

IN-VEHICLE INFOTAINMENT (IVI) DUAL DISPLAY SHELL SYSTEM

By

NORHASLIZA BT MOHAMAD YUSOFF

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements

for the Degree
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh

Perak: Dared Ridzuan

© Copyright 2009

by

Norhasliza bt Mohamad Yusoff, 2009

CERTIFICATION OF APPROVAL

In-Vehicle Infotainment Dual Display Shell System

by

Norhasliza bt Mohamad Yusoff

A project interim submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (lions)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

(DR YAP VOOI VOON)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2009

i

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

NORHASLIZA BT MOHAMAD YUSOFF

ii

ABSTRACT

In-vehicle Infotainment system development is moving one step from the current

technology. This project is focused on developing a dual display framework: for In-

Vehicle Infotainment System. The dual display is meant for the usage of the front and

rear passenger in car. The framework will help car manufacturer to apply the recent

technology to improve the in-vehicle infotainment system. Instead of having several
hardware such as GPS and DVD player in a car, combining all in single platform will

save space and provide a wide range of entertainment such as games and internet

browsing. The development of this project includes building the Windows CE as the

operating system, integrating and enabling dual display monitor using Intel Embedded

Graphic Driver, and specifying the coordinate that differentiate the two monitor for

application purposes. This report will discuss the method on developing the framework

with the solution for problem that arises during the development of the project. This

project was developed using a specific development machine and the problem are solved

only for the machine used. Recommendations have been added or future development of
the project.

iii

ACKNOWLEDGEMENT

I would like to express my biggest appreciation to the following persons who

had given great contribution towards making my project successful. First of all, I

would like to thank to my project supervisor; Dr. Yap Vooi Voon who willing to

spend time in his busy work schedule for giving an idea and advice for this project.

His commitment and passion in guiding me has inspired me to work hard.

Secondly, I would like give a bunch of thanks to my internship supervisor,
Douglas Cheah and Alan Previn Teres Alexis who gives the initial idea for my final

year project. Their contribution on knowledge about Window CE and driver

architecture gives in depth information toward the completion of this project so as

gives help to any problem arises during the project development.

In particular, I would also like to express my gratitude towards great idea

contribution and tools support given by my colleagues. Thanks to them for all the

knowledge and skills that they share with me. Working with my project with a little

help from them is a great moment to remember. Sometimes we joke around with

each other to reduce our work stress.

Last but not least, thanks a lot to the examiner, because of their willingness to

evaluate my project and give some idea for project improvement.

IV

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT ...
iv

LIST OF FIGURES ... vii

CHAPTER 1: INTRODUCTION ..
1

1.1 Background Study
..

1

1.2 Problem Statement ..
",

1.2.1 Problem Identification ..
3

1.2.2 Significant of the Project.....

1.3 Scope of Study
4

CHAPTER 2: LITERATURE REVIEW ... 6

2.1 The Operating System
.....................

2.2 The Display Driver ..
8

2.3 The Hardware ..
9

CHAPTER 3: METHODOLOGY ...
11

3.1 FlowChart ...
11

12 3.2 Procedure ..
3.2.1 Hardware Setup ..

12

3.2.2 Operating System Development 14

3.2.3 Application Development 14

.......................
3

V

3.3.1 Hardware

.
19

. 19

CHAPTER 4: RESULTS & DISCUSSION ... 20

4.2 Discussion ..
22

CHAPTER 5: CONCLUSION & RECOMMENDATION 23

5.1 Conclusion
..

23

5.2 Recommendation
...

24

REFERENCES ... 25

APPENDICES ... 27

VI

LIST OF FIGURES

Figure 1 Scope of the Project ..
5

Figure 2 Concept of Intel® In-Vehicle Infotainment System
6

Figure 3 Vertical Extended to Two Different Display Concept
9

Figure 4 Flow Chart of the Project ...
8

Figure 5 Hardware Setup Flowchart ...
12

Figure 6 First monitor size and coordinates ... 16

Figure 7 Second monitor size and coordinates ..
17

Figure 8 Initial IVI Dual Display Looks & Feel
20

Figure 9 Latest Look of the Framework ...
21

vii

CHAPTER I

INTRODUCTION

1.1 Background Study

Many reputed companies are planning to establish new province in the field of in-

vehicle infotainment systems. Today, a car is not just a medium of transport, but a

medium to practice digital life style. It becomes a place to carry out business, access

real time road and destination information, a medium for entertainment to listen to

music and watch movies. get in touch with e-mails and short messages.

