

FINAL EXAMINATION JANUARY 2025 SEMESTER

COURSE :

YBB1063 - ORGANIC CHEMISTRY I

DATE

8 APRIL 2025 (TUESDAY)

TIME

2:30 PM - 5:30 PM (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- i. There are TEN (10) pages in this Question Booklet including the cover page.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

a. Consider the following compound X.

$$H_{3}C$$
 C_{a}
 $C_{b}H_{2}C$

Compound X

 i. Draw the hybridized orbitals for carbon atoms labelled as C_a and C_b in compound X.

[3 marks]

ii. Determine the stereochemical configuration of compound X and show all the steps involved in your work.

[5 marks]

b. Compound Y (in FIGURE Q1(i)) reacts with N = C to form product
 Z (in FIGURE Q1(ii)).

FIGURE Q1(i): Compound Y

$$\bigwedge$$
N

FIGURE Q1(ii): Product Z

 Draw the three-dimensional structure of product Z to illustrate the inversion of its stereochemical configuration.

[3 marks]

 Based on your answer in part (b)(i), explain the reason for the inversion of stereochemical configuration.

[3 marks]

iii. Based on your answers in parts (b)(i) and (b)(ii), write the reaction mechanism illustrating the formation of product Z. Include the transition state species in your reaction mechanism.

[6 marks]

FIGURE Q2 shows the reaction that produces a mixture of alkenes as the products.

FIGURE Q2: Reaction leading to the formation of alkenes.

a. Suggest the bond-line formula(s) for products B and C.

[2 marks]

b. Explain why product B is the major product.

[3 marks]

c. The reaction mechanism proceeds in two steps to form products B and C. Explain the factors that favour this two-step mechanism, considering the nature of the alkyl halide, the temperature and the solvent used.

[6 marks]

d. Propose the reaction mechanism to illustrate the formation of product
 B.

[4 marks]

e. Since the reaction is exothermic, draw the complete energy diagram based on your answers in **part (d)**.

[5 marks]

a. Consider the reaction in FIGURE Q3(a).

FIGURE Q3(a): Reaction leading to the formation of alkyl halide.

 Suggest the reaction mechanism to show the formation of alkyl halide.

[6 marks]

ii. Based on answers in **part** (a)(i), identify the type of shift to form the desired carbocation and rationalize the occurrence of carbocation rearrangement.

[4 marks]

iii. Substrate in **FIGURE Q3(a)** can be used to produce alkene as the major product through E1 reaction. Suggest the reagent(s) and temperature to promote the E1 reaction.

[2 marks]

b. Consider the reactions 1 and 2 in FIGURE 3(b).

Reaction 1:

Reaction 2:

FIGURE Q3(b): Halogenation of 2-methylpropane.

 Reaction 1 gives almost exclusive of product D and only trace of product E. Rationalize this statement.

[5 marks]

ii. As compared to Reaction 1, Reaction 2 gives very different results in terms of percentage yield of the products. Rationalize this statement.

[3 marks]

4. a. An unknown alkene with the formula C₈H₁₆ is used as the substrate with a hot oxidizing agent to produce two carboxylic acids. The synthesis pathway is illustrated in **FIGURE Q4(a)**.

FIGURE Q4(a): Synthesis route to yield propanoic and pentanoic acids.

Suggest suitable reagent(s) for Step 1 and Step 2.

[4 marks]

ii. Draw the structure of the unknown alkene using a bond-line formula.

[3 marks]

b. Alkenes can be used as the substrate to form the racemic mixture of alky halides. Consider the reaction in FIGURE Q4(b) whereby the substrate (compound H) is an alkene.

Compound H + HCI
$$C_2H_5$$
 C_2H_5 C_3 C_4 C_5 C_6 C_6 C_7 C_8 C_8 C_9 $C_$

FIGURE Q4(b): Reaction to produce the racemic mixture.

i. Construct the structure of compound H using a bond-line formula.

[3 marks]

ii. Explain the reasons for the reaction producing the racemic mixture.

[4 marks]

iii. Suggest the reaction mechanism to produce (S)-2-chlorobutane.

[6 marks]

5. a. Using the polygon-and-circle method to outline the molecular orbitals of cyclobutadiene, explain why it is not aromatic based on Hückel's rule.

[3 marks]

 Provide the names of compounds M and N, indicating the appropriate prefixes (ortho-, meta-, or para-).

FIGURE Q5(b): Molecular structures of compounds M and N.

[3 marks]

 Draw the bond-line formula of compounds I, II, III, IV, V, VI for the following reactions.

Compound II

[2 marks]

ii.

[3 marks]

iii.

d. Outline the synthesis routes using the appropriate reagent(s) for the following reaction.

- END OF PAPER-