

FINAL EXAMINATION JANUARY 2025 SEMESTER

COURSE :

EFB4133 - DIGITAL SYSTEM DESIGN

DATE

12 APRIL 2025 (SATURDAY)

TIME

9.00 AM - 12.00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- Begin EACH answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- i. There are **SEVEN (7)** pages in this Question Booklet including the cover page .
- ii. DOUBLE-SIDED Question Booklet.
- iii. Engineering Data & Formulae Booklet will be provided.

Universiti Teknologi PETRONAS

- 1. a. The Verilog code in **FIGURE Q1** is written using the dataflow modelling style. Rewrite the full Verilog code to describe the same circuit by using:
 - i. Structural modelling style

[5 marks]

ii. Behavioural modelling style

[5 marks]

```
module complex_logic_circuit(a, b, c, d, e, f);
input a, b, c, d, e;
output f;

assign f = ((a & b) | (~c & d)) ^ (e & (b | d));
endmodule
```

FIGURE Q1

b. Identify and discuss one advantage and one disadvantage of using behavioural modelling compared to structural modelling in Verilog.

[5 marks]

- 2. A digital system consists of a datapath and a control unit that work together to execute operations. Consider a simple 4-bit processor that performs arithmetic and logic operations using a single-cycle control unit.
 - a. Design a datapath for a simple 4-bit processor that operates on 4-bit data and supports the following instructions. Your design should include a datapath diagram showing key components such as registers, ALU, multiplexers, and control signals. Assume the processor has four general-purpose registers (R0-R3), and immediate values are 4 bits wide.

Supported Instructions:

- ADD R1, R2 → R3 (4-bit addition: R3 = R1 + R2)
- SUB R1, R2 \rightarrow R3 (4-bit subtraction: R3 = R1 R2)
- AND R1, R2 \rightarrow R3 (4-bit bitwise AND: R3 = R1 & R2)
- OR R1, R2 → R3 (4-bit bitwise OR: R3 = R1 | R2)
- LOAD IMM → R1 (Load a 4-bit immediate value into register R1)

[15 marks]

b. The control unit generates control signals to coordinate the datapath operations. Identify and describe **FOUR (4)** key control signals required to execute the given instructions. Clearly explain how each signal influences the datapath components (e.g., ALU, registers, multiplexers, or memory access).

[5 marks]

c. Design a state transition diagram for a simple single-cycle control unit that fetches, decodes, and executes only the given instructions. Clearly show the states and their transitions, and label key control signals in each state.

[10 marks]

 FIGURE Q3 shows a sequential circuit that consists of edge-triggered D flipflops.

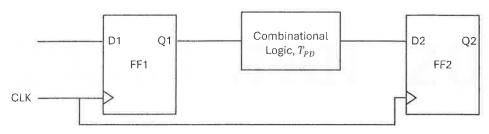


FIGURE Q3

Timing Parameters:

Setup time, $T_s = 150 ps$

Hold time, $T_h = 100 \text{ ps}$

Clock-to-Q delay, $T_{CQ} = 200 \text{ ps}$

Combinational circuit propagation delay, Tpd = 500 ps

Clock period, $T_{clk} = 1.2 \text{ ns } (1200 \text{ ps})$

Clock skew, $T_{skew} = 50 \text{ ps}$

a. Determine whether the circuit satisfies the setup time requirement. If not, find the minimum clock period needed to avoid setup time violations.

[5 marks]

b. Check whether the circuit meets the hold time requirement. If not, determine the additional delay required to prevent a hold time violation.

[5 marks]

c. Suppose the clock period is reduced to 1.0 ns to improve performance. Analyze whether the system will still function correctly. If not, suggest a suitable clock period.

[5 marks]

d. Analyze the impact of clock skew on setup and hold time constraints. Determine the maximum clock skew the circuit can tolerate before violating either requirement. Justify your answer with calculations.

[8 marks]

4. A 4-bit ALU has been designed to perform arithmetic and logical operations based on a 2-bit opcode. The ALU has the functionality listed in **TABLE Q4**.

TABLE Q4

Opcode	Operation	Description		
00	A + B	Addition		
01	A – B	Subtraction		
10	A & B	Bitwise AND		
11	A	В		

You are given the ALU design code, as written in FIGURE Q4a:

```
module ALU (
input [3:0] A, B,
input [1:0] opcode,
output reg [3:0] result
);
always @(*) begin
case (opcode)
2'b00: result = A + B;
2'b01: result = A - B;
2'b10: result = A & B;
2'b11: result = A | B;
default: result = 4'b0000;
endcase
end
endmodule
```

FIGURE Q4a

a. Explain why a testbench is necessary for verifying the ALU design. Identify two potential issues that could arise if the ALU design is not properly verified.

[5 marks]

b. Write a Verilog testbench to verify that the ALU performs correctly for all 4 operations. The testbench should include test cases for different values of A and B and a self-checking mechanism that compares expected vs actual results. Your testbench code must follow the structure written in FIGURE Q4b.

```
timescale 1ns/1ps
module ALU tb;
          // Declare testbench variables
          // Instantiate the ALU module
          // Task to verify ALU operation
          task check_result;
             begin
             end
          endtask
          // Apply stimulus
          initial begin
             $display("Starting ALU Testbench...");
             // Test ADDITION (A + B)
             // Test SUBTRACTION (A - B)
             // Test AND (A & B)
             // Test OR (A | B)
             $display("ALU Testbench Completed.");
             $stop; // Stop simulation
          end
endmodule
```

FIGURE Q4b

[15 marks]

c. If the simulation shows that A - B does not work correctly, suggest one possible design issue and how to fix it.

[5 marks]

d. Modify the ALU design so that it outputs 0000 for an invalid opcode (>= 4).

[7 marks]

-- END OF PAPER --

				4
			2	