Although, it can be observed that many advance changes in the in vehicle
infotainment system, there are some obstacles or, the way to technoloav expansion.
Some of them are as follows:

" High cost of technology

+ Disruptive communication system for GPS system and internet access.

Require additional knowledge to manage such systems.

" Increase number of hardware components like ports, cable circuits,

antennas etc.

However, looking at the current advancement of technology, a "digital life" in car

can be implemented. Al of above factors suggest an evolution of in vehicle
infotainment.

1

In the past, it is not possible to bring full computer ability into in vehicle

infotainment system such as word processing, emails, entertainment (movie), games

and even with GPS system all in one car. Despite having one user in front of the car, it

will be an interesting application to have the children to be able to indulge themselves

with entertainment of technology. Long distance journey will not be such a boring trip

anymore.

1.2 Problem Statement

The recent technology has only one application per system for example GPS

(Global Positioning System) system or DVD Player. These two systems are working on
different hardware independently which provide issues of space where the spacing in

car are limited and the power supply also have to be utilized for both hardware. Instead,

having both systems working in a single hardware might give solution to space and

power problem. The idea now is to have a single platform that do all the jobs; games,
GPS, movies, emails, and even internet. This is more like bringing the PC capabilities
into car.

Intel's Tech Bulletin, May 21,2008; cited Intel Corporation is committed to

providing technology and collaborating with leaders in the embedded and automotive
industries to advance in vehicle infotainment (IVI) solutions [2]. The product is called
Intel® AtomTM processor that is being introduced April 2008 which is ideal for IVI

system based on the small footprint and low-power design 121. This product is an oven

platform which means any company that uses Intel's solution are able to customize
different application.

2

The above discussion indicates that the IVI system can have one platform but with

two different users; front seat and rear seat. Intel Embedded Graphic Driver support

dual display environment for Microsoft Windows CE 6.0 via vertical extended display

[3]. The most relieving part is Intel Embedded Graphic Driver support the chipset use

by IV1 Reference Design; Intel® System Controller Nub US15W [4]. By the

combination of Intel® Atom processor and Intel® System Controller Hub US 15W

introduced in Low-Power Intel® In-Vehicle Infotainment Reference Design, enabled

with Intel Embedded Graphic Driver, IVI System in a car will be everyone's dream.

1.2.1 Problem Ideni, Jication

In general, automotive manufacturers have little or no experience in software
development, and especially user Interface development [I]. The framework that will
be created in this project is an implementation of new technolog`;. Knowledge of both

Windows CE and Intel Embedded Graphics Driver has to be combined to achieve the

dual display framework shell system as proposed.

1.2.2 Significant of the Project

Manufacturer of the world's vehicles face a revolutionary moment as vehicles in

future may have onboard computer systems, Internet access, and advanced
display/interaction hardware. The project of creating the framework for automotive

manufacture may breaks the IVI market that gives them solution to the product
introduce by Intel, Low-Power Intel® IVI Design. Having a framework, customizing

3

the IVI System will be a simple programming helped by the framework's manuals and

guiuelines.

Looking deep into the significant of this project, the same framework can be

extended to be implemented for other purposes that need two displays with two

different users and two different usages in various fields.

1.3 Scope of Study

The aim of this project is developing a framework called Shell System for In-

Vehicle Infotainment System. As mentioned above, the operating system used,
Windows CE 6.0 is completely configurable especially the user interface. Windows CE

6.0 is a product of Microsoft and in order to help their user, video tutorial, blogs and 24

hour helpdesk is provided. The Windows CE team will work closely with several
hardware manufacturers as they designed their device or product to ensure best possible
integration of hardware and software [5].

