) 

2.2.3. Hydrology conditions and Climate 

Water is the most important landslide causative factor as explained by Varnes [38]. 

As the consequence, it is important as well to identify the source, movement, amount 

of water, and water pressure. Slope failure types and severities vary from one region 

to another due to climatic patterns of temperature and precipitation, and also depend 

on the soils and weathering characteristic of each climatic region. In tropical region, 

such as Malaysia, the monsoon system plays important roles in causing landslides.  

Spatial data associated with water, such as complete precipitation data as well as 

subsurface water level, pressures, and their seasonal fluctuation, area required for 

LHA purpose as suggested by Varnes [38]. Unfortunately, such data are generally 

unavailable or incomplete. Investigators then focused on gaining the information on 

how hydrology conditions are affected by lithology, structure, soils, topography, 

vegetation, climate, and by movement of landslide itself. Responding to this, 

investigators used remote sensing technology e.g. aerial photograph and satellite 

images, to detect ground surface temperatures, soil moisture, and vegetation 

condition. The latter can reflect the change of hydrologic conditions. For examples, 

Seker, et al. [82] used land surface temperature for locating landslide areas in 
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Sebinkarahisar township, Turkey. Landslides locations were characterized by having 

high thermal difference. Meanwhile, Mondini, et al. [83] made a hypothesis that the 

surface temperature between landslide and stable areas should be different. The 

preliminary result showed that the distribution of land surface temperature in 

landslide areas in Collozone, near Umbria, Italia, is lower than that in the non-

landslide areas.  

2.2.3.1 Soil Moisture 

Soil moisture or soil wetness can be an important factor of areas prone to landslide. 

Theoretically, if the moisture of surface soil mass increases, the pore water pressure 

beneath the respective surface increases accordingly. In turn, it will decrease shear 

stress and shear strength, and can initiate landslides as described by Ray and Jacobs 

[84], Jotisankasa and Vathananukij [85] and Xu, et al. [86]. Ray and Jacobs [87] 

studied the relationship between soil moisture, precipitation and mass movements in 

three different places namely a district in Philippine, California and Nepal. The study 

found the strong relation between soil moisture, precipitation and landslide 

occurrences time. For areas with typical rainfall induced-landslides, like most places 

in Malaysia, as the amount of rainfall increases, the water content and pore water 

pressure increase as well. In turn, it will increase the water permeability and lateral 

water flux in the soil, causing the respective areas more inductive to landsliding.  

2.2.3.2 Factor related to river 

Hydrologic condition in river may be related to landsliding. Kallen, et al. [88], 

working on geotechnical mapping in Qingjiang River, China, found that there is a 

strong relation between lithology, slope angle, and texture, and landslide occurrences 

along the river. Most landslides take place on the rivers whose dip angle of bedding is 

nearly parallel to the slope, facilitating potential and effective side planes. Liu, et al. 

[89] found similar result that landslides mostly occur in close proximity the Yangtze 

River, Three Gorges, China.  The fact that landslides frequently occur along the river 

is explained in the following. Landslides along the river are usually caused by the 



24 

changes in ground water level of river slope. If slopes are adjacent to a water body 

such as river or lake, and the water level of a water body suddenly falls, the ground 

water level cannot quickly escape. This condition may cause the slopes having shear 

stress higher than in normal condition, leading the slopes to unstable. Landslides 

along the river usually occur after flood eroding the river bank, causing the slope cut 

and unstable. The case of landslide along Shirayuki River represents this condition as 

reported by Shimazu and Oguchi [90].  

In constructing landslide hazard map, investigators usually apply the distance 

to/from river/drainage as a landslide causative factor and make an assumption that the 

closer the distance to river the more unstable the slope. This principal is applied to a 

case of landslide in Shirinrood watershed, Iran, investigated by Kelarestaghi and 

Ahmadi [91]. The authors consider the closeness to the river as a causative factor for 

a reason that the river disturbs the stability of the slopes by eroding process or 

saturates the lower part of material until the ground water level increase. Other 

investigators applied similar principal were Lee and Talib [55], Jadda, et al. [58], 

Yilmaz [92], Lee and Evangelista [74]. Gómez and Kavzoglu [80] used buffered river 

channel of Jabonosa River Basin, Venezuela, as an input for landslide hazard 

modeling.  

2.2.4. Vegetation and Land Use Land Cover 

Vegetation is an importance landslide causative factor. It maintains the integrity of 

hill slopes by binding rocks and soils together against incessant torrential rains that 

last for days. Anbalagan [2] explained that different types of vegetation have different 

root strength and network. Hence, they contribute the stability of the slope. Well 

distributed root network system will increase shearing resistance of slope material 

because it acts as natural anchoring of slope material. In addition, slopes covered 

either by thick vegetation or grass experience less weathering and erosion and, as the 

consequence, it will strengthen the stability of the slopes. On the other hand, non-

vegetated (or barren land) and sparsely vegetated slope are exposed to weathering and 

erosion process, causing the slopes prone to failure.  
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2.2.4.1 Land use land cover (LULC) 

Land use is different from land cover even though these terms are frequently used 

interchangeably. Liao [47] described that land use express what human beings have 

done or developed on the land and it resources. Opening hilly areas for cultivation 

and irrigation can change the water budget on the slope and can lead to slopes 

instability. Land cover shows the physical state of the land surface such as, forest, 

grass, and lake, etc. Land cover can act as an indirect indicator of slope stability.  In 

general, vegetated areas or slopes mean that these areas are more stable compared to 

non-vegetated ones because vegetation protects the sloping material from weathering 

and erosion.  

In LHA, LULC has been a mandatory causative factor to include. Various land 

cover land use types are assigned different weight values referring to their 

contribution to slope instability such as in landslide hazard assessment works carried 

out by Anbalagan [2], Pachauri and Pant [53], Ramli, et al. [93], and Liao [47]. Forest 

land and thickly vegetate areas are usually assigned with low weight values while 

sparse vegetated areas and barren land are given relatively high weight values due to 

their vulnerability to slope failure. Zhou, et al. [51] studied the relationship between 

land use and landslide in Lantau Island, Hongkong, by overlaying landslide data 

overlaid with land cover. As the result, most of landslide occurrences took place in 

the bare/barren land, shrub-areas, and in the transition zones between different 

vegetation types.  

2.2.4.2 Vegetation Index 

Another expression of the condition of vegetation involved in LHA is in form of 

vegetation index. Gibson and Power [94] described that vegetation index is a measure 

of biomass and vegetation health. The higher the vegetation index value the denser 

and healthier the vegetation. Working on landslide hazard modeling in Namasigue 

and El Triunfo watersheds, Honduras, Perotto-Baldiviezo, et al. [95] found that areas 

with low vegetation index values such as on agriculture areas and removed-deep 

rooted permanent vegetation areas had high landslide occurrences. On the contrary, 
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areas with high vegetation index values such as shrub fallow and forest had relatively 

low landslide occurrences. Similar result was obtained by Jayaseelan and Sanjeevi 

[96] during the work on recognizing landslides locations using vegetation index 

values derived from remote sensing images in Nilgiris, South India. On satellite 

images, Vohora and Donoghue [97] explained that landslides areas can be identified 

based on tone, which indicated exposed surfaces,  and feature shapes. Lin, et al. [98] 

found that the pre-quake vegetation, i.e. NDVI, condition at the Jou-Jou Mountain 

area is higher (0.4) than that after earthquake (0.08) where most of vegetated areas 

were covered by landslide debris. This fact suggests that the typical of vegetation 

index of landslide areas is low. 

2.2.5. Human activities 

Human activities or frequently called as anthropogenic activities on hilly slopes are of 

important landslide causative factors. There are two anthropogenic activities namely 

deforestation and road network development. 

2.2.5.1 Factors related to deforestation 

Alexander [99] reported that deforestation has resulted in mudflow disaster in 

Calciano, Southern Italia. Glade [100] reviewed history of landslide in New Zealand 

and found that extensive conversion of hill areas from native forest and bush to 

pasture had reduced the strength of the regolith, causing the slopes more susceptible 

to landslides. Erosion rate on clear slope or cut slope is 30 times higher than in forest 

as investigated by Sharma and Kumar [101] for case of H.J. Andrews Experimental 

Forest, United State. The rapid development of Penang Island, Malaysia, had negative 

consequences where urban expansion started to encroach hilly areas as reported by 

Chan [102]. Major development projects were mainly directed to hilly areas due to 

the limitation of land. As consequences, hilly areas experienced land use changes 

mainly from forest to open land such as for construction, housing and agriculture. 

These developments have made landslide as of major natural disaster to Penang 

Island. Lee and Pradhan [103] reported that there were 465 landslide sites identified 
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from aerial photograph and site investigation at this area. Anbalagan [2] added that 

watering the slope in case of agriculture field will add more water on the slope 

besides the water received from precipitation. This may affect the stability of the 

slopes. Housing and construction on the slopes will add load to natural weight of the 

slopes due to the weight of such structures.     

2.2.5.2 Factors related to road network development 

Road network development is another consequence of urban expansion. For hilly 

areas, development of new roads is frequently built traversing undulating areas. This 

inevitably employs works of clearing and cutting slopes. Liao [47] reported that 

extensive slope cutting for developing two new roads in Northern Arkansas, 

Washington, United State, had caused landslides occurred along these roads since the 

beginning of construction and continued to undergo slope failures years after the 

completion. Investigating landslide hazards in British Columbia, Canada, Jordan 

[104] found that approximately 95% of development relative landslides are related to 

road. A big landslide occurred in Pos Selim, Malaysia, during works for developing a 

road connecting Simpang Pulai and Kampung Raja and continued after its opening 

for public as reported by JKR [13] and Malone, et al. [105].  

Given the fact that cut slope along the road poses a serious threat to the road 

passer and infrastructures along the road including the road itself, many investigators 

considered the road as an importance causative factor in landslide hazard analysis in 

term of the distance to/from the road. The closer the distance from the road the higher 

the slope failure threat and the greater the weight value as well. This concept has been 

applied in landslide hazard analysis by, for examples, Ahmad and McCalpin [73] for 

case study of Kingston Metropolitan areas, Jamaica; Kelarestaghi and Ahmadi [91] 

for case study of Northern Iran; and Yalcin [106] for case study of Ardesen, Turkey; 

and Sharma and Kumar [101] for case study of Parwanoo, Himalaya. As a practical 

example, Chung and Leclerc [107] classified the distance to the road into three 

classes: <25 meter (high hazard), 25-50 meter (medium hazard), and >50 meter (low 

hazard or safe). 
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2.2.6. Number of Causative Factors Used for LHA 

Reviewing a number of literatures on LHA, it can be concluded that there is no 

agreement among the authors about the number of landslide causative factors should 

be considered in LHA. Authors have different suggestion about this. Van Westen, et 

al. [68] suggested that all possible causative factors can be entered into a GIS-based 

landslide hazard analysis if a statistical method is selected. Van Westen [108] and 

Sarkar, et al. [109] agreed to use the available landslide causative factors to analyze 

landslide hazard. Dahal, et al. [110] recommended involving only relevant factors. In 

addition, Van Westen [111] highlighted an important suggestion that the factors 

acting to previous landslide events at a particular area should be chosen in landslide 

hazard assessment. Expert opinion on selection of causative factors was used for 

works on LHA carried out by Chung and Fabbri [112]. Anbalagan, et al. [113] used 

inherent causative factors responsible for slope instability when working on LHA in 

Himalaya terrain.  

The following is examples of utilization of different number of causative factors 

applied to different landslide case studies. For examples, Neaupane and 

Piantanakulchai [114] involved the factors that were generally used in LHA such as 

slope, slope aspect, lithology, proximity to channel/stream, and land use land cover. 

Sharma and Kumar [101] incorporated the main contributory factors for landslide 

hazard assessment in Parwanoo, India. They were distance from fault, slope, slope 

aspect, lithology, land use land cover, flow accumulation, distance from road, and 

distance from drainage. In comparing between GIS-based landslide susceptibility 

assessment using multivariate and bivariate methods, Süzen and Doyuran [115] 

employed 13 factors that were believed to control the landslides in the study area of 

Asarsuyu catchment, Turkey. These factors were lithology, distance to fault, fault 

density, elevation, distance to drainage, drainage density, distance to ridge, slope 

aspect, slope, distance to settlement, distance to power and road, distance highway, 

and land use land cover.  
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2.2.7. Multi Temporal Environmental Factors 

The temporal component is important to involve in assessing landslide hazard under 

changing environmental condition. Most of published literatures on landslide hazard 

do not involve the impact of changing environmental condition. Guzzetti [29] 

recommended the addition of the temporal aspect (time component) of landslide into 

hazard models since actual landslide hazard has links with temporal factors. Temporal 

factor, as previously discussed, is directly linked to rainfall or ground water table. 

However, environmental factors such as vegetation condition, inform of NDVI, soil 

moisture/wetness, and LST are responsive to the main temporal factor that is rainfall. 

The publications investigating the responses (or changes) of such factors to rainfall 

are given below.  

2.2.7.1 Change in vegetation index 

Water is the most important factor for plant growth. In most of ecosystem, especially 

grassland and cropland, seasonal plant growth synch with the rain cycle. During 

drought season, vegetation grows poorly. Conversely, abundant rain increases the 

vigor and health of vegetation. Investigation carried out by Davenport and Nicholson 

[15] in East Africa showed that NDVI has been found as a sensitive indicator of inter-

annual variability of rainfall. Xia, et al. [16] found that vegetation development is 

correlated with precipitation-derived moisture. The correlation is seasonal change.   

2.2.7.2 Change in soil moisture 

Change in rainfall amount and patterns can affect soil moisture/wetness. Korres, et al. 

[17] described that spatio-temporal patterns of soil wetness in agricultural areas are 

affected by multiple natural such as rainfall. Zribi, et al. [18] found that soil moisture 

estimated from ERS scatterometer estimators follow approximately the same 

variations as that in rainy season. Investigation carried out by Kyoung-Wook, et al. 

[19] showed that soil moisture experience significant change just after heavy rainfall 

events. Meanwhile, Nash, et al. [20] reported that there is a delay between change of 



30 

soil moisture and rainfall by a few lags. Findell and Eltahir [21] reported that the 

correlation of soil saturation condition and subsequent rainfall is linear and appears to 

be significant during summer months. These investigations show that rainfall has a 

role in determining soil moisture.  

2.2.7.3 Change in LST 

The Investigations carried out by several researches show that surface temperature 

changes due to variation of rainfall intensity. Iijima, et al. [22] investigated the 

relation between soil temperature and rainfall in Central Lena River Basin, Russia, 

and found that pre-winter rainfall in the following three years accelerated soil 

warming. Berg, et al. [23] found in his investigation in Europe domain that there was 

an exponential increase in the extreme precipitation with increasing surface 

temperatures in winter. In summer, the opposite occurred. Investigating spatio-

temporal of land cover, LST, and rainfall relationship over Sri Lanka, Kulawardhana 

[24] found that rainfall and LST showed a significant correlation (r = 0.69) during the 

second inter-monsoonal period from October to November. Hu and Feng [25] also 

found that surface air temperature and precipitation influenced soil temperature in the 

Eurasian continent. These studies show that the climate, more particularly, rainfall 

has a contribution in controlling soil temperature. 

2.3 Scales of LHZ Maps 

To get appropriate LHZ maps, one should consider the appropriate scales and 

methods. Suzen [57] explained that the selection of the scales depends on the aim of 

the study, the required precession of the maps, and the availability of the resources 

e.g. finances, data, and manpower. For constructing LHZ maps using GIS, Van 

Westen [111] and Suzen [57] suggested the following scales: 

1. National scale (< 1:1.000.000). This scale is mainly used to outline the hazard 

type and hazard prone areas prepared for the entire country. 

2. Regional/Synoptic scale (1:100.000 to 1:250.000). This scale is suitable for 

regional planning in respond to landslide hazard threat. These maps cover area 
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of thousands of square kilometers. The suitable method for this scale is 

qualitative method such as geomorphologic field.  

3. Medium scale (1:25.000 to 1:50.000). Medium scale is used for preliminary 

planning of infrastructural works, dealing with feasibility studies for large 

engineering works. The scope of these maps covers area of several hundreds 

of square kilometers. Quantitative method such as statistical analysis is 

suitable for this scale.  

4. Large scale of 1.2000 to 10.000 is used at the level of the engineering 

geological site investigation. These hazard maps are intended to facilitate a 

detailed planning for infrastructure, housing or industrial projects. The maps 

cover very small area. Deterministic approach is suitable for this scale. A 

large portion  

2.4 Methods for Landslide Hazard Assessment 

Risk and loss caused by landslide can be reduced either by modifying the hazard 

event itself which is related to engineering designs; or by reducing human 

vulnerability which is related to modification of human attitude and behavior towards 

hazards. Modification of human vulnerability includes preparedness, forecasting and 

warning, and land-use planning as mentioned by Chung and Leclerc [107]. Both 

modifications require the natural hazard to be zoned. As defined by Varnes [38], LHZ 

is the division of a land surface into homogenous areas according to the degree of 

actual or potential hazard due to landslides or other mass movements on slopes. 

The principle ―the past is the key to the future‖ has been used by landslide 

investigators for assessing landslide hazards. In order to have understanding of past 

landslide occurrences and to be able to predict future landslide hazards, one should 

begin with construction of landslide inventory map as suggested by Guzzetti [29], 

Van Westen [111] and most of the experts of this field. The next work is to have a 

good understanding about landslide causative factors and its relationship with 

landslide events as suggested by Varnes [38] and Liao [47]. This will allow the 

investigators to gather relevant causative factor maps. The next step is selection of the 

appropriate method(s). There are, of course, various methods for evaluating landslide 
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hazard. However, Guzzetti [29] and Aleotti and Chowdhury [116] emphasized that 

there is no method which is considered as the most suitable method for evaluation of 

landslide hazards effectively. This may be due to the wide spectrum of landslide 

phenomena so that there is no single method proven to be powerful to identify and 

map landslides, to ascertain landslide hazards, and to evaluate the associated risk. 

Hence, a combination of qualitative and quantitative methods is accommodated in 

especially in tweaking weighting system. Works of DeGraff and Romesburg [62],  

Ayele [117], and Baban and Sant [118] were examples of landslide hazard studies 

using combine methods. 

There are several methods for landslide hazard analysis. The methods are mainly 

divided into qualitative and quantitative methods. The selection of methods 

determines the objectivity of the results. The first methods are subject to subjectivity 

of experts based on site experiment while the latter methods offer objectivity in result.   

Aleotti and Chowdhury [116] provided a comprehensive review on landslide hazard 

assessment methods along with the advantages and disadvantages. The methods are 

schematically shown in Fig. 2.2.  

 

Fig. 2.2 Landslide hazard assessment methods 
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2.4.1. Qualitative Methods 

Qualitative methods are commonly known as direct methods. Qualitative methods 

include use of index or parameter maps and field geomorphology analysis 

approaches. Qualitative approaches are entirely based on the site specific-experience 

or judgment of experts. These approaches mainly require aerial photogrammetric 

images and field survey data as supporting data for image interpretation use. High 

resolution satellite images may complement required spatial data. More detail about 

qualitative methods can be found in Aleotti and Chowdhury [116], Suzen [57], 

Guzzetti [36], and Van Westen [108].     

2.4.1.1  Field Geomorphology Analysis  

This method is also called as heuristic method, landslide distribution mapping, and 

experience-based method. This method is considered as the most straight forward 

qualitative method to create LHZ map as stated by Wieczorek [119]. Hazard 

assessment is carried out directly in the field by the experts of earth sciences based on 

their experience. Suzen [57] stated that this method requires identification of mass 

movements and assessment of the geomorphologic conditions for constructing LHZ 

map. The method also employs interpretation of aerial photo or high resolution 

satellite images. Another required data may come from database of historical 

landslide occurrences. 

The advantage of this method is that the hazard map can be constructed directly 

after obtaining the required spatial data. The assessment of the stability at a particular 

area can be carried out quickly by involving a large number of causative factors. In 

Addition, this method can be applied to all scale as suggested by Aleotti and 

Chowdhury [116] and Suzen [57]. However, this method has disadvantages as 

reported by Aleotti and Chowdhury [116] as follow: 

1. The spatial data selection to construct landslide hazard map and the rules that 

control slope stability are relied on the subjectivity of the investigators or 

experts. Hence, comparison between hazard maps produced by different 
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investigators is difficult to do due to the difference subjectivities of the 

investigators. 

2. Subjectivity of the method. It means that there is no explicit rule so that 

critical analysis of the result is difficult to do. Another problem in assessment 

of the result may arise when new data become available.  

3. This method is laborious because it requires lengthy field surveys.  

Examples of mapping landslide hazard zones using geomorphology field analysis 

are mostly found in literatures of the 70s and 80s. Some recent investigations using 

this method can be found in Mantovani, et al. [120] who conducted geomorphologic 

survey at Olvera area, Spain; Hiramatsu, et al. [121] who carried out geomorphologic 

analysis using LiDAR (Light Detection And Ranging), Hearn [122] who worked on 

geomorphologic mapping of Ok Tedi copper mine, Papua New Guinea, and other 

investigations carried out by Canuti, et al. [123], Lee and Talib [55], and Mantovani, 

et al. [124]. The final product is a map showing spatial distribution of mass 

movement either shown as coverage (areas) or point symbols. 

Suzen [57] stated that in most LHA methods, landslide distribution or inventory 

map is used as a base landslide map. By using this map, the relation between 

landslide and causative factors can be extracted. This relationship would provide 

useful information for applying statistical methods. 

2.4.1.2  Overlay or Combination of Index Maps or Parameter Maps  

To construct a landslide hazard map using this method, a set of landslide causative 

factors is selected by an expert based on his/her experiences. Each factor has classes. 

The expert assigns an appropriate weighted value to each factor; a value that is 

proportional to its relative contribution to cause slope stability. According to Soeters 

and van Westen [125], this method requires the following procedures to complete: 

1. Division of each causative factor into a number of relevant classes. 

2. Assignment of a weighted value to each class. 

3. Assignment of a weighted value to each causative factor. 
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4. Overlay of the weighted thematic maps/causative factors. 

5. Production of the landslide hazard map representing level of hazard.  

Reviewed by Aleotti and Chowdhury [116], this method has advantages that the 

role in determining hazard level is explicit even though it still contains the 

subjectivity from the expert opinion in assigning weighted values. This method also 

enables automation using GIS and standardization of data management from data 

collection to analysis. In addition, it can be applied to various scales. However, this 

method is time consuming when applied for a large area. Another drawback of this 

method is that the subjectivity of the expert still exists in term of attributing weighted 

value for each causative factors and classes. Extrapolating a model built in a certain 

area to other areas faces difficulties.  

Some examples of application of this method can be found in Anbalagan [2], 

Anbalagan and Singh [126], Abu-Zeid, et al. [127], Turrini and Visintainer [128], and 

Ramli, et al. [93]. The problem related to defining numerical weighted values has 

been overcame by Anbalagan [2] by introducing the first rating system called 

Landslide Hazard Evaluation Factor  (LHEF) to evaluate the relative significance of 

each causative factor. Anbalagan [2] also developed a role to evaluate relative 

importance between classes /sub categories of a causative factor. To apply LHEF 

rating scheme, Liao [47] suggested the following procedures: 1) evaluating the 

relative importance between causative factors based on their influence to slope 

instability in the area of study; 2) evaluating the relative importance between classes 

of a particular causative factor according to their significance in contributing slope 

failure; 3) constructing a thematic for each causative factor showing weight values for 

pixels; 4) summing up all thematic map to produce the final LHZ map. 

LHEF rating scheme was first applied to study landslide hazard in the 

mountainous terrain of Himalaya by Anbalagan [2]. The main causative factors 

included in this scheme were lithology, structure, slope gradient, relief, land use land 

cover, and ground water condition. The selection of these factors was based on field 

observation at the study area. Table 2.2 shows the maximum ratings/weight values of 

each factor. The rating was determined using empirical approach based on the author 

experience obtained from the field study about the relation between landslide 
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causative factors and their influence on landslide occurrences. The maximum LHEF 

value for lithology, structural discontinuities, slope gradient, land use land cover was 

set to 2.0 while the remaining factors were set to 1.0. 

Table 2.2 LHEF rating for causative factors 

Causative Factor Maximum LHEF 

Lithology  2.0 

Structural discontinuities 2.0 

Slope gradient 2.0 

Relative relief 1.0 

Land use and land cover 2.0 

Ground water conditions 1.0 

Source: Anbalagan [2] 

For awarding weight values for causative factor classes, Anbalagan [2] applied an 

experience based subjective assignment. For example, land use land cover was 

subdivided into five classes: agriculture, thick forest, moderate forest, sparse forest, 

and barren land. Barren land was considered as the most unstable land cover and 

given a weight value of 2.0. Thickly vegetated forest areas  were   considered as    the 

most stable areas and assigned a weight value of 0.8. The remaining classes were 

given weight values in this way, based on the experience of the investigator. The 

rating values of all causative factors along with their correspondence classes are 

presented in Table 2.3 

The final landslide hazard map indicated the total estimated hazard (TEHD) 

which was the total summation of the weight values of all factors, i.e. lithology, 

structure, slope gradient, relief, land use land cover, and ground water condition. 

TEHD expressed the net probability of slope instability. Based on TEHD values, the 

final hazard zones map was presented in five categories namely very low hazard 

(TEHD<3.5), low hazard (3.5-5.0), moderate hazard (5.1-6.0), high hazard (6.1-7.5), 

and very high hazard (>7.5). The maximum of TEHD value may change as the 

number of factors involved in constructing final hazard map increases or decreases. 
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Table 2.3 LHEF Rating System  

Factor Subcategories/Classes Rating 

Lithology: rock type 

Quartzite and limestone 0.2 

Granite and gabbro 0.3 

Gneiss 0.4 

Well-cemented terrigeous rocks 1 

Poorly-cemented terrigeous rocks 1.3 

Slate and phyllite 1.2 

Schist  1.3 

Shale with interbedded clayey rocks 1.8 

Highly weathered shale 2 

Lithology: soil 

Old well compacted fluvial fill material 0.8 

Clayey soil 1 

Sandy soil 1.4 

Debris  1.2 

Old well compacted young loose 

material 

2 

Structure: depth of soil 

cover 

< 5 m 0.65 

6-10 m 0.85 

11-15 m 1.3 

16-20 m 2 

>20 m 1.2 

Slope gradient 

>45 2 

36-45 1.7 

26-35 1.2 

16-25 0.8 

<15 0.5 

Relative relief 

<100m 0.3 

101-300m 0.6 

>300 1 

Land use land cover 

Agriculture  0.65 

Thickly vegetated forest area 0.8 

Moderately vegetated forest area 1.2 

Sparsely vegetated forest area 1.5 

Barren land 2 

Water conditions 

 

Flowing  1 

Dropping  0.8 

Wet  0.5 

Damp  0.2 

Dry  0 

Source: Anbalagan [2] 
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2.4.2. Quantitative Methods 

Quantitative methods consist of statistical analysis, geotechnical engineering 

approach, and neural network analysis. Quantitative approaches are more rigorous 

than qualitative methods. These approaches offer objectivity in methodology so that 

the problem of hidden rule is reduced, total automation of steps for constructing 

landslide hazard map and standardization of data management. However, Aleotti and 

Chowdhury [116] highlighted the main drawbacks of the methods namely the 

difficulties in systematic data collection and impracticality in analysis of a large 

number of causative factors. 

In the following, several methods such as landslide susceptibility analysis and 

information value method (both are of bivariate statistical analysis methods), and 

multiple regression method which is one of multivariate statistical methods, are 

explained. Detail explanation of the remaining methods such weight of evidence 

(another bivariate statistical analysis method), discriminant analysis (another 

multivariate statistical method), geotechnical engineering approaches such as 

deterministic analysis/safety factor, and neural network can be found in the literature 

such as Chuanhua and Xueping [129], Dahal, et al. [110], Glade [130] for weight of 

evidence method; Carrara [131], Agostoni, et al. [28], Komac [45],  Dong, et al. 

[132], Ohlmacher and Davis [133] and Pradhan [134] for multivariate statistical 

methods; Jelínek and Wagner [135] and Terlien, et al. [136] for deterministic analysis 

which is of geotechnical engineering approaches; Gómez and Kavzoglu [80], Yilmaz 

[137], and Pradhan and Lee [138] for neural network application for LHZ.  

As part of quantitative methods, statistical methods offer objectivity of the results 

and a better reproducibility of the hazard zonation. Statistical methods consist of 

bivariate and multivariate approaches. Using these methods, the relation between the 

causative factors and landslide occurrences in the past is determined. Analysis is 

usually based on the relationship between landslide densities per a particular class and 

landslide densities over the study area. Having found any relationship between both 

data, a quantitative prediction can be made for areas free of landslides but have the 

same conditions as suggested by Aleotti and Chowdhury [116]. To find any 
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relationship between landslide occurrences in the past and respective causative 

factors, Van Westen [139] and Suzen [57] suggested the following procedures:  

1. Classification of each causative factor map into a number of relevant classes 

2. Crossing causative factor maps with landslide map 

3. Derivation of weight values based on crossing result 

4. Assignment of weight values for involved causative factor maps together with 

their classes. 

The final landslide hazard is constructed by summing up the weight values of 

causative factor classes. Overlay of thematic maps of causative factors and 

calculation of landslide densities are the core of statistical methods. Application of 

GIS for this method will be helpful especially when dealing with a medium scale 

hazard analysis and a large amount of spatial data.  

2.4.2.1 Bivariate statistical method 

There are many methods of bivariate statistical analysis for calculating weight values 

such as landslide susceptibility analysis, information value method, and weight of 

evidence modeling method. Landslide susceptibility analysis was selected for the 

current research work. 

Suzen [57] explained that bivariate statistical method deals with one dependent 

variable that is landslide occurrence, and one independent variable, for examples, 

slope, elevation, and land use land cover. Each causative factor map is combined or 

crossed with the landslide distribution map. Weight values for each factor are 

computed on the basis of landslide densities. The final landslide hazard map is 

produced by combining all weighted maps into a single map. The remaining step is 

works of map validation. These procedures are schematically shown in Fig. 2.3. 

Süzen and Doyuran [115] described that landslide susceptibility analysis is 

considered as a simple and useful statistical analysis method to determine the 

relationship between different variables (causative factor classes) and landslide 

occurrences by means of pair wise map crossing. Crossing between a landslide map 
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and individual causative factor map will result in a measure of the importance of 

individual factor class. There are two type of densities resulted from the crossing 

procedure namely area density and number density. The first is commonly known as 

Landslide Susceptibility Index (LSI) while the latter is known as Landslide 

Frequency Index (LFI) as explained Liao [47].  

 

Fig. 2.3 Schematic overview of bivariate statistical analysis 

Source: Van Westen [111] 
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1. Area density (Darea). This density is obtained by dividing the number of pixels 

with landslides within factor class Xi, that is Npix(SXi), and the total number 

of pixels within factor class Xi, that is Npix(Xi).This density is expressed as 

follows: 
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2. Number density (Darea). This density represents the number of landslide 

occurrences (Number(SXi)) per area (Area(Xi)). The unit of area is usually in 

square kilometer. This density is expressed as follows: 
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Based on density values, weighting values can be derived for use of evaluation 

the influence of factor classes. Liao [47] demonstrated the derivation of weighting 

system based on the first density values by assigning a maximum value of 100 for a 

factor class with a maximum density value. The remaining classes are awarded 

weight values proportional to their influences within a causative factor. This method 

has been applied by researchers such as Van Westen [140], Liao [47], Süzen and 

Doyuran [115], Long [141], and Vergari, et al. [142]. 

Information value is another bivariate statistical method. This method is 

introduced to overcome the problem in combination of a causative factor with 

numerical value (such as elevation values) and alphanumerical values (such as soil 

types) by means of treating each causative factor class as a new map showing two 

conditions: present of landslide (1) or absence of landslide (0). This method can be 

applied for either land units or pixel basis. Yin and Yan [143] formulated information 

value method as shown in Equation 2.9. The information value Ii of variable i is:   
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In Equation 2.6, N represents the total number of data points (grid cells); S represents 

the total number of grid cells; Si represents the number of grid cells involving the 
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parameter and containing landslide; Ni represents the number of grid cells involving 

the parameter.  

The total information value of grid j is shown as Equation 2.7. M denotes the 

number of parameter involved. Xij is the value of parameter. Xij = 1 if parameter i 

exists in grid cell j and Xij
 
= 0 if parameter i is absence in grid cell j. The total of 

information value determines the hazard level of a particular grid cell. The higher the 

information value the higher the degree of landslide susceptibility. This method has 

been used by investigators such as Saha, et al. [3], Ayalew, et al. [144], Gao, et al. 

[145], and Caiyan, et al. [70]. 
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Although bivariate statistical analysis is considered as quantitative method widely 

used for assessing landslide hazard, this method still contains a certain degree of 

subjectivity. This subjectivity exists during classification of a causative factor map 

into a number of relevant and division of the final hazard map into hazard. These two 

problems limit bivariate statistical analysis as summarized by Suzen [57] and Aleotti 

and Chowdhury [116].   

2.4.2.2 Multivariate statistical methods 

Multivariate statistical analysis was first applied in geology works petroleum 

exploration. Detail application of this method in LHA was began by Carrara [131]. 

This method utilizes training areas to get the relationship between causative factors 

and landslide occurrences. Should the relationships achieved and verified, they are 

extended to the entire of the study area. Aleotti and Chowdhury [116] recommended 

the following works on training areas: 

1. Division of the study area into land units. 

2. Selection of significant causative factors and preparation of input maps in 

form of numerical maps. 

3. Preparation of landslide map. 
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4. Overlay of land unit map and landslide map in order to evaluate the 

percentage of landslide affected areas in every land unit and divide it unstable 

and stable units. 

5. Overlay of the causative factor maps with the land unit map and building 

creation absence/presence matrix of a given class of a given class of a given 

parameter within each land unit. 

6. Multivariate analysis carried out using either multiple regression or 

discriminant analysis. 

7. Classification of the map into susceptibility classes referring to reclassified 

land units based on the results achieved in the previous phase. 

 Multiple regression is considered as the most well-known multivariate statistical 

method used in earth science. It examines the relationship between a dependent 

variable that is landslide occurrence map (denoted as Yi), and independent variables 

that are parameter maps, such slope classes and geology types (denoted as Xi) using 

the following equation:  

 nn XbXbXbbY .......22110       (2.8) 

The dependent variable Y represents the presence (1) or the absence (0) of a landslide 

of land units. X1-Xn are the independent variables. The notation of b0-bn is the partial 

regression coefficient which can be estimated using least square adjustment method. 

The methodology of bivariate and multivariate statistical analysis is typically data 

driven. Therefore, it offers highs objectivity in developed LHZ map. However, the 

methods still contain some drawbacks as identified by Van Westen [111]. In general, 

the general problem is the collection data over a large area regarding landslide 

distribution and landslide causative factor maps. Data gathering could be costly. A 

difficulty may arise when applying multivariate statistical analysis due to the 

presence of extremely voluminous matrices required for solving the regression 

equation, especially when dealing with small size of grid cells. Another problem 

could also arise as the grid cells size increases. Meanwhile, Suzen [57] added that 

there is a little subjectivity in bivariate statistical method in the number of classes 

required for division of causative factor maps and the final hazard maps. 
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2.4.3. Production of Final Landslide Susceptibility Map 

In this section, the term ‗susceptibility‘ is re-used rather than ‗hazard‘ for the final 

product map because the methods previously discussed for constructing landslide 

hazard map do not deal ‗when‘ landslides might occur, otherwise the methods only 

discuss ‗where‘ landslides might occur. This matter has been discussed in section 2.1.  

As stated by Liao [47], Suzen [57], and most of relevant literature, the final 

landslide susceptibility map (LSM) was produced by summing up the pixel based 

weight values in GIS environment. Hence, the landslide susceptibility (LS) of grid 

cell j, expressed in Equation 2.9, is obtained by summing up weight values (W) of 

causative factor i to M (M denotes the number of involved factors).  

 



M

i

ij WLS
1

        (2.9) 

Another problem arises when deciding the optimal combination and number of 

causative factors should be involved in construction of the final map. Suzen [57] 

suggested two options to solve this problem. The first is selection of causative factor 

maps on the basis of field experience. The second is using stepwise map combination 

by adding causative factor maps one by one. The resulted susceptibility map is then 

crossed with the landslide map and checked its accuracy. If the accuracy of the map 

increases after addition a particular causative factor, such a factor can be included in 

constructing the final map and vice versa. This method is also recommended by Van 

Westen [140]. 

2.5 Landslide Events in Malaysia and Cameron Highlands 

Landslide together with flood and windstorm are of major natural disaster threats in 

Malaysia as reported by Sapir, et al. [146] and ADRC [147]. Chan [148] reported that 

most of landslide events were triggered by heavy rainfall. This relationship can be 

understood since this country, due to its geographical position, experiences two 

maritime monsoons namely Northeast and Southwest monsoons. The first monsoon 

that falls between November and January brings heavier rainfall than the second one 
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that falls between April and May. In between these two monsoons, there are two 

inter-monsoon periods that occur for duration of 2-3 months and are characterized by 

having the highest temperature and driest days. However, during these periods, heavy 

rainfall with high intensity happens in the northern parts of West Malaysia between 

June and October as reported by Guha [149]. Thus, the rainfall cycle is somewhat 

anomalous. In the northern part of Peninsular Malaysia (PM), the average annual 

rainfall is 3,000 mm/yr which is larger than the average annual rainfall of entire PM 

with rainfall amount of 2,420 mm/yr.  

The relation of landslide events, summarized from JKR [13] database, and 

monsoonal rainfall of several cities in PM is already shown in  Fig. 1.1 of chapter 1. 

From the figure, it can be concluded that these monsoonal rainfall systems can be 

considered as the landslide triggering factor in PM. The number of landslide events 

increases as the rainfall reaches its peak time that coincides with the period of two 

monsoon systems. October to January and April to June are the months when the 

frequency of landslide occurrences is high.  

The areas that experience landslide events are shown circled in Fig. 2.4. 

According to landslide records of JKR [13], the most landslide-prone areas is Kuala 

Lumpur followed by Selangor, Perak, and Pahang. About 55% of the total number 

landslide events in Malaysia took place at hilly areas such as Fraser‘s Hill, Cameron 

Highlands, Genting Highlands (all is in Pahang), Gunung Raya (Langkawi), Paya 

Terubung (Penang), the mountain ranges in Hulu Kelang (Selangor), and several 

limestone hills in Ipoh. Among the biggest landslide event is landslide event at Pos 

Dipang that killed 44 people in 29 August 1996. The most recent landslide occurred 

at Bukit Antarbangsa, Kuala Lumpur, on 6 December 2008 that killed 4 people, 

destroyed 14 houses and cut off the access road to the residential area. The total 

economical loss caused by landslide in Malaysia from 1973 until 2007 was estimated 

about RM3.0 billion.  

Cameron Highlands is a landslide prone area. According to JKR [13], there were 

37 costly landslide events in Cameron Highlands from 1961-2007. About 56% of the 

occurrences were road-related landslides. The remaining was non-road-related 

landslides (Fig. 2.5a). The first national landslide tragedy in Cameron Highlands 
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occurred on 11 May 1961 causing 16 people dead. Tapah, Ringlet, Tringkap, Jalan 

Belading Tangkak, Tanah Rata, and Kampung Raja were among places prone to 

landslides. Besides causing loss of lives, landslides delayed delivery of vegetables 

and flowers, and cut off links between places.  

Site investigation carried out in 2006 and 2008 showed that minor landslides were 

easy to find along the main road of the study area, more particularly at cut slopes 

(Fig. 2.5a). Very few landslides occurred at natural slopes. Since 1961 to 2007, the 

total economic costs due to landslide threat in Cameron Highlands is about RM454 

million according to JKR [13] record. There was a big landslide occurred at Km22, 

Km23.8, and Km24 of the highway connecting Pos Selim, Perak, and Kampung Raja, 

Cameron Highlands, Pahang (Fig. 2.5b). The road constructed in 1997 was expected 

to open for public in 2000.  Due to the massive landslide occurring in 1999, the 

opening of the third East-West highway was postponed. There was no loss of lives 

regarding this landslide. However, the total economic costs for five times 

maintenance and recovery reached RM466.5 million. 

Rainfall also plays important role in triggering landslides in Cameron Highlands. 

The behavior of landslide occurrences and rainfall intensity variation is shown in Fig. 

1.3 of Chapter 1. According to this graph, the number of landslides during rainy 

seasons is higher than that of dry seasons.  On July and August, there are no landslide 

occurrences. Rainfall of this season might not be significant enough to initiate 

landslide events.  

The natural threat due to monsoonal rainfall system is made worst by 

anthropogenic activities such as deforestation for farming and expansion of urban 

areas, settlement and road networks. Cameron Highlands is among regions with a 

high dynamic economy development such as in producing vegetables and flowers for 

domestic and overseas market and being a popular tourist destination. The impact of 

economic development demands the opening of new roads and expansion of farming 

areas into hill slopes. Both activities mean modification of slopes stability so that in 

turn they may cause the slopes vulnerable to landslide. 
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Fig. 2.4 Landslide events distribution in PM from JKR [13] database (1961-2007) 

 

 

` 

 Fig. 2.5 Landslides a) along Kampung Raja-Ringlet road, b) at Pos Selim 

a) 

b) 

Source: MTD Sdn. Bhd. 
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The abundance of gardening and farming activities in CH has increased soil loss 

rate.  Fortuin [150] reported that the extensive deforestation and indiscriminate land 

opening for agricultural and housing have increased soil erosion rate over the land 

surface. Aminuddin, et al. [151] reported that soil loss rate in CH is high due to such 

activities. The rate was about 24-42 ton/ha/yr under vegetables and 1.3 ton under 

rain-shelter (plastic-roofed farming). With a high erosion rate, this area becomes 

prone to landslide. 

In relation to human activity, land use changes have been a crucial issue in this 

area. TNBHidro-Sdn.Bhd. [152] reported on the investigation of land use changes of 

two catchment areas namely Bertam and Telom. Table 2.4 shows land use/cover 

changes of both catchment areas from 1950 to 1990. In Bertam catchment, the areas 

for open land, vegetable/fruit farming expanded significantly from 5.8 to 10.2 km
2
. 

On the other hand, forest and tea/orchard areas decreased quit significant. In Telom 

catchment, the forest area decreased significantly from 90.3 to 74.1 km
2
. On the 

contrary, coverage of vegetable/flower farming expanded enormously. The urban area 

seemed to slightly expand while tea/orchards areas tended to be constant. In addition, 

Yusof, et al. [153] reported that more than 19,000 hectares of forest reserve in 

Cameron Highlands has been proposed for agricultural development and new roads. 

Such human activities are potential to increase landslide threats on Cameron 

Highlands and its surroundings.  

Table 2.4 Land use changes in Bertam and Telom Catchment 

Vegetation/  

Land Use 

Bertam Catchment 

[km
2
] 

Telom Catchment 

[km
2
] 

1950‘s 1980‘s 1990‘s 1950‘s 1980‘s 1990‘s 

Forest  46.5 45.1 43.5 99.1 90.3 74.1 

Tea/Orchards 15.2 10.4 6.6 6.3 6.2 6.2 

Vegetable/Flower 5.1 7.0 8.1 5.0 10.7 23.2 

Urban - 4.1 4.2 - 0.5 1.1 

Open/Grassland/ 

Scrub Forest  

5.8 6.0 10.2 - 2.7 5.8 

Source: TNBHidro-Sdn.Bhd. [152] 
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2.6 The Efforts on Reducing Landslides Hazards 

Knowing that there are many landslide influencing factors, efforts are required to 

reduce the consequences of landslides such as by locating and predicting hazard 

zones. Such efforts required mapping zones potential to landslides. 

2.6.1 Efforts by the Government and Individuals 

Providing LHZ maps have been one of the priorities of Malaysia government in 

response to this natural disaster threat. The government, through Slope branch of 

Public Work Department, has launched ten programs of National Slope Master Pan 

(NSMP) which one of them is providing LHZ maps. Besides the government, 

individual/non-governmental researchers also showed their awareness in regard to 

this matter such as Talib [8], Omar, et al. [9], Pradhan and Lee [12], Ramli, et al. 

[93], Lee and Pradhan [7], and Matori, et al. [154]. The areas commonly used as 

study areas are Cameron Highlands, Selangor, and Penang Island. 

