

FINAL EXAMINATION JANUARY 2025 SEMESTER

COURSE

EEB4033/EFB4023 - DIGITAL SIGNAL PROCESSING

DATE

15 APRIL 2025 (TUESDAY)

TIME

2.30 PM - 5.30 PM (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note :

- i. There are **NINE** (9) pages in this Question Booklet including the cover page and appendices.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

1. a. The MATLAB code in **FIGURE Q1a(i)** illustrates the frequency-shifting property of the Discrete-Time Fourier Transform (DTFT). Additionally, the magnitude spectrum of a discrete-time signal, x1[n] is presented in **FIGURE Q1a(ii)**. Here, h = freqz(b,a,w) returns the frequency response vector h evaluated at the normalized frequencies supplied in w. Here, b is the numerator and a is the denominator of the transfer function,

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_1 + b_2 z^{-1} \cdots + b_n z^{-(n-1)} + b_{n+1} z^{-n}}{a_1 + a_2 z^{-1} \cdots + a_m z^{-(m-1)} + a_{m+1} z^{-m}}$$

```
Magnitude Spectrum of x1
      clc;close all
  2
     W = -pi:2*pi/255:pi; Wo = 0.4*pi;
     x1 = [1 3 5 7 9 11];
      L = length(x1); h1 = freqz(x1, 1, w);
     n = 0:L-1; x2 = exp(wo*1i*n) .* x1;
                                                 20
     h2 = freqz(x2, 1, w);
     figure; plot(w/pi, abs(h1)); grid
110
     title('Magnitude Spectrum of x1')
11
     figure; plot(w/pi, abs(h2)); grid
     title('Magnitude Spectrum of x2')
                                                              \omega ( x \pi rad/sec)
                                                                  (ii)
```

FIGURE Q1a

i. Determine the DTFT of x1[n] and x2[n].

[6 marks]

ii. Sketch the magnitude spectrum of x2[n] and explain the frequency-shifting property of the DTFT.

b. Consider a causal and stable linear time-invariant (LTI) system that produces an output y[n] in response to an input x[n]. If the input and output signals are given as follows,

$$y[n] = n\left(\frac{2}{3}\right)^n u[n]$$
 and $x[n] = \left(\frac{4}{5}\right)^n u[n]$,

determine the frequency response and the difference equation governing its operation.

[8 marks]

c. A low-pass signal with a bandwidth of 1.5 kHz, as illustrated in FIGURE Q1c, is sampled at a rate of 2000 samples per second. Sketch the spectrum of the sampled signal in the normalized frequency domain using the Discrete-Time Fourier Transform (DTFT) (i.e., in radians). Additionally, analyze the challenges associated with reconstructing the original signal.

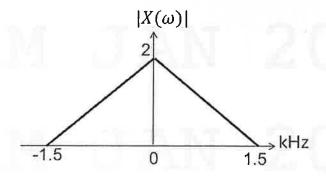


FIGURE Q1c

2. A discrete LTI system with zero initial conditions is described by the following difference equation.

$$y[n] - y[n-1] + \frac{3}{16}y[n-2] = x[n] - \frac{1}{2}x[n-1]$$

a. Determine the impulse response of the system if the ROC is $\frac{1}{4} < |z| < \frac{3}{4}$ and based on the impulse response, discuss the causality and stability of the system.

[10 marks]

b. Determine the output response if the input signal is

$$x[n] = \left(\frac{1}{2}\right)^n u[n-4].$$

3. a. Signal x[n] is given by

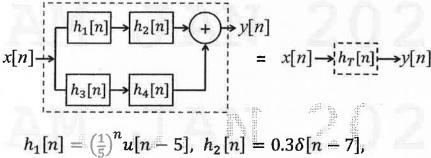
$$x[n] = \{2,1,3,\underline{-2},1,-1,0.5,6\}$$

where the underline indicates the origin of the sequence. Determine k[n]=x[-2n-2] and $m[n]=k[n](\delta[n+1]+2\delta[n-2]])$.

[10 marks]

b. An interconnection of four LTI systems is shown in **FIGURE Q3**. Find the overall impulse response of the system, $h_T[n]$.

[10 marks]



 $h_1[n] = \binom{1}{5} u[n-5], \ h_2[n] = 0.30[n-7],$ $h_3[n] = u[n-4], \ h_4[n] = 3\delta[n+1] - \delta[n-1].$

FIGURE OF

4. In a digital audio application, the signal x[n] must be upsampled to ensure compatibility with the varying sampling rates of different audio storage media. The plot in FIGURE Q4(a) represents the magnitude spectrum of a discrete-time signal x[n], while FIGURE Q4(b) shows the magnitude spectrum of x[n] after undergoing upsampling by a factor of L.

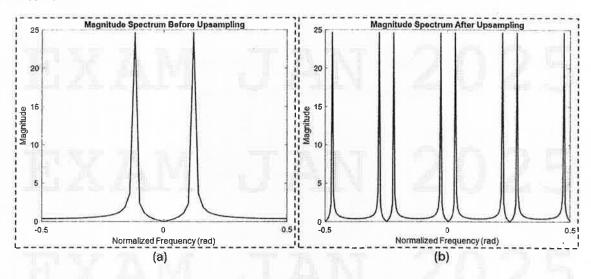


FIGURE Q4

a. What is the upsampling factor, L and justify your answer.