The framework will provide the protocol that enables the application to specify

the position of the display whether it is suppose to display at front seat display or at the

rear seat display based on the user query. In order to do that, some Windows CE

application has to be included in the Windows CE image to be tested out the protocols.

I Iowever, the coverage of the project is not including the application that can be added
in the framework which as refer to the figure below is the contribution by the third party

and the scope of this project.

4

Hardware + Driver

ýý / Operating System

ý
Car Manufacturer

I

I
I
I
I

I

I
I

Developer User

Figure 1: Scope of the project

Third - Party

(_

Application
Games

Application
GPS

Application
Windows Media

Player

fl Application
Webcam

(Reverse Camera) J

CHAPTER 2

LITERATURE REVIEW

1. Front Seat
2. Rear Seat

Figure 2: Concept of In-Vehicle Infotainment System

The aim of this project is to develop framework using Windows CE 6.0 as the

operating system to have the environment for IVI System as displayed in Figure 2. The

framcwork will havc two displays that have applications rclcvant to the usagc.

6

Theoretically, the front passenger has access to applications such as movie
player, D3Dývi application, mp3 player and vertical to clone switch. While the rear
passenger, will have access of application such as movie player, mp3 player and games.
The applications for both front and rear monitor can be customize depending on the

needs of the user.

Vertical Extended mode is the utility that separate a desktop into two different

displays. By doing this, the user are able to customize the desktop so that physically it

looks like it is two different platforms but theoretically it is one platform with one

operating system. This mode can be enabled by using Intel Embedded Graphic Driver

1-'

2.1 The Operating System

There are several operating system manufacturers such as Microsoft, Linux and
Mac. Ilowever, for embedded market such as in-vehicle infotainment system the most
important element is the capability for the operating system to be reconfigured

according to the needs of the application [6]. According to the survey by the chief editor

o`t embedded system magazine, Jim Turley, there are approximately 27 types of

operating system that is being used in embedded market [7]. The article is about a

survey of the type of operating system that is favorable to be used in the embedded

project. The survey shows top three of the list are VXWorks, XP Embedded and
Windows CE. The survey also shows that developers are prone to use operating system
that they are familiar with which in the project coverage is Windows.

The available embedded operating systems for embedded market proposed by
Microsoft are Windows CE, Window XP Embedded, Windows Embedded POSReadv,

7

Windows Embedded Enterprise and Windows Embedded NavReady [8]. The operating

system chosen must be suitable %-vith this project requirement and Window CE is chosen

for several factors. Window CE develops small footprint devices which is an important

feature for embedded system which leads to low power consumption [8]. Window CE is

a componentized, real time operating system which is an advanita ,e
for in-vehicle

infotainment GPS system implementation while other operating system offered by

Microsoft requires third party plug-in [8]. Furthermore, this operating system offer

customized Win32 Application compared to full Win32 application compatibility in

Windows XP Embedded [8]. This feature provides customizable operating system and it

required small space that gives advantage to the application in In-Vehicle Infotainment

System.

Furthermore, Window CE or any other embedded operating system trial version
is available for evaluation. This is sufficient for this project as the license of the

operating system is available for trial.

2.2 The Display Driver

The aim of this project is to get the framework to display into two monitor and
behave independently. The key here is to make sure the framework display into both

monitor where in fact it is working with one operating system. Extended mode is a

capability that normally seen in Window XP which is provided by the graphic driver

used. Examples of other modes are Clone and Twin mode.

In Window CE this features is also available with the usage of display driver. In

this project, Intel Embedded Graphic Driver is chosen to be used as the driver. This is

8

due to the features of enabling vertical extended mode for Window CE [3]. The

desktop of Window CE will be stretched vertically until the upper side of the desktop is

displayed on the first monitor while the lower side of the desktop is displayed on the

second monitor as shown in Figure 3 below. This feature is the key of success of the

Dual Display framework.