2.6.2 Previous Works of LHA in Cameron Highlands 

There were efforts in reducing landslide consequences in Cameron Highlands 

initiated by various investigators. The efforts discussed in this research are by 

provision of LHZ maps constructed using different methods or approaches. Existing 

works on LHA for Cameron Highlands can be divided into three methods namely 

qualitative, quantitative, and Artificial Intelligent (AI) methods. The qualitative 

method that uses combination of index maps were applied by Omar, et al. [9], Ramli, 

et al. [93]. Meanwhile Talib [8] and Lee and Pradhan [10] used the quantitative 

method that relies on direct comparison between landslide contributing factors and 

landslide distribution. The AI method which uses a set of reasonably well defined 

roles to enable the implementation of knowledge-based system in form of artificial 

neural network has been used by Pradhan, et al. [155] and Pradhan and Lee [12]. The 

reviews of these works are explained in the following sections.  
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2.6.2.1 LHA in Cameron Highlands using Qualitative Methods 

Omar, et al. [9] applied a qualitative method for constructing LHZ map for Pos Selim 

to Cameron Highlands areas using GIS and remote sensing data The study utilized 

factor maps, i.e. land use land cover (derived from Landsat TM5 image), slope 

gradient, slope aspect, and height/elevation. The last three maps were derived from 

DEM (Digital Elevation Model) of topographic map with a scale of 1:50,000. Multi 

temporal factors were not included in this work. All factors were assigned weight 

values before proceeding to GIS overlay process for constructing a LHZ map. The 

authors adopted the weight values from the works of others outside Malaysia rather 

than extracting from their own study area. For example, Equation 2.3, the probability 

of high risk model developed by Gao and Lao [81], was used to produce a height risk 

map. The authors used expert opinion from DeGraff and Romesburg [62] for 

producing aslope aspect risk map and made their own assumptions for creating a 

slope risk map. The final LHS showed three level of landslide risk: low risk, medium 

risk and high risk. About 6.21% of the area was categorized as high risk area while 

83.93 % was low risk area. The accuracy of the developed LHZ map has not been 

know so far because this works did not include process of map validation. 

Another investigation on LHZ that used a qualitative method, LHEF rating 

system, was carried out by Ramli, et al. [93]. The authors utilized GRASS 

(Geographical Resources Analysis Support System) which is open source GIS 

software for assessment of LHZ in Tanah Rata, part of Cameron Highlands district. 

This investigation involved five landslide contributing factors namely lithology, slope 

angle, structure (lineament), relative relieve, hydrological conditions (water features), 

and land use land cover. Anbalagan [2] LHEF rating system was modified to suit with 

the available factors and respective classes. The final LHZ map was divided into five 

categories namely very low hazard, low hazard, moderate hazard, high hazard, and 

very high hazard. About 93 percent of the study area fell under low hazard category. 

Meanwhile, about 15 percent and 0.2 percent of the study area were categorized as 

moderate hazard and high hazard respectively. None of the area was categorized as 

very high hazard area. Some notes regarding this work are that expert opinion in form 

of LHEF rating system was used showing a typical of a qualitative method; secondly, 
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this work did not take into account the temporal factors; and lastly, this work did not 

apply map validation, the stage which is important for measuring the accuracy of the 

developed LHZ map. 

2.6.2.2 LHA in Cameron Highlands using Quantitative Methods 

Gahgah, et al. [43] applied another qualitative method which is a combination of 

heuristic method that is, using expert opinion of Van Westen [111], and index overlay 

as GIS analysis method for investigation of landslide hazard in Cameron Highlands – 

Gua Musang road. The final landslide showed five categories of hazard namely very 

low hazard, low, moderate, high, and very high hazard. Slope and elevations were 

found to be the most affecting factors for landslide occurrence. This work has the 

same shortcomings as the previously mentioned work.  

Talib [8] applied a bivariate statistical analysis method that is Information Value 

Method for investigation of slope instability and hazard zonation in Cameron 

Highlands. The study involved digital elevation data from topographic map, geology 

map, land use land cover map, distance to fault, drainage, and road map. Weight 

values were derived from pixel-based pair wise comparison between landslide map 

and factor maps. The final LHZ map divided the area into three categories: low, 

medium and high hazard. The author highlighted several places prone to landslide 

such as, sloping areas at the road and a gardening area in Bertam, Ringlet; some areas 

near the edge of urban areas in Tanah Rata where settlements were built on sloping 

hills; road slopes at Berinchang (north of Tanah Rata), Ringlet (near the main lake of 

CH), and slopes parallel to the Bharat the plantation. All these works have offered the 

objectivity of defining the relationship between landslide occurrences and causative 

factors which is implemented in defining a weighting system. However, temporal 

environmental factors have not been involved in the modeling LHZ and the 

verification test of the LHZ map was not mentioned in this work. 

Back-propagation neural network model has been used to study landslide 

susceptibility in Cameron Highlands by Pradhan and Lee [12]. Ten landslide 

contributing factors were involved in this study namely, slope, slope aspect, 
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topographic curvature, lithology, soil type, rainfall, vegetation index (derived from 

SPOT 5 satellite image), distance from drainage and lineament. Using an advanced 

neural network model for analyzing all factors, landslide susceptibility map was 

produced. This investigation found that that the topographic slope has been the most 

influencing landslide factor followed by the distance to drainage, and lithology. This 

was indicated by their weight values resulted from back-propagation training method 

in succession 0.205, 0.141 and 0.117. The final landslide susceptibility map showed a 

good agreement, 83% accuracy, with landslide data after validation process. This 

work focused on the introduction of another quantitative method proven to be more 

satisfactory that the previous method in term of the accuracy of prediction of 

susceptible areas. The subjectivity of the expert was removed as this method is 

considered as data-driven modeling. This work did not take into account the temporal 

environmental factors.  

2.7 Remote Sensing and Its Roles in Landslide Hazard Assessment 

Remote sensing has been widely used for landslide hazard assessment. This is 

because remote sensing offers measurement of objects in landslide areas with 

no contact while, in fact, the location of landslides is not safe to take measurements. 

Concept of remote sensing and its associated aspects, applications, and roles in 

landslide hazard assessment is explained in the following. 

2.7.1  Remote Sensing: The Concepts 

There are various definitions of remote sensing. A definition given by Lillesand and 

Kiefer [156] states that remote sensing is the science and art of obtaining information 

about an object, area, or phenomenon through the analysis of data acquired by a 

device that is not in contact with the object, area, or phenomenon under investigation. 

The captured object is usually stored as image data. Early remote sensing technology 

utilized aerial photographs operating within visible range of the electromagnetic 

spectrum. For particular purposes, satellite images are used rather than aerial 

photographs because remote sensing satellites record data using scanners, allowing 
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the data acquisition at wavelengths longer than visible range such as thermal infrared 

and microwave spectrum.  

Gibson and Power [94] explained that remote sensing systems can be either 

passive or active. Passive system is known as optical remote sensing while active 

system is known as microwave remote sensing. Optical remote sensing records 

electromagnetic radiation reflected or emitted by objects on the surface. Microwave 

remote sensing transmits electromagnetic radiation of a specific wave length to the 

surfaces and records the energy reflected or scattered back from the surface. 

Examples of remote sensing platforms that use passive/optical system are Landsat 

and SPOT while active platforms are RADARSAT and ERS (European Remote 

Sensing Satellite).  

In this research, the satellite images used are from optical remote sensing. Hence, 

further description about basic principle of measurement, image processing 

procedures, and transformation remote sensing data into other data such as NDVI, 

soil wetness, and LST, is associated with optical remote sensing. 

2.7.2  Spectral Signatures and Multi Spectral Sensors 

Different features of the landscape such as bush, crop, forest, and water reflect sun 

energy in different wavelength. The spectral signature of these objects is shown in 

Fig. 2.6. Green grass appears to be significant in green band of visible spectrum. 

Within near infrared (NIR) spectrum, green grass shows strong reflectance. This 

strong reflectance in NIR spectrum is beyond the detection ability of human eye. Dry 

grass experiences the same thing as green grass. However, dry grass and soil is 

difficult to distinguish in green band of visible spectrum. Gibson and Power [94] 

added that plant species are often easy to differentiate in NIR spectrum due to their 

high reflectances rather than in visible spectrum. It is also difficult to differentiate soil 

types in visible spectrum because of their very low reflectances in visible. On the 

contrary soil types can be differentiated based on moisture content in infra red 

spectrum. Thermal radiation emitted by objects on the earth can be easily detected in 

infrared spectrum rather than in visible spectrum as explained by Liew [157]. 
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Fig. 2.6 Spectral signatures of different objects and Landsat ETM+ bands 

Source: CSIRO [158]  

In order to detect objects on earth, most of passive remote sensing satellites are 

equipped with, at least, sensors working on visible and infrared spectrum as explained 

by Gibson and Power [94]. A multispectral scanner satellite is an earth observing 

system (EOS) satellite that brings array of optical sensors the task to acquire 

information of the same objects on earth at different wavelengths, called ‗bands‘. 

Each band captures a unique spectral signature of the object. Landsat 7 ETM+ and 

SPOT 5 are example of satellites with multispectral scanner system. The first satellite 

can detect object using 8 bands (blue, green, red, NIR, 2 mid-infrared/short 

wavelength infrared, thermal infrared, and panchromatic) while the second can detect 

4 bands (green, red, NIR, mid-infrared). Illustration of the position of Landsat 7 

bands in electromagnetic spectrum is given in Figure 2.5. Further explanation of two 

satellite missions currently used in this study is given in the following.  

2.7.3  Landsat 7 ETM+ Satellite Mission 

Landsat 7 ETM+ is part of Landsat program intended to gather information on natural 

resources of the earth and was launched on April 15, 1999. The program was first 

1    2      3          4      Landsat 7 ETM+ bands      5     7 
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started by The National Aeronautics and Space Administration (NASA) in 1972 and 

then turned over to the National Oceanic and Atmospheric Administration (NOAA). 

The distribution of Landsat ‗public domain‘ data is managed by the Earth Resource 

Observation System (EROS) Data Center of United State Geological Survey (USGS) 

in Sioux Falls, South Dakota. The program began with the launch of Landsat 1 (1972) 

followed by Landsat 2 (1975), Landsat 3 (1978), Landsat 4 (1982), Landsat 5 (1984), 

Landsat 6 (1999), and Landsat 7 (1999). There are only Landsat 5 and 7 that are 

operational. The typical orbit of Landsat 7 is sun-synchronous, with altitude of 705 

km, inclination of 98.2 degree, period of 99 minute, and repeat cycle of 16 days.  

The term ETM+ refers to onboard instrument consisting of eight bands of 

multispectral scanning sensors that able to provide high-resolution image of captured 

objects of the earth. The instrument features a panchromatic band with 15 m spatial 

resolution, a thermal Infra Red with 60 m spatial resolution and onboard radiometric 

calibration. Detail description of all Landsat 7 ETM+ bands along with their 

application is summarized in Table 2.5  and mostly taken from two Landsat Project 

websites maintained by Irons [159] and Short [160]. The schematic of the satellite is 

shown in Fig. 2.7. 

 

Fig. 2.7 Schematic of Landsat 7 ETM+ satellite 

Source: Irons [159] and Geocommunity [161] 
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Table 2.5 Characteristics of Landsat 7 ETM+ bands  

Spectral Bands (m) Resolution (m) Applications  

1 0.45–0.52  

Visible blue-

green 

30 Mapping water depth, differentiate soil from 

vegetation,  mapping forest types (deciduous/ 

coniferous) 

2 0.52–0.60  

Visible green 

30 Identify vegetation reflectance peak for 

discriminating vegetation and assessing plant 

vigor 

3 0.63–0.69  

Visible red 

30 Absorbs chlorophyll band, suitable from 

identification of roads, barren land, and types 

of vegetation 

4 0.76–0.90  

Near infrared 

(NIR) 

30 Estimates biomass content, separates water 

bodies from vegetation, detection of 

shorelines, and discriminates soil moisture 

5 1.55–1.75  

Mid infrared 

30 Discriminates moisture content of soil 

and vegetation, identifies roads, penetrates 

thin clouds 

6 10.4–12.5  

Thermal infrared 

Low/high gain 

120 Maps thermal (heat) emitted by the target and 

estimates soil moisture, measure vegetation 

stress, available in two mode: high gain band 

(6a) and low gain band (6b) 

7 2.08–2.35  

Mid infrared 

30 Useful for mapping rock types and associated  

mineral deposit based on soil moisture 

content, useful for interpreting vegetation 

cover 

8 0.52 – 0.9 

Panchromatic 

15 Black and white images which is useful for 

enhancing image resolution and image 

interpretation 

Source: NASA [162] and Geoscience-Australia [163] 

Landsat data is available at various levels as reported by NASA [162]. The level 

1R data product means that Landsat data has been radiometrically corrected.  The 

level 1G data product currently used in this research is Landsat data that has been 

radiometrically and geometrically corrected. This product is distributed to user in 

form of grey scale image represented by Digital Numbers (DN‘s) scaled from 1-255.  

Band 6, thermal infra red, of Landsat 7 ETM+ image comes in two modes namely 

low gain and high gain antenna. Low gain antenna is activated when the average 

brightness of ground surface is high. Otherwise, high gain antenna mode is ‗on‘ when 
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the surface brightness is low. This condition means that the antenna is highly focused 

to the object measured. 

2.7.4  SPOT 5 Satellite Mission 

Detail description of SPOT satellite mission can be found in SPOT Satellite 

Geometry Handbook prepared by Riazanoff [164]. SPOT 5, launched on May 3, 

2002, is part of SPOT satellite mission program bringing a series optical remote 

sensing system. The program was begun with the launching of SPOT 1 satellite on 

1986 followed by SPOT 2 (1990), SPOT 3 (1993), SPOT 4 (1998), and SPOT 5, the 

latest SPOT satellite mission. SPOT is a joint program involving France, Belgium, 

and Sweden. The primary mission of this program is to gather information of natural 

resources for purposes such as mapping land use land cover, agriculture study, urban 

planning, forestry, and water resources management. The satellite is operated by the 

France Space Agency, Centre National d‘Etudes Spatiales (CNES). The typical orbit 

of SPOT satellite system, including SPOT 5, is sun-synchronous, with altitude of 832 

km, inclination of 98.7 degree, period of 101 minute, and repeat cycle of 26 days. 

SPOT 5 is equipped with two HRG (High Resolution Geometric) and two HRS 

(High Resolution Stereo) instruments. The first instrument allows generating 4 

resolution levels with 60 km x 60 km swath. The second instrument allows generating 

stereopair image of a swath 120 km across and 600 km long. HRS provides useful 

data for generation of Digital Elevation Model (DEM). The satellite offers a 

resolution in multi spectral mode of 10 m in all visible and NIR bands (Band 1-3). 

One sensor operating in short wave infrared band (SWIR) is dedicated for monitoring 

vegetation with a resolution of 20 m. High Resolution Visible (HRS) sensors of 

SPOT satellite can operate in two modes, multi spectral and panchromatic. During the 

second mode, SPOT records objects within panchromatic band over the wavelength 

range of 0.51 to 0.73 µm with 5 m resolution. The characteristics of SPOT 5 bands 

are given in Table 2.6 and the schematic of the satellite is shown in Fig. 2.8. 

SPOT data is available at different product level. Level 1A (raw product), level 

1B (system corrected product), level 2A (projected product without ground reference 
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points), and 2B (projected product with ground reference points). Level 2A is the 

product currently use in this research. The data is distributed in form of grey scale 

image represented by DN ranging from 1 to 255. 

 

Fig. 2.8 SPOT 5 satellite and onboard instruments 

Source: Riazanoff [164] 

Table 2.6 Characteristics of SPOT 5 bands  

Source: Riazanoff [164], Gao [165] 

Band Spectral Ranges (m) Resolution (m) 

Band 1 0.50 – 0.59  (Green) 10 

Band 2 0.61 – 0.68 (Red) 10 

Band 3 0.79 – 0.89 (NIR) 10 

Band 4 1.58 – 1.75 (SWIR) 20 

Panchromatic 0.48 – 0.71  5 

2.7.5  Image Pre-processing 

Like other measurements, images produced from remote sensing satellite contain 

errors as well. Gibson and Power [94] explained that the errors may come from 

instrumental errors, medium (atmosphere), orbit perturbation that causes image 

distortion, data transmission from satellite to ground station, and data handling in 

ground station. Most of instrumental errors and errors during transmission and data 
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handling in ground station have been fixed by the image producer authority before 

distributed to public. Geometric and atmospheric corrections are usually delegated to 

users since it usually requires local requirements, such as local control point in local 

reference system and local atmosphere correction model, the image producer cannot 

take over. It is therefore important to apply image pre-processing procedures to 

ensure that images are free from geometric distortion and atmospheric effects so that 

distance, polygon area, direction, land cover land use can be accurately extracted. 

Below is the description of handling geometric and atmospheric errors. 

2.7.5.1 Geometric Corrections 

Images produced from remote sensing satellite contain distortions or geometric 

errors. They need to be freed from such errors to allow extraction any measurements 

from corrected images. According to Lillesand, et al. [166], the distortions may come 

from orbit perturbation (e.g. variation of satellite altitude, altitude and velocity due to 

inhomogeneous land mass and solar pressure), earth curvature, and relief 

displacement. Image distortions can be either systematic or random/non-systematic. 

The sources of both distortions are many. An example of systematic distortion is the 

distortion due to earth‘s rotation. While Landsat scanning the earth from first to last 

line at approximately 28 seconds, the target beneath the satellite has move eastward 

due to earth‘s rotation. This causes 185 km x 185 km Landsat footprint on the ground 

become a rhombus shape not square. Such error is usually fixed before the data 

delivered to users. Random distortions are usually related to orbit perturbation 

causing the platform unstable so that the altitude (height) and attitude (stability from 

movement/rotation in x, y, and z directions known as pitching, rolling and yawing) of 

the platform are disturbed.  

The detail procedure of removing random geometric distortion can be found in 

most of remote sensing image processing literatures such as in Lillesand, et al. [166], 

Gao [165], Gibson and Power [94], and Unger Holtz [167]. Geometric distortions can 

be removed by means of rectification process. In doing so, a set of ground control 

points (GCPs) is required. GCPs can be a georeferenced/corrected map or a set of 

ground control points whose coordinates are known in a desired (usually local) 
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reference system. A GCP is required to be easy to find/recognize on both uncorrected 

image and corrected image. Illustration of rectification process is shown in Fig. 2.9. 

Rectification process requires collection of the same number and position of GCPs 

from both images to tie down uncorrected image. It results in a list of coordinates 

known points extracted from georeferenced image and screen (pixel) coordinates of 

uncorrected image. Using a polynomial equation, each pixel on uncorrected image is 

transformed to a position in a real world coordinate system (such as 

Latitude/Longitude or Easting/Northing) resulting in a new georeferenced image. 

A polynomial function is a mathematical equation that can be used to transform 

uncorrected image to georeferenced image coordinate system. During transformation, 

uncorrected image undergoes translation, rotation, and scaling. Some image 

processing softwares provide first order (linear), second order (quadratic), and third 

order (cubic) polynomial function for rectification process. The higher the polynomial 

orders the more complex the equation relating both parameters. The following 

equation is a first order polynomial equation relating coordinates on uncorrected 

image (xu, yu) and those on georeferenced/corrected images (x, y) as explained in 

Gibson and Power [94]: 

 

Fig. 2.9 Geometric correction procedures 

Corrected image Uncorrected image 

P1(x1, y1) 

P2(x2, y2) 

… 

… 

P6(x6, y6) 

P‘1(xu1, yu1) 

P‘2(xu2, yu2) 

… 

… 

P‘6(xu6, yu6) 

Polynomial 

function 

Source: 

Gibson and Power [94] 
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yaxaaxu 210   

ybxbbyu 210 
       (2.10) 

First order polynomial only performs translation of uncorrected image to a desired 

reference system. Second order polynomial links both images using quadratic form, a 

more complicated polynomial equation, as follows: 

2

5

2

43210 ycxcxycycxccxu   

2

5

2

43210 ydxdxydydxddyu 
    (2.11)

 

To solve Equation 2.10, 3 GCPs are required since it contains 6 parameters 

(unknown). Meanwhile, 6 GCPs are required to solve Equation 2.11 since it contains 

12 parameters.  

The quality of rectification result is expressed in RMSE (root mean square error) 

as explained by Gao [165]. The error is the different between the coordinates of 

georeferenced image and those resulted from the transformation process. For a given 

point, it has RMSE values in both directions, Northing and Easting. The magnitude of 

RMSE of both directions is not necessarily the same. The overall accuracy of 

transformation equals to the total of RMSE of both directions. Equation 2.12, 2.13, 

and 2.14 in the following are RMSE of Northing, Easting, and the final accuracy.  
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In general, the first two equations indicate the different between the known 

coordinates from corrected image and the predicted coordinates on uncorrected image 
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using polynomial transformation. The last equation indicates the total error in both 

directions. Gao [165] reported that there is no exact standard regarding the acceptable 

value of overall RMSE. People usually use rule of thumb or conventional wisdom 

stating that the overall RMSE should not be greater than one pixel size in value. 

Therefore, for Landsat satellite image with 30 m resolution or SPOT 5 with 10 meter 

resolution, the overall RMSE should be below 30 m and 10 m accordingly.  

There are factors affecting the accuracy of rectification/geometric correction. 

Gibson and Power [94] identified two factors. The first is the selection of GCPs.  

GCPs should be easy to identify on both images and do not have possibility to move 

such as coastal line and river bends, otherwise it may result in a large RMSE. In 

addition, a sufficient number of GCPs which are well/evenly distributed over the 

image are required. Having GCPs clustered on a particular part of an image, e.g. east 

part or west part, will lead to an inaccurate rectification result since the remaining 

parts of an image are not well tied down.  

Illustration of the effect of the number and the distribution of GCPs involved in 

rectification process on the accuracy of rectification is shown in Fig. 2.10 which is 

expressed in the changing grid pattern. The grid pattern shows how the rectified 

image will be distorted. Fig. 2.9a shows rectification result using only 4 GCPs 

concentrated on upper left corner of the image (shown circled). Grid boxes seem 

tilted to the east. Adding 4 more GCPs on the upper part of the image, as shown in 

Fig. 2.9b, causes the lower part extremely distorted westward.  Since GCPs on left 

corner is denser than those on right, the remaining part of the image is dragged to the 

lower left, showing the expected rectified image. Addition of 2 more GCPs on lower 

left of the image, shown in Fig. 2.9c, appears to repair the distortion at lower left part 

left by previous experiment. The lower right part of the image is still distorted. Three 

more GCPs are added forming a stretch of GCPs from lower left to lower right (Fig. 

2.9d). This addition repairs the distortion on the lower right. More GCPs are defined 

on middle left and right (Fig. 2.9e). The total GCPs are 24. Grid lines seem to have 

properly aligned. However, center part of the images still experience distortion even 

though it cannot be seen by human eyes. Finally, addition of 33 more GCPs located 

mostly on the center part and its surroundings refines the rectification result. These 
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rectification sequences show visually how the number of GCPs and its distribution 

affect the result. The actual accuracy is indicated by RMSE.  

    

(a) 4 GCPs     (b) 8 GCPs                           (c) 10 GCPs 

     
    (d) 13 GCPs                         (e) 24 GCPs                       (f) 57 GCPs 

Fig. 2.10 Pattern of distortion due to the number and distribution of GCPs 

Gao [165] added other factors affecting the accuracy of rectification. The 

accuracy of the corrected map, hence the picked GCPs, is an important issue. One has 

to make sure about the accuracy of the map before using. A set of control points 

gained from GPS (Global Positioning System) survey would provide more accurate 

GCPs than those picked ups from the georeferenced topographic map. The last factor 

is the order of polynomial transformation. It is said that by applying high order of 

polynomial transformation will result in more accurate rectification result.  

2.7.5.2 Atmospheric Correction 

Atmosphere has significant role in affecting electromagnetic radiation or DN of 

objects on the earth. The DN/radiance recorded by remote sensing sensor does not 
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represent the true radiance of targeted object but a mixture of two components as 

described by Jensen [168], Gao [165] and Hadjimitsis, et al. [169]. They are actual 

DN of the object and atmospheric factor. The effect of atmosphere can be negative 

(reduce the DN) by absorbing the radiance or positive (increase the DN) by scattering 

the radiance. The atmosphere tends to scatter short wavelength bands. The shorter the 

wavelength bands the higher the scattering degree. Fig. 2.11 shows short wavelength 

of electromagnetic energy is highly absorbed by the atmosphere as recorded by band 

1 sensor. Meanwhile, longer wavelength is less absorbed by the atmosphere as 

recorded by band 5 sensor. 

The effect of atmosphere in altering DN value can be viewed through DN 

histogram, the graphical representation of DN of an image. Fig. 2.11 shows examples 

of histogram of band 1 and 5 of a Landsat 7 ETM+ image.  Assuming that there are 

dark pixels, such as cloud shadow, of a given image, these pixels should have DNs of 

zeroes. However, after examining the histograms, they seem to be shifted from zero. 

Band 1 on Fig. 2.11 is shifted as far as 49 DN value from the origin while band 5 is 

shifted by 14.  The degree of shifting is different for each band and it depends on the 

atmospheric conditions as reported by Gibson and Power [94]. For eight bands of 

Landsat 7 ETM+, the degree of shifting cannot be represented by one single absolute 

value.  

 

 

Fig. 2.11 Histogram of band 1 and 5 and the respective offsets 

0          49 Band 1          255   0    14  Band 5            255 
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There are various methods to remove atmospheric effect such as optimized cost 

function and Statistical Estimation developed by Yuzhong and Jakkula [170], QUAC 

(QUick atmospheric correction) by Bernstein, et al. [171], FLAASH (Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes) by Jinguo and Zheng [172], and 

the Darkest pixel (DP) atmospheric correction method, also known as the histogram 

minimum method applied by Hadjimitsis, et al. [169], or known as Dark Object 

Subtraction (DOS)  the term used by Hall [173]. This method is a first order 

atmospheric correction by simply subtracting the shifting/offset value from each DN 

of an image. Therefore, all DN of band 1 image is subtracted by 49 while DN of band 

5 image is by 14. However, Gibson and Power [94] suggested that atmospheric 

correction is not necessarily required before further use of a remote sensing data. The 

reasons are the image corrected from atmospheric effect has the same appearance as 

uncorrected one so that human eyes cannot distinguish one from another. The second 

reason is that the dark pixels are not necessarily present on the image. So, subtracting 

each DN with the lowest DN value may result in an erroneous image.   

2.7.6  Image Enhancement 

Image enhancement is intended to improve the spatial quality or interpretability or 

visibility of an image. Computer-based enhancement is applied to overcome human 

eyes/mind limitation in distinguishing a slight spectral difference between two 

different objects. There are many methods for image enhancement such as contrast 

stretching, ratio images, thresholding, density slicing, filtering techniques, principal 

component analysis and classification. The detail explanation of such methods can be 

found in most of image processing of remote sensing literature such as Jensen [168], 

Gibson and Power [94], Gao [165], and Lillesand, et al. [166]. Gao [165] grouped 

these methods into two: non spatial image enhancement (such as contrast 

enhancement and density slicing) and spatial image enhancement (such as spatial 

filtering and edge detection). Meanwhile, Lillesand, et al. [166] grouped them into 

three: contrast manipulation (such as density slicing), spatial feature manipulation 

(such as edge enhancement), and multi-image manipulation (such as band ratioing 

and principle component analysis). However, Gibson and Power [94] stated that there 
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is no optimum enhancement technique. The optimum technique is that the one that 

can enhance the objects/features of investigator‘s interest.  

In this research, image enhancement was mostly carried out by means of applying 

selected bands combination and contrast adjustment/linear stretching. First order 

atmospheric correction previously mentioned is also considered as kind of image 

enhancement method.  

2.7.6.1 Band Combination  

Combination of selected bands is usually used to enhance features of interest. 

Sanaeinejad, et al. [174] found that band combination of RGB (Red Green Blue) 734 

or 731 is suitable for soil salinity studies. Ramli and Petley [175] applied various 

statistical methods such as optimum index factor, maximum variance-covariance 

determinant, and principal component analysis for selecting best bands combination 

for landslide studies. Quinn [176] and GDSC [177] listed several band combinations 

along with their applications. RGB 321 is band combination representing an image in 

natural color (Fig. 2.12a). This combination best describes the appearance of the 

landscape in reality. Having an image in natural color is helpful for identification 

training areas required for image classification for extracting land use land cover. 

RGB 123 and 432 (Fig. 2.12b) are false color composite (FCC) combinations using 

which various types of vegetation can be discriminated. Meanwhile, RGB 453 is good 

for study water content on soil.  

 

Fig. 2.12 Band combinations: a) natural color and b) FCC 

a) RGB 321, natural color b) RGB 432, FCC 
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2.7.6.2 Linear stretch 

The image shown in Fig. 2.12a looks darker compared to that in Fig. 2.12b. Unlike 

the second image, the first image has not undergone any image enhancement 

procedures. One of simple methods for image enhancement is linear stretching or so 

called contrast stretching. The idea is illustrated in Fig. 2.13. An image has digital 

numbers ranging from 84 to 153. Using linear stretch method, a new image is 

produced based on the original image by assigning replaces its lowest (84) and 

highest DN (153) with values of 0 and 255. This operation stretches DN values in 

between interval 0 and 255 accordingly. This is kind of rubber setting, dragging one 

end of histogram graph to 0 and another end to 255. Mathematical expression of the 

stretched image (DNst) produced from the original image (DN) is given in Equation 

(2.15). DNmax and DNmin represent the maximum and minimum DN values in the 

original image.   

 

Fig. 2.13 Illustration of linear stretching 

Source: CCRS [178] 
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min255
DNDN

DNDN
DNst
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     (2.15)

 

Application of linear stretch results in a brighter image than the original one. Fig. 

2.14 shows images of part of Cameron Highlands area before (Fig. 2.14a) and after 

(Fig. 2.14b) application of linear stretch method. This image is constructed using 

bands combination of RGB 543, enabling the image shown in natural color. The 
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histograms of original image look narrow. This is why the image looks dark. After 

applying linear stretch, all histograms occupy a full DN stretch that ranges from 0 to 

255. The image is then looks brighter than the original one allowing more information 

can be extracted. The border between crop land and forest can be well identified and 

so do the lake, open land and urban. The stretched image is also helpful for 

delineating homogeneous areas set as training areas for supervised image 

classification purpose.  

  

     

Fig. 2.14 A Landsat image in RGB 543 and the corresponding histogram adjustment: 

a) before and b) after linear stretching 

b) RGB 543, stretched histogram 

 

R=5  G=4  B=3 

a) RGB 543, original histogram 

 

R=5  G=4  B=3 
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2.7.7  Image Classification for derivation of Land Use and Land Cover 

Land use land cover (LULC) map is an important landslide contributing factor. To 

construct such a map from remote sensing imagery, it requires application of image 

classification processes. Image classification procedure is intended to automatically 

group all pixels in an image into land use land cover classes as described by 

Lillesand, et al. [166].  

The idea of image classification is that each object on the earth has different 

reflectance value within electromagnetic spectrum. Thus, objects can be recognized 

and distinguished one from another based on spectral value. As shown in Fig. 2.6, 

soil, grass and water show different reflectance patterns within visible, NIR and mid 

infrared. The principle work of digital image classification is identification of 

homogeneous groups of pixels in one or more spectral bands based on their 

spectral/reflectance information as described by CCRS [178]. At the end of 

classification process, grouped homogeneous pixels are assigned with particular 

classes or themes such as forest, water, corn farm, etc. The methods of image 

classification are divided into unsupervised and supervised image classifications. 

There is also a hybrid classification method which is a combination of automatic and 

manual classification methods. Detail explanation of classification method can be 

found in most of image processing of remote sensing image such as Gao [165], 

Gibson and Power [94], and Lillesand, et al. [166]. 

2.7.7.1 Unsupervised Classification 

Unsupervised classification method has pixels of an image grouped into 

classes/clusters by image processing software. The grouping is based on the 

reflectance value of pixels that is statistically separable. There is no user 

(expert/image analyst) intervention or field knowledge required to run unsupervised 

classification. The classes resulted from this procedure is called spectral classes. User 

can then identify the land use land cover type of the classes by comparing them with 

for example, topographic map or field survey data, and finally assign appropriate 

attributes to those classes.  
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A good explanation on how this image classifier works was given by Gibson and 

Power [94]. Once the number of classes defined, the computer software specifies 

arbitrary DN means to each class and have pixels moved to the nearest mean of 

classes. The software then recalculates new class means. These values are used to re-

evaluate each pixel. The software then relocates pixels to the closest new class means. 

This procedure can be repeated several times until meet the number of iterations set 

by the user or achieve the threshold value set by the user. The author said that at a 

threshold of 0.98, the adjacent iterations left less than 2% of pixels moving. Included 

as unsupervised classification techniques are K-means, ISODATA (Iterative Self-

Organizing Data Analysis Technique), and histogram based clustering as described 

by  Gao [165]. 

2.7.7.2 Supervised Classification 

Unlike the previous method, supervised classification requires the user to provide 

spectral signatures of known land cover lands categories such as forest, urban, barren 

land, bushes, etc., prior to do image classification. In doing so, such spectral 

signatures are sampled from the image by delineating several areas of a homogenous 

type, e.g. forest, then computing statistical parameters, e.g. mean, standard deviation, 

etc., of their spectral signatures. These areas are called as training areas. The other 

categories undergo the same procedures so that the statistical parameters of spectral 

signature of all desired land use land cover categories is made available. The image 

processing software then compares the DN of each pixel with the statistical 

parameters and do image classification using statistical techniques so called image 

classifiers. There three classifiers as described by Liao [47], Lillesand, et al. [166], 

Gao [165], and Gibson and Power [94] namely, from low to high accuracy, 

parallelepiped, minimum distance-to-mean or nearest neighborhood, and maximum 

likelihood classifiers.  

Parallelepiped classifier constructs ‗boxes‘ using statistical parameters of training 

areas with mean as the center of boxes and maximum/minimum and standard 

deviation for determining the width and length of the boxes (Fig. 2.15a). Any pixel 

falls within a particular box, for example box of forest  category, will  be  grouped   to  
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Fig. 2.15 Illustrations of supervised classification classifiers 

Source: CCRS [178] 

that category. This method offers fast classification but has poor accuracy. Using this 

method, a pixel can be belongs to two boxes or none of them. In Fig. 2.15b, pixel a 

c) 

a) b) 

X 
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belongs to cluster/class 4 due its location within box 4. Meanwhile, pixel b could be 

unclassified or has no class since there are no boxes containing this pixel. Using 

Minimum distance-to-mean (Fig. 2.15b), pixel b can be grouped to class 3 according 

to the shortest distance between the distance from pixel b to all class mean pixel. 

Maximum likelihood is considered as the most useful classifier admitted by Gao 

[165]. The so-called Gaussian maximum likelihood classifier evaluates any pixels 

using variance and covariance of spectral signature of  land use land cover categories. 

This method applies an assumption that the distribution of points forming each 

category, e.g. forest, water, crop land, etc., derived from training areas is Gaussian 

(normally distributed). Fig. 2.15c shows how point/pixel X belongs to forest type 

rather than to agriculture classes. The reason is that the probability of pixel X being 

grouped to forest class is higher than to agriculture class. The graph of probability 

density of forest looks more normally distributed than that of agriculture which 

appears to be a bit narrow.  

2.7.7.3 LULC Classification Scheme 

Anderson, et al. [179] designed a classification system for LULC for use with remote 

sensing data that satisfy the needs of the majority of users. This scheme does not 

differentiate between land cover and land use. The scheme starts with Level I 

category for example; urban or built up land, agricultural land, forest land, etc. Urban 

or built up land is broken down for level II into such as residential, commercial and 

service, industrial, etc. One thing to take note is that the various types of land use land 

cover in level II do not necessarily available. Hence, one may reduce or modify it to 

fit with what available in the study area. The scheme, shown in Table 2.7, contains 9 

levels I while the total of level II is many. Level III and IV are left open-ended to 

users such as federal, regional, state, and local agencies so they can have flexibility in 

developing more detailed land use land cover according to their particular needs.   

LULC classification for level I to IV requires different specification of satellite 

imageries. Anderson, et al. [179] did not specify detail of satellite mission in 

accordance to various level of classification. However, the authors  only  stated  about  
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Table 2.7 Image classification scheme 

Category  

Number 
Level 1 Level II 

   

1 Urban or built-up land 11 Residential 

  12 Commercial & services 

  13 Industrial 

  14 Transportation, communications & utilities 

  15 Industrial & commercial complexes 

  16 Mixed urban or built-up land 

  17 Other urban or built-up land 

   

2 Agricultural land 21 Cropland & pasture 

  22 Orchards, groves, vineyards, nurseries &  

     ornamental horticultural areas 

  23 Confined feeding operations 

  24 Other agricultural land 

   

3 Rangeland  31 Herbaceous rangeland 

  32 Shrub & brush rangeland 

  33 Mixed rangeland 

   

4 Forest land 41 Deciduous forest land 

  42 Evergreen forest land 

  43 Mixed forest land 

   

5 Water  51 Streams & canals 

  52 Lakes 

  53 Reservoirs 

  54 Bays & estuaries 

   

6 Wetland  61 Forested wetland 

  62 Nonforested wetland 

   

7 Barren land 71 Dry salt flats 

  72 Beaches 

  73 Sandy areas other than beaches 

  74 Bare exposed rock 

  75 Strip mines, quarries & gravel pits 

  76 Transitional areas 

  77 Mixed barren land 

   

8 Tundra  81 Shrub & herbaceous tundra 

  82 Herbaceous tundra 

  83 Bare ground tundra 

  84 Wet tundra 

  85 Mixed tundra 

   

9 Perennial snow or ice 91 Perennial snowfields 

  92 Glaciers 

   

 Source: Anderson, et al. [179] 

the altitude of remote sensing platform. As classification goes deeper (e.g. level IV), 

low attitude platform with higher resolution is required. As illustration, global 
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MODIS (The Moderate Resolution Imaging Spectroradiometer) satellite can provide 

data for level I with resolution range 250 m to 1.1 km. Level II (resolution range of 

80 m to 250 m) can be fulfilled by Landsat Thematic Mapper. Level III (30 m to 80 

m) can be fulfilled by Landsat 7 ETM+. Level IV (3 m to 30 m) can employ SPOT 

and aerial photograph to provide such data, and level V, if required, can utilize 

IKONOS or QuickBird images. 

2.7.8  Land Surface Temperature 

Landsat 7 ETM+ provides sensors working on thermal infrared (band 6) channel to 

record thermal (heat) emitted by objects on the earth. This data offers an opportunity 

and at the same time a challenge for users to retrieve land surface temperature (LST). 

There are methods for retrieving LST from thermal infrared data such as mono-

window algorithm developed by Qin, et al. [180], and single-channel algorithm 

developed Jimenez-Munoz, et al. [181] and the applied by Hua, et al. [182]. Sobrino, 

et al. [183] estimated LST from the radiative transfer equation using in situ 

radiosounding data and compared it with the previous two methods.  

Mono-window algorithm has been extensively used to retrieve LST from Landsat 

thermal infrared by such as Chudong, et al. [184], Cheng, et al. [185], Chuansheng, et 

al. [186], Yang and Wang [187], Zhang, et al. [188], etc. The estimation of LST 

begins with adoption of basic principle that any objects on earth will emit thermal 

energy as their temperatures are above absolute zero (Kelvin). Hence, DNs, the 

spectral reflectance, of the objects recorded by the thermal sensors can be 

transformed to at-sensor radiance using the following equation described in Markham 

and Barker [189]:  

biasDNgainLR         (2.16) 

1238.00056322.0  DNLR       (2.17) 

LR is spectral radiances (Wm
-2

sr
-1
m

-1
); 0.0056322 is gain, a general term used to 

denote an increase in signal power transmission; DN is Digital Number of band 6; and 

0.1238 is a constant bias. In order to obtain LST, the spectral radiances were then 
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converted into satellite brightness temperature, which is commonly called as LST, 

using the following relationship developed by Schott and Volchok [190]: 
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TB is at-satellite brightness temperature (K
0
); K1 and K2 are two free parameters with 

the values of K1= 60.776 mWcm
-2

sr
-1
m

-1
, K2=1260.56 K. TB is uncorrected LST. If 

required, one may converse the unit of LST from Kelvin degree to Celsius degree 

using the following relationship: 

 C = K – 273.15       (2.19) 

As mentioned previously, TB is uncorrected LST. Therefore, TB represents a mixed 

signal of different fraction of energy. The fractions include the energy emitted from 

the ground/targeted object and noises that come from upwelling radiance from the 

atmosphere, as well as the downwelling radiance from the sky integrated over the 

hemisphere above the surface. Therefore, the effects of both surface emissivity and 

atmospheric must be corrected to produce real LST or Ts as suggested by Yang, et al. 

[191] and Yang and Wang [187]. To do so, the following mono-window algorithm 

developed by Qin, et al. [180] is applied: 

     aBS TDTDCDCbDCa
C

T 666666666

6

11
1

   (2.20) 

Ta is the effective mean atmospheric temperature (K), a6 and b6 are constants with 

values of -67.355351 and 0.458606 respectively. C6 and D6 can be calculated using 

the following equations: 

 C6 = 6        (2.21) 

 D6 = (1 - 6)[1 + (1 - )6]      (2.22) 

Symbol  represents the ground surface emissivity and 6 the atmospheric 

transmittance. These three parameters, i.e. Ta, , and 6 are required to convert 

brightness temperature (TB) to LST or Ta. Qin, et al. [180] added that 6 can be 

inferred from atmospheric water content and Ta can be obtained from near surface 

temperature (T0) using the following equations: 
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 Ta = 25.9396 + 0.88045 T0  (for United States of America) (2.23) 

 Ta = 17.9769 + 0.91715 T0  (for tropical)    (2.24) 

 Ta = 16.0110 + 0.92621 T0  (for mid-latitude summer)  (2.25) 

 Ta = 19.2704 + 0.91118 T0  (for mid-latitude winter)  (2.26) 

2.7.9  Vegetation Indices 

Described in Gibson and Power [94], vegetation is highly absorbed in the visible red 

region and highly reflected in the near infra red region. Two different objects on the 

earth may emit the same radiance in two different electromagnetic bands. Ratioing of 

both object‘s radiance can result in additional information compared to evaluation of 

individual radiance of both objects. This principle is proven to be effective for 

studying vegetation behavior. The ratio between infrared/red results in a measure of 

vegetation condition. A simple measure is the presence or absence of vegetation. 

Pixels with high ratio values show that the vegetation is present and low ratio values 

indicate that the vegetation is absent. Vegetation index can also be used to measure 

the biomass and vegetation health. For landslide study, the surfaces such as barren 

land, open area, non-vegetated slopes, etc. can be mapped for preliminary study of 

potential unstable areas.  

Vegetation index is of image enhancement methods for increasing the spectral 

contrast between the red and NIR regions of the electromagnetic spectrum. There are 

various forms of vegetation indices such as Perpendicular Vegetation Index (PVI), 

Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation 

Index (SAVI). NDVI is considered as the most extensively used vegetation index. In 

most literature, it is formulated as follows: 

NIRVR

VRNIR
NDVI




        (2.27) 

Equation 2.27 results in vegetation index values that range from -1 to 1, from no 

vegetation to completely covered by green-healthy vegetation.  
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2.7.10  Tasseled Cap Transformation for Landsat ETM 7 data  

Tasseled Cap Transformation (TCT) was developed by Kauth and Thomas [192] in 

1976 as mentioned in Gibson and Power [94]. This is one of image enhancement 

methods to optimize data viewing for vegetation studies. The first used of this 

transformation was to monitor crop development in spectral space. Reflectances of 

soil and wheat in NIR and visible red were monitored as wheat grew up. The effect of 

shadowing of soil caused by the plant and the sun angle to the reflectances were taken 

into account. The reflectance of soil and the plant at different phases are put into a 

single plan, i.e. two-dimensional graph. The plot of these data resembles a cap shown 

in Fig. 2.16 with tassels of graphs of darker and lighter soil reflectances, originating 

the name of this transformation technique. 

 

Fig. 2.16 Illustration of Tasseled Cap Transformation  

Source: Kauth and Thomas [192] 

TCT was first designed for Landsat TM (Thematic Mapper). As Landsat satellite 

mission evolved with the launching of Landsat MSS (Multi Spectral Scanner) 

continued by Landsat 7 ETM+, the TCT was then developed to accommodate all six 

non-thermal bands. These data are transformed into a set of new bands that are useful 

for interpretation of vegetation including greenness, soil brightness, etc. Equation of 

TCT for use with Landsat MSS data is linear combinations of green, red, and two 

NIR bands to produce new four bands of TC1 (Tasseled Cap 1)/greenness, TC2/ soil 

brightness, TC3/yellowness, and TC4/noise. The Tasseled Cap coefficients were 

developed by Campbell [193]. For use with Landsat 7 ETM+ imagery, the TCT 

equations transform the six non-thermal data into new six bands namely TC1 (soil 
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brightness), TC2 (vegetation greenness), and TC3 (soil moisture), the three most 

important band. There is no further description regarding the remaining bands TC4, 

TC5, and TC6. The equation for use with Landsat 7 ETM+ is in form of linear 

combination. The Tasseled Cap coefficients have been developed by Huang, et al. 