[2 marks]

b. Based on FIGURE Q4(b), discuss the problem of upsampling a discrete-time signal.

[2 marks]

c. Based on part (b), propose a system to mitigate these problems, providing the block diagram of the proposed system. Additionally, specify the parameters of the filter used in the system.

[4 marks]

d. If x[n] is to be downsampled by a factor of 3, sketch the magnitude spectrum of the downsampled signal. Clearly label relevant frequency points in your sketch.

5. A causal digital band-pass biquad filter designed for an audio processing application has the zero-pole plot, magnitude response and direct-form II implementation as shown in FIGURE Q5 (a), (b) and (c), respectively.

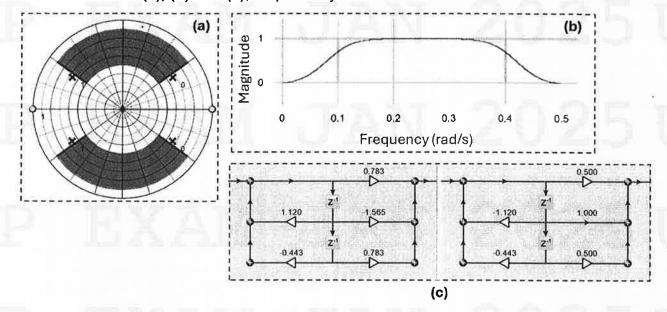


FIGURE Q5

a. With the aid of a diagram and based on the zero-pole plot of the filter, determine the filter's magnitude response at $\omega = \pi/10$ rad/s.

[6 marks]

b. Based on the position of the poles, discuss the stability of the filter, and explain how to guarantee the stability of the designed filter.

[6 marks]

c. Based on the direct-form II implementation, derive the transfer function of the filter.

[6 marks]

d. In another audio processing application, you are required to design a band-stop filter without changing the structure of the filter. Provide the zero-pole plot of your proposed design and justify your answer.

APPENDIX I

TABLE AI.1 Common DTFT Pairs

Sequence	DTFT		
$\delta[n]$			
$\delta[n-n_0]$	$e^{-jn_0\omega}$		
1	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega+2\pi k)$		
$a^n u[n]$, $ a < 1$	$\frac{1}{1-ae^{-j\omega}}$		
$-a^n u[-n-1] , a > 1$	$ \frac{1 - ae^{-j\omega}}{1} $ $ \frac{1}{1 - ae^{-j\omega}} $		
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$ $\frac{1}{(1 - ae^{-j\omega})^2}$		
$(n+1)a^nu[n] , a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$		
$\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] , r < 1$	$1-2r\cos\omega_m e^{-j\omega}+r^2e^{-j2\omega}$		
$\sin \omega_c$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$ $\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)} e^{-j\omega M/2}$		
$x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & otherwise \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$		
$e^{jn\omega_0}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega-\omega_0+2\pi k)$		
$\cos\left(\omega_0 n + \varphi\right)$	$\sum_{i=0}^{\infty} \left[\pi e^{j\varphi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\varphi} \delta(\omega + \omega_0 + 2\pi k) \right]$		

TABLE AI.2 Properties of DTFT

Property	Sequence	DTFT
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
Time-shift	$x[n-n_0]$	$e^{-jn_0\omega}X(e^{j\omega})$
Time-reversal	x[-n]	$X(e^{-j\omega})$
Modulation	$e^{jn\omega_0}x[n]$	$X(e^{j(\omega-\omega_0)})$
Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Derivative	nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\omega_0)}) d\theta$

APPENDIX II

TABLE All.1 Common z-Transform Pairs

Sequence	z-Transform	ROC
$\delta[n]$	1	All z
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]		z < 1
$na^nu[n]$	$ \frac{1-z^{-1}}{az^{-1}} $ $ \frac{az^{-1}}{(1-az^{-1})^2} $ $ az^{-1} $	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$(\cos \omega_0 n) u[n]$	$\frac{1 - (\cos \omega_0) z^{-1}}{1 - (2\cos \omega_0) z^{-1} + z^{-2}}$	z > 1
$(\sin \omega_0 n)u[n]$	$\frac{(\sin \omega_0)z^{-1}}{1 - (2\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
$(r^n\cos\omega_0n)u[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \omega_0 n) u[n]$	$\frac{(r\sin\omega_0)z^{-1}}{1-(2r\cos\omega_0)z^{-1}+r^2z^{-2}}$	z > r
$x(n) = \begin{cases} a^n, 0 \le n \le N - 1\\ 0, otherwise \end{cases}$	$\frac{1 - a^{N}z^{-N}}{1 - z^{-1}}$	z > 0

TABLE All 2 Properties of z-Transform

Property	Sequence	z-transform	ROC
Linearity	ax[n] + by[n]	aX(z) + bY(z)	Contains $R_x \cap R_y$
Time-shift	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x
Time-reversal	x[-n]	$X(z^{-1})$	$1/R_x$
Exponentiation	$\alpha^n x[n]$	$X(\alpha^{-1}z)$	$ \alpha R_{x}$
Convolution	x[n] * y[n]	X(z)Y(z)	Contains $R_x \cap R_y$
Conjugation	$x^*[n]$	$X^*(z^*)$	R_x
Derivative	nx[n]	$-z\frac{dX(z)}{dz}$	R_x

Convolution,
$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