Figure 3: Vertical Extended to Two Different Display Concept

2.3 The Hardware

The scope of this project only covers the development of the framework. In

order to get develop this framework with Window CE as the operating system, some

requirement for powering the Window CE has to be highlighted. In-vehicle

Infotainment market is a new technology that is Linder development process. Intel

produce a reference board which is design specialize to be implemented in In-Vehicle

Infotainment market [4]. This project coverage will only touches the display part of the

whole system, purchasing the reference board for the project is not appropriate. Since

9

this project is related to the display of the framework, the important component that

needs to be similar to the reference board is the graphic.

The reference board produced by Intel uses Intel latest processor, Intel Atom

with Intel® System Controller Hub DS15W chipset [2]. According to the product brief

of Intel Embedded Graphic Driver, the driver produce support the chipset and the
important element is that the driver can enable vertical extended mode.

The hardware for the target machine is decided to be chosen according to the

chipset used by the board. As long as it can support USB boot where Window CE will
be deploy and the chipset is supported by Intel Embedded Graphic Driver which

capable of enabling vertical extended mode is sufficient for this project. It is decided to

use a board that uses G33 express chipset which is supported by Intel Embedded

Graphic Driver [3]. Monitor used for display are analog and DVI monitor. This is due to

the availability of the monitor.

10

CHAPTER 3

METHODOLOGY

3.1 Flow Chart

Problem

irlantifiratin

Problem

analvcic -

t

i ý

I Scheduling

Hardware

setup

ý I
1

Operating system I
design

T
i

design

Application
developme

I

Integration of
h;; rrlv�; %rr C

END

Figure 4: Flow Chart of the Project

11

3.2 Procedure

The progress of this project can be divided into three stages. By referring to the

flowchart above, the first stage consist of problem Identification, problem analysis and

scheduling which was done at the beginning of final year project period. Then, the

second stage is called development stage which consists of hardware setup, operating

system design and application development. Last stage is the testing stage where the

integration of the hardware and software is being done in this stage. Most of the effort is

concentrated in the last stage since as the framework design has to be compatible with

the hardware used.

3.2.1 Hardware Setup

Setup the Target
Machine

Make Pein Drive

Bootable

Create Batch i iie Lw

autoexec. exe jl

Figure 5: Hardware Setup Flowchart

Developing the framework leads to the need of having the exact environment of
the lvI System proposed. The irst step is to setup the target machine which is where
the Window CE image will be booted up. The hardware display must be two displays

12

that portray the front seat display and rear seat display. In this case, one DVI monitor

and one analog monitor are chosen for display purposes. Since it is still the stage of
developing the framework, only normal keyboard and mouse are utilized. While for the

type of hard disk used is a2 GB pen drive.

As for the target machine where Windows CE image will be booted up, some

interrupts must be disable in order for Windows CE to work properly. The Windows CE

images that have been compiled will be stored in a pen drive with the bootloader.

Development of the operating system and application is done in another machine. In

order to make the image of Window CE to boot automatically, a batch file called

autoexec. exe is created with following command:

loadcepc/v nk. bin

loadcepc : the boot loader, included in the release folder while nk. bin is created

/v : verbose option, that display the current activity when booting up the

image

nk. bin : image of Windows CE

It is important to make sure that the boot loader and the image is in the same
folder where the autoexec. bat is located if the command line used is the same as above.
If the boot loader or the image is located in a specified folder, the command line must
include the path of the object.

13

3.2.2 Operating System Development

As mentioned earlier, Windows CE is a configurable real time operating system

where it has to be built with the desired component. In my case, the binaries of IEGD

driver will be included in during the compilation of the operating system. The steps of
building the operating system are available in the internet. Appendix I consists of the

list of the steps that have been simplified to create a simple Windows CE operating

system.

Windows CE 6.0 is being chosen as the operating system for this project is

based on the ability to customize the took and feel of the desktop. It also support

vertical extended mode that is being enable by Intel Embedded Graphic Driver [3].

Appendix 2 shows the steps to include the IEGD driver into the image. While Appendix

3 shows the steps to enable the vertical extended mode. Appendix 4 shows the step to

include the Shell System created into the OS image.

However, the same dual display concept can also be applied using another

operating system such as Window P and Linux. As long as the driver used can support

extended mode, the concept applied will still be the same. This will give some
flexibility to the car manufacturer to choose as the same framework can be used in other

type of application that requires dual display.