[194] and are shown in Table 2.8. For example, soil brightness can obtained as 

follows:  

   
   
   61596.052286.0

46966.033904.0

23972.013561.0

BandBand

BandBand

BandBandBrightness







   (2.28) 

Table 2.8 Tasseled Cap coefficients for use with Landsat 7 ETM+ imagery 

Index  Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Brightness  0.3561  0.3972 0.3904 0.6966 0.2286 0.1596 

Greenness  -0.3344  -0.3544 -0.4556 0.6966 -0.0242 -0.2630 

Wetness 0.2626  0.2141 0.0926 0.0656 -0.7629 -0.5388 

Fourth  0.0805  -0.0498 0.1950 -0.1327 0.5752 -0.7775 

Fifth  -0.7252  -0.0202 0.6683 0.0631 -0.1494 -0.0274 

Sixth 0.4000  -0.8172 0.3832 0.0602 -0.1095 0.0985 

2.7.11  The Roles of Remote Sensing in Landslide Hazard Assessment 

Remote sensing technology plays important roles in assessment of landslide hazard. It 

offers non-contact measurement which is helpful for monitoring insecure landslide 

prone areas. The roles of remote sensing in landslide hazard study include firstly, 

identification of landslide locations for purpose of construction of landslide inventory 

map; secondly, provision of large coverage of thematic maps of landslide contributing 

factors; lastly, monitoring of landslide hazard trough changes detection object on the 

surface ground.  

As landslides occur at the earth surface, it attracts scientists to apply remote 

sensing technologies to exploit landslide areas. When dealing with measurement and 

monitoring of single landslides with small areas, terrestrial photogrammetry and laser 

scanning surveys as of remote sensing methods can be suitable methods to apply. 

These methods have been applied such as by Stylianidis, et al. [195], Bitelli, et al. 
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[196] and Monserrat and Crosetto [197]. For a larger area, landslides monitoring are 

carried out by using aerial photogrammetry such as investigations conducted by such 

as Hervas, et al. [6] and Walstra, et al. [198]. For wide coverage such as medium and 

regional scale, landslides were monitored using space based-remote sensing imageries 

such as investigations carried out by Hong, et al. [199], Kyoung-Wook, et al. [19, 

Shikada, et al. [200], and Mantovani, et al. [124].  

Remote sensing imagery has been useful for identification of landslide locations 

and constructing a landslide inventory map. Shikada, et al. [201] used Landsat TM 

(Thematic Mapper) satellite image for extracting characteristic properties of landslide 

areas. Chi, et al. [202] used data fusion of panchromatic and multispectral of SPOT-5 

images and DEM to identify landslide scarps. Vohora and Donoghue [97] used 

Landsat TM and IKONOS images for mapping landslides in Hongkong. 

Nikolakopoulos, et al. [203] detected landslide areas using Landsat images by means 

of identification of high reflectance on the image since landslide areas are usually 

lack of vegetation. Hervas, et al. [6], Nichol and Wong [204], Singhroy, et al. [205] 

utilized remote sensing images for preparing landslide inventory maps.  

Remote sensing offers wide coverage spatial data required for constructing LHZ 

map. The data that can be derived from remote sensing technology such as, 1) land 

use land cover as investigations carried out by such as Han, et al. [206], Li, et al. 

[207], and Khorram, et al. [208]; 2) NDVI, by Gibson and Power [94], Yaowen, et al. 

[209], and Jiaxin, et al. [210]; 3) soil moisture, by Xuhua, et al. [211], Ray and Jacobs 

[84], and Huang, et al. [194]; and 4) LST, by Alsultan, et al. [212] and Yang, et al. 

[191], Huang, et al. [194]. 

Remote sensing satellites have different repeat period. For examples, Landsat 5 

and 7 satellites have 16 days repeat period while SPOT (Satellites Pour l‘Observation 

de la Terre or Earth-observing Satellites) 4 and 5 have 26 days repeat period. These 

repeat periods allow investigators to monitor phases of landslide and detect changes 

in for example, land use land cover. Another benefit is that multi temporal spatial data 

such as series of land use land cover, NDVI, soil moisture, LST, etc, can be made 

available. These data are useful when different conditions of NDVI/soil moisture/LST 

under different rainfall seasons are required for modeling LHZ. In addition, by having 

multi temporal spatial data, e.g. land use land cover, one can investigate land use land 



80 

cover changes over a particular period; landslide extent can be monitored. For 

examples, Goetzke, et al. [213] used series of Landsat images for monitoring land use 

changes due to urbanization in Central European. From 1984 to 2005, the urban areas 

increased about 37%.  

2.8 GIS and Its Roles in Landslide Hazard Assessment 

Geographic Information System (GIS) has been a useful tool for very broad 

applications such as in natural resources, environmental studies, etc. GIS also takes 

part in mitigation efforts in minimizing loss of lives and damage of infrastructures 

due to natural hazard threats such, flood and landslides, by providing hazard maps. 

GIS has been proven to be helpful in LHA as indicated by the abundance of 

literatures on LHA utilizing GIS tool. Below is the description of the roles of GIS in 

LHA and brief review of GIS concept and the associated matters.   

2.8.1. GIS roles in Landslide Hazard Assessment 

Dealing with landslide hazard assessment of medium scale means handling and 

processing a large amount of spatial data with wide coverage. Without a powerful 

tool, this work will be cumbersome. GIS offers a powerful tool more than handling 

and processing data. As defined by Burrough and McDonell [214], GIS a powerful 

set of tools for collecting, storing, retrieving at will, transforming and displaying 

spatial data from the real world. Using GIS, modeling and predicting areas potential 

to landsliding can be made possible. 

GIS was first used in landslide hazard assessment (LHA) in the early of 80‘s as 

reported by Carrara, et al. [59]. Earlier works used GIS as a tool to display data and 

results (final map) in an interesting way. During 1980‘s, GIS was used by few 

investigators for assessment and prediction of landslide hazard. It became extensively 

used as the popularity of statistical methods in LHA increased as described by Aleotti 

and Chowdhury [116] and Van Westen, et al. [49]. Recently, GIS has been proven to 

be a valuable tool for acquiring, storing data and manipulating data. Morphology 

factors such as slope, slope aspect, curvature, elevation, etc. can be easily derived 
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from DEM (Digital Elevation Model) easily using GIS. GIS has become more 

powerful when it able to handle and undertake image processing works as offered by 

stand alone image processing software. GIS is also capable in handling spatial data 

with different reference systems. For use in LHA, GIS encompasses the following 

components as suggested by Van Westen [108]: data collection, data entry, data 

management, and data modeling. Roles of GIS in every step of LHA are illustrated in 

Fig. 2.17. GIS stores required spatial data such as geology and LULC for LHA 

including remote sensing imageries into a database during data collection phase. 

Attributing spatial data and generation of DEM are of GIS roles in the second phase. 

During the third phase, GIS takes part in formation of landslide database and spatial 

database required for LHA such as hazard factors, elements at risk, and landslide 

triggering factors. The last phase of GIS role is data modeling. GIS contributes in 

finalizing LHA by providing landslide hazard/risk map, calculation of risk and 

vulnerability, etc.   

2.8.2. Concept of GIS  

Detail information regarding to principle of GIS can be referred to Burrough and 

McDonell [214]. When explicitly mentioning the hardware used in GIS, Rose [215] 

defined that GIS is as a computer system capable of assembling, storing, 

manipulating, analyzing and displaying geographically referenced information, i.e. 

data identified according to their locations. Besides the hardware, GIS components 

include GIS computer software, operating personal, geographic data, and data 

database management including functions to perform data analysis.  

In real world, geographic information is represented by location such as location 

of Bench Mark, petrol station, landslide locations. etc.; attributes such as street name, 

land cover type, etc.; and spatial relationships such as sharing center line of river and 

states border, etc. To put such geographic information in a computer for further 

analysis, GIS is required. There are three steps to go from real world geographic 

objects to those on a computer: 1) representation of geographic objects, 2) relating 

attributes to geographic representation, and 3) spatial relationship between geographic 

representations.  
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Fig. 2.17 GIS roles in phases of LHA 

Source: Van Westen [108] 

In GIS, there are two types of data models/formats as representation of real world 

objects in computer namely vector and raster data model (Fig. 2.18). In vector data 

model, real world geographic objects are represented by spatial features i.e. point 

(e.g. electric pole, control point, etc.), line (e.g. center line of river and road, geology 

lineament), and area (e.g. building, island, etc.). The coordinates of points and the 

points forming line/area can be obtained from measurement e.g. using GPS, picking 

up from topographical map, etc., and stored in GIS. Vector data model is good for 

representing accurate position of objects and is helpful when used for defining spatial 

relationship between objects. Raster data model uses regular grid of evenly size cell 

to represent real world objects in computer. Each represents a portion of area on 

earth. For example, a grid may represent 10 x 10m of area on earth and could be 

assigned a value of geology type, soil type, elevation, etc. Examples of raster data are 

slope, slope aspect, remote sensing imageries. Raster data is suitable for representing 
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continuously changing attributes such as elevation, reflectance, temperature, etc. 

However, raster data is not suitable when dealing with accurate measurement on GIS. 

    

Fig. 2.18 Vector and raster data model 

Source: Rose [215] 

The next step for bringing real world geographic objects into a computer is by 

linking attributes of geographic representation. Attributes are non-spatial data 

associated with geographic representation. For example, one needs to input geology 

type on geology layer or street name on street layer. Tables are prepared to store the 

attributes associated with the objects. GIS with capability of database management 

and manipulation is able to link between spatial and attribute data and allow analysis 

and query of both data. The last step is building spatial relationship between 

geographic representations. Spatial relationships of individual object are length, area, 

shape, and perimeter. Meanwhile, spatial relationship among 2 objects or more could 

be distance, direction, and topology. Topology is simply defined as the spatial 

relationships between adjacent or neighboring features. For example, end of two 

roads may share the same endpoint; a river and the adjacent land cover may share 

boundaries or segments of the boundary, etc. Spatial distribution of objects described 

how a particular object is spread out on the map. For example, the spatial distribution 

of forest may across various type of geology.  
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2.8.3. GIS Software  

There are non-commercial/open source and commercial GIS softwares. GRASS 

(Geographic Resources Analysis Support System) is an example of non-commercial 

software while ArcGIS, the software currently used in this work, is commercial 

software. Like any other GIS softwares in general, this software is capable for 

undertaking all previously mentioned GIS works as described in ESRI [63]. For use 

in LHA, the software offers facilities to cover all required processes i.e. data 

collection, data entry, data management, and data modeling. In data collection phase, 

a required landslide contributing factor, e.g. geology map, can be made available by 

digitizing a scanned geology map. A geocoding toolbox can be used to tie down the 

digitized map to the desired projection system. In addition, the software can perform 

image processing of satellite images to produce LULC, one of important landslide 

contributing factor. In the second phase, the software facilitates attributing of spatial 

data. The next phase, the software can be used to derive spatial data from DEM such 

as slope, slope aspect, curvature, etc. from DEM. The main function of the software 

in this phase is database management, to prepare all contributing factors, including 

attributing weightage values, to be ready for final stage. The final phase is executing 

the landslide hazard assessment model in order to produce a final landslide hazard 

map.  

Talking more detail about ArcGIS software, the software has two powerful 

toolboxes for LHA purpose namely 3D Analyst and Spatial Analyst. The first is 

useful for deriving spatial data categorized as 3 dimensional (3D) surfaces such as 

TIN (Triangulated Irregular Network). This 3D surface is a main data used by Spatial 

Analyst to derived data such as slope, slope aspect, curvature, and elevation. Spatial 

analyst offered spatial analysis tools required for modeling landslide hazard such as 

extraction menu for evaluating the relationship between past landslide occurrences 

and causative factors and overlay tools using which the final landslide hazard maps 

are constructed.  
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2.9 Chapter Summary 

This chapter has presented a general review of landslide hazard assessment (LHA) 

including the terminologies and associated concepts. Several factors were discussed 

in term of their significance of causing instability of slopes. Ten static contributing 

factors namely lithology, proximity to geology lineament, soil, slope, slope aspect, 

elevation, curvature, proximity to water body, LULC, and proximity to cut slope 

which is associated with road, were found to be relevant to involve in LHA.  In 

review of multi temporal environmental factors i.e. NDVI, soil moisture and LST, it 

was noted that such factors indicate changes due to different rainfall seasons. In 

regard to selection of appropriate scale, medium scale is suitable for LHA utilizing 

remote sensing imageries. 

There are various methods in LHA which can be grouped into qualitative and 

quantitative methods. Unlike qualitative methods that are subject to expert 

subjectivity, quantitative methods offer objectivity in obtaining relationship between 

past landslide occurrences and relevant landslide contributing factors and the final 

landslide hazard map. From literature review, it was noted that most of previous 

works of LHA involved ‗static‘ landslide contributing factors. Investigation on 

landslide susceptibility that utilizes multi temporal rainfall maps is quite rare. The 

spatial resolution of available rainfall map for large until medium scale mapping is 

coarse. As replacement to this data, remote sensing offers environmental data that are 

responsive to cycle of rainfall such as vegetation index (in form of NDVI), soil 

wetness, and LST. Such data in form of multi temporal are rarely taken into account 

in modeling landslide susceptibility either in local or abroad investigations.  

A number of studies of LHZ have been conducted for Cameron Highlands. Both 

methods, qualitative and quantitative methods, were applied. Reviewed literatures of 

local investigations showed that most of the studies did not take into account the 

temporal conditions of landslide contributing factors affected by rainfall cycle in the 

landslide hazard model. Landslide records showed that the number of landslide 

occurrences increased within rainfall seasons. Previous works left a gap that is the 

absent of multi temporal factors and put an opportunity to apply multi temporal 

factors derived from satellite imageries in LHA.  
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Basic techniques of image processing of remote sensing data were described in 

order to produce corrected satellite images. Procedures of converting corrected 

satellite data to other spatial data such as LULC, NDVI, soil moisture, and LST were 

explained. Finally, a brief review of GIS concept and its capability were discussed. 

The presence of GIS has been helpful in covering all steps in LHZ from data 

collection to presentation final landslide hazard map.  
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CHAPTER 3  

DATA AND METHODOLOGY 

3.0  Overview  

This chapter describes the characteristic of the study area, spatial data involved, and 

the methodology of the research implemented in this study. The description of the 

methodology begins with data preparation, data processing, and analysis of the result. 

The scenario of data processing was designed so that the objectives of the research 

can be achieved.  

3.1  Characteristics of Study Area 

The study area has special characteristics of topographical parameters,   LULC, and 

the climate. In addition, characteristic of landslides in the study area occurrences in 

Cameron Highlands are explained as well.  

3.2.1 Limits of Study Area  

The study area is part of Titiwangsa mountain range. The area covers 30 km x 30 km 

(about 900 km
2
) that conforms to the coverage of 1: 25000 topographic map, 

published by Department of Survey and Mapping Malaysia. As shown in Fig. 3.1, the 

study area mainly includes main part of Cameron Highlands district, Pahang state, 

and eastern part of Kinta District, Perak state. Small part of study areas are occupied 

by Gua Musang district, Kelantan state, and Batang Padang district, Perak state, 

which are located at the Northeastern and Southern of the topographic map 

respectively. The boundary coordinates of the study area are presented in Table 3.1 in 
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three formats namely, 1) RSO (Rectified Skew Orthomorphic) which is the projection 

system use for topographical mapping in Malaysia, 2) geodetic system and 3) 

Universal Transverse Mercator (UTM) system.  

     

 

 

 

 

 

 

 

 

Fig. 3.1 Location of the study area 

Table 3.1 The Coordinates of the study area corners 

 Upper left coordinates Bottom right coordinates 

RSO X: 360000 m Y: 510000 m X: 390000 m  Y: 480000 m 

Geodetic : 101
0
 13‘ 48‖ 4

0
 36‘ 29.1‖ : 101

0
 30‘ 4.3‖ : 4

0
 20‘ 16.4‖ 

UTM North 47 747417.5 E 509730.8 N 777615.51 E 479934.06 N 

3.2.2 Topography, LULC and Soil of Cameron Highlands 

The study area is located at mountainous terrain. The elevation ranges from 80 meter 

to 2100 meter. The lowest height is located at lower left of the map which is rubber 

plantation area located in Perak state. The highest elevation is at top of Mount Irau, 

followed by the top of Mount Berincang that is 2110 m and 2031 m above mean sea 

level respectively. The average height is 1108 meter indicating that the study area is 

deserved to be called as highlands area. About 60% of the total of study area is 

located at elevation above 1000 m.  

Batang Padang  

Gua Musang 

Cameron 

Highlands 

Kinta 

Lipis 

Peninsular Malaysia  

30 km 

30 km 
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According to slope classification by Omar, et al. [9], the slopes at the study area 

are mainly dominated by the critical slopes that range from 20
0
 to 35

0
 and occupies 

47% of the total area. About 33% of the study area has moderate slopes that range 

from 12
0
-20

0
 and 20

0
-41

0
. The remaining areas are considered as flat (18%) with 

slopes that range from 0-12
0
 and areas with the steepest slope (4%) that range from 

41
0
-88

0
. 

LULC of the study area is dominated by forest (92%) followed by cropland (7%) 

and built up (1%). The corresponding areas are 833.6 km
2
, 61 km

2
 and 5.5 km

2
 

respectively. This information was extracted from topographic map constructed using 

aerial photo acquired in 1981. In recent condition, these portions of LULC have 

surely changed. Investigation performed by TNBHidro-Sdn.Bhd. [152] showed that 

the development of cropland and built up increased significantly. The number of open 

land and crop land has expanded significantly in Bertam and Telom catchments, two 

areas in Cameron Highlands. The increase of these two land uses implicitly means the 

decrease of forest areas. 

The soil in Cameron Highlands is generally sandy and easy to erode as reported 

by Van der Ent and Termeer [216]. Having this soil type combined with critical 

slopes and high rainfall intensity, the potential of landslide occurrences in Cameron 

Highland becomes higher.  

3.2.3 Climate of Cameron Highlands 

The annual rainfall of the study area is quite high ranging from 2412 mm to 3172 mm 

based on Malaysia Meteorological Department (MMD) data record acquired from 

2000 until 2005 as shown in Fig. 3.2. The monsoon system plays an important role in 

controlling rainfall distribution. As explained by Guha [149], the Northeast monsoon 

that falls between November and January brings heavy rainfall over Malaysia, 

particular in the east coast of Peninsular Malaysia (PM). In the western part of PM, 

the rainfall intesity is lesser than that of the eastern part.  Meanwhile, during the 

southwest monsoon period that falls between April and May, less rainfall occurred in 

PM compared to that of northwest monsoonal period. The hottest and driest days take 
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places during inter monsoon period. On the contrary, heavy rainfall with high 

intensity takes place in the northern part of PM.  

 

Fig. 3.2 Monthly averaged rainfalls of Cameron Highlands (2000-2005) 

Comparison between rainfall data of MMD and monsoonal periods shows that the 

peak of heavy rainfall started early before northeast monsoon period. The rainfall 

intensity starts to increase from September and decreases on January. The intensity of 

rain reaches its peak on October as indicated by the maximum number of rain days by 

26.5 days per month averaged over 5 years of rainfall data. As the consequence, the 

amount of rainfall in October, which is 381.6 mm, is the highest one for the entire 

year. During southwest monsoon, the rainfall intensity reaches its peak on April with 

22.5 rainy days and 318.3 mm rainfall amount. This number is slightly smaller 

compared to that of northeast monsoon period.  There are two driest seasons which 

takes place during inter monsoon periods indicated by low rainfall intensities. The 

peaks of these seasons occur on February and June and the rainfall intensities are 

117.6 mm and 141.8 mm respectively. Meanwhile, there is an agreement between 

monthly rainfall amount and the number of rainy days. 

The temperature range is 14.5
0
C (minimum) - 22.4

0
C (maximum) according to 

the data from Worldclimate [217] averaged from 1966-1975. This area is also called 

cloud forest due to the existence of mountains intercepting circulation of air, forcing 

it upward where it cools and water vapor condenses into cloud. The clouds that 
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frequently exist in the study area cause a problem in data acquisition using optical 

remote sensing technique. 

3.2.4 Geology of Cameron Highlands  

The geology of the study area mainly consists of granite. The primary granite type is 

acid intrusive granite formed in the Late Triassic period. The granite is divided into a 

medium to coarse grained, porphyritic, biotite granite as mentioned in Van der Ent 

and Termeer [216]. The porphyritic biotite granite is found abundant in the study 

area. The conditions of granite rocks vary. Some of them are covered with sandy soil 

mixed with peat; some are studded with Granite boulders; and some are covered with 

loamy soils and beds. Granite looks decaying in some places with colors vary from 

deep red, yellow to almost white. The color of the weathered overlying soil also 

varies from deep red, light yellow and pink. Along fresh cut slope, the different color 

of weathered underlying soil. Discontinuity exists within granite rock that ranges 

from 0.3 to 1 meter.  

Alluvium rock type also exists in the study area. This rock type consists of 

deposit of clay, silt and sand left by flowing water in a river valley or delta. This type 

of rock typically produces fertile soil. Another existing rock type is Schist, a kind of 

metamorphic rocks. In the study area, schist is the oldest rock. It was intruded by 

granite so that schist is normally situated at the upper part of lithological boundary. A 

detail explanation of geology of the study area can be found in Bakar and Madun 

[218] and Jamaluddin [219]. There is undifferentiated which is described in geology 

map as sedimentary rock.  

3.2.5 Landslide Occurrences in Cameron Highlands 

The main source of landslide occurrences record was obtained from Malaysian Public 

Work Department (Jabatan Kerja Raya, abbreviated as JKR) report documented in 

JKR [220]. Table 3.2 shows the summary of landslide occurrences in Cameron 

Highlands from 1961 to 2007 and the corresponding rainfall intensity. The number of 
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road related landslide is higher (57%) compared to non-road related one (43%). A 

more meaningful illustration on relationship between landslide and rainfall intensities 

is already shown in Fig. 1.3 of Chapter 1. Starting from November to January, high 

intensity of rainfall driven by Northeast monsoon is followed by the high number of 

landslide occurrences. Meanwhile, during southwest monsoon with lower rainfall 

intensity than that of northeast, the number of landslide occurrences is lower as well. 

On July and August which are the hottest and dries months, there are no landslide 

occurrences.  

Table 3.2 Number of landslide occurrences in Cameron Highlands (1961-2007) 

  

Monthly Average Rainfall 

(mm) Landslide Type 

Month 
Landslide 

Occurrence 

Number 
Malaysia 

Cameron 

Highlands 
Non-road 

related  

Road 

related  

Jan 5 92.1 141.8 2 3 

Feb 1 109.3 117.6 0 1 

Mar 1 245.6 200.8 1 0 

Apr 2 318.3 289.8 1 1 

May 3 236.8 260.5 2 1 

Jun 3 194.8 157.8 0 3 

Jul 0 180.5 141.8 0 0 

Aug 0 203.2 171.8 0 0 

Sep 1 270.4 240.8 1 0 

Oct 10 381.6 340 5 5 

Nov 6 325.2 316.5 2 4 

Dec 5 258.9 222.4 2 3 

Total 37 
 

Total  16 21 

   

Percentage (%) 43 57 

 Source: JKR [13] 

Among the areas that experiencing landslide events according to JKR [13] and 

Chan [148] record are Tanah Rata/Brinchang (6 cases), Ringlet (3 cases), Tapah-

Cameron Highlands road (8 cases), Kampung Raja (2 cases), Tringkap (1 case), 

Kuala Terla (5 cases), Lata Iskandar (1 case), Blue Valley (1 case), Simpang Pulai-

Cameron Highlands (5 cases) and Gua Musang-Cameron Highlands road (1 case). 

According to Chan [148], landslides in Ringlet (1961), Kampung Raja (1966) and 

Tanah Rata-Brinchang road (200) are considered as the killing landslide that killed 16 

people for the first case and 6 people for the last 2 cases. Meanwhile, a landslide at 
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Pos Selim, located at Simpang Pulai-Kampung Raja road near Perak-Pahang 

boundary, was considered as a big massive landslide occurred in 1999 with wide 

coverage. There were no people killed but the total economic loss costs about RM 

354.6 million. The total cost includes such as fatalities, injuries, distance related 

transportation cost, time related transportation cost, time related productivity cost, 

and restoration cost. Fig. 3.3 shows two conditions of landslide at Pos Selim at KM33 

of Simpang Pulai Kampung Raja road recorded in 2001 and 2006. 

3.2  Hardwares and Softwares 

Garmin E-Trex V and Garmin iQue® 3000 PDA GPS (see Fig. 3.4) were used to 

record landslide locations during field surveys carried out on 6 December 2006 and 4 

May 2008 respectively. A pocket camera was used to capture current and past 

landslides objects. One unit of computer with high speed processor and video graphic 

was used for image processing and GIS analysis. Softwares used in this research 

mainly consisted of Image Processing softwares namely, ER Mapper® 6.4, and GIS 

software namely AutoCAD Land Development 2004, ArcView® 3.2a, ArcGIS® 10. 

MapSource® was used to download and display GPS data of landslide locations. 

3.3  Source of Spatial Data 

The main data used in this research are shown in Table 3.3. The data came with 

various format and scale and originated from different sources. The detail description 

of each data is explained in the following sections.  

Some of these data were used to derive spatial data, i.e. landslide causative 

factors, required for landslide susceptibility modeling. These data include topographic 

map, Landsat 7 ETM+ images, geology map, and soil map. The discussion of 

derivation of landslide causative factors is given in section 3.4.  
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Table 3.3 Data source for deriving landslide causative factors 

Data  Format Scale  Source  

Topographic 

map 

Analog and 

digital maps  

1 : 25,000  

1 : 50,000 

Department of Survey and Mapping 

Malaysia (DSSM) or JUPEM 

    
SPOT 5 image 

 

Digital  - Malaysia Remote Sensing Agency 

(ARSM) 

Landsat 7 ETM+  

images 

Digital  - Malaysia Remote Sensing Agency 

(ARSM) and EROS- USGS at 

http://glovis.usgs.gov/ 

    
Soil map 

 

Analog map 1: 1,500,000 European Soil Portal at 

http://eusoils.jrc.ec.europa.eu/   

Geology map 

 

Analog map 1: 250,000 Minerals and Geosicence 

Department Malaysia 

    
Rainfall data  

 

Digital  - Malaysian Meteorological 

Department (MMD) 

Landslide map  

 

Digital map - Malaysia Remote Sensing Agency 

(ARSM) reported in Pradhan and 

Lee [12] 

    

3.3.1 Topographic Map-Derived Spatial Data 

The topographic map used was the map with the following particular information: 

sheet No. 3662, series No. L7030, published as second edition in 1994, and scale of 

1:50,000. This map was obtained from DSMM or known as JUPEM (Jabatan Ukur 

dan Pemetaan Malaysia) in hard copy/analog format. According to the information on 

the map legend, the map was constructed based on aerial photographs taken in 1981. 

The road network on the map was updated in 1994 by DSMM. The digital version of 

the map was available at scale 1:25,000.  

Topographic map had two functions. The first, it served as a base map from 

which landslide causative factors were derived. The second was as a reference map to 

rectify all satellite images. The first was the function of digital topographic map and 

the second was the function of analog topographic man after being geometrically 

corrected.  There were six landslide causative factors derived directly and indirectly 

from topographic map. Road and river/lake maps were directly extracted directly 
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from the digital topographic map by separating these two layers from the map. Maps 

of slope, slope aspect, curvature and elevation were indirectly derived from the digital 

map through DEM. DEM was first generated from contour map extracted/digitized 

from the corrected map. Once a scanned topographic map has been geometrically 

corrected, it can be used as a reference map to rectify any remote sensing images. 

SPOT image was rectified using the corrected topographic map. Derivation of spatial 

data from topographic map is illustrated in Fig. 3.12 and discussed in detail in section 

3.4. 

3.3.2 SPOT 5 Satellites Data 

SPOT 5 satellite image was mainly used for providing a reference/corrected satellite 

image to rectify all Landsat images using image-to-image registration and for 

updating road map which was first extracted from the topographic map. Detail 

discussion of rectification process is described in section 3.4. The main updated road 

was the road connecting Simpang Pulai and Kampung Raja. Based on the first 

purpose, a good SPOT 5 image with minimum cloud coverage with a good contrast 

was selected. Below is the particular of the image: 

- Date of acquisition : 19 April 2005 

- Path/Row  : 268/341 

- Cloud cover (%) : 5% 

- Projection system : UTM (Universal Transversal Mercator) 

- Time of acquisition : 3:16 GMT or 11:16 AM in local time  

- Number of bands : 4 bands 

With such a time of acquisition, when the sun is almost at the zenith, the energy of 

the sun is sufficient to provide a good contrast of the acquired image and it provides 

minimum shadowing effect caused by cloud. The preview of SPOT 5 satellite image 

is shown in Fig. 3.5. The area of study is indicated by a square of 30 km x 30 km. 
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Fig. 3.3 Different conditions of landslide at Pos Selim  

 

 

 

 

 

Fig. 3.4 Handheld GPS device for data collection 

 

    

Fig. 3.5 Preview of SPOT 5 image 

2001 2006 
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3.3.3 Landsat 7 ETM+ Satellite Data and Strategy of Data Selection 

All Landsat data used in this research is from the same path/row index that is 

127/057. Landsat data were used to derive LULC and multi temporal factors of, 

NDVI, soil wetness, and LST. Since the objectives of the study are to model 

susceptibility taking into accounts the multi temporal factor due to monsoonal rainfall 

and hence, the evaluation of the temporal factors at once, a careful data selection was 

undertaken. There were four Landsat images to select in accordance to the peak time 

of two rainy and dry seasons.  

The selection of Landsat images was based on the following conditions: 

1. Landsat images were required to represent monsoonal rainfall cycle as much 

as possible. It means that the time of images acquisition should be the same as 

the peak time of rainy and dry seasons of Cameron Highlands annual rainfall 

cycle. 

2. Landsat images with SLC (the Scan Line Corrector)-on mode were selected. 

This means the images taken after 31 May 2003, were omitted. The images 

taken from September 1999 until 31 May 2003 were available to select. Those 

with SLC-off mode were not selected due to the presence of instrumental 

errors.  

3. Landsat images with minimum cloud cover/haze and offered by EROS as free 

downloadable images were selected. 

Calling back monsoonal rainfall cycle of Cameron Highlands which is shown in 

Fig. 3.6, it can be highlighted that there are two pronounced rainy (shown in solid 

lines) and dry seasons (shown in dashed lines). Peak times of rainy seasons occurred 

in April and October while those of dry seasons occurred in February and June. Based 

on these peak times and requirements to meet conditions number 2 and 3 mentioned 

above, four Landsat images were identified and shown in Table 3.4. The selection of 

4 images that corresponds to two peak time of rainy and dry seasons was intended for 

first, to limit the volume of research work, and the second is to ensure to produce 

distinctive maps representing different conditions of rainfall cycle. 
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Fig. 3.6 Identified peak time of rainy and dry seasons for Landsat data selection  

Table 3.4 Selected Landsat 7 ETM+ images 

No 
Peak time of 

Rainfall cycle 
Seasons 

Dates of possible 

Landsat 7 images 
Cloud cover 

1 February Dry  24 February 2001 22 % 

2 April Rainy 31 May 2001 19% 

3 June Dry 19 June 2002 25% 

4 October  rainy 20 September 2001 13% 

Selection of desired Landsat data encountered some problems and seemed to be 

unsatisfactory. The problems were mostly due to the availability of the image of 

interest that matched with peak times of both seasons and the status of ‗not free to 

download‘. Sometimes, the images were unavailable with no further explanation from 

the image provider. Cloud cover and short period of SLC-on mode have been 

limitations to get the desired images. The author concerned to have all images 

available in a year in so that all multi temporal data have a common time frame, more 

particularly in the same year. This is to avoid different behavior of rainfall cycle due 

to the global climate change issue. However, that was not the case. Year 2001 

contains good and nearly complete data availability. For the first dry season on 

February, Landsat data was available. There was no data on April, the first rainy 

season. Landsat data acquired on May was selected for the replacement. The same 

case went to the second rainy second on October. Landsat image taken on September 
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was selected as the replacement. Meanwhile, there was no image on June, the second 

dry season. As the replacement, the image acquired on the same month in 2002 was 

chosen. All selected Landsat images are shown in Fig. 3.7. A rectangle on each image 

indicates the study area. 

As mentioned previously, there are four spatial data that can be derived from 

Landsat images that are LULC, NDVI, soil wetness and LST. Band 1-5 and 7 were 

used to extract land use land cover map through image classification and perform 

Tasseled Cap Transformation to produce soil wetness map. Band 3 (visible red) and 4 

(near infra red) were used to produce NDVI map. Band 6, either low or high gain 

mode, was used as the main data for generating LST map. In addition, the original 

projection system of these data is in UTM. For further utilization, these images are 

required to be tied down to a local projection system using rectification process. 

3.3.4 Soil Map 

Soil is defined in Mulders [221] as natural bodies, each with a unique morphology 

resulting from a unique combination of climate, living matter, earthy parent materials, 

relief and age of landform. Soil map may show level of weathered and types of 

material composing soil. The more weathered soil composing materials the more 

likely to slide slopes covered with that particular soil composing materials. In 

addition, soil can be composed from strong or weak material according to Mohr‘s 

scale of hardness. Hence, soil map is one of important landslide causative factors. 

The soil map is available at a small scale that is 1:1,500,000. This data was 

obtained from European Digital Archive of Soil Maps as the works conducted by 

Selvaradjou, et al. [222] which was sponsored by Soil Science Division, Ministry of 

Agriculture Malaysia. The map is available online and can be reached at http:// 

eusoils.jrc.ec.europa.eu/. Preview of soil map of PM and portion of CH are shown in 

Fig. 3.8. 

In order to be used in landslide susceptibility modeling, soil map is required to 

have the same projection system as topographical map. It was done through 
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rectification process. The rectification procedure of the soil map is discussed in 

section 3.4. 

     

      

Fig. 3.7 Selected Landsat 7 ETM+ satellite images  

  

Fig. 3.8 Soil map of PM and CH 

24 Feb 2001 31 May 2001 

19 Jun 2002 20 Sep 2001 
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3.3.5 Geology Map-Derived Spatial Data  

Geology of Perak and Pahang maps were obtained from Minerals and Geosicence 

Department Malaysia, at Perak state branch. The area of study is separated into two 

sheet maps as shown in Fig. 3.9a and Fig. 3.9b. The map consists of lithology (rock 

types) and lineaments (fault). For Pos Selim and Tanah Rata areas, more detail 

geology maps of works of Bakar and Madun [218] and Ramli, et al. [93] were added 

into the existing geology map as shown in Fig. 3.9c and Fig. 3.9d. Meng [223] 

reported that there are eight major faults of Peninsular Malaysia. One major fault 

crosses Cameron Highlands area namely Bentong Suture fault. Minor faults exist in 

the study area. 

     

 

Fig. 3.9 Source of geology maps of the study area 

a b 

c d 
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All geology maps shown in Fig. 3.9 were scanned from their original hardcopy 

format. For further use, these maps were required to be rectified to the local 

projection system. The rectification enables all maps to be joined together. 

Rectification of these maps is discussed in section 3.4. 

3.3.6 Rainfall Data 

The rainfall data is not a map but time series of rainfall data recorded at Tanah Rata 

weather station. The data was provided by Malaysia Meteorological Department. The 

rainfall data spans from 2000-2005 and available as monthly average rainfall. The 

graph of rainfall data is shown in Fig. 3.10 and the rainfall data is presented in 

Appendix A.  

Rainfall data was used for month by month comparison between landslide 

occurrences and rainfall intensity as portrayed in Fig. 3.11 (rainfall versus landslide 

occurrences in PM) and Fig. 1.3 (rainfall versus landslide occurrences in Cameron 

Highlands). Yearly average rainfall data was used to select Landsat data as discussed 

in subsection 3.3.3. 

 

Fig. 3.10 Rainfall data at Tanah Rata, Cameron Highlands 
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3.3.7 Landslide Inventory map 

Landslide map has two functions namely for use in deriving spatial relationship 

between landslide causative factors and past landslide occurrences and in validating 

the final landslide susceptibility map. Detail information of these data source is 

explained in the following. 

Landslide inventory map consists of location of landsides or slope failures 

regardless the magnitudes. The map was constructed from two sources. The first was 

from site surveys of landslide and slope failure locations using handheld GPS device 

which were carried out twice, in 6 December 2006 and 6 May 2008. The second was 

landslide map issued by ARSM as reported in Pradhan and Lee [12]. This map was 

constructed from image interpretation of aerial photographs taken from 1981-2002, 

SPOT 5 panchromatic images, and landslide report over 21 years. Liao [47] identified 

that creating a landslide map from image interpretation has disadvantageous that may 

lead to errors during processing. Landslide scarp may be difficult to differentiate with 

barren land or cut slope.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 Source of landslide map: a) site survey, b) the map from ARSM 

a 

b 
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Two sources of landslide map are shown Fig. 3.11. Fig. 3.11a shows GPS tracks 

along Simpang Pulai to Kampung Raja (upper image), Kampung Raja to Ringlet 

(lower image), identified landslide/slope failure locations and the corresponding 

pictures. Fig. 3.11b shows landslide map issued by ARSM. 

The coordinates of landslide/slope failures gained from site survey were already 

in local projections system that is RSO. Meanwhile, the landslide map was available 

in digital format with no projections system. A rectification process was then required 

in order to be compatible with field data and other spatial data. Data processing for 

rectification of landslide map and preparation of landslides locations layer are 

explained in section 3.4. 

3.4  Data Processing and Derivation 

Data processing at this stage is intended to process all relevant data sources listed in 

Table 3.3 to produce landslide causative factors. There are ten ‗static‘ causative 

factors (shown in grey boxes) and three multi temporal factors (shown in black 

boxes) produced from data sources. The overview of data source and the associated 

derivative spatial data are illustrated in Fig. 3.12. Briefly, data processing was begun 

with description of RSO projection system and provision of corrected digital 

topographic map through rectification process. RSO was set as the projection system. 

A number of spatial data (landslide causative factors) were derived from the corrected 

topographic map. The map was also used as a reference map using which other 

spatial data were georeferenced. The following sections describe the detail process of 

derivation of spatial data.  

3.4.1. RSO Reference System 

The projection system used for all spatial data in this work is RSO, Rectified Skew 

Orthomorphic, which is based on MRT (Malayan Revised Triangulation) geodetic 

reference system. This is an oblique Mercator projection as explained in Kadir, et al. 

[224] that provides optimum solution for topographical mapping in Malaysia in the 
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sense of minimizing distortion and maintaining conformal. The scale factor varies 

from 0.99984 to 1.0016 that leads to maximum scale distortion of 1:6250. The detail 

information of RSO projection parameters can be found in Appendix B. The RSO 

projection system for Peninsular Malaysia has different parameters compared to the 

one for Sabah Serawak area. Fig. 3.13 shows RSO projection parameters specified in 

ArcGIS environment. 

 

Fig. 3.12 Derivation of spatial data for landslide susceptibility modeling 

The spatial data came in different or with no projection systems. Spatial data 

derived from digital topographic map such as contour, DEM, slope, slope aspect, 

curvature, road network, river lake maps have coordinate extents in RSO system. 

However, RSO system has not been assigned to those data. Less work was needed to 

make these data in RSO system. In ArcGIS, RSO parameters were assigned to these 

spatial data. Satellite images (i.e. Landsat 7 ETM+ and SPOT 5 images) came in 

UTM (Universal Transverse Mercator) projection. Rectification process was applied 

Topographic 

map 

Corrected 

topographic map 

SPOT image 

Geology map 

Landsat 

images 

Contour map DEM 

Road map 

River/lake map 

Slope map 

Slope aspect 

map 

Curvature map 

Elevation map 

Corrected SPOT 

image 

Soil map 

Corrected 

Landsat image 

LULC map 

NDVI map 

Soil wetness map 

LST map 

Geometric correction 

Geometric correction 

Corrected 

geology map 

Lineament map 

Lithology map 

Corrected soil 

map 
Soil map 

Atmospheric 

correction 



106 

to these data to convert their projection systems into RSO system. Scanned geology 

and topographic maps had no projection systems. The scanned topographic map was 

the first map to rectify to RSO system. Having this map rectified, it served as a 

reference image for rectifying other spatial data such as satellite images, geology, and 

soil maps. 

 

Fig. 3.13 RSO projection parameters defined in ArcGIS environment 

3.4.2. Digital Elevation Model (DEM) 

DEM is a raster representation of continuous surface, usually referencing the earth 

surface. DEM is a 3D surface which is usually derived or calculated using specially 

designed algorithms that sample point, line or polygon data and convert them into a 

digital 3D surface. There are three type of surface models namely, TINs (Triangulated 

Irregular Networks), raster, and terrain surfaces. The first surface illustrated in Fig. 

3.14 was selected for the first conversion product of contour line map to 3D surface.  

In this research, the contour line data was split from the digital topographic map 

using AutoCad Land Development software. Major and minor contour lines were 
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selected and saved into an individual file. Using ArcView software, the contour line 

map was converted into a polyline shape file (*.shp), one of the vector formats in 

which the data was stored. The contour layer was converted into TINs surface using 

3D Spatial Analyst of ArcGIS environment. The algorithms triangulated points at 

contour lines which were treated as vertices. The vertices were connected with a 

series of edges to form a network of triangles. The resulting triangulation should meet 

the Delaunay triangle criterion requiring that no vertex lies within the interior of any 

of the circumcircles of the triangles in the network. The detail explanation in regard 

to TINs concept can be found in ESRI [63]. Fig. 3.15 shows the contour line and its 

TINs surface of the study area.  

 

Fig. 3.14 TINs surface 

3.4.3. Elevation 

Elevation has a role in slope instability. The higher the location the stronger the 

gravitational force acting on a mass body. In ArcGIS, elevation is a raster surface 

model. Elevation of points can be extracted directly once 3D surface has been 

created. Either TINs or raster surface provides elevation data at fixed points with the 

help of interpolation methods such as Inverse Distance Weighted, Spline, Kriging, 

and Natural Neighbors. The detail of these methods can be found in ESRI [63].  

Elevation layer is the product of conversion of TINs surface into grid/raster format. 

There is no difference elevation value at a given location in both surface formats. Fig. 

3.16 portrays a raster surface (elevation) with 30 x 30 meter square pixel size.  



108 

 

Fig. 3.15 Contour lines and TINs surface  

 

 

Fig. 3.16 Raster surface of part of the study area  
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The selection of this resolution is intended to conform to that of band 1-5 and 7 of 

Landsat images. Table 3.5 shows the distribution of elevation at the study area after 

being classified into five classes using natural break method. About 70% of the study 

area is above 900 meter and the average height is 1106 meter. These facts confirm 

why this place is called a highlands area.  

Table 3.5 The distribution of elevation at the study area 

Elevation (m) Area (km2) % 

80 - 600 93 10.3 

600 - 924 190 21.2 

924 - 1200 213 23.7 

1200 - 1452 227 25.3 

1452 -  2100 175 19.5 

3.4.4. Slope 

The steepness of the slope plays an important role in slope stability. Slope map can be 

derived either from each triangle in TINs or each pixel in raster surface. For a given 

cell/point, slope is computed based on elevation values of its eight neighbor cells. The 

slope function fits a plane to the z-values of 3x3 cell neighborhood around the 

processing or center cell (Fig. 3.17a). The slope value of this plane is calculated using 

the average maximum technique as described in ESRI [63]. The direction of the plan 

faces is the aspect for the processing cell. The output slope raster can be either in 

degree or percent (called ‗percent rise‘) unit. Fig. 3.17b illustrates slopes in degree 

and rise. The lower the slope value the flatter the terrain; the higher the slope value 

the steeper the terrain. In this research, the unit in degree was chosen.   

