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A 4 m x 4 m square lies in the xy-plane, centered at the origin, with its
sides parallel to the x- and y-axes. A 20 uC point charge is placed at each
of its four corners. Using Coulomb’s Law, determine the electric flux
density D at a point located 10 m above the center of the square, along
the z-axis in free space. In your solution, draw a labelled diagram showing
the square, the point charges, and relevant measurements.

[10 marks]

FIGURE Q1 illustrates a parallel-plate capacitor consisting of two identical
conducting plates separated by a dielectric material with relative
permittivity &,. The total charge Q on the plates induces an electric field E

with a magnitude of 70 x 108 V/m.
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FIGURE Q1

i. Determine the charge, Q stored on the plates of the capacitor.

[3 marks]

ii. Obtain the relative permittivity, &, of the dielectric material and
identify the most likely dielectric material used in the capacitor.
[4 marks]

iii. Determine the breakdown voltage, V,,. of the capacitor based on the
answer in part (ii).
[4 marks]

iv. Calculate the capacitance, C of the capacitor. Then, briefly suggest
TWO (2) ways to increase its capacitance. _
[4 marks]
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a. In free space, a magnetic vector potential, A is given by:

A=1F10r3cos¢p +Z30r%sin¢g (Wb/m)

I Determine the corresponding magnetic flux density, B.

[4 marks]

ii. Prove that B obtained in part (i) satisfies the Gauss’ Law for
magnetism.

[3 marks]

iii. Calculate the magnetic flux, ® through a segment of a cylindrical
surface defined by r=2, ;<¢ <-and0<z<3 as shown in

FIGURE Q2a. All distances are given in meters.

[3 marks]
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FIGURE Q2a
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Consider the two filamentary wires with cylindrical cross section as

ilustrated in FIGURE Q2b. The wires are part of a very large circuit. The

diameter of each wire is 1 cm. The wire centred at the origin carries a

current of 2 mA while the wire centred at (8 cm, 0O, 0) carries the return

current.

Determine the corresponding current density, ] on the surface of the
wire centered at the origin.
[4 marks]

Apply Biot-Savart's Law to determine the magnetic flux density,
B induced by the two infinitely long wires at point P (4 cm, 0, 0).
[7 marks]

A charged particle with charge g = 1.6 x 1071° C moves with a
velocity of u = £ 2 X 10¢ m/s through point P (4 cm, 0, 0). Using B

the charged patrticle.

[4 marks]
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A time-varying electric flux density is propagating through seawater is
given by:
= ¢5.2 wsin(wt — 0.1z) C/m?

The seawater has the following properties:
o =4S/m, & = 80, U =1

I. Using Faraday’s Law, determine the corresponding magnetic field
intensity, H.
[8 Marks]

ii.  Calculate the conduction current density, J. and the displacement
current density, J;.

[5 marks]

An inductor in FIGURE Q3 is created by winding N turns of a thin
conducting wire into a circular loop of radius r, positioned in the xy-plane:
with its center at the origin. The loop is connected to a resistor R. The

system is exposed to a time-varying magnetic field expressed as:

B = By(R7+ 922+ 25)coswt T

X

FIGURE Q3
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Determine the magnetic flux, @ linking a single turn of the inductor.

[5 marks]

Obtain the transformer electromotive force, V.j;f giventhat N = 20,
By = 06T, r =2cmandw = 103 rad/s.

[5 marks]

Calculate the induced current, I in the circuit for the loop resistance,
R = 5KkQ and the internal resistance, R; = 17 Q.
[2 marks]
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Consider the network shown in FIGURE Q4. All transmission lines in the

network are lossless with the characteristic impedance of 50 Q.

Z,, = (50 +50) 0

Z;5 = (50 ~ j50) Q

FIGURE Q4

Determine the reflection coefficients T; and I, at each of the load

impedances Z;, and Z,, respectively.

[6 marks]

b. Obtain the effective load impedance, Z] at the parallel junction by

combining Zi,; and Z,,. Next, draw the equivalent circuit of the

impedance transformation.

iil.

[11 marks]

Based on the equivalent circuit in part (b):

Calculate the input impedance Z;,, of the transmission line.

[4 marks]

Determine the reflection coefficients I' at -the effective load
impedance.
[2 marks]

[2 marks]

— END OF PAPER -
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Summary of Gradient, Divergence, Curl and Laplacian Operators
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Properties of Standing Waves on A Lossless Transmission Line

Voltuge Maximum Vimax = EV;;[I + (T
Voliage Mininum Vimin = Vg 111 = iT]
.. . .. Ord 1
Positions of voltage maxima (also positions | dmax = T +=. n= 0.1.2, ...
of current minima) &l .
(L% i )
<= ifO=<# =mx
Position of first maximum (also position of | dypax = 4n
S P : (277 N S
first current minimum) A W—m<B <0
4r 2
.. i o A (2 -+ )& )
Positions of voltage minima (also positions | dpin = =y + — n=0,1,2....

of current maxima)
drpax + 1/4 if s < A /4

Position of first minimum (also position of dmin = { d A4, ifd = A /4
max ~ Vi max 2L A .

first current maximuwn)

Input Impedance Zin=2p (%{%) , B= 27”
Positions al which Zj; 1s real at voltage maxima and minima
Zip at voltage maxima Zin=4p (: i :Ei)
Zin at voltage minima Zin=2Zop (l—-_!f'!)
1+l
Zip of short-circuited line Zis = jZptan Bl
Ziy of open-circuited line 285 = —jZy oot fl
Zin of line of length ! = a4 /2 Zn=73, an=90.12 ...
Zip of linc of length / = A/4 + nk/2 Zn=123/ZL, n=0,12 ..
Zin of matched fine Zin="7Zg

|V€' | = amplitude of incident wave: I’ = | !ej"‘ with —7 < & < m: 6 in radians; Iy = De /21,

Reflection coefficient | - 4L—%

3 2L+ 72y
Load impedance | 7 =z, [%}
Voltage Standing Wave Ratio | S= :—J_r-{%
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