3.2.3 Application Development

Windows CE 6.0 uses C++ language as the SDK is delivered as the extensions

to the Microsoft Visual C: development environment [5]. However, the Shell

14

programming is being done using C# language as there is a tools called CEFileWiz that

integrate the application to the image as long as the application is Windows CE based.

For other application like movie players and D3DM will be develop in C++ language

directly integrated with the image.

The lists of application need to be completed are:

1. Shell System - C# language

2. D3D application - mimic of GPS system - C# language
3. Vef[lcai Extended to Clone Display Switch violin Switch) - C++ language

4. CEplayit - C++ language

The shell system application was developed using C# language where the main

reason is to create the GUI where C# provides GUI programming to create GUI

application. Appendix 5 shows a sample coding of shell system. Each button reacts

when it is clicked on and process the instruction assigned to it For example-

UýJ button2 Click. (: ýc sender,

{
: e)

r_ r proc = new ttv C5 O; / / ,, älllity att dppllCaL1v11

proc. EnableRaisingEvents = raise;

proc. StartInfo. FileName

proc. Start(;

proc. WaitForExit().

The application will retrieved the codes when the button2 is clicked. This is

automatically assigned when I choose a button to be placed in my application. The

coding inside the curly bracket are the instruction for the application to start a new

application. In this case once the button is clicked, the ShellApp will invoke to start a

15

new application named SpinnindDonut. exe. SpinningDonut. exe is a D3Dm application

that i have included in the image.

Since the backgound image will be covering two desktop, the proposed scheme

will be using two different background image. ºs being set in iegd. reg, once the OS is

booted up, the OS will be supporting resolution of 800x1200 where in a normal

windows this resolution is being compared with 800x600. The background image can
be included using the toolbox available in visual C#. The image originated form two

different image are attached to it's bottom and top.

The movie player appication coding was taken form the coding provided by

WinCE 6.0 platform builder. Some modification in it's configuration need to be made

in order to make sure that he coding is compiled as executable application. The features

of this player is that it can play two instances at a time. Therefore, one movie can be

played in the forst monitor and a second instances can be running on the second

monitor. In order to do that, when the application is called in to be run the correct

coordinate must be assigned in the command line so that the movie is being played at

the correct monitor. Refering to Appendix 5, the coordinate for the first monitor is (0,0)

where the width and height for the movie window is specified. Below is a figure

showing the size and coordinate to be assigned for the first and second monitor.

000

40

(800,0)

i\ I
(0,0)

600

iI "ý--
(0,600)

if
(800,600)

Figure 6: First monitor size and coordinates

16

800

(ä00, G00)

600

ti

I
iýi

(0,600)

(800,1200)

(0,1200)

Figure 7: Second monitor size and coordinates

Once the correct coordinates have been correctly assigned, the ceplayit windows

appeared with its default window size initially before resize to the size assigned. This

application was written in class programming style. It involves several cpp files that

handles different job at a time. Looking through the codes, some modification made so
that the windows will directl'y' displayed into assigned size. Appendix 5 enclosed consist

of snippet codes from ceplayit application. There are two areas that were written by

Microsoft that cause the window to appear to its original position before resizing to the

new size. Both codes already being coniniented out and marked as "change by li^jaja"

The D3DM application can be run in the WinCE. The sample codes of the

application are included in Appendix 7. The idea of this application is to have a mimic

of GPS system that could visualize the D3D usage on this machine. The plan was to

create a window and have a texture to be render inside the windows. The texture is then
being rotate in cylindrical motion results in a moving effect of a map; having a map as

17

the texture. The code enclosed manages to create and render unmoved texture. This is

the function that handles the rotation of the maps:

private void rotateSprite(}

{

countY++;

if (countY >= 600)

{

CGüriti =0

cüuiitX}+ ý

//lt (cOt i1tX =

//{

countX = 0;

//}

}

i1

//Set the coordinates for the current tile

tilePosition. X = tileSet. XOrigin + (countX
tilcsct. Extcn tX

)

tilePosition. Y = tileSet. YOrigin + (countY

tileSet. ExtentY);

The rotateSprite function will be called by the main program. Suppose that the

equation will rotationg the cylinder that wrap with texture which in this case the texture

is a map image. However, since the rendering process it too fast, the texture is not

visible. This application is the prove of the ability to develop application that uses
D3DM library.