  

Fig. 3.17 a) A 3x3 neighborhood cells for slope computation, b) slope in degree and 

rise (Source: ESRI [63]) 

a) b) 
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The rate of change (delta) of the surface in the horizontal (dz/dx) and vertical 

(dz/dy) directions from the center cell determines the slope. Referring to Fig. 3.17a, 

the rate of change of center cell ‗e‘ is determined by the values of cell ‗a‘ to ‗i‘. The 

rate of change in the x and y directions for cell ‗e‘ are computed using equations 

described in ESRI [63] as follows: 

[dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cell_size)   (3.1) 

 [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cell_size)   (3.2) 

The slope is calculated using the following equation described in ESRI [63]:   

slope_degrees = ATAN ( √ ( [dz/dx]
2
 + [dz/dy]

2
 ) ) * 57.29578  (3.3) 

The slope map of the study area is shown in Fig. 3.18. The slope unit is in degree. 

Each slope cell represents an area of 30 x 30 meter square. The distribution of slopes 

is shown in Table 3.6 after the slopes classified into 5 classes using natural break 

method. Moderate slopes dominate the study area (31%) followed by shallow slopes 

(25%). Steep and the steepest slopes cover about 29% of the area while the remaining 

area is flat slope that occupies 15% of the area. The names of slope criteria were 

adopted from Berset and Sangakkara [225].  

Table 3.6 The distribution of slope at the study area  

Slopes  (degree) Area (km2) % Slope criteria 

0 – 7.6 134 15 Flat  

7.6 – 19.6 222 25 Shallow  

19.6 – 27.6 280 31 Moderate  

27.6 – 37.6 198 22 Steep  

37.6 – 89.6 67 7 Extreme steep 

3.4.5. Slope Aspect 

There is an assumption stated by DeGraff and Romesburg [62] that slopes facing the 

sun, especially the afternoon sun, tend to have higher soil temperature, lower soil 

moisture, less vegetation and hence, more erosion could possibly take place. In this 

research, slope aspect is included as a landslide causative factor. 
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Slope aspect is the direction that a slope faces. Slope direction is commonly 

known as the compass direction of a hill faces. It can be calculated for each triangle 

in TINs and for each cell in raster. Slope aspect is measured clockwise in degree from 

0, towards North, to 360, towards North again, forming a full circle. The direction of 

each cell‘s slope face is indicated by the slope aspect value. For flat areas, the 

directions are given a value -1. Fig. 3.19 shows a compass direction, an input 

elevation dataset and the output slope aspect in raster format. 

  

Fig. 3.18 Slope map of the study area 

 

Fig. 3.19 a) compass direction, b) elevation (input), c) slope aspect (output) 

a b c 

Slope Map 

Cameron Highlands 

Source: ESRI [63] 
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Conceptually, the slope aspect function fits a plane to the z-values of a 3 x 3 cell 

neighborhood around the processing or center cell. Using a moving 3 x 3 window, it 

visits each cell in the input raster. For each cell in the center of the window (the same 

illustration as in Fig. 3.17a), an aspect value is calculated using an algorithm that 

incorporates the values of the eight cell, cell ‗a‘ to ‗i‘, surrounding the center cell, ‗e‘. 

The procedures of calculating slope aspect are explained in ESRI [63] as follows: 

1. Calculation of the rate of change in the x and y direction for cell ‗e‘ using the 

following algorithm:  

 [dz/dx] = ((c + 2f + i) - (a + 2d + g)) / 8    (3.4) 

 [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / 8    (3.5) 

2. Calculation of aspect values using the following algorithm : 

aspect = 57.29578 * atan2 ([dz/dy], -[dz/dx])   (3.6) 

3. Conversion the aspect values to compass direction values (0-360 degrees) 

using the following rule: 

if aspect < 0 

  cell = 90.0 - aspect 

else if aspect > 90.0 

  cell = 360.0 - aspect + 90.0 

else 

  cell = 90.0 – aspect       (3.7) 

Slope aspect map with 30 m x 30 m resolution of the study area is shown in Fig. 

3.20. It is difficult to interpret visually due to the pixel size. According to Table 3.7, 

there is no a dominant direction of slope cells. All slope directions, except flat areas, 

occupy almost the same areas ranging from 12-13% of the study area. A more detail 

explanation on slope aspect matter can be found in ESRI [63]. 
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Table 3.7 The distribution of slope aspect of the study area 

Slopes  Aspect 

(degree) 

Compass 

Direction 

Area 

(km2) 
% 

-1 Flat 4 0 

0 - 22.5 North 58 6 

22.5 - 67.5 Northeast 111 12 

67.5 - 112.5 East 114 13 

112.5 - 157.5 Southeast 107 12 

157.5 - 202.5 South 115 13 

202.5 - 247.5 Southwest 111 12 

247.5 - 292.5 West 115 13 

292.5 - 337.5 Northwest 108 12 

337.5 - 359.9 North 56 6 

 

 

Fig. 3.20 Slope aspect map of the study area 

Slope Aspect Map 
Cameron Highlands 
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3.4.6. Curvature 

The curvature of a surface, e.g. raster or TINs surface, is calculated on a cell-by-cell 

basis using a fourth-order polynomial described in ESRI [63] as follows:  

Z = Ax²y² + Bx²y + Cxy² + Dx² + Ey² + Fxy + Gx + Hy + I  (3.8) 

This function fits to a surface composed from a 3 x 3 window. The coefficients A, 

B, C, and so on, are calculated from this surface using Equation 3.10. L is the 

distance between the centers of cell/pixel which equals to pixel size (30 meter). The 

illustration of calculating curvature is given in Fig. 3.21. The relationship among nine 

values of elevation of each numbered cell for calculating curvature follows the 

following equations as described in ESRI [63]: 

A = [(Z1 + Z3 + Z7 + Z9) / 4 - (Z2 + Z4 + Z6 + Z8) /2 + Z5] / L
4
 

B = [(Z1 + Z3 - Z7 - Z9) /4 - (Z2 - Z8) /2] / L
3
 

C = [(-Z1 + Z3 - Z7 + Z9) /4 + (Z4 - Z6)] /2] / L
3
 

D = [(Z4 + Z6) /2 - Z5] / L
2
 

E = [(Z2 + Z8) /2 - Z5] / L
2
 

F = (-Z1 + Z3 + Z7 - Z9) / 4L
2
 

G = (-Z4 + Z6) / 2L 

H = (Z2 - Z8) / 2L 

 I = Z5         (3.10) 

The curvature is also known as the second derivative of the surface, i.e. the slope 

of the slope. It is formulated in ESRI [63] as follows:  

Curvature = -2(D + E) * 100      (3.11) 

Curvatures are indicated by negative to positive values. The unit of curvature is 

inverse distance that is 1/m. A positive curvature indicates the surface is upwardly 

convex at that cell. A negative curvature indicates the surface is upwardly concave at 

that cell. A value of zero indicates the surface is flat. In this research, curvature data 

is used to evaluate the type of curvature the landslides may occur.  

The curvature map of the study area is shown in Fig. 3.22. The map is difficult to 

interpret visually due to the pixel size that is 30 meter. The study area mainly consists 
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of moderate concave to flat areas that occupy about 46% of the total area. The 

moderate concave and convex types occupy almost the same area, about 20-22%, as 

well as high concave and moderate convex as shown in Table 3.8. The latter occupies 

11% of the total area. 

 

Fig. 3.21 The concept of calculating curvature 

   

 

Fig. 3.22 Curvature map of the study area  

Source: ESRI [63] 

Curvature Map 
Cameron Highlands 
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Table 3.8 The distribution of curvature at the study area 

Slopes  Aspect 

(degree) 
Curvature type 

Area 

(km2) 
% 

-28.2 - -5.5 High concave 44 5 

-5.5 - -1.7 Moderate concave 179 20 

-1.7 - 1.2 Concave to Flat 418 46 

1.2 - 5.1 Convex  202 22 

5.1 - 33.6 Moderate Convex  57 6 

3.4.7. Road Network and River-Lake  

The road network map of the study was extracted from the old database of 

topographic map by separating this layer from the main database. Road networks 

mainly consist of Simpang Pulai - Pos Selim - Kampung Raja - Gua Musang stretch 

and Kampung Raja – Teringkap - Tanah Rata – Ringlet - Jalan Tapah stretch.  The 

old road database, which was derived from aerial photograph taken in 1981, did not 

contain, for example, the new road connecting Simpang Pula to Kampung Raja 

(section I) and Kampung Raja to Gua Musang (section II) as shown in upper part of 

Fig. 3.23. These two road networks were extracted from SPOT 5 image by means of 

on screen digitizing. The extraction of new road from the image was carried out after 

the image has been geometrically corrected. Detail procedures of geometric 

correction of the image are discussed in subsection 3.4.10. 

Road map has been commonly used as a landslide causative factor as previously 

discussed in section 2.2.5.2. It is not road itself that causes landslide. However, road 

development is often associated with clearing and cutting natural (vegetated) slopes. 

This may disturb the stability of such slopes. The closer the distance from the road 

means the higher the potential threat of landslide/slope failure as the result of slopes 

clearing and cutting for road development. In regard to landslide susceptibility 

modeling, Euclidean distances from road were computed using Spatial Analyst 

toolbox in ArcGIS. Euclidean distance is a straight line distance from each cell to the 

closest source cell. Euclidean distance from the road of the study area is shown in 

Fig. 3.24. 
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Fig. 3.23 Updated road network map 

3.4.8. River and Lake 

Erosion and slope failure often take place along the moving water body. The 

contribution of water bodies to slope instability has been previously discussed in 

section 2.2.3.2. In addition, high level of landslide hazard took place along the river 

as stated by Liu, et al. [89]. Zhu and Huang [226] and Chuanhua and Xueping [42] 

found that proximity to rivers has been one of factors contributing landslide 

occurrences. In this research, river and another water body i.e. lake, were added for 

landslide susceptibility modeling.  

The way river and lake layer extracted from old database of topographic map was 

the same as that of road network. There were only main rivers extracted. The rivers 

include Sungai Bertam, Sungai Terla, Sungai Kampar, Sungai Bertam, Sungai 

Geruntom, Sungai Geroh, Sungai Lemoi, Sungai Dipang, and Sungai Batang Padang.  

Section I 

Section II 

 

Kinta 
Cameron Highlands 

Gua Musang 

Batang Padang 
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Fig. 3.24 Distance from road map of the study (in meter) 

 

Fig. 3.25 Distance from river map of the study area (in meter) 

Sungai Bertam 

Sungai Terla 

Sungai Batang 

Padang 

Sungai Kampar 

Sungai Geruntom 

Sungai Geroh 

Sungai Dipang 

Sungai Raya 

Sungai Mensun 
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Some rivers and small lakes were added to the old database by means of on screen 

digitizing of the georeferenced SPOT 5 image. For landslide susceptibility modeling, 

Euclidean distances from the rivers were computed (Fig. 3.25) and included in the 

modeling. This is the way this spatial data prepared for GIS process. Theoretically, 

the effect of river diminishes as the distances from river increase. Erosion and slope 

failures generally take place along the river banks.  

3.4.9. Geometric Correction of Topographic Map 

As mentioned earlier, all the satellite images came with projection systems other than 

RSO. To fix this problem, geometric correction should be applied to all images. In 

doing so, a set of GCPs is required. In this research, GCPs were obtained from a 

corrected-scanned topographic map. The procedures to prepare a corrected 

topographic map are explained in the following.  

The hardcopy of Cameron Highlands topographic map was scanned. Since the 

image produced from scanning process contained distortions, geometric corrections 

have to be applied. Beforehand, the image was subset to remove unnecessary part i.e. 

the information contained in map legend part (Fig. 3.26a). Using Geocoding Wizard 

in ERMapper environment, geometric correction was carried out by first selecting 

third order (cubic) polynomial as the mathematical model (see section 2.7.5.1) to 

relate the uncorrected image, namely a scanned topographic map, with the 

georeferenced database or set of known coordinates of points at recognizable 

positions on the map. These points can be obtained from GPS surveys or grid 

coordinates on the hardcopy of topographic map (see Fig. 3.26b). As the output 

coordinates, Kertau was selected as the geodetic datum; Oblique Mercator of West 

Malaysia RSO was chosen as the geodetic projection system; and Easting/Northing 

was chosen as the coordinate type. About 150 GCPs which mostly consists of points 

of crossing grid lines were selected. In doing geometric correction, center of grid 

points on the uncorrected image were identified and marked on the screen. The 

corresponding coordinates, e.g. Easting and Northing, were inputted on screen as 

well.  
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Fig. 3.26 a) Scanned and cropped topographic map, b) the grid coordinates  

 

Fig. 3.27 Geometrically corrected topographic map of Cameron Highland 

a 

b 
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A number of 141 GCPs was finally selected as the final GCPs because these 

GCPs resulted in the average Root Mean Square Error (RMSE) that was 0.546 

(pixel), about a half pixel. It is the value that nearly meets the recommended 

requirement that is 0.5 (pixel). The discussion on the accepted RMSE can be found in 

section2.7.5. The list of GCP coordinated can be found in Appendix C. The corrected 

topographic map is shown in Fig. 3.27. The corrected image is sometime called as 

georeferenced or rectified image, the image that has been corrected from geometric 

errors/distortions. 

3.4.10. Image Pre-Processing for SPOT and Landsat Images 

In general, image pre-processing procedures include image subsetting, image 

enhancement, geometric correction, and atmospheric correction. The following 

sections explain these procedures. 

3.4.10.1 Image Subsetting 

All satellite images were subset to conform to the size of study area to fit the size of 

the corrected topographic map. Fig. 3.28 shows cropped SPOT 5 and Landsat 7 

ETM+ image. The size of the image is about 30 km x 30 km cropped from 60 km x 

km 60, a full scene size of SPOT image, and 185 km x 185 km, a full scene size of 

Landsat 7 ETM+ image. The projection system of the images was in UTM. To make 

them compatible to process with other spatial data, the images were transformed to 

RSO projection system through geometric correction process. 

3.4.10.2 Dealing with Atmospheric Effects 

As discussed in section 2.7.5.2, the DNs re recorded by a satellite sensor consists of 

the radiance of an object and the atmosphere effects. The atmospheric effect can 

either increase or decrease the radiance of the object. The effect can be seen through 

the DN histogram of different bands and explained in the following. A simple 
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atmospheric correction was applied by means of adjusting the histogram of each band 

of the images.  

Fig. 3.29a shows histogram of band 1 and band 5, the shortest wavelength and a 

longer one respectively, of Landsat image acquired on 19 June 2002. The DN of band 

1 is shifted from zero by 49 larger than that of band 5 that is by 14. The DN shifts for 

all bands of Landsat and SPOT 5 images are listed in Table 3.9. The effect of 

atmosphere on Landsat bands is apparent. The shorter the wavelength of band the 

greater the DN shifts. Thermal band is shifted by 102 from the origin. Fig. 3.29b 

proves that SPOT 5 image is a perfect one due to no shifting of the DN of all bands. 

This image was then selected as the reference image for further processes. 

Table 3.9 shows the ranges of offset of Landsat images.  The offset ranges were 

calculated from 4 Landsat images for each band. The offsets vary time by time. 

Therefore, it is not possible to give absolute offsets for each band that are applicable 

in all situations. To fix this problem, a first order atmospheric correction was applied 

by subtracting the offset from each DN. For this current study, the average offset of 

each band was applied to correct atmospheric effect. 

Table 3.9 Offsets of Landsat and SPOT bands 

Bands 
Landsat DN shifts  SPOT 5     

DN Shifts Shifts  Average  

Band 1 (visible blue) 49-57 52 0 

Band 2 (visible green) 30-35 32 0 

Band 3 (visible red) 20-26 23 0 

Band 4 (NIR) 16-20 18 0 

Band 5 (middle IR) 7-14 11 
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Band 6 (thermal IR) 102-113 108 

Band 7 (middle IR) 9-10 10 

Band 8 (panchromatic) 16-19 18 
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Fig. 3.28 Subsetting a SPOT 5 and Landsat 7 satellite image 

         

   

Fig. 3.29 a) Histogram of band 1 and 5 of Landsat image, b) histogram of band 1 of 

SPOT 5 image 

Band 1 Band 5 

Band 1  

SPOT 5 

a 

b 
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The first order atmospheric correction approach uses an important assumption 

that there are pixels within the scene whose true DN is zero which is associated with 

the reflectance of water bodies. Fortunately, there are lakes/water bodies in the study 

area. Lakes in the study area have different DNs that are 0, 10, and 183. The problem 

arose when knowing that cloud shadow has the same DN value as lakes that are 0. 

With the limitation of ERMapper software used in this study in handling atmospheric 

effects, there were no attempts to perform further atmospheric correction. In regard to 

handling cloud shadow and cloud itself, it is discussed in section 3.4.15.  

3.4.10.3 Geometric Correction of SPOT and Landsat Images 

Geometric correction at this stage was meant to remove geometric errors and 

transform the projection system of all satellite images from UTM to RSO. Image to 

image registration would be preferable rather than image to topographic map 

registration. The latter is more cumbersome to do because recognizing the same 

objects on the map and the satellite image is not easy task. In doing so, one satellite 

image was selected as a reference image to which the remaining satellite images were 

referred during geometric correction process. The reference image was first 

georeferenced to RSO using georeferenced topographic map. This process is 

described below.  

Due the clarity of the image quality and the superiority in image resolution, SPOT 

5 image acquired on 19 April 2005 was selected as the reference image. Geometric 

correction was using two ways. The first was application of map to map projection 

and the second were application of image to image registration.  

Map to map projection is a simple way to transform from one projection system 

to another. UTM to RSO transformation algorithm was applied. There are no GPCs 

required. The result was not satisfying. When overlaid with the existing road network, 

the identified road network on the corrected image, indicated by number 1, was 

somehow shifted to the left of the existing road network, indicated by number 2, as 

shown in Fig. 3.30a. This method and, hence, the resulted image using this method 

were no longer used for further works. 
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Fig. 3.30 a) Inaccurate and b) accurate geometric correction 

Having been disappointed by the previous result, geometric correction using 

polynomial function was then carried out. A third order polynomial was selected. As 

GCPs point, geocoded image option was chosen. This was followed by selecting the 

corrected topographic map as the geocoded image. Geometric correction was carried 

out by means of pin pointing the same objects on the uncorrected SPOT 5 image and 

on the corrected topographic map (Fig. 3.31). A number of 254 points was picked up 

as GCPs. The total RMS error was 0.304 (pixel), the value that meets the acceptable 

limit. The corrected image is shown in Fig. 3.32. As the result, road network on the 

image coincide with the existing one (Fig. 3.30b).  

Geometric correction was applied to all Landsat images using the same 

procedures. The number of GCPs involved might be different for each image due to 

the degree of recognizable of the objects on those images. The GCPs were selected as 

the distinctive physical features recognizable on both images (corrected and 

uncorrected image) such as road junctions, edges or corners of features, and 

deflection points of river and road. The minimum number of required GCPs is 10 for 

performing third order polynomial transformation. RMSE of geometric correction is 

computed using Equation 2.14. Table 3.10 shows the number of retained GCPs and 

RMSE of each image. The number of GCPs was actually larger than the one shown in 

Table 3.10. GCPs shown in Table 3.10 are the retained ones that result in the 

acceptable limit of RMSE that is about a half pixel size.  

The number of GCPs used for geometric correction of all images has satisfied the 

required number for performing third order polynomial transformation that is 10 

2 1 
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GCPs. Meanwhile, the distribution of GCPs has been maintained so that GCPs were 

distributed evenly over an uncorrected image.  

 

Fig. 3.31 Snapshot of image-to-image geometric correction 

 

Fig. 3.32 Geometrically corrected SPOT 5 image 

Corrected image: SPOT image Uncorrected image: Landsat image 

GCPs 
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Table 3.10 Geometric correction results of Landsat images 

Acquisition Date 
Number of 

GCPs 
RMSE 

24 Feb 2001 60 0.580 

31 May 2001 59 0.580 

19 Jun 2002 58 0.567 

20 Sep 2001 62 0.557 

3.4.10.4 Image Enhancement 

Image enhancement techniques have been explained in section 2.7.6. For SPOT 5 

image, there was no further image processing required since its jobs for providing a 

reference image for correcting all Landsat images and updating road network have 

done.  

Image enhancement was meant to get a better view of the images to provide a 

better image interpretation especially during image classification to produce LULC 

map. Either image in natural color or false color composite was used mainly for 

identification of training areas described later. For natural color, bands combination 

of RGB 321 shows image in natural color and 543 enhances the contrast of object 

under thin layer of cloud/haze in natural color. False color composites of RGB 123 

and 432 were also used to enhance different type of vegetation.  

3.4.11. Land use land cover map 

In this section, image processing was continued to produce LULC. LULC map was 

assumed to be a non-temporal factor. Landsat image acquired on 20 September 2001 

was selected as the data source for extracting LULC due to its good clarity among the 

others. Another reason was the time frame of the research work which was set to year 

2001. Workflow of image classification procedures is shown in Fig. 3.33. 
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Fig. 3.33 Image classification procedures 

Image classification was started by setting up the Landsat corrected image as the 

input image. Training areas were defined in order to generate reflectance signature of 

each class. Using supervised classification, the signature was used to cluster the 

pixels with homogenous reflectance on the image. Filtering was applied to remove 

small pixels and to generalize the objects. Area covered by cloud and its shadow was 

delineated, removed and filled with the classified images from the other Landsat 

images.  

3.4.11.1 Image classification scheme 

Image classification scheme created by Anderson, et al. [179] has been adopted and 

modified to simplify the image classification process. It has 9 Level I categories. Not 

all of categories are available in the study area such as glaciers, and beaches. The 

number of categories was then reduced to four. Table 3.11 shows LULC classification 

categories from level I to level II. Level III was omitted for simplification reason 
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during image classification. Level II in this research was mainly adopted from 

information on topographic map legend of the study area and from knowledge gained 

during site visit. The author added cut slope, barren land, thin vegetated area, and 

open land classes for landslide susceptibility modeling purpose. 

Table 3.11 Modified image classification scheme for LULC mapping 

Category  

Number 
Level 1 Level II 

Level II  

(Used in this research) 

    

1 Urban  and 

developed area 

Urban areas 

Developed area 

Barren land 

Urban/Built up 

 Cut slope 

  Barren land 

   Open land 

    

2 Herbaceous land 
1. Pasture  

Thin vegetated areas 

  
2. Agriculture  

Cropland   

  
3. Grassland  

Bushes  

    

3 Forest  
1. Deciduous forest 

Forest  

  
2. Coniferous forest 

 

    

4 Water  Water  River and lake 

    

Urban/built up, cut slope, barren land/open land were grouped as urban and 

developed area. Urban includes settlement, cemented/asphalted surface and buildings. 

Cut slope is barren land along the road while open land is barren land and cut slope 

that have no relation with the road. Land covers related to herbaceous land are 

cropland, bushes and thin vegetated area. The latter was interpreted visually from the 

satellite image as bright green areas within dark green areas (forest) and concluded as 

thin vegetated areas. It may consist of small vegetation and bushes. There is only one 

Level II of forest that is forest itself. Both deciduous and coniferous forest is not 

typical forest of the study area. Meanwhile, river category was subdivided into river 

and lake. There are two big lakes that are located near the center and lower center of 

the corrected image. A small one is near upper center of the area study. Rivers also 

exist in the study area. Two big rivers, Sungai Bertam and Sungai Terla are the main 

rivers in Cameron Highlands. The others are considered as narrow rivers with the 

water flows away from the study area. Many upstream of big rivers, such as Sungai 

Kampar and Sungai Dipang, are located within the study area. 
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3.4.11.2 Ground Truthing, Training Sites and Signatures Generation 

Ground truth for image classification is the actual information of LCLU of each 

category of LULC. In this research, ground truth was obtained from topographical 

map, visual interpretation of the Landsat and SPOT 5 images, and field survey using 

GPS. The latter was carried out along the main road. The picture of each category of 

LULC was recorded using a digital camera. Fig. 3.34 portrays sample of LULC 

categories. 

The information of ground truth gained from was used to assist digitizing the 

homogeneous areas on the Landsat image using polygon tools. The polygons of 

homogeneous area are called as training sites. Training areas for each LULC Level II 

categories were digitized over the Landsat image based on visual interpretation of 

recognizable homogeneous areas. Classified image resulted from unsupervised 

classification was also used to assist identification of homogeneous areas for use as 

training areas in supervised classification. Visual interpretation of SPOT 5 image 

provided useful aid for clustering the object because of the high clarity and resolution 

of this image. Digitization of training areas was done using ArcGIS. A polygon shape 

layer was first prepared and assigned with RSO projection system. All the training 

areas are shown in Fig. 3.35.  

In order to distinguish among the training areas, each of them was assigned a 

specific code as follows:  0-forest, 1-lake/river, 2-urban, 3-small vegetation/cropland, 

4-cut slope/barren land, 6-open land. Before classification carried out, the spectral 

signatures were derived from each training areas. The spectral signatures were used to 

examine the signature separability between each class to see the level of separation 

between pairs of classes. Signature separability determines the accuracy of the 

classification.  
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Fig. 3.34 Various ground truth for LULC classification  

 

Fig. 3.35 Training areas for image classification of the Landsat image 

Forest, cut slope  Cropland  Tea Plantation 

River, lake Urban Built up 

Barren/open land, 

crop land Tea plantation, forest Cut slope, thin vegetation 
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The signature separability of classes is presented in a dendrogram. A dendrogram 

is explained in ESRI [63] as a diagram that describes the attribute distances between 

each pair of sequentially merged classes. The diagram is graphically arranged so that 

members of each pair of classes to be merged are neighbors in the diagram to avoid 

crossing lines. A dendrogram has classes or clusters in a signature file arranged 

relative to one another using the multidimensional distance separating the classes in 

attribute space. The signature file of the Landsat image was used as the input for 

dendrogram function. The output of the dendrogram is shown in Table 3.12. 

The dendrogram is explained as follows: firstly, urban/built up (2), Open land (6), 

and cut slope/barren land (4) have low separability. The next, at a distance of 1.380, 

urban/built up and open land will merge; urban/built up and cut slope/barren land will 

merge at distance of 1.490. Small vegetation coverage/cropland (3) has a larger 

distance of 3.611 to separate from urban (2). Meanwhile, forest (0) can be easily 

separated from urban (2) and lake-river (1) because it has farther distances by 3.824 

and 11.985 respectively. The term distance in this case is the distance between pairs 

of classes calculated based on their means and variances that can be found in output 

file of signature generation. The distance can also be viewed as the distance in a 

multidimensional space. Low separability between pairs of classes will reduce the 

accuracy of image classification. Low separability of built up (2), open land (6) and 

cut slope/barren land (4) was overcome by means of merging open land and cut 

slope/barren land as one class. Urban/built class was clearly distinguishable from 

open land/barren land/cut slope (Fig. 3.36). This class is shown in red. The 

surrounding areas are open land and barren land. Based on these signatures, the final 

classes were expected to have 5 LULC categories: urban/built up, forest, lake/river, 

cropland/thin vegetation/small vegetation, open land/barren land/cut slope. 
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Table 3.12 Dendrogram of the Landsat image Signatures 

           Distances between Pairs of Combined Classes 

                  (in the sequence of merging) 

 

             Remaining   Merged       Between-Class 

               Class      Class          Distance 

           ----------------------------------------- 

                  2          6            1.379886 

                  2          4            1.489691 

                  2          3            3.611925 

                  0          2            3.823692 

                  0          1           11.985283 

           ----------------------------------------- 

Line width of Dendrogram: 78 

           Dendrogram of d:\_arcgi~1\main_d~1\creates_le7_20sep.gsg 

 

C   DISTANCE 

L 

A 

S  0       1.3     2.7     4.0     5.3     6.7     8.0     9.3    10.7    12.0 

S  |-------|-------|-------|-------|-------|-------|-------|-------|-------| 

 

  6 -------| 

           | 

  2 -------|------------| 

           |            | 

  4 -------|            |- 

                        || 

  3 --------------------||-------------------------------------------------| 

                         |                                                 | 

  0 ---------------------|                                                 |- 

                                                                           | 

  1 -----------------------------------------------------------------------| 

 

   |-------|-------|-------|-------|-------|-------|-------|-------|-------| 

   0       1.3     2.7     4.0     5.3     6.7     8.0     9.3    10.7    12.0 

 

3.4.11.3 Image Classification and Raster Generalization 

The next step after collecting object signatures and analysis their separability was to 

undertake supervised classification. This process is intended to assign each cell of 

satellite image of the study area to a known class as using statistic of signature 

information of each class. It contains multivariate statistics of each class or cluster 

necessary to conduct image classification. The expected result is a map containing 

partition of the study area into known classes of LULC.  

A supervised image classification was applied to a Landsat image acquired on 20 

September 2001 particularly using reflectances of band 5, 4 and 3. It was conducted 

by using maximum likelihood classifier. LULC map resulted from this process 

comprises of five features namely urban/built up, forest, lake/river/water-like surface, 

cropland/thin vegetation/small vegetation, open land/barren land/cut slope (Fig. 3.37). 

The pixel size of the map is 30 m x 30 m.  
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Fig. 3.36 Separability of urban with the surroundings seen on classified image and the 

corresponding image and topographic map 

Fig. 3.37 Land Use Land Cover Map 

The classified image contains a large number of small clustered pixels that is 

usually called as ‗noise pixels‘. Before further utilizing the classified image, raster 

generalization was applied to the classified image in order to either to clean up small 

erroneous pixel in the raster data or to generalize the data to remove or smooth 

unnecessary detail for a more general analysis. The erroneous pixels may be 

Satellite image Classified image Topographic map 
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unclassified data originating from the satellite image. In doing so, raster 

generalization was performed by using Majority Filter method. This method replaces 

cells in a raster based on the majority of their contiguous neighboring cells. 

Contiguous means sharing an edge for a kernel of EIGHT and sharing a corner for a 

kernel of rectangular regions. This work used a kernel of EIGHT. Detail explanation 

in regard to this subject can be referred to ESRI [63].  

Illustration of raster generalization is given in Fig. 3.38a. The input raster 

contains small clustered pixels such as pixels with values of 6, 0 -3, and 2. After 

applying Majority Filter Generalization, these erroneous pixels in output raster are 

replaced by the majority contiguous neighboring cells. Fig. 3.38b portrays 

generalization result applied to classified image of part of the study area. Left picture 

is the original classified image while right picture displays the image after application 

of generalization. Erroneous pixels within the delineated lines (left picture) were 

removed (right picture). 

Calculation of the area of all classes was done after raster generalization 

completed. The number of pixels of each class was multiplied by 30 m x 30 m and the 

result is shown in Table 3.13.  Forest dominates the study area by occupying 74% of 

the area followed by cropland/small vegetation that occupies 20% of the area. Small 

part of the area is occupied by open land, river/lake and urban with their respective 

areas are 5%, 2% and less than 1% of the total area. The value of the area of all 

classes has been corrected from the effect of cloud and its shadow. The actual image 

contains cloud cover around 9% of the total area. The procedure in regard to fixing 

cloud cover problem is discussed in section 3.4.15. 

Table 3.13 Statistic of LULC map derived from the Landsat image 

Land Use Type 
Number of 

pixel 

Area 

(km
2
) 

% 

Cropland, Bushes, Thin vegetated area 197,954 178.2 20 

Forest 713 664.3 74 

River, Lake, Water-like surface 738,129 15.8 2 

Urban, Built up 45,685 0.6 0 

Open land, Cut slope 17,502 41.1 5 

 Total Area 900  
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Fig. 3.38 a) Illustration of generalization, b) before and after generalization 

The reason to provide only five categories of LULC was meant to conform to the 

final landslide susceptibility map that divides the susceptibility of the study areas into 

five categories: very high, high, moderate, low, very. In addition, it was also mean to 

facilitate derivation of weighting system. 

3.4.12. Normalized Difference Vegetation Index (NDVI) 

Multi temporal NDVI maps were used as representation of the effect of monsoonal 

rainfall. These maps were included in landslide susceptibility modeling taking into 

account environmental change due to monsoonal system. NDVI is one of the factors 

affected by seasonal rainfall as discussed in section 2.2.7.1. The inclusion of multi 

temporal NDVI maps was intended to investigate their roles in affecting the accuracy 

of the final landslide susceptibility maps and to seek possible replacement for rainfall 

data. In addition, NDVI can be used as indirect indicator of slope stability. High 

NDVI at a particular area means that this area is covered with healthy green 

vegetation and vice versa.  

a) 

b) 
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NDVI maps were derived from four Landsat images as presented in Table 3.4 

involving visible red (band 3) and NIR (band 4). Computation of NDVI was carried 

out within ERMapper environment. It employed Equation 2.27 described in section 

2.2.4.2. Equation 2.27 produced NDVI values ranging between -1 (no vegetation) and 

+1 (completely healthy green vegetation cover). When the NDVI image moved to 

ArcGIS environment, the index value was re-mapped into grayscale index ranging 

from 0 to 255 using scaling method as follow: 

 Scaled NDVI = 100(NDVI + 1)     (3.12) 

Fig. 3.39a shows an example of NDVI image of Tanah Rata-Ringlet area and the 

corresponding false color composite image (RGB 543) image shown in Fig. 3.39b. 

Area with the brightest color is forest. Crop land area is a bit darker than the forest. 

Built up and open land area are shown darker compared to crop land. This may be 

due to the absence of vegetation within this area or due to the presence of sparse 

vegetation or small vegetation coverage. Meanwhile, lake is shown as black area 

since there is no vegetation within the lake and the nature of the reflectance of water 

body is usually zero; therefore, it appears in black, the darkest tone in grey scale 

display. The areas bound by line are cloud covers and their shadows. Multi temporal 

of NDVI maps was produced so that they were able to represent vegetation condition 

during two peaks of rainy and dry seasons. All NDVI maps is shown in Appendix E.  

3.4.13. Soil Wetness from Tasseled Cap Transformation 

Soil wetness can be an indicator of the effect of seasonal rainfall on the wetness of the 

soil. As discussed in section 2.2.7.2, change in rainfall amount and pattern can affect 

soil moisture. Monsoonal rainfall, of course, pours different rainfall amount in a year 

in the study are. As the case of NDVI, multi temporal soil wetness maps were 

included in landslide susceptibility modeling with intension to investigate their roles 

in affecting the accuracy of the final landslide susceptibility maps and to seek 

possible replacement for rainfall data. 

Multi temporal of soil wetness maps were derived from four Landsat image 

presented in Table 3.4. Soil wetness map was computed using linear transformation 
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of TCT equations as presented in Equation 2.28. It involves linear combination of 

bands 1-5 and 7 excluding thermal infrared and panchromatic bands. The coefficients 

in Equation 2.28 were replaced by the ones for computing soil wetness as listed in 

Table 2.8. The equation for computing soil wetness using TCT is explained in Huang, 

et al. [194] as follows: 

TC3 (Wetness) = 0.2626*ETM1 + 0.2141*ETM2 + 0.0926*ETM3 + 

      0.0656*ETM4 - 0.7629*ETM5 - 0.5388*ETM7   (3.13) 

The generation multi temporal soil wetness was carried out within ArcGIS 

environment so that the resulted maps were already re-mapped into grayscale index 

ranging from 0 to 255. All soil wetness maps are stored in Appendix F. Snapshot of 

soil wetness of Tanah Rata is portrayed in Fig. 3.40. In general, soil moisture of forest 

areas surrounding Tanah Rata town is higher than that of open and built up areas 

3.4.14. Land Surface Temperatures 

As discussed in section 2.2.7.3, LST changes as rainfall intensity varies. LST was 

computed employing Equation 2.16 to 2.19 and not to continue to Equation 2.24 due 

to the absence of some parameters such as  (the ground surface emissivity) and 6 

(the atmospheric transmittance). Therefore, the computed LST still contains radiance 

of surrounding objects and the effect from atmosphere. LST resulted at this stage is 

known as brightness temperature. In this study, this parameter is assumed to be LST. 

In addition, reduction of LST to local values was intended to approximate these 

values to in situ temperature.  Reduction was referred to monthly temperature data at 

Tanah Rata weather station averaged from 1930-1975. This station is located at 

4.50°N 101.40°E, and about 4487m above mean sea level.  
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Fig. 3.39 NDVI (a) and RGB images (b) of Tanah Rata-Ringlet 

   

Fig. 3.40 Snapshot of soil wetness at Tanah Rata (center), topographic map (left), and 

the corresponding image (right) 

   

Fig. 3.41 Snapshot of LST at Tanah Rata (center), topographic map (left), and the 

corresponding image (right) 

The main input to Land Surface Temperature (LST) data is four thermal infrared 

(band 6) images. The high gain antenna mode 6 was chosen rather than the low one. 
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Built up 

Lake 

Cloud cover 
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The selection was based on the consideration that the condition of surface brightness 

of most of satellite images was low. The high gain antenna mode means that the 

antenna is highly focused. Fig. 3.41 shows that LST of urban areas is higher than that 

of the surrounding sparse vegetated areas. Meanwhile, LST of sparse vegetated areas 

is higher than that of forest area. All LST maps can be found in Appendix G. 

3.4.15. Dealing with Cloud Cover Problem  

Cloud cover has been a frequent problem when dealing with satellite images of 

highlands area. Cloud cover and cloud shadow prevent extraction of spatial 

information e.g. land use land cover, LST, NDVI, and TCT soil wetness of the areas 

covered by clouds and their shadow. In this research, the concern is to remove the 

covered area from the image either automatically or manually. In doing so, a mask 

layer for removing clouds and their shadows should be created. ERMapper provides 

the following algorithm for cloud masking that utilizes ratio of band 1 as input 1 (I1) 

and band 6 (thermal infrared) as input 2 (I2): 

IF (I1/I2 > 1.70) THEN 255 ELSE 0     (3.14) 

As the results, the built in algorithm can only delineate areas covered by cloud 

excluding areas covered by cloud shadow that are shown Fig. 3.42 as delineated areas 

in red color beside the clouds. To overcome this problem, cloud and shadow mask 

were created by on-screen digitization on four Landsat satellite images from which 

LULC, TCT soil wetness, NDVI and LST maps are derived. Polygon shape files were 

prepared for creation of multi temporal cloud and shadow masks. Fig. 3.43 shows 

cloud and shadow mask for Landsat dated on 20 September 2001. The remaining 

masks can be found in Appendix H. The percentage of cloud cover and its shadow 

areas of the first, second, third and forth Landsat images is 24.2%, 23.7%, 3.4% and 

10.4% of the total area respectively. The first two Landsat images contain a wide 

coverage of cloud covers and the associated shadows. 

As these masks were used to remove clouds and their shadows, it left ‗holes‘ or 

blank areas on the images of LULC, NDVI, TCT soil wetness, and LST. For LULC 

maps, the ‗holes‘ were replaced by the image classification results from other Landsat 
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data i.e. Landsat images acquired on 24 February 2001 and 31 May 2001. The author 

made an assumption that the LULC remained unchanged during the study. Fig. 3.44 

illustrates the procedures of filling up the ‗holes‘ due to cloud cover and the shadow 

of Landsat image acquired on 20 September 2001.  

 

Fig. 3.42 A Landsat image with cloud and shadow (left); cloud mask and remaining 

cloud shadows (right)  

In case of NDVI, TCT soil wetness and LST, the holes are kept as they were. No 

attempt was made to fill up the holes. This is due to the author‘s assumption that 

these data are of time varying factors. Therefore, there is no need to fix this problem. 

The only reasonable solution is to fill these holes with the images of adjacent date of 

acquisition.  However, this will take extra works and will be cumbersome to carry 

out. In addition, different date of acquisition will result in different values of NDVI, 

TCT soil wetness and LST due to different atmospheric effects. These blank areas 

were then assigned as ‗no data‘ for further GIS analysis. 

3.4.16. Lithology and Lineament Maps 

Three different sources of geology map were scanned and georeferenced using a 

polynomial function with respect to the following georeferenced maps: 
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1. Coastline map from geology database for georeferencing geology maps of 

Perak and Pahang, 

2. Topographic map for georeferencing geology maps of Pos Selim and Tanah 

Rata.  

      

      

Fig. 3.43  (a) Cloud and shadow mask, (b) the satellite image, (c) the mask over the 

image, (d) cloud free image 

 

 

Fig. 3.44  (a) a classified image with ‗holes‘; (b) a classified image with ‗holes‘ on 

top of another classified image; (c) ‗holes‘ have been filled up 

a b c 

a b 

c d 
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In order to allow geology maps to be compatible with other spatial data, a 

polygon shape file was prepared using ArcGIS to store geology data from different 

sources. Lithology boundaries were onscreen digitized. The respective attributes that 

consist of alluvium (83% of the study area), undifferentiated/sedimentary rock 

(14.45%), schist (2.41%) and granite (0.14%) were added to geology layer. This layer 

was then converted into raster format for GIS analysis purpose and is shown in Fig. 

3.45. 

 Geology lineament (or geology fault) map was extracted from the georeferenced 

geology map by means of on-screen digitizing. A polyline shape file was prepared to 

record the digitized lineaments. Geology lineament map is also shown in Fig. 3.45. 

For GIS analysis purpose, Euclidean distances (Fig. 3.46) were computed to provide 

assessment on the effect of distances from lineaments to landslide occurrences. 

3.4.17. Soil Map 

Soil map is an important landslide causative factor as described in section 2.2.1. Soil 

map explains weakening of slope forming material due to natural processes such as 

weathering and tectonic uplift  as reported by Zhou, et al. [51].  

Soil map was in digital format with no projections system. This map was first 

georeferenced so that soil layer can be extracted. Coastline map from geology 

database was used as the reference for georeferencing. First order (linear) polynomial 

was used as transformation function requiring at least three GCPs. Six GCPs were 

prepared to allow a better georeferencing result. Using only six GCPs, accuracy is not 

the main concern due to the fact that the scale of both maps is very small. 

Georeferenced soil map is shown in Fig. 3.47.  
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Fig. 3.45 Geology and lineament map 

 

Fig. 3.46 Euclidean distances from geology lineament 
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The next step was to prepare a polygon shape layer in which soil type boundaries 

were digitized then stored, and soil attributes were assigned. Soil map of the study 

area consists of three soil types namely (1) Red-Yellow Podzolic soil with Reddish-

Brown Lateritic soils on residual materials from acid to intermediate igneous rocks, 

arenaceous, argillaceous, and mixed sediment (2) Podzols and Lithosols on acid 

igneous rocks at elevations above 5000 feet, and (3) Red-Yellow Podzolic soils with 

Lithosols on acid to intermediate igneous rocks. The latter dominates 86.2% of the 

study area followed by the soil type (1) and (2) that occupy 12.4% and 1.4% of the 

study area respectively. 

3.4.18. Landslide Inventory  

As described in section 3.3.7, landslide and slope failures location were available in 

form of a list of coordinates obtained from site survey and a digital map. To merge 

both data, a point shape file was prepared to store both data. Landslide data from site 

survey was exported to ArcGIS from its native format produced by Map Source 

software. Meanwhile, landslide map from ARSM was digitized on-screen. Prior to 

on-screen digitizing, the landslide map underwent rectification process. The result of 

merging both data is a landslide inventory map of the study area consisting of 258 

landslide points as portrayed in Fig. 3.48. This map is used for deriving spatial 

relationship between landslide causative factors and past landslide occurrences and 

for map validation.  
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Fig. 3.47 Soil map of the study area 

 

Fig. 3.48 Landslide map of the study area 
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3.5  Landslide Susceptibility Modeling 

The works at this stage are manifestation of the objectives of the research. In regard 

to achieve the research objectives, strategies of data processing and analysis were 

arranged. Fig. 3.49 shows work flow for data processing and analysis. The works 

begin after all required thematic map of landslide causative factors gathered. All 

thematic maps are required to be in raster format. Spatial relationship between 

landslide factors and past landslide events is derived for use in deriving weighting 

system. All classes are awarded weight values according their influences allowing 

provision of weighted thematic maps. Four scenarios of data processing were 

designed to compensate multi temporal factors and assessment of their roles. LSMs 

resulted from these scenarios are analyzed to provide answers for the research 

objectives. The detail of these works is explained in the following sections. 

3.5.1 Extraction of Terrain Attributes of Landslide Sites 

Extraction of terrain attributes of landslides sites is intended to determine the spatial 

relationship between landslide causative factors and past landslide events. The 

characteristics of landslides at the study area were obtained by means of crossing of 

each causative factor with landslide locations on the landslide map. It is assumed that 

there is no correlation between landslide causative factors. Using Extraction Values to 

Points function in Spatial Analyst Toolbox of ArcGIS, the attributes of each landslide 

location such as LULC, lithology, elevation, and elevation, were extracted.  

