

FINAL EXAMINATION JANUARY 2025 SEMESTER

COURSE

EFB1013 - CIRCUIT THEORY

DATE

19 APRIL 2025 (SATURDAY)

TIME

9.00 AM - 12.00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** guestions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note:

- i. There are **FIVE (5)** pages in this Question Booklet including the cover page .
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

- Kirchoff's laws and Thevenin/Norton theorems are techniques that can be used to analyze complex circuits.
 - a. A complex circuit is shown in FIGURE Q1a.

FIGURE Q1a

i. State the condition for super-mesh and write down the mesh equations for the circuit using Kirchoff's voltage law.

[10 marks]

ii. Determine all the mesh currents.

[8 marks]

b. It is often desirable to ensure maximum power is transferred to the load (for example, a motor), as shown in **FIGURE Q1b**.

FIGURE Q1b

i. Using Thevenin's theorem, find the equivalent circuit (R_{Th} and V_{Th}) to the left of the terminals a-b.

[8 marks]

ii. Hence, state the value of R_L for maximum power transfer and determine the maximum power.

[4 marks]

- Inductors are one of the important circuit elements that can store electrical energy in a magnetic field.
 - a. The current through a 0.1H inductor is $10te^{-5t}$ A. Find the voltage and the energy stored in it.

[7 marks]

b. The switch in the circuit shown in **FIGURE Q2** has been open for a long time. At t = 0, the switch is closed.

FIGURE Q2

- i. With the switch opened, determine the inductor's initial current, i(0). [4 marks]
- ii. With the switch closed, determine the inductor's final current, $i(\infty)$ and the time constant.

[8 marks]

iii. Evaluate whether the circuit is a source-free or step response circuit. Hence, determine the inductor's current, i(t) for t > 0.

[6 marks]

iv. Discuss how the values of the current source and resistors in the circuit, affect the inductor's current, i(t).

[5 marks]

3. The operational amplifier is an active circuit element that can be designed to perform mathematical operations. An op-amp circuit is shown in **FIGURE Q3**.

FIGURE Q3

a. Identify the type of amplifier circuit and determine the output voltage, v_o , if $v_1 = 1 \text{ V}$.

[10 marks]

b. In order to obtain an output voltage, $v_o = 12 \text{ V}$, what should be the new value of v_1 ?

[5 marks]

c. If the resistance of the 30-k Ω feedback resistor is doubled, discuss how this affects the output voltage, v_o .

[5 marks]

- 4. Phasors are an important tool for analyzing AC power circuits.
 - a. Consider the circuit shown in FIGURE Q4.

i. Construct the equivalent circuit for each frequency in phasor domain.

[4 marks]

ii. Determine $v_o(t)$ using superposition theorem.

[8 marks]

b. The voltage and current phasors, across a load is given as follows:-

$$V = 110 \angle 85^{\circ} \text{ V rms}, I = 0.4 \angle 15^{\circ} \text{ A rms}$$

Calculate the complex power, apparent power, real power, and reactive power.

[8 marks]

- END OF PAPER -