18

3.3 Tools

3.3.1 Hardware

To achieve the objective the hardware used has to be similar to the environment

plan. The hardware used in this project is:

1. Monitors; I DVI and 1 analog

2. DVI card; Silicon image DVI card

3. Target Machine; micro-ATX Intel Desktop Board DG3IPR, Core2Duo

processor. integrated 10/100/1000 Network connection and on board vga.

4. Development Machine - 945G:: ß: Mobile Board, Centrino Duo processor.

5. Kingston 2GB pen drive.

V. lnÜ%L'.
Äyy' VVCIIÜ V. ii'liÜSý..

3.3.2 Software

There are two software needed for this project and are available as a trial version

in Microsoft webpage. The activation key can be request thru the webpage. The

software are:

1. Microsoft Visual Studio 2005

2. Windows CB 6.0 Pläti; rzri Builüer

19

CHAPTER 4

RESULTS & DISCUSSION

4.1 Results

Figure 8: Initial : 'AI Dual Display Desktop Looks & Feel

To date, the Windows CE operating system with IEGD driver included is build

and the shell as startup application is implemented. The shell is configured so that the

look of the two displays as shown in Figure 3. This is the requirement for basic

framework of the IVI system. By booting the Windows CE 6.0 with custom shell is the

turning point of the success of the project. It proves that the main idea of having two
different displays under one operating system can be implemented by using Intel

Embedded Graphic Driver.

20

Move on to the next step is including applications for the shell to work with. The
first application included in the image is a movie player. The basic coding of the movie
player is provided in the Windows CE 6.0 Platform Builder package but is not
configured to be an executable application. Some of the configuration need to be

modify so that the player can be used in the OS. The movie player or known as ceplayit

can be called using command line with display size and position set by user input. The

movie player can now be use and display in different monitor.

The framework is ready to be used. Now is the time to integrate the framework

to a real life model for better experience using the framework. The touch screens that

support Window CE is the one that has board connected to it. Touch screen that is

available with the size needed and driver support is meant for Window XP, Linux and
Mac OS. The DVI output can be converted to VGA using DVI to VGA converter.

Now is the stage of applying the framework using touch screen. However, there

is a slight problem with the DVI to VGA converter. The converter purchased cannot

convert the signal from the DVI port to the monitor. The monitor is working fine, so as

the DVI port when I use DVI monitor. This may due to the compatibility problem

between the dvi card with the converter. Usually, DVI to analog converter is ship with

the display card itself.

Figure 9: The latest look of the framework

21

4.2 Discussion

The main idea of this project is providing a framework that can be used by

Intel® solution; Low-Power Intel® In-Vehicle Infotainment Design with Intel

Embedded Graphic Driver. Since the reference design is available for Intel's employee
for internal development used only, the target machine is substitute with a micro-ATX
Intel Desktop Board DG3IPR. The concept is still the same with the usage of IEGD

driver and lucky for me that IEGD driver also support other chipset. However, the

architecture of the machine used is the same to the reference design which is x86

processor.

Booting Windows CE took quite an effort due to the interrupt problem. This is

because the
higher

priority will get the machine attention compared to lower priority.

Since a pen drive is used as the hard disk for this project, the USB priority might be

lower than other interrupt in the system, causes hangs during booting up Windows CE.

After disabling some unused feature in the system bios, the operating System boots

normally.

The shell system is being developed using C# language. There is a tool called

CE iieWiz that convert the executable file (. exe) into the Windows CE 8.0 catalog.

This way, we can select the component created in the catalog that will then include the

application directly as the subproject. This feature gives the flexibility of developing

graphical user interface like application.