A number of 358 landslide points with size of 30 m x 30 m were used to extract 

landslide attributes. The extraction procedure is illustrated in Fig. 3.50. Fig. 3.50a is a 

layer of landslide map and Fig. 3.50b is a layer of slope map. Both layers are overlaid 

and crossed (Fig. 3.50c) so that it results in a new layer of point shape with the 

corresponding slope attribute table (Fig. 3.50d). This table is used to construct 

landslide frequency diagram (Fig. 3.50e) to facilitate interpretation of landslide 

occurrences in relation with slope classes.   
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Fig. 3.49 Work flow of landslide susceptibility modeling 

Crossing landslide map with remaining causative factors were carried out so that 

each causative factor has landslide occurrences distributed to its classes. Classes with 

associated landslide occurrences number were used to compute landslide indices, i.e.  

Landslide Susceptibility Index (LSI) and Landslide Frequency Index (LFI).  
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Fig. 3.50 Crossing landslide map and slope map 

3.5.2 Landslide Attributes Reclassification 

Based on the result of crossing, landslide attributes of each landslide causative factor 

were classified into five categories. The classification was based on ‗natural breaks‘, 

an option offered in ArcGIS environment during reclassification process, referring to 

the natural break of the data. The selection of the class number, that is 5, is meant to 

facilitate assigning 5 susceptibility statuses namely, very high, high, moderate, low, 

and very low. Fig. 3.51 below is an example of reclassification of slopes into 5 

categories using natural breaks method. Five classes of slope (in degree) along with 

the number of landslide occurrences are as follows: 0 – 7.8 (84 occurrences), 7.8 – 

19.4 (76), 19.4 – 27.4 (90), 27.4 – 36.4 (63), and 36.4 – 51.0 (37).  
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Fig. 3.51 Classification of slope attributes into five 

Landslide causative factors that can be reclassified are: 

1. Slope 

2. Elevation 

3. Distance from road 

4. Distance from river-lake 

5. Distance from lineament  

6. Curvature 

7. NDVI 

8. TCT soil wetness 

9. LST 

Slope aspect map cannot be reclassified because its classes are fixed. The classes 

determine compass directions the slopes face. Lithology, LULC, and soil map also 

cannot be reclassified because they are not continuous surface. Each map has fixed 

classes. 
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3.5.3 Weighting System 

Relative contribution between causative factors is difficult to identify. This is the 

problem encountered by Liao [47] during constructing landslide hazard map of 

counties of Arkansas. However, Chan [148] reported that most of landslide 

occurrences in Malaysia were triggered by rainfall; more appropriately is after 

prolonged rainfall. This is also the trend of landslide occurrences in the study area. 

Therefore, landslide causative factors related to rainfall, i.e. NDVI, soil wetness, and 

LST deserve to be awarded higher weight values over the others. In addition, high 

level of erosion occurred in agriculture area as reported by Aminuddin, et al. [151]. 

Cropland, as related with agriculture area, also deserves to have a high weight value. 

Anbalagan [2] set the maximum weight values to 2 or 1 in LHEF rating system for 

different causative factors during investigating landslide hazard in Himalaya. This 

assignment of weight values mostly depends on expert‘s opinion/knowledge. In this 

study, the significant role of all causative factors was treated the same. This is also 

intended to avoid subjectivity by the author in assigning different weight values for 

each causative factor. However, relative importance between classes was considered.   

Bivariate statistical method described in section 2.4.2.1 was chosen as the method 

to derive weighting system. There are two types of expressing relationship between 

landslide causative factors and landslide occurrences, i.e. using area density which is 

also known as LSI, expressed in Equation 2.4, and number density known as LFI, 

Equation 2.5. These two methods were evaluated and applied in this study.  

3.5.4 Final Landslide Susceptibility Maps and Scenarios 

Final landslide susceptibility maps (LSMs) were constructed by summing up 

weighted thematic map of landslide causative factors. Cross correlation between 

landslide causative factors was assumed to be ignored. LSI and LFI values were used 

to derive weight values of classes of a particular causative factor. The following 

section is the description of derivation weight values of slope classes. 

In section 3.5.2, slope map has been reclassified based on slope intervals obtained 

from crossing process. There is an attribute table accompanying slope layer consisting 
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slope classes and the number landslide occurrences. Using built in mathematic 

functions in ArcGIS, area of each class can be computed. Area of landslide of each 

class can be computed as well by multiplying the number of landside occurrences 

with the resolution of working image that is 30 m x 30 m. Therefore, a slope class 

with 84 landslide occurrences means that the area of landslide occurrences within this 

class is 84 x 30 x 30 = 75,600 square meter. The areas of the remaining classes are 

calculated using the same procedure. Ratio of area of landslide and area of respective 

class determine the LSI value. Ratio of all classes is calculated. To avoid the small 

value of the ratio result, Suzen [57] provided 1000 as a multiplication factor as 

expressed in Equation 2.4. For awarding a weight value, a class with the largest LSI 

value is awarded weight value of 100. The remaining classes are awarded weight 

values proportional to a class with the largest LSI value. Ratio of LSI of a slope class 

and LSI of a slope class with the largest LSI value multiplied by 1000 determines 

weight value of a particular slope class. Calculation of weight value of classes of the 

remaining landslide causative factors follows the mentioned procedures. After all 

classes of all causative factors have been assigned weight values, the weighted 

thematic maps are ready to use in landslide susceptibility modeling. 

Another weighting system that is LHEF rating system was also applied. This 

weighting system is part of qualitative method. The way classes of a particular 

landslide causative factor awarded a weight value is based on LHEF rating system 

developed by Anbalagan [2]. The application of this weighting system was intended 

to provide a comparison result to bivariate statistical method.  

The final LSMs were constructed by summing up all weighted map using 

Equation 2.9, mentioned in section 2.4.3. In ArcGIS, it was done by applying 

weighted sum overlay method. The final LSMs were divided into 5 categories of 

susceptibility ranging from Very High (VHS), High (HS), Moderate (MS), Low (LS), 

and Very Low susceptibility (VLS). These abbreviations are applied for further 

discussing the results.  

The method of construction of the final LSMs is the simple one that is weighted 

sum. The underlying reasons of selecting this method is that the method of zoning an 

area into different level of potential landslide threats is open for exploitation as 
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suggested by Guzzetti [29] and there is no single method proven to be superior in 

every area and for all types of landslide. Jamaluddin, et al. [227], a local landslide 

expert, added that there is no satisfactory slope assessment system in Malaysia. 

Therefore, the author took advantage about this matter by applying the simple 

method. Another important underlying reason is that this study focuses on modeling 

landslide susceptibility that incorporates the changing environmental factors due to 

the effect of monsoonal rainfall system acting on the study area. Their roles in 

explaining landslide occurrences and seasonal rainfall amount were investigated.  

Table 3.14 Scenario of data set for landslide susceptibility modeling  

No. 
Landslide causative 

factors 
Scenario I 

Scenario 

II 

Scenario 

III 

Scenario 

IV 

1 Slope  √ √ √ √ √ √ 

2 Slope aspect   √ √ √ √ 

3 Elevation    √ √ √ √ 

4 Curvature    √ √ √ √ 

5 Dist. from road   √ √ √ √ 

6 Dist. from river/lake √ √ √ √ √ √ 

7 Dist. from lineament √ √ √ √ √ √ 

8 Geology √ √ √ √ √ √ 

9 Soil  √ √ √ √ √ √ 

10 LULC √ √ √ √ √ √ 

11 NDVI    √   

12 Soil Wetness  √   √  

13 LST      √ 

        

 Data not involved  Multi temporal factors  

To achieve the stated research objectives, four scenarios of data processing were 

designed. Table 3.14 presents the scenarios in which different list of landslide 

causative factors are included. The total number of ‗static‘, i.e. non-change in time, 

factors, is 10 while the number of multi temporal factors is 3 namely NDVI, soil 

wetness, and LST. Scenario I is called as a ‗static‘ scenario because it involved static 

causative factors. Within scenario I, there are 4 sub scenarios namely LHEF 6, LHEF 

7, LSI 6 and LSI 10 (all factors). The application of these 4 sub scenarios was 

intended to evaluate which method, between qualitative and quantitative methods, 

results in satisfactory result; to evaluate the number of causative factors involved in 

the modeling; and to provide a benchmarking result that can be used to evaluate the 
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roles of multi temporal causative factors namely NDVI, soil wetness, and LST, in the 

developed LSMs. Scenarios II, III and IV used the same data set of scenario I that is 

ten factors with additional multi temporal data of NDVI, TCT Soil Wetness, and LST 

respectively. For each scenario, four LSMs were produced.  

3.5.5 Validation of Final LSMs 

Validation of landslide models applies well known and widely applied principle that 

is ‗the past and present are keys to the future’ as mentioned by Varnes [38], and 

Carrara, et al. [228]. This principle implies that slope failures/landslides in future will 

be more likely to occur under those conditions which led to past and present 

instability. Map validation is intended to measure the accuracy of the final LSMs 

produced from various scenarios. By knowing the accuracy of the final LSMs, the 

role of a particular causative factor can be judged; the model of landslide 

susceptibility can be evaluated; and a recommendation on landslide susceptibility 

modeling can be drawn. 

The landslide map expressing the distribution of landslide and slope failure 

locations in the study area is an important key to assess the accuracy of the final 

LSMs. The procedure to assess the accuracy is by using the same procedures 

described in section 3.5.1 that is by crossing the final LSMs with the landslide map. 

This process results in a new layer with an attribute table containing a list of landslide 

points/locations and the respective susceptibility attributes e.g. VHS, HS, MS, LS, 

and VLS.  The author made an assumption that the landslide/slope failure locations 

on the landslide map should fall in VHS and HS categories in the final LSMs when 

both maps are overlaid. The number of landslide points having both status (VHS and 

HS) categories is used to measure the accuracy of the final LSMs. Susceptibility 

statues of MS, LS, and VLS are considered as secure. Hence, the greater the number 

of landslide points falling in VHS and HS categories, the more accurate the landslide 

susceptibility model. After map validation is completed, the following things, as 

portrayed in Fig. 3.49, can be concluded:   
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1. Landslide susceptibility models indicated by the accuracy of LSMs, 

2. The role of each multi temporal factor, 

3. Possible expansion and contraction of potential dangerous areas, i.e. with 

VHS and HS statuses,  

4. Suitable weighting system. 

3.5.6 Analysis of Relative Role of Causative Factor 

It has been mentioned in section 3.5.3 that relative role of each landslide causative 

factor is not easy to measure. However, this study also made an attempt to evaluate 

the relative important/role of a landslide causative factor to other factors. The factors 

identified as the significant ones are used to produce LSM. The underlying idea is 

that an appropriate weighting system combined with selected significant causative 

factors would result in a more accurate LSM. 

3.5.7 Test of Applicability of the Developed Model  

Penang Island is considered as a landslide prone area. A number of landslides have 

occurred (Fig. 3.52). The spatial data required for conducting a study on landslide 

susceptibility modeling are available. These two conditions underlined the selection 

of this place as test site for the applicability of the developed mode regardless the fact 

that this place is not considered as highlands areas as the case of Cameron Highlands. 

Either qualitative or quantitative method proven to be superior in producing a more 

accurate LSM will be chosen. The causative factors proven to be the significant ones 

will be adapted for applicability test in the test site. Assessment of the accuracy of the 

final LSM of Penang Island constructed using Cameron Highlands landslide 

susceptibility model was carried out using the same procedures mentioned in sub 

section 3.5.5.  
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Fig. 3.52 Landslide map of Penang Island on top of a Landsat image 

3.6 Chapter Summary 

This chapter has presented characteristics of the study area, data required for 

modeling landslide susceptibility and the overall methodologies employed to achieve 

objectives of the research. The summary is depicted in Fig. 3.53.    

The characteristics of the study area have ensured that this area is feasible for 

conducting modeling landslide susceptibility. The relevant characteristics include 

high frequency of landslide occurrences during rainy seasons, monsoonal rainfall 

system, high rate erosion, road development, extensive gardening and farming, etc. 

The most interesting factor to conduct the modeling is the nearly synchronous 

between rainy cycle and frequency of landslide occurrences.  

Relevant data from different sources and format were gathered. The data mainly 

consists of Landsat 7 ETM+ and SPOT 5 satellite images, topographic map, soil map, 
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geology map, rainfall data, and landslide map. Data preprocessing such as geometric 

correction and atmospheric correction were applied for the satellite images. Soil, 

geology and hardcopy of topographic maps underwent geometric correction as well 

so that the spatial data extracted from these maps are compatible with other spatial 

data already in RSO projection system. The data were further processed to produce 

thematic maps consisting of 10 static factors and 3 multi temporal factors. The first 

factors consist of maps of slope, slope aspect, curvature, elevation, road network, 

river/lake, lineament, lithology, soil, and LULC. The second consist of NDVI, soil 

wetness, and LST. Cloud and shadow has been problems in preventing to acquire a 

full map. The areas affected by both features were left blank for NDVI, soil wetness, 

and LST maps and filled with the information gained from the adjacent date of 

acquisition image.  

 

Fig. 3.53 Flow chart of chapter 3 
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Landslide susceptibility modeling begins with determining the spatial relationship 

between past landslide occurrences and causative factors. The relationship of both 

factors underlies the derivation of a weighting system, the assignment of weight 

values to classes of each causative factor, and the preparation of weighted thematic 

maps.  

There are four scenarios of modeling. The first scenario includes only static 

factors; the second to forth scenarios involve all static factors with additional multi 

temporal factors namely NDVI, soil wetness, and LST respectively. The scenarios 

were designed to answer objectives of the research on the roles of multi temporal 

factors in modeling landslide susceptibility. Map validation is applied to investigate 

the role of multi temporal factors. From scenarios of landslide susceptibility 

modeling, conclusions and recommendations can be drawn.  
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.0  Overview  

This chapter describes the spatial relationship between landslide map and causative 

factors from crossing process, discussion on derivation of weighting system using two 

indexes, LSI and LFI, and using LHEF rating system. Results of landslide 

susceptibility modeling using scenario 1 to 4 are discussed and evaluated with the 

mentioned research objectives. The roles of multi temporal factors introduced in the 

modeling and the develop landslide model are evaluated. 

4.1  Weighting System and Construction of Thematic Maps 

Table 4.1 shows four landslide causative factors of the study area namely land use 

land cover, geology, elevation and slope. This table explains the number of landslide 

on each class of a causative factor (column 3), the area of landslides (column 6), the 

exposure areas of that sub category (column 7), the computation of LSI (column 8) 

and LFI (column 9), and weight values computed using LSI (column 10). The 

remaining causative factors are shown in Table 4.2 to Table 4.7. The assignment of 

weight values to classes of every causative factor is intended to construct the 

weighted thematic map of all scenarios.  

The distribution of landslide occurrences in classes of a particular causative factor 

were determined from two processes namely crossing between landslide map and that 

particular factor and reclassification. Therefore, the resulted LSI values were solely 

generated from crossing process, more particularly the accuracy of landslide 

inventory map. Sometimes the results of crossing, i.e. LSI values, are somewhat 
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contradictory according to geotechnical point of view such as the case of slope LSI 

values. Adequate explanation is given to LSI of all causative factors. However, one 

thing to take notes is that the method used to derive LSI is bivariate statistical 

approach. The method is typically data driven process regardless the role of thumbs in 

geotechnical perspective.  

4.1.1   Weight Values  and Thematic Map of Land Use Land Cover 

The study area that covering 900,000,000 square meter was divided into five 

categories of LULC. They are 1) cropland, bushes, thin vegetated area in a group; 2) 

forest; 3) urban and built up; 4) open land and cut slope; and 5) river and lake.  

The distributions of landslide occurrences within LULC types as well as the LSI 

values are shown in Fig. 4.1. The Figure shows that the high number of landslide 

occurrences in a particular class does not necessarily produce high LSI values. As the 

example of this case is the forest class. The number of landslide occurrence at this 

class is the highest one, 138. However, the LSI value is the lowest one, 1.87. Crop 

land-bushes-thin vegetated area class has a similar condition with forest. This is the 

consequence of using bivariate statistical method. This method offers an objective 

measure of landslide occurrence relative to different types of land use land cover by 

means of comparing the area of landslides within a class, i.e. forest, and the area of 

the respective class, i.e. forest. The size of the study area and the distribution of 

landslide sites affect the values of LSI. The remaining classes show inconsistencies 

between the number of landslide occurrences and LSI values. LSI value of open land-

cut slope is the highest one, 32.57, although the corresponding number of landslide 

occurrences is the lowest one, 57. The second highest LSI values, 19.70, belongs to 

urban-built up class even though the corresponding number of landslide occurrences, 

90, is higher than that of open land-cut slope class. The LSI values of these last two 

classes can be a preliminary indicator of intervention of human in contributing 

instability of slopes by changing natural slopes into for examples, cut slopes for road 

development, urban expansion, open land for constructions, etc. Since there is no 

landslide within lake or river, the respective LSI value is zero. 
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Fig. 4.1 Landslide occurrences number and Landslide Susceptibility Index of land use 

land cover 

The identified landslide locations on the landslide map were mostly located in 

places that were formerly covered by forest. It seemed to be a contradiction to the fact 

that forested areas generally tend to increase the stability of the slopes. A reasonable 

explanation regarding this contradictory is that the sources of spatial data used for 

constructing the landslide map of Cameron Highlands are mainly from interpretation 

of aerial photographs acquired during the period of 1981-2002 by Malaysian Center 

for Remote Sensing as reported by Pradhan and Lee [229]. These authors added that 

landslides were recognized through image interpretation process as breaks in the 

forest canopy, bare soil, or geomorphological features such as head and side scarps, 

flow tracks, soil and debris deposits below a landslide scar. Fresh landslide scars were 

also found during field investigations conducted in 6 December 2006 and 4 May 

2008.  

The next step is to derive LSI values from which weight values of classes of a 

particular causative factor can be computed. The theoretical background can be found 

in Liao [47] and is explained in section 2.4.2.1. LSI is derived using Equation 2.4. 

Adjustment of multiplication factor was applied to avoid a number of decimals and 
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facilitate computation of weight values. The detail explanation of obtaining LSI 

values is given as follows. 

 In Table 4.1, LSI values presented in column 8 were obtained by dividing area of 

landslides occurring within each class (column 5) with the total area of that class 

(column 7). This process produced very small values. As an example, landslide area 

of cropland is 65,700m
2
 while cropland area is 178,158,600m

2
. The division of the 

first value over the second one produced a very small value of 0.000368773. To 

facilitate calculation, this number was multiplied by 10,000 so that it resulted in a 

value of 3.69. This procedure was applied to compute all LSI values. The LSI values 

were used to derive weight values.  

Another way to develop weight values was by using LFI values. Equation 2.5 was 

used to derive LFI. Adjustment of multiplication factor was also applied to avoid a 

number of decimals and facilitate computation of weight values. Practically, LFI 

values were derived from the ratio between the number of landslide occurrences 

within a class (column 3) and the total area of that class (column 7). As an example, 

the number of landslide within cropland area is 73. Division of this number with 

cropland area results in a value of 0.00000040974727. Again, to facilitate calculation, 

this value was multiplied by 10
7
 so that it equaled to 4.10. Computation of LSI and 

LFI values for all classes of each causative factor was done using this manner. This 

method has been widely used such as by Liao [47], Lee, et al. [230] and Lee, et al. 

[231]. 

According to Liao [47], both LSI and LFI values can be used as an objective 

measure for landslide occurrences that respect to different types of land use land 

cover. The higher the LSI or LFI values the more prone to landslides. Fig. 4.2 shows 

that LSI and LFI values indicate the same trend. In this research, LSI was used for 

generating  rating weight  values rather  than  LFI for  reasons:   1)  LSI measures the  
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Table 4.1 Landslide attributes from land use, geology, elevation, slope maps, and weighting systems 

Landslide 

factors 
Sub-Categories  

Landslide 

number, 

(%) 

Landslide 

areas 

(m2) 

Number of 

Pixel of each 

category 

Area of each 

sub category 

(m2) 

Landslide 

Susceptibility 

Index (LSI) 

Landslide 

Frequency 

Index (LFI) 

LSI-based 

Weight 

Values  

(1) (2) (3) (5) (6) (7) (8) (9) (10) 

Land use land 

cover 

Crop land, bushes, thin 

vegetated area 
73, (20) 65700 197954 178158600 3.69 4.10 11 

 
Forest 138, (39) 124200 738129 664316100 1.87 2.08 6 

 
Urban, Built up 90, (25) 81000 45685 41116500 19.70 21.89 60 

 
Open land, Cut slope 57, (16) 51300 17502 15751800 32.57 36.19 100 

 
River and lake  0, (0) 0 713 641700 0.00 0.00 0 

Lithology  

(Rock types) 

Granite 231, (65) 207900 830016 747014400 2.78 3.09 15 

Sedimentary rock 82, (23) 73800 144535 130081500 5.67 6.30 31 

 
Alluvium 1, (0) 900 1429 1286100 7.00 7.78 38 

 
Schist 44, (12) 39600 24062 21655800 18.29 20.32 100 

Elevation 80 - 540.96 0, (0) 0 80293 72263700 0.00 0.00 0 

 
540.96 - 1130.56 54, (15) 48600 405843 365258700 1.33 1.48 16 

 
1130.56 - 1249.51 92, (26) 82800 113435 102091500 8.11 9.01 100 

 
1249.51 - 1394.33 75, (21) 67500 142847 128562300 5.25 26.30 65 

 
1394.33 - 1585.69 100, (28) 90000 184277 165849300 5.43 6.03 67 

 
1585.69 - 1864.97 29, (8) 26100 69831 62847900 4.15 4.61 51 

 
1864.97 - 2100 (max) 0, (8) 0 3466 3119400 0.00 0.00 0 

Slope 0 - 7.8 84, (23) 75600 149100 134190000 5.63 6.26 100 

 
7.8 - 19.3 76, (21) 68400 235235 211711500 3.23 3.59 57 

 
19.3 - 27.3 90, (25) 81000 310770 279693000 2.90 3.22 51 

 
27.3 - 36.3 63, (18) 56700 215813 194231700 2.92 3.24 52 

 
36.3 - 51 37, (10) 33300 83446 75101400 4.43 4.93 79 

 
51- 89.6  (max. slope) 0, (0) 0 5628 5065200 0.00 0.00 0 
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proportion of landslide areas, and 2) LSI considers the size of landsides while LFI 

disregards it.   

The assignment of weight values for each class of lands use land cover is 

described as follows. The land use type that has the highest value of LSI is assigned 

the maximum weight value of 100. The other land use types are assigned weight 

values proportional to their LSI values divided by the largest LSI of a class within 

land use land cover category. For example, open land has the highest LSI value of 

32.57 so it is assigned the maximum rating weight value of 100. Crop land is 

assigned a rating weight value by means of dividing its LSI value, 3.69, by 32.57, the 

highest LSI value. Hence, the rating weight value of crop land is 3.69/32.57*100=11. 

The rating weight values for the remaining classes were derived using the same 

manner.  

Thematic map of land use land cover was constructed based on weight values 

derived from LSI. Fig. 4.3 shows thematic map of land use land cover that has a 

similar appearance as the original land use land cover map except that the map 

replaces the attribute of land use land cover types with LSI values. The LSI values for 

open land-cut slope, urban-built up, cropland-bushes, forest and river-lake are 100, 

60, 11, 6, and 0 respectively. Areas with the highest weight values are mainly located 

along roadsides. Few of them are located in the middle of forest and the surrounding 

of urban/built up areas.  

4.1.2   Weight Values and Thematic Map of Lithology 

Crossing between landslide map and lithology/rock map shows that granite-covered 

area has the highest landslide occurrences number namely 231 (65%) landslides 

(Table 4.1). It is followed by acid intrusive (sedimentary rock), schist and alluvium 

with landslide number of 82 (23%), 44 (12%), and 1 (0%). The granite rock type was 

formed in the late Triasic period, over 200 million years age. Fortuin [150] reported 

that the depth of the rock may vary from about 5 m to over 25 m.  
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Fig. 4.2 Landslide Susceptibility and Landslide Frequency Indices of LULC 

 

 

Fig. 4.3 Thematic map of land use 
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The LSI and LFI values indicate the same trend as shown in Fig. 4.4 (a). Fig. 4.4 

(b) shows a different trend between the number of landslides and LSI of lithology 

type. Granite-covered areas had the lowest LSI value, 2.78, even though this area had 

the highest number of landslide occurrences, 231. The wide range of granite coverage 

was responsible in determining this small value of LSI. Almost similar condition 

went to sedimentary rock type. Schist-covered area was found to be the most prone 

slopes to fail referring to its highest LSI value, 18.29.  As mentioned previously, this 

is the consequence of applying bivariate statistical approach to produce an objective 

measure of landslide occurrence relative to different types of lithology. From high to 

low, LSI values of 18.29, 7.0, 5.67, and 2.78 belongs to schist, alluvium, 

others/undifferentiated, and granite types respectively.  

The existence of a large number of landslides on granite-covered areas has been a 

questionable phenomenon. According to Mohr‘s scale of hardness, the hardness of 

granite is quite high, about 7–8. LHEF of Anbalagan [2] also put granite rock type as 

having a small rating value meaning that granite rock type was quite hard. Hence, 

slopes covered with this rock type are least likely to fail. It seemed to be a 

contradiction having these facts. However, previous investigations along Pos Selim-

Cameron Highlands highway, part of the study area, carried out by Jamaluddin [219] 

showed that the discontinuities existed in the bedding planes of rock mass, both 

granite and metamorphic bedrock. The area experienced weathering both chemical 

and physical weathering. There were two weathering profiles of granite that tended to 

cause rock falls and landslides. The thickness of overburden soil was about 5-20m. 

Overlay of maps of lithology, landslide sites and river including tributary rivers 

shows that most of post landslide events occurred near or alongside the rivers. High 

rate of erosion along the riverside accelerates the weathering process of respective 

rock mass (Fig. 4.5). Maps overlay of land use land cover, lithology, and landslide 

site shows that the land use types on top of granite covered area are dominated by 

urban or built up and crop land types (Figure 4.5b), as the result of image 

classification. This means that anthropogenic activities might have changed the land 

cover from the original type into both types. During which, the land cover might 

appear as landslide scars and then recognized as landslide sites during construction of 

landslide inventory map by ARSM.  
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(a)  

(b)  

Fig. 4.4 (a) LSI and LFI, (b) Landslide occurrences number and Landslide 

Susceptibility Index of lithology 

The rating weight values for lithology were computed the same manner as land 

use land cover causative factor. Schist was assigned the maximum weight value of 

100 due to its maximum LSI value. It was followed by alluvium, sedimentary rock, 

and granite with their corresponding weight values are 38, 31, and 15. These weight 

values were computed proportional to their susceptibility indexes (see Table 4.1). 

Using all these weight values, thematic map of lithology was constructed (Fig. 4.5). 

Schist area with the highest weight value is located at the top center of the map where 

Pos Selim big landslide and other slope failures occurred.   
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4.1.3   Weight Values and Thematic Map of Elevation 

The division of elevation classes referred to elevation ranges from the attributes of 

the landslide map. The height of landslide sites ranges from 540.96 m to 1864.97 m. 

This range of elevation was classified into 5 classes using natural break approach in 

ArcGIS environment (shown in Table 4.1) to determine the intervals of elevation. 

The elevation range in the study area is spanning from 80 m to 2100 m, exceeding the 

elevation range of the landslide map. To accommodate this, two more elevation 

classes were added namely 80 m – 540.96 m and 1864.97 m -2100 m. 

Overlaying landslide and elevation maps produced important information on 

typical landslide occurrences against elevation (Fig. 4.6). Elevations from 1394.33 m 

to 1585.69 m contain the highest number of landslide occurrences, 100. Meanwhile, 

LSI values indicate a different elevation range, 1130.56 – 1249.51 m that prone to 

landslide. This elevation range contains 92 landslide occurrences number which was 

close to that of the first elevation range. Between elevations 1249.51 m and 1394.33 

m, about 75 landslide occurrences were identified. From this information, it can be 

concluded that landslides mostly took place at high land areas ranging from elevation 

of 1130.56 to 1585.69 m. Beyond this elevation range, the number of landslides 

decreased, below 75. Previous study on LHZ at the same study area carried out by 

Omar, et al. [9] showed that the most prone area to landslide was located between 

elevations 400 and 500 m. This elevation range was derived from the equation of 

height risk developed by Gao and Lao [81]. From the work of Gahgah, et al. [43] on 

LHZ in Cameron Highlands and Gua Musang, elevation interval of 250 to 500 m was 

occupied by the highest number of landslide occurrences. The different results 

between this work and the current work may come from the utilization of different 

training areas. The first work included landslide data from Gua Musang while the 

latter only used landslide data mainly from Cameron Highlands.  

 



169 

 

        

Fig. 4.5 a) Thematic map of lithology, b) Overlay of lithology, land use and landslide 

maps 
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Fig. 4.6  Landslide occurrences number and Landslide Susceptibility Index of 

lithology 

 

Fig. 4.7 Thematic map of elevation  

For use in GIS analysis, a thematic map of elevation showing weight values of 

each elevation range were constructed (Fig. 4.7). LSI values were used to derive 

0

54

92

75

100

29

0
0

1

8

5 5

4

0 0

2

4

6

8

10

0

20

40

60

80

100

120

LS
I

N
u

m
b

er
 o

f 
la

n
d

sl
ie

 o
cc

u
re

n
ce

s

Elevation (m)

Number of landslide Landslide Susceptibility Index (LSI)

Weights 

0 
16 
100 
65 
67 
51 
0 



171 

rating weight values using the procedure mentioned earlier. Elevation range of 

1130.56 to 1249.51 m was assigned a maximum weight value of 100. The other 

weight values were computed proportional to their respective LSI values and were 

shown in Table 4.1 at column 10 of elevation factor. 

4.1.4   Weight Values and Thematic Map of Slope Gradient 

Overlaying slope map with landslide map revealed that landslides took place on 

slopes having gradients ranging from 0
0
 – 51

0
. Beyond this range, 51

0
 to 89.6

0
 (the 

maximum slope gradient), there is no landslide exists. The first slope range was 

divided into 5 classes for determining the slope intervals. The latter slope range was 

set as an additional slope range. All slope intervals are shown in Table 4.1. 

Among five slope intervals, the interval of 19.3
0
 – 27.3

0
 contains the largest 

number of landslide occurrences, 90 (see Fig. 4.8). The remaining slope intervals, 

except slope interval of 36.3
0
 – 51

0
, contain a fairly large amount of landslide 

occurrences. Meanwhile, LSI values show that the first slope interval namely 0
0
 – 

7.8
0
 has the highest LSI (6.26), meaning that this slope interval is the most likely to 

fail. Slope interval of 19.3
0
 – 27.3

0
 has a lower LSI value compared to the first slope 

interval even though it contains landslide occurrences at most. The same conditions 

happen to the second and fourth slope intervals. The large coverage of these slopes 

causes the small values of LSI.  A fairly steep slope, 36.3
0
 – 51

0
, has the high value of 

LSI due to its small coverage area. Slope range of 0
0
 – 7.8

0
 that has the highest 

landslide occurrences seems to be contradictive from geotechnical point of view. This 

research does not employ geotechnical approach as described in section 4.1 for 

identification of areas susceptible to landslide. Otherwise, this research employs 

bivariate statistical approach for evaluating landslide distribution that relies on 

crossing between landslide inventory map and a particular landslide factor map. 

Hence, the accuracy of both maps determines the distribution of landslide 

occurrences into classes. 

Previous discussion highlighted two slope intervals, 19.3
0
 – 27.3

0
 and 0

0
 – 7.8

0
, 

categorized as the most hazard slope intervals according to either the number of 
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landslide occurrences took place within this interval or LSI value. Previous works in 

the same field carried out by local investigators showed different dangerous slope 

intervals. Slope interval of 20
0
 – 34

0
 is the most dangerous slope as reported by 

Omar, et al. [9] who worked on landslide zonation using GIS and remote sensing in 

Pos Selim - Cameron Highlands areas. This slope interval is almost similar or close to 

that found in this recent work. This author described that landslide densities increase 

up to slope angle of 28
0
. The author added that at slope angel of 35

0
, the granular 

unconsolidated materials usually repose. Gahgah, et al. [43] found similar result to 

the previous works that slope interval of 20
0
 – 35

0
 contains landslide occurrences at 

most.  These two works did not use any objective measures of landslide occurrence 

relative to different classes in a landslide causative factor over the entire of the study 

area such as LSI, and LFI.  

LSI values of slope were then used to derive weight values. All weight values are 

directly proportional to the values of LSI. Hence, the first slope interval has the 

maximum weight value accordingly due to the highest LSI value it has. All weigh 

values of elevation are shown in Table 4.1 at column 10. The weight values were 

used as the map attribute to construct a thematic map of elevation (Fig. 4.9).   

4.1.5   Weight Values and Thematic Map of Slope Aspect 

The overlay between slope aspect map and landslide shows that there is no dominant 

slope aspect that contains the largest number of landslide occurrences (Table 4.1). 

Landslide events were almost evenly distributed for all slope aspects except flat slope 

and north/south facing slopes. The percentage of landslide occurrences that spans 

from 10% to 15% for all classes confirmed this situation. This can be an indirect 

indicator that slope aspect may not be an important landslide influencing factor. 

However, slopes that facing towards southeast, southwest, northeast and northwest 

tend to have more landslide occurrences compared to the other slope directions. This 

result suits the assumption made by DeGraff and Romesburg [62] and Omar, et al. [9] 

that slopes facing sun, especially afternoon sun, tend to have higher soil temperature, 

lower soil moisture and hence are easier to erode. Caiyan, et al. [70] found almost a 

similar result to the previously mentioned work in his investigation on the growth of 
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landslides in Yunyang to Wushan segment in the Three Gorges Reservoir area in 

China that slopes facing towards south, southwest and southeast contribute 

moderately to landslide events.  

Fig. 4.10 shows graphical overlay of the number of landslide occurrences and LSI 

values. Both graphs show a similar trend. Slopes facing four wind directions or 

morning and afternoon sun have higher LSI values compared to the others. A weight 

value of 100 goes to northeast and northwest facing slopes. Both slopes have similar 

number of landslides. Thus, they have the same LSI and rating weight values 

accordingly. The next places go to southwest and southeast facing slopes with their 

respective weight values of 94 and 85. The remaining slope aspects have lower LSI 

values although the values are not very low that is above 50. 

The thematic map of slope aspect showing weight values of each aspect was 

constructed based on LSI values. Thus, slope facing northeast, northwest, southeast 

and southwest directions have higher rating weight values than the other slope 

aspects. The map of slope aspect is shown in Fig. 4.11 with road and landslide maps 

overlaid on top of the map. Example of slopes facing northwest is indicated by circle 

on Figure 4.11. This is the location of massive slope failure near the border of Perak 

and Pahang States, Malaysia (shown as inset pictures in Fig. 4.11).  

4.1.6   Weight Valued and Thematic Map of Curvature 

Table 4.2 also shows the result of crossing between curvature and landslide sites 

maps. As mentioned before, negative value of curvature means that the curvature is 

concave and vice versa is convex. Based on the result, most of landslides (44%) are 

concentrated within the transition interval from concave to convex, from -1.8 to 1.81. 

Landslides occurred at both concave and convex slopes.  
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.  

Fig. 4.8 Landslide occurrences number and LSI of elevation 

 

 

Fig. 4.9 Thematic map of slope 
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Table 4.2 Landslide attributes from slope aspect, curvature, distance from road maps, and weighting systems 

Landslide 

factors 
Sub-Categories 

Landslide 

number, 

(%) 

Landslide 

areas (m2) 

Number of Pixel 

of each category 

Area of each 

sub category 

(m2) 

Landslide 

Susceptibility 

Index (LSI) 

Landslide 

Freq Index 

LSI-based 

Weight 

Values  

Slope aspect Flat (-1) 0, (0) 0 23461 21114900 0.00 0.00 0 

 
North (0-22.5) 16, (4) 14400 61898 55708200 2.58 2.87 59 

 
Northeast (22.5-67.5) 53, (15) 47700 121995 109795500 4.34 4.83 100 

 
East (67.5-112.5) 39, (11) 35100 122927 110634300 3.17 3.53 73 

 
Southeast (112.5-157.5) 44, (12) 39600 119454 107508600 3.68 4.09 85 

 
South (157.5-202.5) 42, (12) 37800 124042 111637800 3.39 3.76 78 

 
Southwest (202.5-247.5) 50, (14) 45000 122246 110021400 4.09 4.54 94 

 
West (247.5-292.5) 37, (10) 33300 123276 110948400 3.00 3.33 69 

 
Northwest (292.5337.5) 52, (15) 46800 119757 107781300 4.34 4.82 100 

 
North (337.5-360) 17, (5) 15300 60936 54842400 2.79 3.10 64 

Curvature -28.24 - -14.7 0, (0) 0 473 425700 0.00 0.00 0 

 
-14.7 - -6.45 30, (8) 27000 35155 31639500 8.53 9.48 100 

 
-6.45 - -1.89 64, (18) 57600 274263 246836700 2.33 2.59 27 

 
-1.89 - 1.81 159, (44) 143100 459415 413473500 3.46 3.85 41 

 
1.81 - 6.61 74, (21) 66600 196218 176596200 3.77 4.19 44 

 
6.61 - 16.84 23, (6) 20700 33906 30515400 6.78 7.54 79 

 
16.84 - 33.59 0, (0) 0 561 504900 0.00 0.00 0 

Distance from 

road 

0 - 145.50 156, (44) 140400 53290 47961000 29.27 32.53 100 

145.50 - 424.37 111, (31) 99900 88870 79983000 12.49 13.88 43 

 
424.37 - 860.86 49, (14) 44100 113883 102494700 4.30 4.78 15 

 
860.86 - 1430.73 29, (8) 26100 127672 114904800 2.27 2.52 8 

 
1430.73 - 3103.95 13, (4) 11700 277494 249744600 0.47 0.52 2 

 
3103.95 - 14606.09 0, (0) 0 401751 361575900 0.00 0.00 0 
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Fig. 4.10 Landslide occurrences number and LSI values of slope aspects 

 

Fig. 4.11 Thematic map of slope aspect 
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LSI values describe different things about the areas susceptible to landslide 

compared to interval based-landslide occurrences. Based on LSI values, the curvature 

interval that has the highest susceptibility to landslide is the interval of -14.7 to -6.45, 

the concave curvature, followed by the interval of 6.61to 16.84, the convex curvature. 

These intervals have fewer number of landslide occurrence compared to the first 

interval (Fig. 4.12). This situation is similar to that of other causative factors such as 

land use land cover and lithology when LSI is used as the measure of areas 

susceptible to landslides. This is the nature of LSI that measures the proportion of 

landslide areas and considers the size of failure.  

Fig. 4.13 shows the thematic map of curvature of the study area showing rating 

weight values derived from LSI values. Visual interpretation of spatial distribution of 

curvature is rather difficult to perform due to the size of the pixels that is 30 meter. 

The important thing is that the landslide concentrations are located either on concave 

or convex areas, or even on transitional areas from concave-planar-convex. However, 

LSI based-thematic map of curvature shows that the areas having the highest 

susceptibility to landslide are those with concave curvatures (with weight value of 

100) followed by convex areas (with weight value of 79). This fact complements the 

findings of previous researchers that the landslides were likely to occur in the 

concave areas such as works of Ahmad and McCalpin [73], Lee and Evangelista [74], 

Kumar, et al. [64] and Oh, et al. [77]; in the convex areas such as works of Lee and 

Talib [55], Lee and Pradhan [7] and  Oh, et al. [76]; in planar curvature such as work 

of Ohlmacher [75]. Based on the variety of curvature conditions that lead to 

landslide, the curvature data itself cannot be guaranteed to use as a direct indicator to 

asses landslide hazard zones. Other causative factors may play importance roles in 

causing areas susceptible to landside in conjunction with curvature data.  

4.1.7   Weight Values and Thematic Map of Proximity to Road 

The spatial distribution of landslides with respect to the road network in term of the 

distance to/from the road is shown in Table 4.2.  The intervals of the distance from 

road were generated from the landslide attributes resulted from crossing between 
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distance from road and landslide sites maps. The farthest landslide site from the road 

is 3103.95 m.  

 

Fig. 4.12 Landslide occurrences number and LSI values of curvature 

 

 

Fig. 4.13 Thematic map of slope aspect 
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The distance from road was then reclassified into 5 intervals. These intervals are 

shown in Fig. 4.14. This figure shows the overlay of landslide distributions and 

respective LSI values of distance from road. It is clearly shown that both values have 

a similar trend. Simply speaking, the closer the distance from road, the higher the 

number of landslide occurrences and the larger the LSI values and vice versa. Some 

researchers who arrived at this conclusion such as Jadda, et al. [58] who worked on 

landslide susceptibility evaluation in central Alborz of the north of Iran; Kelarestaghi 

and Ahmadi [91] who worked on mapping landslide susceptibility in Kingston 

Metropolitan area, Jamaica; and Sharma and Kumar [101] who work on LHZ in 

Parwanoo area, Himalaya. 

 

Fig. 4.14 LSI values and landslide occurrences number of distance from road 

The distance from road as a landslide causative factor does not mean that the road 

itself causes landslides. However, a road network crossing hilly areas is usually 

developed by means of cutting and clearing vegetated slopes prior to road 

construction. The natural slopes that are disturbed or modified for road development 

purposes are then vulnerable to fail. The undisturbed slopes surrounding the 

cut/modified slopes can be landslide feeder zones or in other words they are 

vulnerable to fail too. The term ―feeder zones‖ is associated with the upper slope 

areas, the locations of the source of mass movement. Coppola, et al. [232] divided the 

parts of a slope into three areas: feeder zones (upper slope), accumulation zones and 

stream erosion zones.  
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Thematic map of distance from road, shown in Fig. 4.15, was constructed using 

weight values derived from LSI values. The map shows buffered zones with the road 

lines as the origin. The farthest areas from the road are the forest areas that are 

considered as the most secure areas with the lowest rating weight values, 0. Lanes of 

145 widths on each side of the road indicate the most dangerous areas and are 

assigned a maximum weight value, 100. The areas in between these two intervals are 

given weight values proportional to the distance from road. 

4.1.8   Rating Weight and Thematic Map of Lineament 

The Landslide attribute related to the distance from lineament (geology fault) is 

shown in Table 4.3. The intervals of the distance from lineaments were determined 

based on the landslide attributes resulted from crossing distance from lineament and 

landslide maps. About 82% of landslide sites are located within the distance of 2.5 

km from the lineaments. The farthest landslide sites (3% of landslide data) from the 

lineaments are about 9.6 km. The number of landslides tends to decrease as the 

distance from the lineaments increase (Fig. 4.16). The spatial distribution of LSI 

values expressed the same graphical tendency as the spatial distribution of landslides 

against the lineaments. From Fig. 4.16, it can be inferred that lineaments affect the 

spatial distribution of landslides. Researchers such as Carrara, et al. [59], Pachauri 

and Pant [53], and Prentice [233] have found that a large number of landslides exist 

near the geology faults.  

Thematic map of the distance from lineament was constructed using the 

corresponding rating weight values derived from LSI values (Fig. 4.17). The map 

shows buffer zones for each interval of the distance from lineament. Besides showing 

distance from lineament, this map also shows lineaments and river/lake layers. There 

are three locations that may represent the contribution of lineaments to landslide 

occurrences. Zone 1 on Figure 4.17 shows that a number of landslides are located 

alongside a geology lineament denoted by arrow with a letter ‗a‘. This lineament 

coincides with Sungai Terla (Terla River). Zone 2 is the location of massive landslide 

at Pos Selim. It is located near the far end of lineament ‗a‘. Jamaluddin [219] reported 

that discontinues existed in this area especially in bedding planes of rock mass of 
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granite and metamorphic bedrock. Zone 3 is located at Tanah Rata. Ramli, et al. [93] 

reported that a large number of short lineaments exist in Tanah Rata area. According 

to landslide map from ARSM, many landslides were found in this area. 

  

Fig. 4.15 Thematic map of distance from road 

 

Fig. 4.16 LSI values and landslide occurrences number of distance from lineaments 
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4.1.9   Weight Values and Thematic Map of  River and Lake 

River and lake as a causative factor appears to have a significant contribution to 

landslides as geology fault. Fig. 4.18 shows the spatial distribution of landslide 

occurrences with respect to the distance from river and lake. The classification of the 

distance from river/lake was derived from landslide attributes resulted from crossing 

between distance from river and lake and landslide maps. About 136 (38 %) of 

landslides took place within the distance up to 548.9 m from rivers/lakes. The number 

of landslides decreases as the distance increases until about 1.7 km away from 

river/lake. Areas close to a river are potential to experience slope failures. 

Investigation carried out by Shimazu and Oguchi [234] and Újvári, et al. [235] found 

this relation. At intervals of 1732.46 - 2521.5 m and 2521.5 – 4391.2 m, the number 

of landslides tends to increase. This seems to be unreasonable considering that the 

effect of river/lake, in term of the distance, has diminished or exhausted. A 

reasonable explanation would be the existence of other landslide influencing factors.  

Fig. 4.19 shows the thematic map of distance from river/lake layer and the 

corresponding map legend that contains weight values. It was constructed from LSI-

based rating weight values. Considerable weight values were assigned to areas close 

to rivers/lakes. Sungai Bertam and Terla are the rivers surrounded by landslide sites. 

Three rivers were identified during image processing. The big one is called 

Empangan (Lake) Sultan Abu Bakar (denoted by arrow). The two other lakes are the 

small ones and located near the junction of Kampung Raja (denoted by ‗a‘ in Figure 

4.19) and southwest of Sungai Mesun (denoted by ‗b‘).   As discussed earlier, this 

layer appears to have an important relation with landslides due the concentration of 

many landslide sites near the river/lake. There are two river surrounded by landslides: 

Sungai Terla (zone 1 shown in Figure 4.19) and Sungai Bertam (zone 2 shown in 

Figure 4.19). At zone 1, the patterm of Sungai Terla coincides with the lineament ‗a‘ 

as depicted in Figure 4.17. Thus, the influence of lineament on causing slope failure 

is amplified by the existence of the river. At zone 2, landslides are clustered at north 

part/headwater of Sungai Bertam, Empangan (Lake) Sultan Abu Bakar, and continue 

eastward.  
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Table 4.3 Landslide attributes from distance from lineament, distance fromriver/lake, soil maps, and weighting systems 

Landslide factors Sub-Categories 

Landslide 

number, 

(%) 

Landslide 

areas 

(m2) 

Number of 

Pixel of each 

category 

Area of each 

sub category 

(m2) 

Landslide 

Susceptibility 

Index (LSI) 

Landslide 

Freq Index 

LSI-based 

Weight 

Values 

Distance from  

lineament 
< 697.8 114, (32) 102600 119689 107720100 9.52 10.58 100 

697.8 - 1590 107, (30) 96300 143505 129154500 7.46 8.28 78 

 1590 - 2557.1 71, (20) 63900 137604 123843600 5.16 5.73 54 

 2557.1- 3833.1 47, (13) 42300 126145 113530500 3.73 4.14 39 

 3833.1 - 9609 11, (3) 9900 241156 217040400 0.46 0.51 5 

  > 9609 (max =20287) 0, (0) 0 231901 208710900 0.00 0.00 0 

Distance from  

river/lake 

0 - 548.90 136, (38) 122400 201107 180996300 6.76 7.51 100 

548.90 – 1200.71 66, (18) 59400 209939 188945100 3.14 3.49 46 

 1200.71 - 1732.46 40, (11) 36000 156682 141013800 2.55 2.84 38 

 1732.46 - 2521.50 48, (13) 43200 194864 175377600 2.46 2.74 36 

 2521.50 - 4391.18 68, (19) 61200 241884 217695600 2.81 3.12 42 

  4391.18 - 9037.37 0, (0) 0 32524 29271600 0.00 0.00 0 

Soil  Podzols and Lithosols soil 60, (17) 54000 123781 111402900 4.85 5.39 100 

 Red-Yellow Podzolic soil 

with Lithosol 
298, (83) 268200 862379 776141100 3.46 3.84 71 

 Red-Yellow Podzolic soil 

with Reddish Lateritic 
0, (0) 0 13840 12456000 0.00 0.00 0 
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Fig. 4.17 Thematic map of distance from lineaments 

 

 

Fig. 4.18 Thematic map of distance from river/lake 
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4.1.10  Weight Values and Thematic Map of Soil 

The study area is dominated by soil type of Red-Yellow Podzolic soils with Lithosols 

on acid to intermediate igneous rocks as shown in Table 4.3. Crossing the soil map 

with the landslide map shows that 83 % of landslides are located at the areas with this 

dominating soil type area. About 17% of landslides are located at areas covered by 

soil type of Podzols and Lithosols (on acid igneous rocks). There is no landslide at 

the remaining soil type. The highest LSI value, 5.39, is assigned to the dominating 

soil type. The second place goes to soil type of Podzols and Lithosols with the LSI 

value of 3.84.  

The thematic map of soil showing the spatial distribution of the respective weight 

values is portrayed in  .  The characteristic of the dominating soil is sandy soil mixed 

with peat as reported by Fortuin [150]. The color of the weathered overlying soil 

varies from deep red, light yellow and pink. These colors can been seen on logging 

track and cut slope for road development. From visual interpretation of the soil map, 

it appears that there is no typical soil type occupied by most landslides occurrences 

even tough LSI values say different thing.   

4.1.11  Weight Values and Thematic Maps of NDVI 

NDVI maps of different seasons derived from 4 Landsat images. The images were 

acquired on February, May, June, and September were crossed with the landslide 

map. The landslide attributes in relation with multi temporal NDVI conditions are 

shown in Table 4.4. NDVI values have been scaled into the range of -1 to 1 into 0 to 

255. The selection of NDVI intervals was based on the landslide attributes obtained 

from crossing between NDVI maps and landslide map. The number of landslide sites 

used for deriving landslide attributes was reduced from the original landslide number, 

358, to provide only landslide data that are free from cloud and shadow effect. After 

applying clouds and associated shadows masks to multi temporal data (i.e. NDVI, 

soil wetness, and LST), the remaining landslide data available for further processing 

(e.g. deriving landslide attributes, validation) are 298, 267, 350, and 339 for 

February, May, June and September.  
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Fig. 4.19 Thematic map of distance from river/lake 

 

 Fig. 4.20 Thematic map of soil  
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Table 4.4 Landslide attributes of NDVI and weighting system 

Landslide 

factors 

Sub-

Categories 

The 

number of 

Landslides, 

(%) 

Landslide 

areas 

(m2) 

Number 

of Pixel 

of each 

category 

Area of 

each sub 

category 

(m2) 

LSI 

LSI-

based 

weight 

Values  

NDVI Feb 0 - 47 30, (10) 6750 36593 8233425 8.20 100 

 
47 - 115 41, (14) 9225 106218 23899050 3.86 47 

 
115 - 182 51, (17) 11475 112102 25222950 4.55 55 

 
182 - 231 53, (18) 11925 122607 27586575 4.32 53 

 
231 - 255 123, (41) 27675 262631 59091975 4.68 57 

NDVI May 0 - 57 28, (10) 6300 50433 11347425 5.55 100 

 
57 - 135 34, (13) 7650 120435 27097875 2.82 51 

 
135 - 190 29, (11) 6525 75082 16893450 3.86 70 

 
190 - 228 28, (11) 6300 66636 14993100 4.20 76 

 
228 - 255 148, (55) 33300 271803 61155675 5.45 98 

NDVI Jun 0 - 47 30, (9) 6750 18941 4261725 15.84 100 

 
47 - 98 52, (15) 11700 119468 26880300 4.35 27 

 
98 - 135 72, (20) 16200 180314 40570650 3.99 25 

 
135 - 165 89, (25) 20025 565886 127324350 1.57 10 

 
165 - 199 107, (31) 24075 291792 65653200 3.67 23 

 
199 - 218 0, (0) 0 19958 4490550 0.00 0 

NDVI Sep 0 - 23 0, (0) 0 2194 493650 0.00 0 

 
23 - 59 18, (5) 4050 14602 3285450 12.33 100 

 
59 - 91 54, (15) 12150 153349 34503525 3.52 29 

 
91 - 115 53, (15) 11925 116550 26223750 4.55 37 

 
115 - 137 97, (27) 21825 222725 50113125 4.36 35 

 
137 - 167 117, (33) 26325 244027 54906075 4.79 39 

 
167 - 188 0, (0) 0 623831 140361975 0.00 0 

The range of NDVI values of landslide sites vary month by month. NDVI of 

February and May have a full range of 0 to 255. Meanwhile, NDVI values of June 

and September range from 0 to 190 and 23 to 167. The difference of these values may 

be related to the quality of the corresponding Landsat images. Atmospheric effects 

might be different for each image. In addition, only standard atmospheric correction 

was applied to remove the atmospheric effects. Five intervals of each NDVI map 

were determined based on the respective available NDVI values range. 

Based on rainfall data (Figure 1.2), February is dry season; May is the month 

after the peak of rainy season; June is the month before the peak of second dry 

season, July; and September is the month before the peak of second rainy season. On 

February, the dry season, about 34% of landslide data shows high NDVI values from 
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231-255, indicating a good vegetation health. The remaining values are distributed 

almost evenly to all classes. Areas with low vegetation index are relatively small. The 

same trends happen to NDVI of other months. The most likely cause of this case is 

the existence of a fairly long period (1981-2001) between the acquisition date of 

remote sensing data used for landslide identification and for deriving NDVI images. 

During this period, landslide scarp areas may be overgrown by bushes. Another 

possible cause is that a fairly number of landslide sites was reported by Pradhan and 

Lee [229] as scarps located in crop land and at cut slopes identified during field 

investigation. The dimension of the scarps might be so small that Landsat 7 ETM+ 

image (with resolution of 30 m) could not differentiate this object from the adjacent 

objects such as agricultural plants and bushes.  

For GIS analysis purpose, NDVI thematic maps representing the rating weight 

values were constructed. The rating weight values were derived from LSI values. The 

respective LSI values indicate that areas with low NDVI have the highest LSI values, 

meaning that these areas are prone to landslide. Areas with low NDVI values can be 

associated with landslide locations. The works done by Vohora and Donoghue [97] 

confirmed that low NDVI values were related to landslides which were recognized as 

denuded areas or disturbed vegetation as the landslide case studied by Lin, et al. [98]. 

The multi temporal thematic maps of NDVI are shown in Appendix E. This appendix 

shows thematic maps of NDVI before and after removing covered areas by cloud and 

shadow.  

Response of vegetation condition to rainfall has been discussed in section 2.2.7.1. 

Normally, vegetation index will increase during rainy seasons and vice versa. Fig. 

4.21 represents different NDVI conditions of part of Tanah Rata area, (indicated by 

boxes in figures of Appendix E), and the corresponding Landsat image (dated 20 

September 2001) and topographic map. The figure shows the different coverage of 

areas with high weight values. On February and May, the coverage of areas prone to 

landslide indicated by the lowest NDVI values is wider than that of June and 

September. However, Liu, et al. [236] suggested that NDVI values cannot be solely 

used to identify landslide prone areas because landslides areas, river valley, 
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residential areas, building, exposed areas/barren land are indicated by low vegetation 

index values.  

   

   

   

Fig. 4.21 Different NDVI conditions in Tanah Rata 

4.1.12  Weight Values and Thematic Maps of Soil Wetness 

Weight values of multi temporal soil wetness/moisture maps were obtained by 

crossing these maps with the landslide map. Further discussion is solely based on 

crossing result without accommodating geotechnical point of view as mentioned in 

section 4.1. These maps were resulted from the application of Tasseled Cap 

Transformation (TCT) that optimizes viewing Landsat data for vegetation studies e.g. 

wetness of soil. Soil wetness reflectance obtained from TCT ranges from -0.5 to 1.4. 

For further GIS analysis, this range was normalized to extent from 0 to 255. The 

Satellite image (June) Topographic map 
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landslide attributes related to multi temporal of soil wetness conditions are shown in 

Table 4.5. The number of landslide data used to derive the landslide attributes was 

reduced to accommodate the areas with no data due to the influence of clouds and 

associated shadows. The determination of soil wetness intervals was done by using 

the same manner as the determination of NDVI intervals. 

Table 4.5 Landslide attributes of Soil Wetness and weighting system 

Landslide 

factors 

Sub-

Categories 

The 

number of 

Landslides, 

(%) 

Landslide 

areas 

(m2) 

Number 

of Pixel 

of each 

category 

Area of 

each sub 

category 

(m2) 

LSI 

LSI-

based 

weight 

Values  

TCWet Feb 0 - 27 126, (41) 28350 358510 80664750 3.51 100 

 
27 - 68 50, (16) 11250 312242 70254450 1.60 46 

 
68 - 115 49, (16) 11025 664007 149401575 0.74 21 

 
115 - 166 38, (12) 8550 934494 210261150 0.41 12 

 
166 - 233 42, (14) 9450 707097 159096825 0.59 17 

 
233 - 254 0, (0) 0 27480 6183000 0.00 0 

TCWet May 0 - 23 95, (35) 21375 329093 74045925 2.89 64 

 
23 - 60 49, (18) 11025 355599 80009775 1.38 31 

 
60 - 97 43, (16) 9675 686124 154377900 0.63 14 

 
97 - 143 47, (17) 10575 104224 23450400 4.51 100 

 
143 - 213 41, (15) 9225 582341 131026725 0.70 16 

 
213 - 254 0, (0) 0 35219 7924275 0.00 0 

TCWet Jun 0 - 29 125, (36) 28125 363202 81720450 3.44 87 

 
29 - 70 73, (21) 16425 421429 94821525 1.73 44 

 
70 - 110 55, (16) 12375 936694 210756150 0.59 15 

 
110 - 161 57, (16) 12825 143894 32376150 3.96 100 

 
161 - 232 40, (11) 9000 629135 141555375 0.64 16 

 
232 - 255 0, (0) 0 33081 7443225 0.00 0 

TCWet Sep 0 - 22 261, (77) 58725 220293 49565925 11.85 100 

 
22 - 74 40, (12) 9000 460761 103671225 0.87 7 

 
74 - 134 15, (4) 3375 390496 87861600 0.38 3 

 
134 - 193 6, (2) 1350 274529 61769025 0.22 2 

 
193 - 245 17, (5) 3825 210062 47263950 0.81 7 

 
245 - 254 0, (0) 0 34749 7818525 0.00 0 

Table 4.5 shows the variation of the range of soil wetness values on column 2. 

The number of interval classes for each soil wetness map was set to five classes based 

on soil wetness values of landslide data. None of the landslide data has the values 

suitable for the sixth interval class. Most of landslide data has low soil wetness 

values: 41% of landslide data on February, 35 % on May, 36% on June, and 77% on 

September. The remaining landslide data was distributed almost evenly to other class 
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intervals. This condition is reasonable knowing that most of landslide sites were 

recognized at crop land and at cut slopes identified during field investigation. These 

typical of land uses have low soil moisture.  

The thematic maps of multi temporal soil wetness are presented in Appendixes F. 

This appendix presents the multi temporal soil wetness maps before and after 

applying cloud and shadow map. The latter maps shows soil maps in form of rating 

weight values based on LSI values. According to Ray and Jacobs [84], Xu, et al. [86] 

and Jotisankasa and Vathananukij [85], slopes with high level of soil wetness are 

more prone to landslide occurrences. On the contrary, Table 4.5 shows that most 

landslides are located in low moisture areas for all months. This can be understood 

since areas with low moisture refer to barren land/open land/cut slope while those 

with high moisture refer to for example vegetated areas.  

Meanwhile, LSI-based rating weight values describes that on May and June, the 

areas prone to landslides are located at more moist parts, indicated by weight values 

of 100. The other months, the most prone areas to landslide occurrences are at the 

driest parts.  

4.1.13  Weight Values and Thematic Maps of LST 

Table 4.6 shows the typical LST of landside site. The landslide characteristics were 

obtained from crossing multi temporal LST maps with landslide map. The number of 

landslide data used for deriving the landslide characteristics varies month by month 

that is 305, 275, 358, and 346 respectively for February, May, June, and September. 

The five intervals of each LST map were defined and derived from LST values of 

landslide sites. The final temperature was reduced to the local temperature monitored 

at Tanah Rata weather station.  

Table 4.6 shows that a large number of landslide occurrences are concentrated at 

different LST intervals for each month. The LST ranges and the corresponding 

percentage of landslide occurrences are 17.0
0
C-17.9

0
C (42% of landslide data), 

17.5
0
C-18.2

0
C (41%), 18.1

0
C-18.9

0
C (51%), and 18.6

0
C -19.3

0
C (36%) respectively 
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for February, May, June, and September. It is difficult to relate the variation of LST 

and monsoonal rainfall. However, the monthly average value of LST shows the  same  

Table 4.6 Landslide attributes of LST and weighting system 

Landslide 

factors 

Sub-

Categories 

Number of 

Landslides, 

(%) 

Landslide 

areas 

(m2) 

Number 

of Pixel  
Area (m2) LSI 

LSI-

based 

weight 

Values  

LST Feb < 15.5 0, (0) 0 22521 20268900 0.00 0 

 

15.5 - 16.3 5, (2) 4500 395725 356152500 0.13 1 

 

16.3 - 17.0 43, (14) 38700 345927 311334300 1.24 12 

 

17.0 - 17.9 127, (42) 114300 206278 185650200 6.16 58 

 

17.9 - 18.5 90, (30) 81000 84310 75879000 10.67 100 

 

18.5 - 19.3 40, (13) 36000 88320 79488000 4.53 42 

  > 19.3 0, (0) 0 4243 3818700 0 0 

LST May <16.2 0, (0) 0 36230 32607000 0.00 0 

 

16.2 - 16.8 9, (3) 8100 24630 22167000 3.65 52 

 

16.8 - 17.5 59, (21) 53100 962540 866286000 0.61 9 

 

17.5 - 18.2 112, (41) 100800 160559 144503100 6.98 100 

 

18.2 - 18.9 86, (31) 77400 364692 328222800 2.36 34 

 

18.9 - 19.6 9, (3) 8100 31367 28230300 2.87 41 

  >19.6 0, (0) 0 5567 5010300 0.00 0 

LST Jun <16.3 0, 0() 0 54408 48967200 0.00 0 

 

16.3 - 17.2 8, (2) 7200 74139 66725100 1.08 12 

 

17.2 - 18.1 71, (20) 63900 807902 727111800 0.88 10 

 

18.1 - 18.9 181, (51) 162900 249521 224568900 7.25 81 

 

18.9 - 19.8 70, (20) 63000 352210 316989000 1.99 22 

 

19.8 - 20.6 28, (8) 25200 31131 28017900 8.99 100 

  > 20.6 0, (0) 0 7488 6739200 0.00 0 

LST Sep <16.6 0, (0) 0 30158 27142200 0.00 0 

 

16.6 - 17.3 9, (3) 8100 98238 88414200 0.92 10 

 

17.3 - 17.9 92, (27) 82800 841024 756921600 1.09 12 

 

17.9 - 18.6 104, (30) 93600 110199 99179100 9.44 100 

 

18.6 - 19.3 125, (36) 112500 131827 118644300 9.48 100 

 

19.3 - 19.9 16, (5) 14400 147954 133158600 1.08 11 

  > 19.9 0, (0) 0 22550 20295000 0.00 0 

trend as the ground truth of temperature data issued by Worldclimate [217] which 

was obtained from a monitoring weather station at Tanah Rata. Fig. 4.22 shows the 

graphical overlay of rainfall, temperature, and LST data. From January to August, 

temperature and rainfall show the same graphical trend. As the rainfall amount 

increases, the temperature does so, reaching to the peak of rainfall on April and 

temperature on May. The temperature does not increase as significant as the rainfall. 
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In other words, rainfall amount is not sufficient to reduce the temperature. The effects 

from environmental factors other than rainfall may apply. Meanwhile, the average 

LST value of each month is close to the corresponding temperature value except that 

of May which does not increases significantly.  

For further data processing using GIS, LSI was computed to derive weight values 

purpose. Table 4.6 shows that LST intervals with the highest number of landslide 

occurrences do not always have the highest rating weight values as the case of 

February and June. Using the rating weight values, multi temporal thematic maps of 

LST were constructed. The maps are portrayed in Appendix G. The average LST of 

landslide data is 17.5
0
C, 17.96

0
C, 18.57

0
C, and 18.39

0
C respectively for each month 

that represents different climate conditions. Meanwhile, the average LST for the 

entire study area is a bit lower than that of the landslide data that are 16.45
0
C, 

16.72
0
C, 17.96

0
C, and 17.44

0
C respectively for February, May, June, and September.  

Visual interpretation of multi temporal LST maps reveals that, in general, there is 

no specific pattern of LST at landslide sites compared to that of their surroundings. 

Of the reasonable reason is that the landslide data is in the form of point data, not the 

area, with the pixel size of 30 m x 3 0m. At the location of past massive landslide at 

Pos Selim, the LST values area higher than the surroundings, indicated by circles in 

Figure 4.23. Landslide locations can be identified based on their LST values that are 

distinguishable from the surroundings as explained by Shikada, et al. [237], Mondini, 

et al. [83], and Vohora and Donoghue [97]. Shikada, et al. [237] found that LST at 

landslide areas is higher than at non-landslide areas in Hokuriku district, Japan. On 

the contrary, preliminary results of the investigation carried out by Mondini, et al. 

[238] showed that the distribution of surface temperature in landslide sites are lower 

than in the stable areas due to different soil moisture.  

4.1.14  Anbalagan’s LHEF Weighting System 

In order to compare landslide hazard maps resulted using LSI-based weighting 

system, another weighting system namely LHEF rating system developed by 

Anbalagan [2] was adopted. LHEF rating system has been discussed in section 
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2.4.1.2. The assignment of weight values to landslide causative factors can be found 

in Table 2.1 and Table 2.2. This rating system involves seven causative factors: rock 

type, soil, depth of soil, slope gradient, relative relief, land use land cover, water 

condition. Some modifications were made to adapt available causative factors from 

the current study to involve in LHEF rating system. Modifications include reducing 

the number of classes of rock type and soil into 4 and 3 types respectively; replacing 

depth of soil with distance from river and lake, relative relief with distance from 

geology lineament (following Pachauri and Pant [53]), water conditions with soil 

moisture/wetness; and multiplying the LHEF rating by 10 to facilitate overlay 

process. As mentioned in Table 2.1, some causative factors can have maximum 

LHEF weight values either 10 or 20. The higher the LHEF rating value the greater the  

 

Fig. 4.22 Monthly average rainfall and temperature in Cameron Highlands 

Sources: Worldclimate [217] 

   

Fig. 4.23 LST at Pos Selim landslide sites  
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Table 4.7 Adaption of LHEF rating system for the current case study 

No Factor Subcategories/Classes Rating 

1 
Lithology: rock 

type 

Acid and undifferentiated Granitoids 3 

Others (sedimentary rock with associated lava and 

tuff)  

10 

Alluvium  18 

Schist  13 

2 Lithology: soil 

Podzols and Lithosols on acid igneous rocks at 

elevtion above 5000 feet. (Type I) 

14 

Red-Yellow Podzolic soil with Lithosols on acid to 

intermediate igneous rocks. (Type II) 

12 

Red-Yellow Podzolic soil with Reddish-Brown 

Lateritic soil on residual materials from acid to 

intermediate igneous rocks. (Type III) 

10 

3 
Distance from 

geology lineament 

0 – 2 km 20 

2 – 4 km 17 

4 – 6 km 12 

6 – 8 km 8 

> 8 km 5 

4 Slope gradient 

>45 20 

36-45 17 

26-35 12 

16-25 8 

<15 5 

5 
Distance from 

river/lake 

0 – 200 m 20 

200 – 400 m 17 

400 – 600 m 12 

600 – 800 m 8 

> 800 m 5 

6 Land use land cover 

Cropland, bushes, thin vegetated area 6 

River, lake 0 

Forest  8 

Urban, built up 15 

Open land, cut slope 20 

7 Soil wetness 

Drier (0-29) 0 

Dry  (29-82) 2 

Medium (82-134) 5 

Wet (134-193) 8 

Wetter (193-254) 10 
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contribution to landslide occurrences. Depending on the significant contribution 

among classes of a causative factor, they were assigned rating value from 0 to 10 or 0 

to 20. The rating assignment for all classes of all factors is presented in Table 4.7.  

Detailed explanation on the modification of landslide causative factors of the 

current study to apply in LHEF weighting system is as follows. Lithology consists of 

4 rock types. Acid and undifferentiated granitoids, simply called as granite and schist 

are clearly stated in LHEF rating system and assigned a weight value of 3 and 13 

(after multiplied by 10). Granite is the hardest rock among the other types so that it is 

less likely to slide and assigned a low weight value of 3.  Alluvium is made up of a 

variety of material such as silt and clay. Hence, it is assigned a considerable rating 

value of 15. Other types, sedimentary rock with associated lava and tuff type, are put 

between granite and schist, the sedimentary rock type too. It is assigned a weight 

value of 8, indicating that this rock is harder than schist due to the presence of lava 

and tuff within the rock.  

Soil data consists of three types and assigned a weight value of 14, 12 and 10 

respectively. According to Anonimous [239], a glossary soil published by The 

University of Sidney, podzolic is sandy soil type with no concretion in the profile 

while lateritic contains many concretions in the profile. In addition, a mixture of 

clayey iron and aluminum hydroxide existed in lateristic soil. Anthoni [240] added 

that lithosol is stony soil with shallow profiles as found on steep mountains. It is thin 

soil with poorly defined layers horizons that consists mainly of partially weathered 

rock fragments as defined in Encarta Word English Dictionary Anonymous [241]. All 

soil types are sandy due to the present of podzolic soil. Due to the existence of 

lateristic soil, soil type III is given the lowest weight value of 10. It means that this 

soil type is less likely to slide. This value is based on that in LHEF rating system. Soil 

type II is put behind soil type III in term of the stability to slide due to the presence of 

thin weathered-fragmented rock and is assigned a rating of 12. The last soil type is 

the co-existence of sandy podzolic and weathered-fragmented soils and is assigned a 

rating value of 14; meaning that it is more likely to slide.  

The classification of distance from geology fault was adopted from Pachauri and 

Pant [53] while the weight value was adopted from LHEF rating system. It simply 
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says that the closer the distance from a geology lineament the more prone to landslide 

the areas. This also applies to distance from river/lake although this factor was 

absence in LHEF weighting system. The interval of distance from river/lake is set as 

shown in Table 4.7 considering the working pixel size, that is 30 meter. There is no 

consensus about classifying the distance from river/lake in term of its influence to 

landslide. Different distance classification has been applied by various researches 

such as Lee and Sambath [46], Oh, et al. [77], Sharma and Kumar [101], and Sarkar, 

et al. [109]. Slope classification was set the same as that of LHEF weighting system. 

There was a little modification on land use land cover factor made due to the 

presence of river/lake, urban and built up, and by the absence of moderately 

vegetated forest area features. Barren land was replaced by open land; sparsely 

vegetated forest area replaced by cropland. Thick vegetated forest area is simply set 

as forest. The rating of river/lake was set to 0 since there is no landslide within these 

areas. The remaining LULC types were assigned weight values based on LHEF 

system.  

Water condition factor puts flowing condition as having the highest weight value 

in LHEF weighting system that is 10. Adapting this condition, the areas with the 

highest soil wetness condition was given the maximum weight value of 10. The 

remaining classes were assigned weight values based on LHEF weighting system 

with the following constraint, the lower the soil wetness the lower the rating values.  

Landslide susceptibility map was constructed by summing up all LHEF weight 

values of causative factors on the basis of pixel. The total summation of LHEF 

weight values is also called as The Total Estimated Hazard (TEHD). Based on 

TEHD, five categories of landslide hazard/susceptible zones were determined and 

shown on the map as very low hazard, low hazard, medium hazard, high hazard, and 

very high hazard.  

4.2  Final Landslide Susceptibility Maps (LSMs) and Maps Validation 

Final LSMs that represents the total susceptibility to landslide occurrences were 

constructed by overlaying all landslide causative factors on the basis of pixel by pixel 



198 

summation. Prior to summation, each pixel of each layer has been assigned a weight 

value, either using LSI or LHEF rating scheme  

The LSMs consist of the following maps: 

1. LSMs produced from scenario 1. These maps were produced using static 

causative factors. Scenario 1 applied different weighting systems, i.e. LSI and 

LHEF, to allow the evaluation between statistical and non-statistical 

approaches. This scenario also allows the evaluation of the significance of 

different number of landslide causatives involved in constructing LSMs on the 

accuracy of the maps.  

2. LSMs produced from scenario 2. These maps were constructed by using the 

combination of all static causative factors and multi temporal NDVI data. The 

effect of additional multi temporal NDVI can be evaluated through these 

maps. 

3. LSMs produced from scenario 3. Multi temporal soil wetness data were added 

to data set containing all causative factors to produce multi temporal LSMs.  

The effect of additional this multi temporal factor can be evaluated through 

these maps. 

4. LSMs produced from scenario 4. LST of four different climatic conditions 

were added to static data set to produce multi temporal LSMs. The effect of 

additional this multi temporal factor can be evaluated through these maps. 

The final LSMs indicate five categories of susceptibility zones to landslide. Since 

the number of landslide causative factors is different between static and multi 

temporal data set, the maximum of susceptibility level, as the summation of all rating 

values, may be different. On the basis of the maximum susceptibility level, five 

categories of landslide susceptibility zones were defined. The maps were reclassified 

into 5 zones/criteria using equal interval method expressing different susceptibility 

levels. The five categories are Very Low Susceptibility (VLS), Low Susceptibility 

(LS), Moderate Susceptibility (MS), High Susceptibility (HS), and Very High 

Susceptibility (VHS). 

To measure the accuracy of LSMs, these maps were validated by means of 

crossing these maps with landslide/slope failure locations and evaluating the 
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susceptibility status of these locations. Evaluation of the accuracy of the LSMs was 

carried out on the basis of an assumption that all landslide sites should fall on the 

category of HS and VHS. The number or percentage of landslide points falling in 

these categories determined the accuracy of the LSMs. This measure was also used to 

facilitate comparisons between the LSMs derived from different scenarios. 

4.2.1   Final LSMs of Scenario 1 and Validation of the Maps 

The final LSMs resulted from scenario 1 consist of: 

1. LSM derived using LHEF weighting system involving 6 landslide causative 

factors, factor 1 to 6 as shown in Table 4.7. The factors are rock type, soil, 

distance from geology lineament, slope gradient, distance from river/lake and 

land use land cover 

2. LSM derived using LHEF rating system involving 6 landslide causative 

factors and additional soil wetness data, factor 7 (see Table 4.7). 

3. LSM derived using LSI-based rating system involving the same 6 landslide 

causative factors as procedure No. 1. 

4. LSM derived using LSI-based rating system involving all (10) static causative 

factors as shown in on Table 4.1, Table 4.2, and Table 4.3.  

Fig. 4.24 a) shows LSM constructed using 6 causative factors based on LHEF 

rating system. As per visual interpretation, areas having HS and VHS status are 

concentrated around the roads and cropland. Besides these areas, the map also 

showed areas with moderate into high susceptibility status as indicated by arrows in 

Fig. 4.24 a). This may be caused by the contribution of superposition of river/lake 

and geology lineament layers for location 1 and 2, and the contribution of river/lake 

layer for location 3 and 4. Safe areas with VLS status are mainly located at forest 

areas, the left side of the map. Meanwhile, forest areas at the right side of the map 

mostly indicate low and moderate susceptibility status. Fig. 4.24 b) shows LSM 

constructed using the same causative factors as the previous result with soil wetness 

as additional layer. This layer was derived from the transformation of Landsat 7 band 

acquired on 20 September 2001 into soil wetness using Tasseled Cap Transformation.  
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Fig. 4.24 LHEF rating system-based LSM derived using: a) 6, and b) 7 factors. 

b) 

a) 
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Fig. 4.25 LSI-based LSM derived using: a) 6, and b) all static factors. 

b) 

a) 
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The distribution of susceptibility areas on this map is almost similar to the previous 

map except it contains removed/blank areas caused by coverage of clouds and the 

associated shadows. 

Fig. 4.25 a) shows LSM constructed using 6 causative factors based on LSI 

weighting system. Compared to the previous maps, this map shows more areas 

having HS status. The HS areas as indicated by arrows in Fig. 4.24 a) become more 

clearly apparent on this map. This may be caused by the effect of the application of 

LSI weighting system which assigns weight values based on landslide attributes 

extracted from the study area. Fig. 4.24 b) show LSM constructed by using all static 

causative factors, ten factors. The factors consist of the same 6 factors as those used 

to derive either LHEF- or LSI-based LSM. The four additional causative factors are 

shown in Table 4.8. Unlike the previous map, addition of more causative factors 

seems not to produce more areas categorized as HS and VHS as seen on the map.  

Table 4.8 Statistics of LSM of scenario 1 

 
Landslide causative factors 

Susceptibility status and the 

corresponding coverage (in %) 

 
Rock type 
Soil   

Dist. from lineament 

Slope gradient 
Dist. from river/lake 

Land use land cover E
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M
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e 

High  
Very 

High 

LHEF 6 ||||||||||||||||||||||||||||||||| - - - - - 28.7 53.1 16.4 1.8 0 

LHEF 7 ||||||||||||||||||||||||||||||||| - - - - ||||| 25.7 55.9 16.8 1.5 0 

LSI 6 ||||||||||||||||||||||||||||||||| - - - - - 1.0 40.5 45.2 12.2 1.1 

LSI 10  

(all factors) 
||||||||||||||||||||||||||||||||| ||||| ||||| ||||| ||||| - 4.1 58.2 33.4 4.1 0.2 

Table 4.8 shows the percentage of the predicted areas with the corresponding 

susceptibility status from VLS to VHS. The total coverage of the study area is about 

30 km x 30 km or 900 km
2
 and the pixel size of all landslide causative factors is set to 

30 m. Special attention is given to areas with HS and VHS status. According to the 

table, the percentage of both areas predicted by LHEF 6 and 7 is lesser than that 

predicted by LSI. Due to small values of percentage of VHS areas predicted by LHEF 
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weighting system, their values appear as zero. Again, addition of soil wetness layer 

was unable to increase the areas of HS and VHS. Moreover, addition of more static 

landslide causative factors (up to ten factors) appears to reduce the percentage of both 

types of area in case of LSI-based LSM. Six static causative factors are 

reasonable/sufficient number of landslide causative factor for constructing LSM. This 

dataset produces the largest coverage of areas of both types 

As mentioned earlier, the LSMs or predicted landslide susceptibility zones were 

validated by using existing landslide/slope failure data. The capability of each 

landslide susceptibility model to predict back the existing landslide sites as HS and 

VHS status determines the accuracy of the model. Table 4.9 shows the validation 

results.  

Table 4.9 Validation for GIS-based LSM of scenario 1 

 

Landslide causative factors 

The number of validated landslide points 

(in %) and the corresponding 

susceptibility status 

 
Rock type 
Soil   

Dist. from lineament 

Slope  
Dist. from river/lake 

Land use land cover E
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LHEF 6 ||||||||||||||||||||||||||||||||| - - - - - 2.5 37.4 39.7 20.4 0.0 20.4 

LHEF 7 ||||||||||||||||||||||||||||||||| - - - - ||||| 3.2 42.4 36.3 16.6 1.5 18.0 

LSI 6 ||||||||||||||||||||||||||||||||| - - - - - 0 0.8 41.3 43.9 14 57.8 

LSI 10  

(all factors) 
||||||||||||||||||||||||||||||||| ||||| ||||| ||||| ||||| - 0 5 53.4 39.4 2.2 41.6 

Table 4.9 shows that among LHEF-based LSMs, LHEF that involves 6 static 

landslide causative factors, simply written as LHEF 6, produced a better LSM 

compared to that involving 7 causative factors, LHEF 7, in term of the number of 

predicted landslide sites falling within HS and VHS status. It means that addition of 

soil wetness map reduced the accuracy of the previous map. LHEF 6 managed 20.4% 

(73 points) of the total of 358 landslide points while LHEF 7 managed only 62 points 

(about 18% of the total of landslide points). Among LSI-based LSMs, inclusion of all 
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static causative factors, (10 factors), did not necessarily improve the accuracy of the 

landslide susceptibility model. The accuracy of LSI-based LSM constructed using 6 

static causative factors are superior to that using all static factors. The first confirmed 

about 57.8% (207 points) while the latter confirmed about 41.6% (149 points) of the 

total number of landslide points. This result left a question on why involvement of 

more causative factors cannot automatically improve the accuracy of the LSM. There 

must be causative factors that may have insignificant contribution to improve the 

accuracy of LSM or even tend to reduce the accuracy of the LSM if combined with 

other factors. The investigation regarding this problem is discussed sub chapter 4.3 .  

On the overall, six static landslide causative factors seems to be sufficient number 

to model landslide susceptibility either using statistical (LSI) or non statistical 

(LHEF) approaches in scenario 1. In addition, statistical approach produces better 

results of LSM than LHEF approach, the non statistical approach. Even after 

removing areas due to clouds and shadows coverage to conform to the thematic map 

of soil wetness acquired on September 1991, LSI-based LSMs remain superior over 

LHEF-based LSMs. After removing areas blocked by clouds and the associated 

shadows, LSI 6 and LSI all static factors are still able to predict back 57.6% (198 

points) and 41.8% (143 points) of the total number of existing landslide data 

respectively as having HS and VHS status.  

4.2.2   Final LSMs of Scenario 2 and Validation of the Maps 

Scenario 2 combined all static causative factors and multi temporal NDVI maps and 

produced 4 LSMs. Each map represents the influence of different conditions of NDVI 

as response to monsoonal rainy seasons in determining the susceptibility of the study 

area to slide. The NDVI maps were derived from Landsat images acquired on 

February (first dry season), May (first rainy season), June (second dry season), and 

September (second rainy season). Fig. 4.26 and Fig. 4.27 show LSMs with the 

influence of different NDVI conditions. The susceptibility values ranges for each 

season vary. For the first rainy season (February), the range is 202-1002. The ranges 

of next seasons are 225-1000 (May), 178-985 (June), 174-985 (September). The 

higher the susceptibility values the more susceptible to landslide the corresponding 
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areas. On the basis of the susceptibility values, five categories of landslide 

susceptibility zones have been determined. Using equal interval approach, these 

ranges of values were divided into five statuses: VLS, LS, MS, HS, and VHS.  

The LSMs produced from scenario 2 as shown in Fig. 4.26 and 4.27  cannot be 

presented as full maps because they contain blank areas caused by clouds and the 

associated shadows. This is the common problem when deriving any spatial data 

from any passive remote sensing sensors such as the ones used by Landsat 7 that 

detect  the reflected or emitted electromagnetic radiation from natural sources such as 

the sun. Unlike an active sensor such as radar, the passive sensor cannot record the 

reflectance or emission of objects under coverage of clouds. In addition, cloud 

shadows cause a problem, that is, producing reflectance numbers that may have 

similarity/closeness with those of water body features such as lakes. Besides this 

drawback, these LSMs are able to indicate the spatial distribution of zones HS and 

VHS zones as indicated by arrows and the corresponding numbers in Fig. 4.26 and 

Fig. 4.27. The description of the numbered areas is as follows:  

1. Slopes at road sides starting from Pos Selim where the massive landslide 

occurred until Ringlet. 

2. Urban areas at Kampong Raja and Kampong Kuala Terla. 

3. Urban areas at Tanah Rata. 

4. Urban areas at Ringlet. 

The spatial distribution of susceptibility statuses of the study area varies from 

map to map. Table 4.10 shows the statistic of susceptibility zonation. Most of the area 

of study falls in LS status followed by MS and VLS status. Fewer areas fall in HS 

status. Areas with very HS status occupy the smallest part of the study area. Even, the 

combination of areas with HS and VHS status still occupies the smallest part of the 

study area. Regardless the capability of the GIS-based landslide susceptibility model 

in determining the level of susceptibility of the study area, model validation needs to 

be carried out to measure the accuracy of the susceptibility status of predicted zones.  
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Fig. 4.26 LSMs of Scenario 2: all static factors and NDVI February and May  
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Fig. 4.27 LSMs of Scenario 2: all static factors and NDVI June and September 
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Another thing that needs to take a note is that each map has different removed 

areas caused by clouds and the associated shadows coverage. The removed areas are 

24.2%, 23.7%, 3.4%, and 10.4% of the study area respectively represents cloud and 

shadow conditions for February, May, June, and September. Hence, comparing 

susceptibility conditions map by map is not logical. A common area available on all 

maps should be defined to allow map by map comparison. Polygons called as training 

areas were defined by delineating areas which are free of clouds and shadows. The 

training are should be applicable for all LSMs. The delineation of polygons were 

attempted, as much as possible, to cover all landslide locations. Fig. 4.28 shows the 

required training areas for map by map evaluation which are shown in dark blue. 

Table 4.10 Statistic of LSMs of scenario 2 

The coverage of the training area is about 49.5 km2. Each LSM was cropped by 

using this training area. The statistic of susceptibility status of extracted map is 

presented in Table 4.11. The spatial variation of each susceptibility status can be 

identified. Special attention is focused on the areas with HS and VHS status. The 

possibility of both statuses to expand or collapse caused by change in vegetation 

index, i.e. NDVI, as its response to monsoonal rainfall system can be identified. Both 

categories show that during rainy seasons (May and September), the coverage of 

these areas increases (Fig. 4.29). On the contrary, during dry seasons (February and 

June), their coverage relatively decreases. The other susceptibility statuses, e.g. MS, 

LS and VLS, are not of the main concern to discuss in this work. According to Liao 

Susceptibility 

statuses  

Areas in km2 Areas in % 

Feb May Jun Sep Feb May Jun Sep 

Very Low 37.6 12.2 75.4 62.1 5.6 1.8 8.8 7.7 

Low 434.6 380.4 541.8 493.2 64.5 55.9 63.1 61.4 

Moderate 178.2 253.1 220.8 224.7 26.4 37.2 25.7 28.0 

High 22.5 33.4 20.4 22.1 3.3 4.9 2.4 2.8 

Very High 0.9 1.2 0.7 0.9 0.1 0.2 0.1 0.1 

Area  673.8 680.4 859.2 803.1 74.9 75.6 95.5 89.2 

High + Very High 23.4 34.6 21.9 23.5 3.4 5.1 2.5 2.9 

Clouds and 

shadows coverage 

217.6 213.7 304.7 93.3 24.2 23.7 3.4 10.4 

Total area (≈) 900 900 900 900 100 100 100 100 
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[47], very LS and VLS areas are considered as safe areas for development. 

Meanwhile, MS areas may contain some locally vulnerable zones of instability. In the 

training areas, there are no areas with VLS status. 

     

    

Fig. 4.28 Polygons used as training areas shown as dark areas 

Table 4.11 Statistic of the training area for scenario 2 

Susceptibility 

Statuses 

Areas in km2 

February May June September 

Very Low 0 0 0 0 

Low 4.9 1.9 7.6 4.2 

Moderate 32.4 31.6 31.8 32.8 

High 11.7 15.3 9.7 12.0 

Very High 0.5 0.8 0.4 0.5 

High and Very High 12.2 16.1 10.1 12.5 

Total of area 49.5 49.5 49.5 49.5 
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Fig. 4.29 The increase and decrease of areas fall in very high and high susceptibility 

status due to change of NDVI 

The most importance procedure to conduct when one would produce a GIS-based 

landslide susceptibility or hazard map is to validate that map. The number of 

landslide points used for validation is not 358 (the total number) but reduced to 230 

(64.2% of the total number of landslide data) to conform to the training areas. Hence, 

only landslide data within the training areas were used. The unused landslide data is 

128 points (35.8% of the total number of landslide data). The 230 points were used to 

extract the susceptibility values from each LSM that represents different NDVI 

conditions. These values were reclassified using the same interval classes as those of 

SMs of scenario 2. The result is shown in Table 4.12. None of the landslide data 

within the training areas fall in very low susceptibility category, the safest zones. The 

combination of landslide points having HS and VHS status shows a graphical pattern 

that may relate to rainfall variation (Fig. 4.30). During two rainy seasons on May and 

September, NDVI maps of these seasons contribute the increase of the number of 

validated landslide points with both statuses which is relatively greater than that of 

two dry seasons. The number/percentage of validated landslide points is 119 point 

(42.6% of used landslide data) and 102 points (44.3%) for May and September; 98 

points (42.6%) and 85 points (37.0%) for February and June respectively. NDVI of 

rainy seasons tends to increase the susceptibility zones to landslide with HS and VHS 

status. Hence, it can be said that besides being used as a measure of the accuracy of 

the GIS-based LSMs, the different number of validated landslide points of each 
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month may also be used to represent the relation of spatial variation of possible 

dangerous areas (with HS and VHS status) and rainfall pattern.  

Table 4.12 Validation for GIS-based LSM of scenario 2 

Up to this step, the final landslide susceptibility maps involving one of 

environmental change factors, multi temporal NDVI maps, have been constructed. 