22

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

The aim of this project is to be able to use IEGD driver to develop a framework

that can be use in In-Vehicle Infotainment System. T here is a bright possibility that the

framework can be developed and customized as the turning point of developing dual

display has already been achieved. All of the applications are able to run on the

platform and operating system. However, there are still some polishing programming

needs to be added for the application to be run fla: vlessly. The application included will
depend on the user based on the usage. The integration steps are included in the

appendix. This way, any application developer can create application for IVI system

and then integrate with the framework.

This project require several steps to enabled the framework that requires to the

building the operating system, the driver, disable the default and attached with the
framework that handle the dual display. All this steps need to be done accordingly to
integrate the framework. The objective of this project is achieved as a framework of the
dual display was created and can be further.

23

5.2 Recommendation

The framework for Dual Display Shell System was created in this project.

Basically, more improvement can be done from this point in term of customizing with

more interesting graphical user interface (GUI) for the framework, depending on the

requirement of the user.

Implementing the framework to different hardware architecture may require
different steps in term of compatibility. It is highly recommended to make sure the

architecture of the processor, as in this project the framework is develop on x86

processor and the driver compatibility which in this project the driver used is Intel

Embedded Graphic Driver.

Windows CE is a customizable real time operating system. Some of the features

can be added during the operating system development. This will give more flexibility

to the user so that it can be customize according to their need. Application such as

reverse camera can be included for further improvement. This is proven as one of the

application in the project uses D3Dv1 library.

24

PýL' ý1'EL' n1\ EýTýýc \lil\\. 1iý7

[11] Deborah A. Boehm-Davis, Aaron Marcus, Paul Allen Cireen, Hideki Hada, David

Wheatly, The next revolution: vehicle user-interfaces and the global rider/driver

experience, CHI '03 extended abstract on Human factor in computing systems, April 05

- 10,2003, Ft. Lauderdale, Florida, USA.

[2] Intel® Corporation, INTEL ADVANCES IN-VEHICLE INFOTAINMENT

SOLUTIONS WITH OPEN PLATFORMS,

http:, ', 'wv%vX . intel. com/pressroom; 'archive, 'referencc; 'IVIOpenPlatforms. pdf, NOVI Mich.,

May 21,2008.

[3] Intel® Corporation, Intel® Embedded Graphics Driver for Embedded Intel®

Aichilectuie-Based Chipsets,

http: //www. intel. com/design/intarch/swsup/graphics drivers. htm.

[4] Intel® Corporation, Low-Power Intel® IN-Vehicle Infotainment Reference Design,

httf. //download. intel. com/desiLn/emhedded/infotainment/docs/Intel IV] Reference De

sign. pdf, 0408/LS/OCG/XX/PDF, 319785-0001US, 2008.

15] Robert O'Hara, Microsoft Windows CE: A New Handheld Computing Platform,

Microsoft Corporation, One Microsoft Way, Redmond WA 98052-6399, ACM 0-

89791-850-9 97 0002,1997.

[6] S. Baskiyar, N. Meghanathan, A Survey of Contemporary Real Time Operating

Systems, June 26,2004.

25

[7] Jim Turley, Embedded System on the Rise,

http: //www. embedded. com/columns/showArticle. jhtml? articlelD=187203732, June

21 s`, 2006.

[8] Windows Embedded Product Description,

http: //www. m icrosoft. com/windowsembedded/en-

us/products/whichproduct/default. mspx.

26

APPENDICES

27

Appendix 1: Creating a Window CE 6.0 Operating System

Rnninr"

- Start Visual Studio 2005; File -> New -> Project.

7I
Prolet types:

ftual C*f

ATL
CLP
General
MFC
Smart Device
W t. 32

Other Languages
Ottli fr . yd Typc:
Platform eulder for CE 6.0

Templates.

Visual Studio Installed templates

,#
05 De-; i rin

My Templates

15e. xch Mine TrmpLVei...