Hence, one of the objectives of the research has been fulfilled. However, the 

significance role of involvement of multi temporal NDVI maps in determining the 

accuracy of the LSMs has not been determined. The evaluation of the accuracy of 

these maps requires a reference map resulted from scenario 1 that employed only 

static causative factors. By comparing these two LSMs, the significant role of NDVI 

maps in GIS-based landslide susceptibility model can be determined. The discussion 

about this can be found in subsection 4.2.5. 

 

Fig. 4.30 Average rainfall and the number of predicted landslide points falls in very 

high and high susceptibility status due to change of NDVI 
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Susceptibility status 

Number of validated points Percentage of validated points 

Feb May Jun Sep Feb May Jun Sep 

Very Low 0 0 0 0 0.0 0.0 0.0 0.0 

Low 13 6 17 13 5.7 2.6 7.4 5.7 

Moderate 119 105 128 115 51.7 45.7 55.7 50.0 

High 93 105 75 97 40.4 45.7 32.6 42.2 

Very High 5 14 10 5 2.2 6.1 4.3 2.2 

High and Very High 98 119 85 102 42.6 51.7 37.0 44.3 
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4.2.3   Final LSMs of Scenario 3 and Validation of the Maps 

Final LSMs of scenario 3 accommodate the influence of 4 seasonal conditions of soil 

wetness besides the main data, all static causative factors as used in scenario 1. The 

soil wetness maps were derived from Landsat images acquired during 2 rainy seasons 

(May and September) and 2 dry seasons (May and June). The final LSMs of scenario 

3 are shown in Fig. 4.31 and Fig. 4.32. 

The range of susceptibility values vary for each seasons: 182-996 (dry season of 

February), 170-991 (rainy season of May), 170-991 (dry season of June), and 162-

1005 (rainy season of September). The higher the susceptibility values the more 

susceptible to landslide the corresponding areas. The range of susceptibility values 

was divided into five susceptibility zones namely VLS, LS, MS, HS and VHS.  

The LSMs produced from scenario 3 as shown in Fig. 4.31 and Fig. 4.32 contain 

blank areas caused by clouds and their respective shadows as the case of scenario 2. 

These maps show the spatial distribution of landslide susceptibility zones. The 

possibly dangerous zones (with high and very high susceptibility statuses) for slope to 

fail are the same as those of LSMs of scenario 2. The zones are indicated by circles 

and the corresponding numbers. The first zone is the location around the post 

landslide site at Pos Selim. The second zone covers urban areas at Kampung Raja and 

Kuala Terla, and agriculture area around Terla River. The third and the last zones 

cover urban areas at Tanah Rata and Ringlet respectively.  

The area of each susceptibility status varies from season to season. The variation 

of susceptibility areas of all statuses is shown in Table 4.13. LS and VLS are 

considered as safe areas. The latter dominates the study area followed by moderate 

status. The possibly danger areas categorized as having high and very high 

susceptibility occupy small part of the study area. As the case of LSMs of scenario 1, 

map by map comparison cannot be carried out due to different size of blank areas 

caused by coverage of clouds and the corresponding shadows (see Table 4.13). The 

coverage of these two objects is the same for all scenarios that are 24.2%, 23.7%, 

3.4% and 10.4% of 900 km2, the total area of the study area. Moreover, the quality of 

he map should be accessed by means of map validation. 



213 

Table 4.13 Statistic of LSMs of scenario 3 

Susceptibility 

statuses  

Areas in km2 Areas in % 

Feb May Jun Sep Feb May June Sep 

Very Low 101.1 74.5 40.2 43.4 15.0 11.0 4.7 5.4 

Low 396.8 372.1 437.6 419.0 58.9 54.7 50.9 52.2 

Moderate 147.0 203.6 331.9 299.4 21.8 29.9 38.6 37.3 

High 27.3 29.3 47.8 39.9 4.0 4.3 5.6 5.0 

Very High 1.6 0.9 1.7 1.5 0.2 0.1 0.2 0.2 

Area  673.8 680.4 859.2 803.1 74.9 75.6 95.5 89.2 

High + Very High 28.9 30.2 49.5 41.3 4.3 4.4 5.8 5.1 

Clouds and 

shadows coverage 

217.6 213.7 304.7 93.3 24.2 23.7 3.4 10.4 

The area of each susceptibility status varies from season to season. The variation 

of susceptibility areas of all statuses is shown in Table 4.13. LS and VLS are 

considered as safe areas. The latter dominates the study area followed by moderate 

status. The possibly danger areas categorized as having high and very high 

susceptibility occupy small part of the study area. As the case of LSMs of scenario 1, 

map by map comparison cannot be carried out due to different size of blank areas 

caused by coverage of clouds and the corresponding shadows (see Table 4.13). The 

coverage of these two objects is the same for all scenarios that are 24.2%, 23.7%, 

3.4% and 10.4% of 900 km2, the total area of the study area. Moreover, the quality of 

the map should be accessed by means of map validation. 

The training area is needed to perform map by map comparison. The same 

training area used in scenario 2 was applied to scenario 3. Comparing map by map 

would result in knowledge about the increase/expansion or decrease of areas with a 

particular susceptibility status. The next benefit is that the effect of rainy cycle in 

changing the conditions of soil wetness to GIS-based LSMs can be evaluated. Each 

landslide susceptibility map was cropped using the training area that cover the area of 

49.5 km2. Recapitulation of spatial variation of susceptibility areas is presented in 

Table 4.14. 

Areas with different susceptibility statuses in the training area vary season by 

season. Referring to Table 4.14, the areas with HS and VHS  status  start  to  decrease 
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Fig. 4.31 LSMs of Scenario 3: all static factors and soil wetness of February and May  
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Fig. 4.32 LSMs of Scenario 3: all static factors and soil wetness of June and 

September  
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 from February (31 km2) to May (28.2 km2) by 10%; increase from May to June 

(52.6 km2) by 25.9%; and increase from June to September (39.9 km2) by 12.5%. 

Unlike the case of LSMs with additional NDVI maps, there is no significant increase 

of possibly dangerous areas on May, the rainy season. Otherwise, these two areas 

relatively decrease compared to those of February, the dry season. However, on June 

and September, the possibly dangerous areas have the same characteristics as the case 

of scenario 2, decreasing during dry season and increasing during rainy season. This 

pattern resembles the rainfall data pattern. Fig. 4.33 may give a comprehensive view 

about: 1) average rainfall, 2) the number of validated landslide points, and 3) change 

in areas with high and very high susceptibility status within the training area. It shows 

that graph 2 and 3 have a similar trend. When compared to the graph of rainfall data 

of Tanah Rata, only soil wetness of May that does not show the same trend as that of 

the rainfall data. This contradiction may originate from the selected Landsat image, 

dated 31 May 2001, which was not the peak time of rainy season. The peak time of 

rainy season was supposed to fall in April. Unfortunately, the required image was 

unavailable as discussed in section 3.3.3. This result is somewhat contradictory from 

geotechnical point of view. This is the weak point of bivariate statistical approach 

that does not consider geotechnical point of view. This approach is solely based on 

the characteristic of used data. In other words, it is commonly known as data driven 

approach as described by Suzen [57]. In addition, whether or not the addition of soil 

wetness contributes significant improvement of the GIS-based landslide susceptibility 

model, discussion about this can be found in section 4.2.5. 

Validation result of LSMs of scenario 3 is shown in Table 4.15. LSMs 

constructed from scenario 3 were validated by using a set of landslide locations 

within training area. About 230 of 358 landslide data located within the training area 

were used for validation.  The result shows that none of the landslide data has VLS 

status. Most of them were predicted as having MS, followed by HS status. VLS and 

VHS areas take minor part of the training area. The percentage of landslide locations 

predicted as having HS and VHS status is constant at 47.4% either for LSMs of 

February and May. The accuracy becomes greater on June and September by 52.6% 

and 63.5 respectively. This means that LSMs of September has the highest accuracy 

followed by those of June, May and February.  
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Table 4.14 Statistic of the training area for scenario 3 

Susceptibility Statuses Areas in km2 

February May June September 

Very Low 0.0 0.0 0.0 0.0 

Low 13.1 11.5 6.7 6.2 

Moderate 55.9 60.2 57.8 53.8 

High 28.8 27.1 33.3 37.7 

Very High 2.2 1.1 2.2 2.2 

High and Very High 31.0 28.2 35.5 39.9 

Table 4.15 Validation of LSMs of scenario 3 

Susceptibility 

Status 

Number of validated points Percentage of validated points 

Feb May Jun Sep Feb May Jun Sep 

Very Low 0 0 0 0 0.0 0.0 0.0 0.0 

Low 7 10 8 1 3.0 4.3 3.5 0.4 

Moderate 114 111 101 83 49.6 48.3 43.9 36.1 

High 103 96 110 134 44.8 41.7 47.8 58.3 

Very High 6 13 11 12 2.6 5.7 4.8 5.2 

High + Very High 109 109 121 146 47.4 47.4 52.6 63.5 

The final landslide susceptibility maps that incorporate multi temporal soil 

wetness maps have been constructed, complementing the previous results for 

fulfilling one of the objectives of the research. Evaluation on the importance role of 

multi temporal soil wetness in determining the accuracy of GIS-based LSMs still 

needs to be carried out by comparing these maps with the LSMs of scenario 1. This 

matter is discussed in section 4.2.5. 

4.2.4   Final LSMs of Scenario 4 and Validation of the Maps 

Final LSMs of scenario 4 were constructed using all static landslide causative factors 

and multi temporal LST as additional data. The LST maps were derived from Landsat 

images acquired on different seasons: February (dry) May (rainy), June (dry), and 

September (rainy). The final LSMs of scenario 4 consist of 4 maps. The maps 

accommodate 4 seasonal conditions of LST are shown in Fig. 4.34 and Fig. 4.35. The 

range of susceptibility values is different for each map. The ranges are 196-965 for 
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February (first dry season), 189-1002 for May (first rainy season), 177-983 for June 

(second dry season), and 155-1002 for September (second rainy season). Areas with 

high susceptibility values are possibly the dangerous areas in term of the possibility 

of the respective slopes to fail. Each map was divided into five zones with equal 

interval representing areas with VLS, LS, MS, HS, and VLS status.  

 

Fig. 4.33 Average rainfall, areas of very high and high susceptibility statuses, and the 

number of validated points due to change of soil wetness 

 Clouds and their shadows are inherent natural factors for highlands areas such as 

Cameron Highlands, the study area. Since the LSMs produced from scenario 4 

utilized LST derived from Landsat 7 satellite image, the existence of blank areas are 

unavoidable (Fig. 4.31 and Fig. 4.32). This problem happens to all final LSMs. In 

spite of this defect, the maps are able to locate the possibly dangerous areas with HS 

and VHS status as indicated by circles and the corresponding numbers. The possibly 

dangerous areas include: 1) areas around post landslide site at Pos Selim, 2) urban 

areas at Kampung Raja and Kuala Terla, and agriculture area around Terla River, 3) 

urban areas at Tanah Rata, and 4) urban areas at Ringlet. The statistic of LSMs of 

scenario 4 is shown in Table 4.16.  
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Most of areas on each map are categorized as save (LS and VLS status). 

Moderate susceptibility status is the second dominating areas. Small part of the study 

area is considered as possibly dangerous areas with HS and VHS status. These 

particular areas spatially change with time, namely during two dry and rainy seasons. 

However, these changes mean nothing since each map is not comparable one to 

another due to different size, shape, and position of blank areas caused by clouds and 

the associated shadows. A fair comparison can only be done by using the training 

area as discussed earlier in subsection 4.2.2. The areas extracted from each LSM by 

using the training areas are ready for evaluation. The statistic of the training area of 

each map is presented in Table 4.17. 

Table 4.16 Statistic of LSMs of scenario 4 

Susceptibility 

statuses  

Areas in km2 Areas in % 

Feb May Jun Sep Feb May June Sep 

Very Low 30.4 48.7 22.9 14.4 4.5 7.2 2.7 1.8 

Low 440.0 395.3 469.3 413.9 65.3 58.1 54.6 51.8 

Moderate 171.6 207.0 324.9 328.7 25.5 30.4 37.8 41.1 

High 30.3 28.6 40.7 40.7 4.5 4.2 4.7 5.1 

Very High 1.4 0.8 1.4 1.9 0.2 0.1 0.2 0.2 

Area  673.8 680.4 859.2 803.1 74.9 75.6 95.5 89.2 

High + Very High 31.7 29.4 42.0 42.5 4.7 4.3 4.9 5.3 

Clouds and 

shadows coverage 

217.6 213.7 304.7 93.3 24.2 23.7 3.4 10.4 

Table 4.17 Statistic of the training area for scenario 4 

Susceptibility Statuses 
Areas in km2 

February May June September 

Very Low 0 0 0 0 

Low 9.1 11.9 8.1 8.2 

Moderate 57.9 59.6 59.6 51.4 

High 31.0 27.4 30.6 37.7 

Very High 2.0 1.1 1.7 2.8 

High and Very High 33.0 28.5 32.3 40.5 

Total of area 49.5 49.5 49.5 49.5 
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Fig. 4.34 LSMs of Scenario 4: all static factors and LST of February and June  
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Fig. 4.35 LSMs of Scenario 4: all static factors and LST of June and September  
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Extraction of the size of a particular area from each map allows evaluation on 

possibly expansion or shrinkage of particular areas. Special attention was focused on 

extracted areas with HS and VHS status. The remaining areas are not discussed 

assuming that these areas are considered as safe locations. Table 4.17 shows that 

there is change in areas of HS and VHS status from 33 km2, 28.5 km2, 32.3 km2, and 

40.5 km2 respectively on February, May, June, and September. Areas of both status 

from February to May somehow drop by 15.8% (from 33 km2 to 28.5 km2) although 

it is considered as rainy season when most landslides usually occurs. Meanwhile, on 

September, the rainy season, these areas increase significantly by 42.1% when 

compared to those of May, the rainy season, from 28.5 km2 to 40.5 km2. Fig. 4.36 

shows graphs of rainfall at Tanah Rata weather station, the number of validated 

points, and change in areas with high and very high susceptibility status. It can be 

said that the first two graphs have similar trend except on May where the area with 

HS and VHS statuses. Apart of small dissimilarity of the graph, the statistical result 

of the training areas on Table 4.17 comes from LSMs that have not been measured 

their accuracies. Map validation is needed to ensure the accuracy of LSMs. Whether 

or not the change in both areas is due to the introduction of LST in GIS-based LSMs 

cosntructed using all static causative factors, this question can only be answered after 

performing comparison between LSMs produced from scenario 4 and 1. The result is 

discussed in sub chapter 4.2.5   

Table 4.18 Validation of LSMs of scenario 4 

Susceptibility 

Status 

Number of validated points Percentage of validated points 

Feb May Jun Sep Feb May Jun Sep 

Very Low 0 0 0 0 0.0 0.0 0.0 0.0 

Low 9 10 10 0 3.9 4.3 4.3 0.0 

Moderate 104 116 107 85 45.2 50.4 46.5 37.0 

High 106 99 101 129 46.1 43.0 43.9 56.1 

Very High 11 5 12 16 4.8 2.2 5.2 7.0 

High + Very High 117 104 113 145 50.9 45.2 49.1 63.0 
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Fig. 4.36 Average rainfall, areas of very high and high susceptibility statuses, and the 

number of validated points due to change of soil wetness 

Similar to previous scenarios, about 230 of landslide locations was used for map 

validation. Maps validation result is shown in Table 4.18. The LSMs of scenario 4 

can predict back landslide locations as having status either HS or VHS as many as 

50.9%, 45.2%, 49.1%, and 63.0% respectively for LSM of February, May, June, and 

September. On the overall, the LSMs can predict back half and slightly above half of 

the total used landslide locations. Overlay of rainfall graph and validated points 

shows the similarity of both graphs except data on May (Fig. 4.36). Meanwhile, 

graphs of validated points and training areas with high and very high susceptibility 

statuses show a similar trend. Seeing these facts, it is difficult to draw a conclusion in 

regard to the correlation of rainfall and the number of validated points and areas 

falling in HS and VHS categories especially the results of May. As the case of 

scenario 3, this contradictory may originate from utilization of Landsat image dated 

31 May 2001 which was not the peak time of rainy season. 

The final landslide susceptibility maps of scenario 4 that incorporate multi 

temporal LST maps have been constructed. Hence, GIS-based landslide susceptibility 

modeling using scenario 1 to 4 has fulfilled one of the objectives of this research. 

Evaluation on the importance role of multi temporal LST and other environmental 
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factors, i.e. NDVI and soil wetness, is another objective to achieve. It is discussed in 

the following sub chapter.  

4.2.5   Static versus Multi Temporal Causative Factors-Based LSMs 

The most important objective of this research is to evaluate whether additional multi 

temporal environmental factors i.e. NDVI, soil wetness, and LST contribute 

significant improvement to the accuracy of GIS-based ‗static‘ landslide susceptibility 

model. Improvement means the capability of the models of scenario 2, 3, and 4, to 

predict back existing landslide locations, as much as possible, as having status of HS 

and VHS. Prior to do that, LSI-based LSMs of scenario 1, i.e. using 6 and all static 

factors, should be cropped by using the training areas applied to LSMs of scenarios 2, 

3, and 4. Map validation for the cropped areas should also be carried out using the 

same number of landslide points that is 230 points.  

The statistical recapitulation of the training area of LSMs of scenario 1 and maps 

validation result are shown in Table 4.19. The range and classes interval of each 

susceptibility status are different. The first reason regarding this problem is due to 

utilization of ‗weighted sum‘ overlay method. Therefore, the more number of 

landslide causative factors include the higher the value of susceptibility index. The 

second reason is due to the application of equal interval approach in dividing 

susceptibility zones. The predicted areas with HS and VHS status of LSI 6 are higher 

(29.8 of 49.5 km2) than those of LSI all factors (15.9 of 49.5 km2). HS status 

dominates the LSM of LSI 6 while MS dominates the LSM of LSI all factors. As 

proven earlier, the accuracy of LSM of LSI 6 is, again, superior over LSM of LSI all 

factors in term of the number of validated landslides points as having HS and VHS 

status. The first model can predict 159 points (69.1 % of the total points) while the 

latter can only predict 111 points (48.3 % of the total points). These numerical results 

are very useful for evaluating all LSMs with additional multi temporal environmental 

factors (NDVI, soil wetness, and LST). 
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Table 4.19 Statistic of training areas and validated points of LSMs of scenario 1 

Susceptibility 

Status 

Training Areas in km2 
The Number of 

Validated Points 

Range 6 factors Range All factors 6 factors All factors 

Very Low - 0 - 0 0 0 

Low 166.6 - 276.2 0.2 304.4 - 453.8 2.9 1 9 

Moderate 276.2 - 385.8 19.5 453.8 - 603.2 30.7 70 110 

High 385.8 - 495.4 24.3 603.2 - 752.6 15.0 118 103 

Very High 495.4 - 605 5.5 752.6 - 902 1.0 41 8 

High +  

Very High 

 29.8  15.9 159 111 

Having all required parameters made available, evaluation of the contribution of 

additional multi temporal factors can be carried out. The thing to evaluate is the 

number of HS and VHS points the model can predict. Fig. 4.37 shows the graphical 

representation of the number of validated points of all scenarios. From the graph, it 

can be concluded that none of the landslide models produced better accurate LSMs 

than LSI 6 landslide model. GIS-based LSMs with additional multi temporal 

environmental factors i.e. NDVI (scenario 2), soil wetness (scenario 3), and LST 

(scenario 4), are only comparable with LSM of LSI all factors. The discussion 

regarding this is given below.  

Comparison among these graphs shows that it is difficult to directly draw 

conclusions regarding the contribution of multi temporal factors in to the accuracy of 

LSMs. On the overall, there are improvements and degradations as well in the 

accuracy of LSMs as the results of addition of multi temporal NDVI, soil wetness, 

and LST (see Fig. 4.37). Addition of multi temporal NDVI maps in scenario 1, on the 

overall, produced the lowest accuracy of LSMs, namely 42.6% (NDVI of February), 

37.0% (NDVI of June), and 44.3% (NDVI of September). The accuracy of all these 

LSMs is below the accuracy of LSI all factors (48.3%). NDVI of May is the 

exception because it contributes the improvement of the accuracy of the 

corresponding LSM up to 51.7%. Addition of multi temporal soil wetness maps in 

scenario 3 produced better accuracy of LSMs than that of scenario 2. It managed 

comparable accuracies on February and May by 47.4% even though these accuracies 

are still below that of LSI all factors. Better accuracies of 53.6% and 63.5% were 

obtained when soil wetness of June and September were added to landslide model of 
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LSI all factors. On the overall, addition of multi temporal LST factors in scenario 4 

produced a better accuracy of LSMs than those of scenario 3 and LSI all factors. LST 

of February, June, and September increased the accuracy up to 50.9%, 49.1%, and 

63.0% respectively. The exception occurred on May when the corresponding LST 

reduced the accuracy to 45.2 %. Among additional environmental factors, LST 

appeared to be the most influencing factor to improve the accuracy of LSMs. Soil 

wetness and NDVI are in the second and third position as landslide influencing 

factors.  

Earlier discussion stated that selection of multi temporal NDVI, soil wetness, and 

LST was referred to the time of monsoonal rainfall cycle. These data were intended 

as the replacement of the unavailable high resolution rainfall data.  By involving 

environmental data acquired during rainy and dry seasons, the resulted LSMs are 

expected to reflect rainfall cycle. Among all additional environmental factors, only 

addition of NDVI maps can result in various accuracies that resemble the graph of 

rainfall (Figure 4.29 and Figure 4.34). LSMs of scenario 2 described that during rainy 

seasons, the possible dangerous areas increase (areas with HS and VHS status), and 

during dry season, these areas decrease.  

4.3 Evaluation on Significance of Landslide Causative Factors 

Knowing that inclusion of more causative factors cannot guarantee the accuracy of 

the resulted landslide susceptibility maps, investigation on the significant role of each 

causative factor was carried out in order to sort out the significant factors from the 

insignificant factors. The investigations were carried out in two ways as follows: 

1. Step by step inclusion of causative factors.  

2. Accumulative inclusion of causative factors. 

The detail of these approaches is discussed in their corresponding part. All causative 

factors including static or multi temporal causative factors were evaluated. The 

evaluation was limited for the data acquired on September, the second rainy season. 

As discussed earlier, this season was proven to be superior in producing the accurate 

LSMs. For this purpose, a training area delineating areas free of clouds and the 
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associated shadows was created. The training area of September is a bit wider than 

the one used for evaluating multi temporal factors for all seasons (Fig. 4.38). A total 

number of 345 landslide points that are not covered by clouds/shadows was used for 

the assessment of landslide causative factors. All landslide causative factors were 

cropped to conform to the training area to allow map by map comparison. Evaluation 

was based on the number of validated existing landslide points that falls in HS and 

VHS status the models can predict.  

4.3.1   One by One Inclusion of Causative Factors 

Slope, land use and geology (lithology) maps are landslide causative factors 

commonly used for constructing landslide susceptibility/hazard map. These three 

factors were used as basic factors/maps for evaluating the remaining factors. The 

order of causative factors added to three basic maps for constructing GIS-based 

landslide susceptibility map is show in Fig. 4.39. It begins with the addition of soil, 

distance from road (d2rd), distance from lineament (d2ln), distance from riverl/lake 

(d2rvlk), curvature (curv),  elevation (elev),  slope aspect  (sasp),   soil wetness (wet), 

Normalized Different Vegetation Index (NDVI), and Land Surface Temperature 

(LST). The additional environmental factors, i.e. NDVI, soil wetness, and LST, are 

only data of September. The order of inclusion of a particular factor does not reflect 

the significant role of the corresponding factor. The significant role remains unknown 

until the number of validated point the additional factor can predict determines the 

order of its significance. LSI was used for weighting system while weighted sum was 

used for overlay method. The final LSM was constructed by summing up pixel-based 

LSI values of all used factors. The number of validated existing landslide points that 

fall in HS and VHS status due to the addition of a particular causative factor is 

assumed to be the indicator of its significant contribution to LSM. 

The variation of the number of validated points from one by one inclusion of 

causative factors is shown in Fig. 4.39. This figure also contains the percentage of 

increase or decrease when a particular causative factor is added to the basic factors. 

For example, addition of soil map into the landslide susceptibility model using the 

basic factors increases the number of validated points by 40% (from 98 to 137 
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points). Meanwhile, addition of slope aspect map decreases the number of validated 

points by -3% (from 98 to 95 points). The same case happens when distance from 

lineament map is added to basic maps. The complete result is presented in Table 4.20.  

 

Fig. 4.37 Comparison of the percentage of validated points from LSMs of all 

scenarios 

   

Fig.4. 38 a) clouds/shadows coverage on September and landslide sites 

distribution, b) the training area for all seasons, and c) the training area for September 
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Fig. 4.39 The number of validated points from one by one inclusion of causative 

factors and the percentage of increase/decrease 

Based on the number of validated landslide sites, all involved causative factors 

are sort out (Table 4.20). Since land use, slope, and geology factors are set as the 

main factors, they are assumed to be the most significant factors. The order of 

causative factors, from very significant to less significant statuses, are soil wetness, 

distance from river/lake, LST, distance from road, soil, elevation, and curvature. 

There are three insignificant factors identified from this process. Addition of these 

factors either results in the same number of validated points as the case of NDVI or 

decreases it as the cases of distance from lineament and slope aspect. The decrease of 

the accuracy of LSMs due to the inclusion of NDVI has been discussed in previous 

sub chapter. Slope aspect has been suspected to be insignificant factor as discussed in 

section 4.1.5. The distribution of landslide/slope failure locations are almost evenly 

distributed to slopes facing all wind directions.  
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Table 4.20 The order of significance of causative factors 

No. Order of Significant Causative Factors Percentage of 

Increase 

The order of 

significance 

0 Land use, slope, geology Not available 1,2,3 

1 Soil wetness 56 4 

2 Distance from river/lake 49 5 

3 LST 45 6 

4 Distance from road 44 7 

5 Soil  40 8 

6 Elevation 37 9 

7 Curvature 11 10 

8 Normalize Different Vegetation Index 0 11 

9 Distance to lineament -3 11 

10 Slope Aspect -3 12 

4.3.2   Accumulative Inclusion of Causative Factors 

In this approach, GIS-based landslide susceptibility map was first constructed using 

the same basic maps as the previous approach namely, land use, slope, and geology 

maps. The latter was then replaced by soil map. The method for constructing the final 

LSM is the same as the previous approach. The first data set (with geology map) 

resulted in 98 validated points while the second dataset (with soil map) resulted in 

177 validated points which are higher than the previous result (Table 4.21). It 

suggests that soil is more significant than geology. The next process employed soil 

map as the replacement of geology. Table 4.21 shows the overall scenarios of dataset 

and results of accumulative inclusion of causative factors. Accumulative inclusion as 

presented on Table 4.21 is explained as follows, dataset 3 consists of dataset 2 with 

additional geology factor for constructing LSM; dataset 4 consists of data 3; dataset 5 

consists of dataset 4, and so on. Addition of geology factor to dataset 2 decreases the 

number of validated points by 40 points. Meanwhile, addition of distance from 

river/lake map to dataset 3 increase the accuracy of the model by 35 points. The 

overall increase or decrease indicators are presented on Table 4.21. Landslide 

causative factors that tend to decrease the accuracy of resulted LSMs are slope aspect, 

curvature, LST, and geology. Slope aspect is again identified as insignificant factor. 

Investigator s disagreed about the significant role of curvature as discussed in 4.1.6   
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as well as the significant role of LST as discussed in sub chapter 4.1.13  This 

experiment identified geology as an insignificant factor (Table 4.21). 

Table 4.21 Accumulative inclusions of causative factors and the order of significance 

factors 

Dataset Causative Factors The number of 

validated points 

Increase / 

Decrease 

The order of 

significance 

Dataset 1 LU, slope, geology 98 - - - 

Dataset 2 LU, slope, soil 177 79 ↑ 1,2,3 

Dataset 3 Dataset 2 + geology 137 -40 ↓ 13 

Dataset 4 Dataset 3 + distance from 

river/lake 

172 35 ↑ 6 

Dataset 5 Dataset 4 + distance from 

road 

196 24 ↑ 8 

Dataset 6 Dataset 5 + elevation 252 56 ↑ 4 

Dataset 7 Dataset 6 + distance from 

lineament 

284 32 ↑ 7 

Dataset 8 Dataset 7 + slope aspect 283 -1 ↓ 10 

Dataset 9 Dataset 8 + curvature 278 -5 ↓ 11 

Dataset 10 Dataset 9 + NDVI 292 14 ↑ 9 

Dataset 11 Dataset 10 + soil wetness 340 48 ↑ 5 

Dataset 12 Dataset 11 + land surface 

temperature 

303 -37 ↓ 12 

The order of significant landslide causative factors is sort out based on significant 

increase or decrease of the number of validated points. Since land use, slope, and soil 

are selected as the basic factors, their significant role is assumed to stand as the first, 

second, and third place. Following these factors are elevation, soil wetness, distance 

from river/lake, distance from lineament, distance from road, and NDVI. Slope 

aspect, curvature, LST, and geology are considered as insignificant factors. 

4.4 GIS-Based LSM Constructed Using Selected Causative Factors 

As discussed earlier, the number of causative factors included in constructing LSM 

does not guarantee the accuracy of the produced LSM. In addition, two attempts have 

been made to sort out significance causative factors from the available factors. Using 

these significant factors, GIS-based LSMs were constructed. For comparison purpose, 
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LSM of LSI 6 was set as the reference map. In addition, two dataset containing 

selected significant factors were prepared. Each dataset contains 6 factors to allow a 

fair comparison with the reference map. Six significant factors of dataset from one by 

one inclusion of causative factors are land use, slope, geology, soil wetness, distance 

from river/lake, and LST. Six factors of dataset from accumulative inclusion of 

causative factors are land use, slope, soil wetness, distance to river/lake, soil, and 

elevation. Both dataset have the same 4 significant factors in common namely, land 

use land cover, slope, distance from river/lake, and soil wetness.  

The final LSMs of selected significant factors were constructed using weighted 

sum overlay method. The number of validated existing landslide points that fall in HS 

and VHS status is compared to those of other scenarios (Fig. 4.40). The accuracy of 

LSM of both dataset is still below that of LSI 6 that is able to validate 159 points 

(69.1%). One by one inclusion approach validated 124 landslide points (53.9%) while 

accumulative inclusion approach validated 145 points (63.0%). Significant factors of 

accumulative inclusion approach produced better validation result than those of one 

by one inclusion approach. Apart from these results, dataset of both approaches 

produce more accurate LSMs than that resulted from LSI all factors (48.3%). Again, 

it suggests that inclusion of all (or more) factors in constructing GIS-based LSM does 

not guarantee the accuracy of the produced LSMs. Otherwise, inclusion of limited 

number of selected significant factors may produce more accurate LSMs. 

Comparison between the accuracy of both approaches and that of GIS-based LSMs 

that involves multi temporal environmental factors, i.e. NDVI, soil wetness, and LST, 

reveals that the first maps are better than the latter maps in term of the number of 

validated points. Only additional soil wetness and LST of November into LSM of 

scenario1with 6 static factors can balance the accuracy of LSMs of both approaches.  

The different between both approaches in the number of validated data may be 

due to simplicity of the approaches in evaluating the significance of each factor. Of  

advanced methods for establishing the relationship between causative factors and 

landslide locations are linear regression as described in Zhou, et al. [51] and logistic 

regression as applied by Lee and Sambath [46]. Such methods require ArcGRID 

workstation with special extension of multivariate toolbox that is regression analysis. 
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The software was unavailable during the research work.  In addition, assumption that 

three basic layers automatically have significant roles may not be entirely correct 

even though they are commonly used by investigators in constructing LSM.  

 

Fig. 4.40 Comparison of GIS-based LSMs using selected significant factors with 

those of all scenarios  

Evaluation on the significance of each causative factor, at least, can show that 

some factors are significant and the others are insignificant. A group of selected 

causative factors has been proven to be superior in producing more accurate LSM 

than that resulted from a group of non-selected or all causative factors. For future 

construction of LSM, one is suggested to involve either a set of 6 static causative 

factors used in scenario 1 or a set of 6 factors used in accumulative inclusion method.  

4.5 Test of Applicability of The developed Landslide Model 

The landslide model developed from the study area has shown a good agreement with 

landslide occurrences data especially the model involving 6 factors (LSI 6). To test 
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the applicability of the developed model, Penang Island was selected as the tes site 

because this place is considered as landslide prone area and has required data for 

modeling landslide susceptibility. This experiment is intended to investigate whether 

a landslides susceptibility model developed from a particular area can be applied to 

another area and to investigate the applicability of bivariate statistical based-

weighting system to the test site.  

Application of the landslide susceptibility model of Cameron Highlands to 

Penang Island requires several following procedures to carry out: 

1. Selecting causative factors of Penang that are considered as significant 

factors identified in Cameron Highlands and applying necessary 

modifications on classes of causative factors, 

2. Assigning weight values to classes of selected factors, 

3. Constructing the final LSM of Penang Island using Cameron Highlands 

landslide model,  

4. Constructing a final LSM of Penang Island landslide susceptibility model 

developed from landslide attributes of Penang Island. This is intended for 

comparing the accuracy of both LSMs of Penang, 

5. Evaluating the applicability of the landslide susceptibility model. 

For testing the applicability of the model, six significant landslide causative 

factors were selected either from the result of one by one or accumulative inclusion 

processes. The selected factors are land use land cover, slope, distance from 

river/lake and soil wetness. LST was not selected due to their less significant issues. 

Soil map of Penang Island was not included because it contains wider variety of soil 

types, 5 types, than that of Cameron Highlands, 3 types, causing difficulties in 

judging the soil strength. Elevation and geology were added in the landslide 

susceptibility model.  

Before sending all factors into overlay operation, all classes of every causative 

factor were assigned the same LSI-based weight values as suggested by Liao [47]. 

This is the meaning of test of applicability of the developed model into different area. 

Some modifications of dataset of Penang Island are required to suit dataset of 

Cameron Highlands. Paddy field coverage was grouped as crop land for land use 
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factor. Wetland was grouped as river/lake. The lithology type of both places is almost 

similar except that there is no schist type in Penang Island. Elevation range of 

Cameron Highlands is 80 – 2100 m while that of Penang Island is 0 – 820 meter. The 

latter was reclassified into two classes, 0 – 540.96 m and 540.96 – 820 m, to suit 

elevation intervals of Cameron Highlands. The other factors, soil wetness, slope, and 

distance from river, have almost similar intervals to those of Cameron Highlands. 

Therefore, there are no more modifications required. Summary of all causative 

factors along with LSI-based weight values for their corresponding classes are 

presented Table 4.22. The final LSM of Penang Island was constructed using these 

weight values of Cameron Highlands. 

Table 4.22 LSI of Cameron Highlands applied to dataset of Penang Island 

Landslide 
Factors 

Sub-Categories 
Weight 
Values 

(CH) 

Landslide 
Factors 

Sub-Categories 
Weight 
Values 

(CH) 

Land Use 

Crop land 11 

Soil wetness 

0 - 22 100 

Forest  6 22 - 74 7 

Urban, Built up 60 74 - 134 3 

River/lake  0 134 - 193 2 

Geology 

Granite 15 193 - 245 7 

sedimentary rocks 31 245 - 254 0 

Alluvium 38 

Distance from 
river/lake 

0 -  548.9 100 

Slope 

0 - 7.8 100 548.9 - 1200.7 46 

7.8 - 19.3 57 1200.7 - 1732.5 38 

19.3 - 27.3 51 1732.5 - 2521.5 36 

27.3 - 36.3 52 2521.5 - 4391.2 42 

36.3 - 51 79 4391.2 - 9037.4 0 

51- 89.6  0 
Elevation (m) 

0 - 540.9 0 

  
 540.9 - 820 16 

In order to provide a comparison LSM of Penang Island, another LSM was 

constructed using LSI derived from landslide attributes of available causative factors. 

A number of 434 landslide/slope failure locations have been recorded by ARSM 

through interpretation of aerial photograph and field investigation as reported by Lee 

and Talib [55]. Crossing between landslide map of Penang Island and all causative 

factors was carried out in order to compute LSI and LSI-based weight values (Table 

4.23). Unlike the previous dataset, elevation factor now have 5 classes. The weight 
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values of Cameron Highland landslide susceptibility and Penang Island assigned to 

all classes are totally different. Using these weight values, another final LSM of 

Penang Island was constructed. 

Table 4.23 Rating weight system of Penang Island  

Landslide 
Factors 

Sub-Categories 
Number of 
Landslide 

Landslide 
Areas (m2) 

Area of Each Sub 
Category (m2) 

LSI 
Weight 
Values  

Land Use 

Crop land 233 209700 125142300 16.8 100.0 

Forest  92 82800 76944600 10.8 64.2 

Urban, Built up 102 91800 87307200 10.5 62.7 

River/lake  5 4500 6096600 7.4 44.0 

Geology 

Granite 352 316800 33001200 96.0 93.6 

sedimentary rocks 11 9900 964800 102.6 100.0 

Alluvium 71 63900 12708900 50.3 49.0 

Elevation 

0 - 122.1 236 212400 180128700 11.8 48.2 

122.1 - 246.5 128 115200 47133000 24.4 100.0 

246.5 - 370.9 48 43200 29649600 14.6 59.6 

370.9 - 495.4 13 11700 18463500 6.3 25.9 

495.4 - 619.8 7 6300 12980700 4.9 19.9 

619.8 - 820 0 0 7118100 0.0 0.0 

Slope 

0 - 7.5 0 0 146165400 0.0 0.0 

7.5 - 15.3 101 90900 20234700 44.9 100.0 

15.3 - 23.2 95 85500 54296100 15.7 35.1 

23.2 - 31.1 143 128700 47116800 27.3 60.8 

31.1 - 39.0 81 72900 19908900 36.6 81.5 

39.0 - 46.9 12 10800 5764500 18.7 41.7 

46.9 - 88.9 0 0 1987200 0.0 0.0 

Soil 
Wetness 

0 - 51 60 54000 50058000 10.8 75.9 

51 - 102 22 19800 15537600 12.7 89.7 

102 - 153 26 23400 19741500 11.9 83.4 

153 - 204 91 81900 62583300 13.1 92.1 

204 - 255 233 209700 147570300 14.2 100.0 

Distance 
from 

River/Lake 
(m) 

0 - 721.5 123 110700 104470200 10.6 39.2 

721.5 - 1335.5 130 117000 76409100 15.3 56.6 

1335.5 - 2251.8 107 96300 72552600 13.3 49.1 

2251.8 - 3804.1 48 43200 33401700 12.9 47.8 

3804.1 - 5596.8 26 23400 8657100 27.0 100.0 

The final LSMs of Penang Island constructed from both CH model and Penang 

model are shown in Fig. 4.38. Visually interpreted, LSM of Penang Island 

constructed by using Cameron Highlands model shows that the distribution of areas 
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of HS and VHS concentrated mostly at urban areas, the low land or flat areas. These 

distributions are out of the distribution of landslide/slope failure locations. 

Meanwhile, LSM of Penang Island developed using Penang model shows agreements 

in term of distribution of HS and VHS areas and location of landslide/slope failures. 

LSM developed using native landslide attributes is better than using those of different 

area. Statistical measures of the accuracy of both maps are presented in Fig. 4.38. The 

first model can predict only 10.1% of recorded landslide/slope failures (434 

locations) to fall in HS and VHS statuses. The second model provides better 

prediction in which 54.4% fell into categories of HS and VHS. 

The final LSMs of Penang Island constructed from both CH model and Penang 

models are shown in Figure 4.38. Visually interpreted, LSM of Penang Island 

constructed by using Cameron Highlands model shows that the distribution of areas 

of HS and VHS concentrated mostly at urban areas, the low land or flat areas. These 

distributions are out of the distribution of landslide/slope failure locations. 

Meanwhile, LSM of Penang Island developed using Penang model shows agreements 

in term of distribution of HS and VHS areas and location of landslide/slope failures. 

LSM developed using native landslide attributes is better than using those of different 

area. Statistical measures of the accuracy of both maps are presented in Table 4.38. 

The first model can predict only 10.1% (44 locations) of recorded landslide/slope 

failures (434 locations) to fall in HS and VHS statuses. The second model provides 

better prediction in which 54.4% (236 locations) fell into categories of HS and VHS. 

The failure of applicability test may be caused by several factors. The 

geographical setting is mostly different. Penang Island is not highlands areas as 

Cameron Highlands. It is an island surrounded by sea water so that the elevation 

range starts from 0 m until 820 m. Therefore, it may not be appropriate to call Penang 

Island as ‗highlands areas‘ as Cameron Highlands. The consequences are NDVI, soil 

wetness, and LST may be different. Other factors such as soil types and slope ranges 

are different. These factors could contribute the failure of applicability of Cameron 

Highland landslide susceptibility model to Penang Island landslide case. 
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Fig. 4.41 Final LSM of Penang Island using: a) CH model, and b) Penang model 

a) 

b) 
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This result confirms the drawback of statistical method as explained by Carrara, 

et al. [50]. Since statistical method is considered as data-driven method, a landslide 

susceptibility model built up for one region cannot readily be extrapolated/applied to 

the neighboring areas. Slope assessment developed from place cannot be applied to 

other places as stated by local landslide expert, Jamaluddin, et al. [227]. 

Table 4.24 Results of test of applicability of the landslide susceptibility model 

GIS Penang with LSI of Cameron Highlands 

Susceptibility 
Status 

Map Statistic Validation 

Range Pixels Areas Range Pixels 

Very Low 64 - 130.8 17606 15845400 50.8 - 130.8 188 

Low 130.8 - 197.6 12386 11147400 130.8 - 197.6 131 

Moderate 197.6 - 264.4 12226 11003400 197.6 - 264.4 70 

High 264.4 - 331.2 5036 4532400 264.4 - 331.2 35 

Very High 331.2 - 398 4533 4079700 331.2 - 375 9 

 HS & VHS 44 

GIS Penang with LSI of Penang 

Susceptibility 
Status 

Map Statistic Validation 

Range Pixels Areas Range Pixels 

Very Low 212 - 281.2 2655 2389500 - - 

Low 281.2 - 350.4 15943 14348700 269.3 - 350.4 52 

Moderate 350.4 - 419.6 16203 14582700 350.4 - 419.6 145 

High 419.6 - 488.8 13536 12182400 419.6 - 488.8 166 

Very High 488.8 - 558 3450 3105000 488.8 - 558 70 

 HS & VHS 236 

4.6 Discussion  

There are some important results obtained from this research. Bivariate stastical-

based weighting system produced more accurate LSMs than LHEF/non-statistical-

based weighting one. The research shows that selected significant factors were 

proven to produce better accurate LSMs. Expansion and contraction of areas 

susceptible to landslide due to rainfall cycle can be identified using developed 

landslide susceptibility model. Addition of multi temporal NDVI best described this 

phenomenon. On the overall, addition of multi temporal factors cannot automatically 

increase the accuracy of LSMs especially those maps of rainy seasons. This research 

also shows LSI values developed from Cameron Highlands cannot be extrapolated to 
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the test site, Penang Island. However, application of bivariate statistical-based 

weighting system resulted in a good agreement between landslide map of Penang 

Island and the corresponding developed model. Although the developed models 

cannot be applied elsewhere, the average accuracy of LSMs produced by the 

developed models with inclusion of multi temporal factors is 49.1%. This accuracy 

can be improved if only selected significant factors are involved and each factor is 

assigned different weight value. In addition, LSI 6 model has predicted the area of the 

latest landslide event in Sungai Ruil Orang Asli village, Brinchang, Tanah Rata, 

Cameron Highlands, August 7th, 2011, as having status of HS to VHS as shown in 

Fig. 4.42. The remaining models have predicted this location as having MS to HS.  

  

Fig. 4.42 a) Latest landslide location on topographic map, b) the corresponding LSM 

A part of achievements obtained from this research as mentioned previously, this 

research also introduced some limitations. The spatial relationship between landslide 

map and landslide causative factors derived from bivariate statistical approach was 

somewhat contradictive with geotechnical point of view. For example, a slope class 

of 0-7.8
0
 is considered as a secure slope according to geotechnical perspective. Using 

bivariate statistical method, this slope is categorized as having the highest LSI value 

meaning that this is the most dangerous slope (section 4.1.4). The same situation 

exists in spatial relationship between soil wetness maps and landslide occurrences. 

This is the first limitation of this research. A combination of bivariate statistical and 

geotechnical methods in assigning weight values may increase the accuracy of LSMs.  

a) b) 
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 Inclusion of multi temporal factors cannot guarantee to increase the accuracy of 

LSMs. There are increase and decrease in accuracy of LMSs. There are factors that 

may be responsible to this problem. Firstly, the selected Landsat images that did not 

exactly coincide with required peak periods of the rainy and dry seasons may express 

different condition of NDVI, soil wetness and LST. Secondly, temporal factors were 

derived from Equation s 2.16-2.19 for LST, Equation 2.27 for NDVI and Equation 

2.28 for soil wetness. These equations resulted in NDVI, soil wetness and LST maps. 

These maps were included in producing LSMs without passing any ground truthing 

procedures. This procedure was not conducted in this research due to fund and time 

limitations. By conducting ground truthing or calibration of temporal factors, 

appropriate weight values can be assigned to these factors, more accurate LSMs can 

be expected, and credibility of research findings can be strengthened. The third, there 

may be insignificant factors involved in developing landslide susceptibility model. c 

4.7 Chapter Summary 

Modeling landslide susceptibility of Cameron Highlands areas which includes 

different conditions of environmental factors has been finalized through several 

comprehensive steps. Several LSM have been produced as the outcome of landslide 

susceptibility modeling. The summary of the steps is presented in the following 

passages.  

The modeling landslide susceptibility was begun with deriving various rating 

weight systems. Three rating weight systems were evaluated namely Anbalagan 

LHEF, LFI, and LSI weighting system. LHEF, a non statistical approach, and LSI, a 

statistical approach, were used for generating weighting values. The modeling 

involved 10 ‗static‘ causative factors, i.e. land use land cover, lithology, elevation, 

slope, slope aspect, curvature, distance from road, distance from lineament, distance 

from river/lake, and soil. The modeling also involved multi temporal factors called 

‗dynamic‘ factors that are NDVI, soil wetness and LST of February, May, June, and 

September. Four scenarios for constructing GIS-based LSMs were established.  
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Scenario 1 showed that statistical weighting system provided more accurate LSM 

than non statistical one. The results also showed that inclusion more causative factors 

could not guarantee to produce an accurate LSM. On the contrary, six static factors 

produced more accurate LSM. Places identified as dangerous zones, i.e. having HS 

and VHS statuses, are post landslide site at Pos Selim, Kampung Raja and urban 

areas at Kampong Kuala Terla, urban areas at Tanah Rata and Ringlet. Scenario 2 

produced LSMs representing the influence of different conditions of NDVI maps. 

Scenario 3 produced LSMs representing the influence of different conditions of soil 

wetness maps. Scenario 4 produced LSMs representing the influence of different 

conditions of LST maps. Accuracy of LSMs of these three scenarios was below the 

one of LSI 6 static factors of scenario 1. Only addition environmental data acquired 

on September contributed comparable accuracy of LSMs to that of scenario 1. 

Expected expansion or depreciation of dangerous zones appeared only on LSMs of 

scenario 2 as the contribution of monsoonal NDVI conditions. The trend of expansion 

and depreciation resembles rainfall trend.  

Investigation on the significant of landslide causative factors showed that land 

use land cover, slope, soil wetness, and distance from river are among the significant 

factors. Following these are soil, elevation, geology, and LST. These factors were 

identified during the processes namely one by one and accumulative inclusion of 

causative factors. Among the less significant of insignificant factors are slope aspect, 

NDVI, and distance from lineament. LSM derived using selected causative factors 

produced a fairly comparable accuracy but its accuracy is still below the accuracy of 

LSI 6 static factors.   

Landslide model developed from Cameron Highlands is not applicable to the test 

site, Penang Island. The failure of applicability test is not caused by the low accuracy 

of the developed model. This is due to the nature of bivariate statistical method which 

is data-driven method. Therefore, the developed model cannot be extrapolated to 

other places. Meanwhile, the way weight values derived using bivariate statistical 

approach can be applied to Penang Island. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 Overview  

The study has investigated the effect of different conditions of environmental factors 

in landslide susceptibility model developed for Cameron Highlands, Malaysia. This is 

the main objective of this research. The study selected the appropriate weighting 

system, evaluated the landslide susceptibility models and maps, assessed the role of 

multi temporal factors, investigated the significant role of landslide causative factors, 

and tested the applicability of the developed landslide model. The followings are the 

concluding remarks.  

5.1 Conclusions  

Based on the results/findings during this study, it is now possible to draw the 

following conclusions:  

1. Based on the result of scenario 1 landslide susceptibility modeling, statistical 

based-weighting system (LSI) was proven to be a better one than that of non-

statistical approach (LHEF) in term of producing more accurate LSM. LSI 6 

managed 69.1% of the total number of landslide/slope failure locations, 358. 

Meanwhile, LHEF 6 managed only 20.4% of the total number of landslide/slope 

failure locations.  

2. The final LSMs have been produced from scenario 1, 2, 3, and 4 with various 

accuracies. Various accuracies of LSMs were resulted from validation process 

and summarized in Table 5.1. The accuracy is presented in percentage (%) 

representing the capability of the developed model in predicting back existing 
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landslide locations as having HS and VHS. The overall accuracy of LSMs as 

result of addition of multi temporal factors is 49.1%. However, this accuracy is 

still below the accuracy of LSM resulted from six selected static factors (LSI 6).   

3. On the overall, addition of multi temporal environmental factors cannot 

automatically increase the accuracy of LSMs especially those LSMs produced 

using additional multi temporal factors acquired during rainy seasons. Addition of 

these factors caused increase and decrease in accuracy of LSMs. In general, multi 

temporal LST contributes more accurate LSMs, followed by multi temporal soil 

wetness, and then NDVI. Addition of multi temporal NDVI tends to reduce the 

accuracy of LSMs. Multi temporal soil wetness resulted in better accuracy of 

LSMs than NDVI.  

   Table 5.1 Summary of accuracy of LSMs (in %)  

 February 

(Dry) 

May 

(Rainy) 

June  

(Dry) 

September 

(Rainy) 

Scenario 1- 6 factors 69.1 

Scenario 1-10 factors 48.3 

Scenario 2 (NDVI) 42.6 51.7 37.0 44.3 

Scenario 3 (soil wet.) 47.4 47.4 52.6 63.5 

Scenario 4 (LST) 50.9 45.2 49.1 63.0 

4. Rise and fall of the accuracy of LSMs due to inclusion of multi temporal 

environmental factors allows identification of expansions or contraction of areas 

susceptible to landslide (HS and VHS categories) as shown in Table 5.2. The 

phenomenon was apparent especially when multi temporal NDVI maps were 

added to the static dataset. Both accuracy of LSMs and change in areas due to 

addition of multi temporal NDVI are consistent with the trend of landslide 

occurrences and rainfall intensity in year. Addition of remaining temporal factors, 

i.e., soil wetness and LST, do not show the consistency as NDVI does.  

Table 5.2 Expansion and contraction of areas susceptible to landslide (in km
2
) 

 February 

(Dry) 

May 

(Rainy) 

June  

(Dry) 

September 

(Rainy) 

Scenario 2 12.2 16.1 10.1 12.5 

Scenario 3 31.0 28.2 35.5 39.9 

Scenario 4  33.0 28.5 32.3 40.5 
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5. There are possible factors so that the accuracy of LSMs of scenario 2, 3 and 4 is 

lower than that of LSI 6 of scenario 1. The first is that the selected Landsat 

images may not represent actual peak periods of rainy and dry seasons. The 

second is that ground truthing to calibrate NDVI, soil wetness, and LST, has not 

been conducted. The third, geotechnical perspective was not involved in assigning 

weight values. The last is the existence of insignificant factors involved in 

developing landslide susceptibility model that reduces the accuracy of LSMs. 

Dropping insignificant factors can increase the accuracy of LSMs.    

6. Experiments of one by one inclusion and accumulative inclusion of landslide 

causative factors resulted in an explanation on how inclusion of more number of 

landslide causative factors, as the case of LSI all factors, could not guarantee to 

get better accurate LSMs than that of LSI 6. Both experiments highlighted slope 

aspect and curvature as the insignificant factors in dataset of LSI all factors. 

Running landslide susceptibility models employing selected significant factors 

has proven efficient in increasing the accuracy of the final LSMs. 

7. Test of the applicability of the developed landslide susceptibility model of 

Cameron Highlands applied in the test site, Penang Island, revealed that the 

model is not applicable to the test site. This is not due to low accuracy of the 

model. This is the nature of bivariate statistical approach, the data driven method, 

using which a model developed from a particular area cannot be extrapolate other 

regions. The developed model has proven to be sufficient in producing accurate 

LSMs. A place with the same characteristics as Cameron Highlands is required to 

test the model. 

8. Two recommendations on landslide susceptibility modeling over areas under 

monsoonal rainfall system with the lack of sufficient resolution of rainfall data 

can be drawn as follows: 

a. For those who want to involve multi temporal factors.  

Landslide susceptibility modeling begins with selection of significant 

static causative factors. Bivariate statistical analysis should be selected for 

deriving weighting system. Multi temporal NDVI factors are 

recommended to select rather than two other multi temporal factors. 

Inclusion of these factors provides insight of possible expansion or 

contraction of possible dangerous areas to landsliding. 
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b. For those who do not want to involve multi temporal factors.  

The same recommendation as above is applied except inclusion of multi 

temporal NDVI factors. 

These recommendations are optional depending on the purpose of study and 

the availability of required spatial data 

5.2 Recommendations for Future Works 

Although all of research objectives have been achieved, there are limitations and 

difficulties encountered during research works. To overcome these shortages, the 

following works are recommended for future research:  

1. To improve accuracy of LSMs with inclusion of multi temporal factors, the 

following manners are suggested: 

a. Besides assigning weight values to classes of causative factors, each causative 

factor is required to be assigned different weight values following the results of 

one by one and cumulative inclusion process.  

b. Ground truthing for temporal factors i.e. NDVI, soil wetness and LST should 

be conducted in order to calibrate these data, to ensure characteristics of 

landslide since indicated by these factors and to get appropriate weight values 

for classes of these factors. 

c. Geotechnical point of view should be involved in assigning weight values 

along with bivariate statistical. 

2. Spatial and temporal correlation of causative factors should be investigated in 

order to improve the model.  

3. It is suggested to use satellite data from other satellite mission such as ALOS, 

Envisat, Terrasat, SPOT, etc. to fulfill the unavailability of Landsat images 

acquired at periods of interest, i.e. peak periods of rainy and dry seasons.  

4. Highlands areas such as Genting Highlands and other highlands areas in Pahang 

may be used to test the developed model due to similarity of topographical 

characteristics.  
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APPENDIX A 

Rainfall and Raindays Data 

 

 

A1. Rainfall Data 

 

JABATAN METEOROLOGI MALAYSIA 

 

Station  :  Cameron Highlands      

Lat.      : 04° 28' N      

Long.   :  101° 22' E      

Ht. above M.S.L. : 1545.0  m         Records of Monthly Rainfall Amount (mm) 

              

Year/Month Jan  Feb Mar Apr May Jun  Jul  Aug Sep Oct Nov Dec Annual  

2000 214.4 190.2 437.6 517.4 224.5 220.8 127.9 176.6 221.8 204.2 313.5 323.1 3172.0 

2001 141.5 137.2 245.4 310.7 197.2 89.7 50.2 99.2 274.8 429.2 413.7 242.9 2631.7 

2002 26.0 8.9 84.9 421.5 301.6 254.5 167.0 282.4 366.2 412.3 334.0 157.3 2816.6 

2003 102.0 118.0 266.6 185.7 235.4 300.7 289.0 362.0 157.0 470.4 313.5 175.5 2975.8 

2004 44.2 102.4 248.9 256.4 262.2 75.6 213.8 161.9 444.9 322.9 175.3 103.1 2411.6 

2005 24.5 99.3 190.4 217.9 199.8 227.2 235.0 137.1 157.4 450.4 401.2 551.6 2891.8 

Average 92.1 109.3 245.6 318.3 236.8 194.8 180.5 203.2 270.4 381.6 325.2 258.9 2816.6 

 

A2. Raindays data 

JABATAN METEOROLOGI MALAYSIA 

 

Station  :  Cameron Highlands      

Lat.      : 04° 28' N      

Long.   :  101° 22' E      

Ht. above M.S.L. : 1545.0  m                  Records of Number of Raindays 

              

Year/Month Jan  Feb Mar Apr May Jun  Jul  Aug Sep Oct Nov Dec Annual  

2000 17 19 24 26 21 19 14 17 21 21 22 20 241 

2001 26 12 20 28 18 10 11 16 20 26 29 18 234 

2002 10 2 11 22 19 14 15 16 23 27 21 23 203 

2003 16 15 19 21 13 22 17 22 22 28 27 17 239 

2004 11 10 23 20 18 10 17 15 27 27 26 12 216 

2005 9 7 12 18 24 14 17 16 17 30 24 27 215 

Average 14.8 10.8 18.2 22.5 18.8 14.8 15.2 17.0 21.7 26.5 24.8 19.5 224.7 
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APPENDIX B 

RSO Projection Parameters 
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APPENDIX C 

RMS of Geometric Correction of Topographic Map 

 

 

# RMS error report: 

# Warp Type - Polynomial 

#                -----ACTUAL-----    ---PREDICTED--- 

#       Point    Cell-X    Cell-Y    Cell-X    Cell-Y      RMS 

#         "1"   270.042  5061.164   269.970  5060.312   0.8559  

#         "2"   429.238  5058.448   428.873  5058.133   0.4824  

#         "3"   588.436  5056.151   587.728  5055.953   0.7356  

#         "4"   747.060  5054.469   746.537  5053.772   0.8719  

#         "5"   905.083  5052.172   905.302  5051.592   0.6204  

#         "6"  1064.028  5050.103  1064.029  5049.412   0.6908  

#         "7"  1222.584  5047.686  1222.719  5047.233   0.4732  

#         "8"  1381.503  5045.135  1381.377  5045.056   0.1492  

#         "9"  1540.033  5043.066  1540.004  5042.881   0.1875  

#        "10"  1698.150  5040.582  1698.605  5040.708   0.4725  

#        "11"  1857.508  5038.099  1857.183  5038.539   0.5476  

#        "12"  2015.624  5036.443  2015.740  5036.374   0.1347  

#        "13"  2173.741  5034.374  2174.281  5034.214   0.5631  

#        "14"  2332.685  5031.890  2332.808  5032.058   0.2075  

#        "15"  2491.630  5029.407  2491.324  5029.907   0.5866  

#        "16"  2649.746  5027.751  2649.833  5027.763   0.0881  

#        "17"  2808.691  5025.267  2808.339  5025.625   0.5019  

#        "18"  2966.913  5022.834  2966.843  5023.495   0.6644  

#        "19"  3125.055  5021.592  3125.350  5021.372   0.3686  

#        "20"  3283.610  5018.694  3283.863  5019.257   0.6168  

#        "21"  3442.166  5017.038  3442.384  5017.151   0.2451  

#        "22"  3600.308  5015.796  3600.917  5015.055   0.9597  

#        "23"  3759.071  5012.898  3759.466  5012.968   0.4009  

#        "24"  3917.694  5010.937  3918.033  5010.891   0.3422  

#        "25"  4076.183  5008.759  4076.622  5008.826   0.4445  

#        "26"  4235.567  5006.689  4235.236  5006.772   0.3410  

#        "27"  4393.916  5005.447  4393.879  5004.730   0.7172  

#        "28"  4552.472  5003.377  4552.552  5002.701   0.6802  

#        "29"  4711.028  5000.893  4711.260  5000.685   0.3117  

#        "30"  4870.412  4998.823  4870.006  4998.683   0.4289  

#        "31"  5028.140  4996.339  5028.793  4996.695   0.7442  

#        "32"   263.753  4588.365   263.631  4588.274   0.1517  

#        "33"   740.662  4582.155   740.196  4581.693   0.6560  

#        "34"  1216.744  4575.117  1216.382  4575.094   0.3633  

#        "35"  1692.205  4568.080  1692.273  4568.491   0.4174  

#        "36"  2167.666  4560.628  2167.959  4561.900   1.3052  

#        "37"  2643.748  4555.246  2643.525  4555.334   0.2392  

#        "38"  3119.415  4548.208  3119.059  4548.809   0.6985  

#        "39"  3594.876  4541.585  3594.647  4542.339   0.7889  

#        "40"  4070.544  4535.375  4070.377  4535.940   0.5896  

#        "41"  4546.626  4528.751  4546.335  4529.626   0.9220  

#        "42"  5022.708  4523.783  5022.608  4523.412   0.3846  

#        "43"   256.617  4116.317   257.251  4116.254   0.6364  

#        "44"   734.315  4109.320   733.812  4109.646   0.5991  

#        "45"  1209.925  4103.127  1209.996  4103.001   0.1445  

#        "46"  1685.950  4095.643  1685.891  4096.333   0.6934  

#        "47"  2161.612  4089.237  2161.584  4089.659   0.4231  

#        "48"  2637.205  4082.411  2637.161  4082.991   0.5818  

#        "49"  3112.783  4075.852  3112.709  4076.346   0.4993  

#        "50"  3587.980  4069.164  3588.315  4069.738   0.6648  
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(Appendix C cont.) 
#        "51"  4063.989  4063.003  4064.067  4063.182   0.1951  

#        "52"  4540.063  4056.760  4540.051  4056.692   0.0698  

#        "53"  5016.848  4049.890  5016.353  4050.283   0.6324  

#        "54"   250.921  3643.811   250.795  3644.221   0.4294  

#        "55"   727.866  3636.980   727.349  3637.599   0.8068  

#        "56"  1203.610  3631.158  1203.530  3630.922   0.2492  

#        "57"  1678.906  3623.785  1679.426  3624.204   0.6673  

#        "58"  2155.609  3617.663  2155.123  3617.460   0.5271  

#        "59"  2630.644  3610.577  2630.707  3610.704   0.1424  

#        "60"  3106.514  3604.200  3106.267  3603.953   0.3489  

#        "61"  3581.913  3597.785  3581.889  3597.220   0.5660  

#        "62"  4058.199  3590.699  4057.660  3590.520   0.5685  

#        "63"  4533.782  3584.030  4533.666  3583.868   0.1989  

#        "64"  5010.615  3577.204  5009.995  3577.279   0.6237  

#        "65"   243.692  3172.119   244.233  3172.146   0.5416  

#        "66"   721.359  3165.293   720.777  3165.523   0.6257  

#        "67"  1196.238  3158.233  1196.952  3158.827   0.9294  

#        "68"  1672.301  3151.998  1672.845  3152.072   0.5492  

#        "69"  2148.236  3145.285  2148.543  3145.272   0.3074  

#        "70"  2623.662  3138.199  2624.133  3138.442   0.5303  

#        "71"  3099.531  3131.660  3099.702  3131.598   0.1814  

#        "72"  3575.661  3124.990  3575.336  3124.753   0.4018  

#        "73"  4050.983  3118.451  4051.123  3117.924   0.5459  

#        "74"  4527.112  3111.652  4527.150  3111.123   0.5297  

#        "75"  5003.529  3104.565  5003.503  3104.367   0.1999  

#        "76"   237.439  2700.835   237.531  2699.996   0.8436  

#        "77"   714.429  2693.775   714.063  2693.387   0.5333  

#        "78"  1189.151  2686.662  1190.229  2686.686   1.0776  

#        "79"  1665.698  2680.827  1666.117  2679.907   1.0106  

#        "80"  2141.437  2673.871  2141.813  2673.065   0.8895  

#        "81"  2616.706  2666.785  2617.406  2666.175   0.9279  

#        "82"  3092.732  2660.115  3092.980  2659.251   0.8991  

#        "83"  3568.588  2652.942  3568.624  2652.309   0.6343  

#        "84"  4044.624  2645.976  4044.425  2645.363   0.6448  

#        "85"  4520.814  2638.647  4520.468  2638.428   0.4097  

#        "86"  4996.714  2632.017  4996.842  2631.518   0.5149  

#        "87"   230.198  2227.542   230.657  2227.742   0.5004  

#        "88"   707.500  2220.507   707.173  2221.160   0.7303  

#        "89"  1182.777  2213.812  1183.328  2214.468   0.8562  

#        "90"  1658.814  2207.481  1659.208  2207.679   0.4402  

#        "91"  2135.020  2201.292  2134.900  2200.808   0.4986  

#        "92"  2610.720  2193.865  2610.492  2193.871   0.2281  

#        "93"  3086.279  2187.366  3086.070  2186.882   0.5273  

#        "94"  3562.034  2180.416  3561.721  2179.855   0.6426  

#        "95"  4037.789  2173.467  4037.532  2172.807   0.7086  

#        "96"  4513.799  2166.039  4513.590  2165.751   0.3566  

#        "97"  4990.146  2158.808  4989.982  2158.702   0.1953  

#        "98"   222.825  1754.600   223.579  1755.352   1.0654  

#        "99"   700.241  1748.438   700.077  1748.812   0.4081  

#       "100"  1175.969  1741.489  1176.217  1742.141   0.6983  

#       "101"  1652.174  1735.636  1652.086  1735.356   0.2938  

#       "102"  2127.424  1728.996  2127.772  1728.470   0.6303  

#       "103"  2603.461  1722.047  2603.360  1721.500   0.5562  

#       "104"  3079.357  1714.901  3078.938  1714.459   0.6094  

#       "105"  3554.634  1707.783  3554.593  1707.362   0.4232  

#       "106"  4030.503  1700.215  4030.412  1700.225   0.0913  

#       "107"  4506.399  1692.929  4506.482  1693.061   0.1561  
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(Appendix C cont.) 
#       "108"  4982.577  1685.697  4982.889  1685.886   0.3646  

#       "109"   216.918  1281.503   216.264  1282.797   1.4499  

#       "110"   692.786  1273.976   692.741  1276.311   2.3354  

#       "111"  1168.682  1269.306  1168.864  1269.676   0.4122  

#       "112"  1645.366  1262.694  1644.720  1262.908   0.6810  

#       "113"  2120.165  1256.012  2120.395  1256.022   0.2301  

#       "114"  2596.061  1248.936  2595.977  1249.031   0.1272  

#       "115"  3072.098  1241.649  3071.553  1241.952   0.6237  

#       "116"  3547.348  1234.532  3547.209  1234.799   0.3009  

#       "117"  4023.385  1226.808  4023.033  1227.586   0.8532  

#       "118"  4499.281  1219.986  4499.112  1220.328   0.3819  

#       "119"  4975.487  1212.614  4975.531  1213.041   0.4295  

#       "120"   208.360   810.519   208.680   810.046   0.5714  

#       "121"   685.285   803.992   685.133   803.627   0.3951  

#       "122"  1161.596   797.549  1161.236   797.042   0.6218  

#       "123"  1637.671   790.591  1637.075   790.305   0.6611  

#       "124"  2113.088   783.808  2112.738   783.431   0.5146  

#       "125"  2588.156   776.236  2588.311   776.435   0.2513  

#       "126"  3064.187   768.884  3063.882   769.331   0.5414  

#       "127"  3539.635   761.622  3539.537   762.134   0.5216  

#       "128"  4015.373   754.560  4015.363   754.860   0.2998  

#       "129"  4491.368   747.301  4491.447   747.522   0.2353  

#       "130"  4967.654   739.728  4967.877   740.136   0.4653  

#       "131"   200.181   337.616   200.795   337.067   0.8234  

#       "132"   677.408   331.565   677.221   330.730   0.8563  

#       "133"  1153.859   324.632  1153.301   324.208   0.7015  

#       "134"  1629.419   318.046  1629.121   317.516   0.6089  

#       "135"  2104.961   311.497  2104.768   310.668   0.8517  

#       "136"  2580.286   304.129  2580.329   303.679   0.4520  

#       "137"  3055.840   296.573  3055.892   296.564   0.0532  

#       "138"  3531.258   288.740  3531.543   289.338   0.6622  

#       "139"  4006.953   281.543  4007.368   282.016   0.6288  

#       "140"  4482.970   274.079  4483.456   274.612   0.7210  

#       "141"  4959.170   267.454  4959.892   267.141   0.7872  

# 

# Average RMS error :  0.546 

#   Total RMS error : 76.977 

# End of GCP details 
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APPENDIX D 

RMS of Geometric Correction of SPOT 5, 19 April 2005 
 

 

# 

# GCPs for dataset    : D:\Satellite 

Data\LandsatUTMCrop\SPOT5_19Apr05C.ers 

# 

# Total number of GCPs: 255 

# Number turned on    : 254 

# Warp order          : 3 

# GCP CORRECTED map projection details: 

#      Map Projection : MALRSOW 

#          Datum      : KERTAU 

#          Rotation   : 0.000 

# RMS error report: 

# Warp Type - Polynomial 

#                -----ACTUAL-----    ---PREDICTED--- 

#       Point    Cell-X    Cell-Y    Cell-X    Cell-Y      RMS 

#         "1"    88.246  1308.275    88.247  1307.802   0.4724  

#         "2"   169.179  1197.882   169.188  1197.958   0.0772  

#         "3"   279.041  1167.867   278.948  1167.793   0.1194  

#         "4"  1198.641  2805.387  1198.301  2805.667   0.4406  

#         "5"  1720.913  2064.730  1720.813  2064.651   0.1266  

#         "6"  1972.190   403.937  1972.222   403.608   0.3302  

#         "7"  1990.479   605.698  1990.723   605.821   0.2731  

#         "8"   292.220   392.631   292.016   392.527   0.2283  

#         "9"  2020.170   176.587  2020.018   176.652   0.1653  

#        "10"  2877.159   908.578  2877.229   908.137   0.4466  

#        "11"  1468.088  1562.408  1468.269  1562.422   0.1816  

#        "12"   922.681   134.111   922.560   134.278   0.2059  

#        "13"   160.176  2619.347   160.151  2618.980   0.3674  

#        "14"   372.510  2667.962   372.904  2668.119   0.4245  

#        "15"   726.737  1546.679   726.944  1546.938   0.3317  

#        "16"  1950.416   476.918  1950.524   476.880   0.1139  

#        "17"  2101.150   787.689  2101.199   787.865   0.1827  

#        "18"   209.170  1851.438   208.889  1851.375   0.2879  

#        "19"   475.116  1895.392   475.235  1895.598   0.2384  

#        "20"  2237.288    35.229  2237.034    35.300   0.2642  

#        "21"  1707.781  1954.532  1707.786  1954.705   0.1724  

#        "22"  1373.265  1673.324  1373.208  1673.596   0.2781  

#        "23"  1520.100  1720.196  1520.309  1720.259   0.2180  

#        "24"  1600.570  1373.677  1600.176  1373.680   0.3938  

#        "25"  1857.153  1171.722  1857.288  1171.467   0.2880  

#        "26"  1971.077  1100.447  1971.056  1100.861   0.4145  

#        "27"  2126.496  1080.743  2126.586  1081.052   0.3214  

#        "28"  2138.327   977.227  2137.916   977.000   0.4699  

#        "29"  2124.330   845.591  2124.064   845.652   0.2727  

#        "30"  1800.134  1201.355  1800.183  1201.120   0.2392  

#        "31"  1360.240  1900.694  1360.232  1900.498   0.1966  

#        "32"  1635.630  2241.754  1635.705  2242.026   0.2820  

#        "33"  2613.407  2436.709  2613.343  2437.067   0.3632  

#        "34"  2477.232  2127.681  2477.263  2128.033   0.3539  

#        "35"   196.380   763.467   196.363   763.458   0.0185  

#        "36"   726.491   866.630   726.877   866.797   0.4205  

#        "37"   282.095  1534.455   281.921  1534.379   0.1902  

#        "38"  1089.271   764.352  1089.104   764.581   0.2831  

#        "39"    33.623   418.765    33.357   419.182   0.4939  

#        "40"   674.218  2841.593   673.896  2841.852   0.4131  
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(Appendix D cont.) 
#        "41"  1948.588  2779.010  1948.404  2779.217   0.2769  

#        "42"  2365.341  1252.440  2365.232  1252.541   0.1486  

#        "43"  2825.673   919.280  2825.930   918.957   0.4127  

#        "44"  2101.366  1896.649  2101.368  1897.118   0.4694  

#        "45"  2618.560   851.872  2618.291   851.586   0.3929  

#        "46"  2818.605  2116.763  2818.610  2116.802   0.0387  

#        "47"  2124.344    98.499  2124.281    98.286   0.2215  

#        "48"  2005.461   386.959  2005.742   386.756   0.3462  

#        "49"  1349.215  1228.971  1349.023  1228.729   0.3086  

#        "50"  1324.372   207.722  1324.252   207.326   0.4138  

#        "51"   530.315   224.383   530.313   223.925   0.4582  

#        "52"  2595.347   294.665  2595.536   294.684   0.1898  

#        "53"  2916.360  1280.819  2916.590  1280.918   0.2503  

#        "54"  2962.489  2636.393  2962.113  2636.556   0.4101  

#        "55"  2982.763   596.392  2983.010   596.284   0.2692  

#        "56"    83.230  2070.584    83.504  2070.486   0.2910  

#        "57"  2700.323  2808.643  2700.499  2808.266   0.4160  

#        "58"  2806.250  2564.596  2806.373  2564.732   0.1844  

#        "59"   797.382    44.576   797.451    44.433   0.1587  

#        "60"   120.316   137.825   120.258   137.785   0.0710  

#        "61"  1286.556    64.597  1286.462    64.697   0.1367  

#        "62"   497.630    18.725   497.704    18.893   0.1830  

#        "63"  1734.263     6.517  1734.511     6.439   0.2599  

#        "64"  2032.353    16.076  2032.221    16.004   0.1504  

#        "65"  2515.075    35.792  2514.930    35.915   0.1904  

#        "66"  2851.315    42.506  2851.286    42.567   0.0681  

#        "67"  2901.521    96.647  2901.411    96.603   0.1179  

#        "68"   744.373   339.721   744.696   339.931   0.3858  

#        "69"     5.412   409.453     5.246   409.644   0.2531  

#        "70"    75.382   421.073    75.716   420.881   0.3850  

#        "71"   101.534   441.629   101.819   441.776   0.3201  

#        "72"   139.467   430.454   139.498   430.451   0.0317  

#        "73"   157.564   405.602   157.846   405.225   0.4705  

#        "74"   222.440   373.309   222.344   373.340   0.1010  

#        "75"   263.315   402.384   263.164   402.021   0.3931  

#        "76"   926.607   341.820   926.382   342.029   0.3070  

#        "77"  1026.238   305.828  1025.991   306.044   0.3283  

#        "78"  1112.549   298.471  1112.694   298.144   0.3572  

#        "79"  1200.509   314.480  1200.529   314.408   0.0747  

#        "80"  1282.354   140.642  1282.076   140.703   0.2850  

#        "81"  1364.532   215.807  1364.296   216.057   0.3428  

#        "82"  1449.595   301.562  1449.673   301.320   0.2543  

#        "83"  1542.421   289.455  1542.214   289.395   0.2160  

#        "84"  1619.688   358.714  1619.854   358.837   0.2062  

#        "85"  1700.347   348.500  1700.614   348.537   0.2695  

#        "86"  1843.410   511.508  1843.408   511.259   0.2498  

#        "87"   331.505   359.458   331.764   359.195   0.3692  

#        "88"   390.481   390.556   390.026   390.639   0.4623  

#        "89"   472.393   412.639   472.800   412.674   0.4087  

#        "90"   555.514   460.642   555.663   460.951   0.3430  

#        "91"   662.500   466.607   662.108   466.768   0.4245  

#        "92"   690.563   511.576   690.887   511.622   0.3274  

#        "93"   721.566   614.402   722.019   614.253   0.4764  

#        "94"   764.261   623.678   763.948   623.906   0.3871  

#        "95"   827.343   697.515   827.509   697.378   0.2158  

#        "96"   872.366   720.699   872.078   720.984   0.4051  

#        "97"   841.767   643.345   841.918   643.126   0.2656  

#        "98"   847.551   586.342   847.322   585.925   0.4753  
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 (Appendix D cont.) 
#        "99"   912.357   558.434   912.065   558.164   0.3984  

#       "100"   984.266   585.491   984.100   585.526   0.1697  

#       "101"  1024.442   507.460  1024.740   507.122   0.4503  

#       "102"  1104.476   471.610  1104.424   471.453   0.1651  

#       "103"  1039.457   421.584  1039.605   421.919   0.3663  

#       "104"   874.486   273.510   874.405   273.405   0.1330  

#       "105"   889.605   218.575   889.801   218.385   0.2725  

#       "106"   962.295   318.535   962.030   318.501   0.2680  

#       "107"  1082.464   302.492  1082.185   302.456   0.2812  

#       "108"  1220.509   239.552  1220.785   239.236   0.4193  

#       "109"  1181.416   120.431  1181.122   120.519   0.3062  

#       "110"  1171.571    77.518  1171.832    77.719   0.3298  

#       "111"  1241.369   134.551  1241.368   134.966   0.4153  

#       "112"  1612.411   326.631  1612.524   326.935   0.3250  

#       "113"  1685.359   270.410  1685.735   270.473   0.3809  

#       "114"  1836.558   282.503  1836.375   282.466   0.1866  

#       "115"  1959.548   269.686  1959.928   269.835   0.4085  

#       "116"  1994.454   306.728  1994.567   306.974   0.2702  

#       "117"  2150.402   935.697  2150.801   935.879   0.4381  

#       "118"  2037.400  1085.666  2037.527  1085.606   0.1405  

#       "119"  1888.358  1157.441  1888.007  1157.492   0.3545  

#       "120"  1718.462  1231.597  1718.185  1231.664   0.2847  

#       "121"  1611.630  1315.540  1611.876  1315.605   0.2538  

#       "122"  1485.670  1533.577  1485.906  1533.358   0.3223  

#       "123"  1438.490  1622.558  1438.299  1622.972   0.4558  

#       "124"  1462.574  1691.522  1462.153  1691.735   0.4715  

#       "125"  1580.488  1772.380  1580.352  1772.188   0.2352  

#       "126"  1641.748  1804.494  1641.966  1804.765   0.3479  

#       "127"  1712.584  1876.561  1712.362  1876.471   0.2399  

#       "128"  1683.547  2010.602  1683.115  2010.803   0.4763  

#       "129"  1678.503  2170.387  1678.706  2170.324   0.2132  

#       "130"  1648.434  2229.576  1648.751  2229.713   0.3453  

#       "131"  1557.642  2269.381  1557.215  2269.400   0.4274  

#       "132"  1558.539  2304.334  1558.864  2304.542   0.3862  

#       "133"  1577.436  2377.708  1577.010  2377.627   0.4335  

#       "134"  1556.440  2457.564  1556.465  2457.849   0.2853  

#       "135"  1500.502  2520.604  1500.721  2520.514   0.2364  

#       "136"  1453.587  2597.336  1453.279  2597.091   0.3939  

#       "137"  1373.403  2667.729  1373.663  2667.890   0.3057  

#       "138"  1323.456  2691.465  1323.327  2691.372   0.1591  

#       "139"  1271.423  2724.563  1271.240  2724.979   0.4550  

#       "140"  1186.447  2740.372  1186.166  2740.715   0.4435  

#       "141"  1115.455  2678.531  1115.273  2678.488   0.1871  

#       "142"  1138.626  2720.291  1138.906  2720.278   0.2801  

#       "143"  1146.551  2763.301  1146.770  2763.130   0.2777  

#       "144"  1144.634  2805.499  1144.694  2805.341   0.1691  

#       "145"  1169.265  2851.356  1169.499  2850.951   0.4676  

#       "146"    29.424   692.556    29.495   692.945   0.3954  

#       "147"   529.575   595.547   529.443   595.294   0.2853  

#       "148"   501.679   751.766   501.822   751.932   0.2185  

#       "149"  1393.427   466.639  1393.586   466.814   0.2362  

#       "150"  1436.398   742.581  1436.600   742.543   0.2052  

#       "151"  1589.372    18.558  1589.637    18.359   0.3313  

#       "152"  1759.559    90.491  1759.500    90.138   0.3579  

#       "153"  1711.556   586.634  1711.647   586.513   0.1518  

#       "154"  2353.523   198.669  2353.138   198.772   0.3982  

#       "155"  2258.484   469.607  2258.289   469.894   0.3471  

#       "156"  2996.377   296.562  2996.511   296.527   0.1382  
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 (Appendix D cont.) 
#       "157"  2652.521   531.615  2652.440   531.537   0.1121  

#       "158"  2387.562   699.440  2387.391   699.614   0.2437  

#       "159"    25.422   985.533    25.325   985.476   0.1129  

#       "160"   393.295   995.731   392.926   995.792   0.3738  

#       "161"   831.407   980.849   831.100   980.955   0.3253  

#       "162"  1243.454   951.522  1243.257   951.822   0.3586  

#       "163"  1621.574   916.677  1621.757   916.598   0.1995  

#       "164"  1887.572   735.428  1887.489   735.554   0.1513  

#       "165"    17.332  1201.335    17.431  1201.219   0.1527  

#       "166"   506.488  1160.609   506.746  1161.000   0.4690  

#       "167"   784.536  1161.695   784.492  1161.851   0.1617  

#       "168"  1074.482  1088.625  1074.348  1088.781   0.2063  

#       "169"  1738.526  1058.543  1738.773  1058.230   0.3988  

#       "170"  2384.441  1068.347  2384.214  1068.265   0.2410  

#       "171"  2690.450  1116.459  2690.265  1116.100   0.4042  

#       "172"   304.552  1334.528   304.585  1334.710   0.1848  

#       "173"   637.670  1320.516   637.782  1320.953   0.4505  

#       "174"   977.419  1269.637   977.367  1269.398   0.2441  

#       "175"  1482.473  1058.421  1482.654  1058.038   0.4240  

#       "176"  2665.342  1297.519  2665.034  1297.365   0.3446  

#       "177"  2021.410  1218.657  2021.100  1218.787   0.3365  

#       "178"    20.600  1595.463    20.920  1595.432   0.3218  

#       "179"    49.380  2338.469    49.016  2338.383   0.3740  

#       "180"    38.478  2802.584    38.376  2802.676   0.1370  

#       "181"   321.741  2412.579   321.834  2412.930   0.3640  

#       "182"   397.383  2141.533   397.358  2141.351   0.1828  

#       "183"   480.594  1679.413   480.544  1679.687   0.2783  

#       "184"   567.404  1472.568   567.573  1472.169   0.4326  

#       "185"   638.456  2662.430   638.735  2662.781   0.4477  

#       "186"   557.253  2464.478   557.117  2464.254   0.2619  

#       "187"   690.402  2224.366   690.168  2224.005   0.4305  

#       "188"   687.661  1945.462   687.914  1945.350   0.2764  

#       "189"   343.240   144.470   343.003   144.091   0.4470  

#       "190"   959.464  1426.575   959.470  1426.891   0.3154  

#       "191"   849.398  1683.638   848.973  1683.783   0.4493  

#       "192"   851.465  1871.484   851.663  1871.273   0.2885  

#       "193"   805.419  2038.411   805.580  2038.262   0.2197  

#       "194"   784.284  2380.352   784.617  2380.568   0.3961  

#       "195"   840.380  2514.394   840.376  2513.998   0.3966  

#       "196"   830.392  2688.544   829.917  2688.577   0.4761  

#       "197"   951.413  2786.547   951.888  2786.446   0.4848  

#       "198"  1166.419  1350.548  1166.512  1350.382   0.1901  

#       "199"  1054.195  1540.423  1053.968  1540.104   0.3917  

#       "200"  1052.490  1706.487  1052.412  1706.626   0.1594  

#       "201"  1057.523  1920.409  1057.505  1920.323   0.0875  

#       "202"   988.342  2143.460   988.622  2143.682   0.3574  

#       "203"  1045.347  2338.555  1045.483  2338.759   0.2452  

#       "204"  1283.334   581.518  1283.702   581.767   0.4437  

#       "205"  1126.598  2494.542  1126.657  2494.122   0.4235  

#       "206"  1323.534  2484.409  1323.491  2484.093   0.3192  

#       "207"  1321.482  2310.435  1321.308  2310.755   0.3646  

#       "208"  1199.303  2100.458  1199.173  2100.487   0.1337  

#       "209"  1448.315  2076.405  1448.008  2076.087   0.4420  

#       "210"  1212.335  1766.539  1212.035  1766.367   0.3467  

#       "211"  1360.382  1468.623  1360.245  1468.240   0.4058  

#       "212"   276.491   582.162   276.089   582.122   0.4042  

#       "213"  1940.569   893.460  1940.897   893.570   0.3460  

#       "214"  1497.327  2788.612  1497.560  2788.622   0.2330  
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#       "215"  1747.388  2791.482  1747.436  2791.489   0.0484  

#       "216"  2231.415  2772.416  2231.297  2772.200   0.2459  

#       "217"  2456.414  2781.492  2456.697  2781.143   0.4491  

#       "218"  2993.528  2812.615  2993.359  2812.621   0.1695  

#       "219"  1680.435  2586.696  1680.746  2586.975   0.4175  

#       "220"  1895.567  2583.429  1895.277  2583.191   0.3748  

#       "221"  2128.553  2574.624  2128.400  2574.712   0.1764  

#       "222"  2423.481  2557.594  2423.227  2557.355   0.3490  

#       "223"  2602.306  2592.712  2602.014  2592.958   0.3826  

#       "224"  1876.334  2367.301  1876.473  2367.143   0.2103  

#       "225"  2128.601  2341.524  2128.925  2341.619   0.3375  

#       "226"  2459.565  2308.442  2459.403  2308.107   0.3723  

#       "227"  2894.449  2235.630  2894.822  2235.633   0.3727  

#       "228"  2942.596  2340.617  2942.981  2340.757   0.4099  

#       "229"  1991.547  2128.390  1991.682  2127.971   0.4399  

#       "230"  2251.524  2112.599  2251.945  2112.581   0.4211  

#       "231"  2312.665  1884.433  2312.672  1884.169   0.2637  

#       "232"     2.519  1838.438     2.463  1838.418   0.0594  

#       "233"  2537.551  1876.346  2537.199  1876.291   0.3561  

#       "234"  2756.672  1879.552  2756.883  1879.265   0.3565  

#       "235"  3002.435  2004.581  3002.409  2004.815   0.2356  

#       "236"  2992.429  1797.549  2992.245  1797.552   0.1848  

#       "237"  3002.502  1527.455  3002.822  1527.144   0.4460  

#       "238"  2785.120  1559.417  2785.003  1559.787   0.3878  

#       "239"  2586.463  1600.570  2586.798  1600.879   0.4563  

#       "240"  2388.613  1636.496  2388.667  1636.242   0.2601  

#       "241"  2170.367  1624.440  2170.370  1624.080   0.3603  

#       "242"  1975.460  1735.413  1975.807  1735.109   0.4613  

#       "243"  1880.461  1583.363  1880.866  1583.415   0.4091  

#       "244"  1714.566  1507.419  1714.948  1507.349   0.3880  

#       "245"  1877.395  1336.458  1877.339  1336.753   0.3001  

#       "246"  1957.438  1439.558  1957.336  1439.594   0.1075  

#       "247"  2237.444  1415.505  2237.336  1415.344   0.1941  

#       "248"  2519.428  1398.604  2518.993  1398.564   0.4376  

#       "249"  2791.299   690.436  2791.099   690.747   0.3698  

#       "250"  2993.577   950.577  2993.399   950.566   0.1782  

#       "251"  2793.452   261.506  2793.463   261.916   0.4099  

#       "252"  2197.530   590.633  2197.861   590.891   0.4197  

#       "253"  2637.343  2226.413  2637.368  2226.695   0.2825  

#       "254"     5.579   240.445     5.782   240.844   0.4476  

#       "255"    -1.000    -1.000     0.000     0.000   0.0000  

# 

# Average RMS error :  0.304 

#   Total RMS error : 77.204 

# Note: Total and average RMS errors do not include OFF points 

# End of GCP details 

 

 

   



281 

APPENDIX E 

NDVI Maps 

E1. NDVI Map, 24 February 2001 

 

E2. NDVI Map, 31 May 2001 
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E3. NDVI Map, 19 June 2002 

 

E4. NDVI Map, 20 September 2001 

 
 



283 

APPENDIX F 

TCT Soil Wetness Maps 

 

F1. Soil wetness, 24 February 2001 

 

F2. Soil wetness, 31 May 2001 
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F3. Soil wetness, 19 June 2002 

 

F4. Soil wetness, 20 September 2001 
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APPENDIX G 

LST Maps 

 

G1. LST 24 February 2001 

 

G2. LST 31 May 2001 
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G3. LST 19 June 2002 

 

G4. LST 20 September 2001 
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APPENDIX H 

Cloud and shadow masks 

 

H1. Cloud and shadow mask for Landsat 24 February 2001 

   

H2. Cloud and shadow mask for Landsat 31 May 2001 
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H3. Cloud and shadow mask for Landsat 19 June 2002 

  

H4. Cloud and shadow mask for Landsat 20 September 2001 
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