A KupU fa uoatiy a Ws krwa Eu1meJikJ CE 6.0 uydaG ry sYAan

Name:

Location: C: ýWINCE6001050eapns

Sdudon Name: <Enter name>]Create (rectory for soluAon

ý
LJ iJ

ý ýý ý

Crxel

Select Platform Builder for CE 6.0, OS Design

Create custom device platform with the following selections for the step specified. if a

step is not specified, then just click NEXT.

vItTTrT sI'

rI Welcome to the Windows
Z. Embedded CE 6.0 OS Design

Windows Wizard
Embedded CC 6.0

IM -.. 1QrYe yni 1}roudilhe pRKe: S d c. edM Sn
OS k. 1u a CE 60 La.. JyMu. l, r. 0i ds. y.
ddnea the dwacbeasea of 0 CE 60 OS

You can caw an 0' , deslM Dr choosnq s assp+
leaplre and osr a mwe 6osd wppoA packages
IBSPil A ESP ms-des an OEM d%iron lya. IOALI
and device *, as

I ht wcaM hebt fok/

Choose a BSP

Cho" a der+p "mdate
Add ttaea to you OS desg, a wuo+e temt hgn t

ToooNrue dd Nee

ý

Neat> Fnnh Larch

28

- Step 1: New Project

tinýrf `ifl in it O nmma n" Chnll(. ýn4om oMJ" b....,.,.....,, ... b.
.,........ J .,......

- Step 2: Board Support Packages (BSPs)

� CEPC: X86

6.0 OS Design

Board Support Packages (BSPs)
A BSP cmtam a set d dewce dives " de added to you OS deagn

AvaAeble B5Ps
n An6a Boatd ARMVY Select am a mae BSPs Ia you OS design

[] De+iceEmJator ARMV4I ABSPIaaWrdowsEmbedded CE PC-based
II H15ample OMAP212D ARMV4I hardr. are sefeerce pletlam The pledam uut
Q Manslaalll PXA27X: ARMVII the 0S bxod on the x86 ac+dcctuc

Note, DrJy BSP: aypated by mlakd CPUs ate
6spleyrod n the kt

IPreviws i Neýu 1rf. nh
-1 (Cencd

- Step 3: Design Templates

Custom Device

- Strn 4 <innhenrinnc - End iicPr

� Games

� WordPad

- Step 5: Applications and Services Development

.
NE

l1 ý ý1 /ý

.
iýr, I wuiraci riaiucwuix ý. 0

�C Library and Runtimes

Cd_.... �. ! `...... ++........ d_.... C Q. AT.. d....... 1..... - 1JaV'1 V. '. Valaaa. a. aal.. pºaVa ve. a . 1ý. ý. J \! ý 1. ý. a. ý V auus

None

29

- Step 7: Core OS Services

� Device Manager

� Display Support

� Kernel Functionality -º Target Control Support (Shell. exe)

- Step 8: Devices Management

AT..
a ývi: v

- Step 9: File Systems and Data Store

� File System -internal -º RAM and ROM File System

� Registry Storage -* RAM--*based Registry

- aiep l u: routs

� Arial
� Courier New

� Times New Roman

- Step 11: Graphics and Multimedia Technologies

� Graphics

� Media

- Step 12: international

None

- Step 13: Internet Client Services

� Internet Explorer 6.0 for Windows Embedded

- Step 14: Security

None

30

- Step 15: Graphics, Windowsing and Events

.� cý, ýii ý (ýNr rhý, »i ctioii ý cýU;,, 4rý cý,
WI oýi ..., ..

� Shell - Command Shell -4 Console Window

� UI: Everything except for Software Input Panel and Touch Screen

The below notification is the acknowledgement of using third party DVD Renderer. Click
till !1

A\. 1_I.
IVW IG.,. _. 1.... 1Ub. _..

G A.

DVD-Video

Usage Notification
Usage Notification

'tc

Internet Explorer RPC Support
Security Warning

Security Warning
The emct rg cemperert rl ^r: Cki c.. d t-c' r,, *j-. _'ees. s ct

^d::. c Emtedded CE
7hs catalog dem includes the J, zt itred: cmpc^ýe CtjectPlcde!

UU

31

In Solution Explorer, right click and choose on properties @ go to Project -+ Properties.

D--t- Dnnv
.:: v ý... ,....., ::... Y-1.,

.. 1,, 11. v1v. v. 1., "b"

Make sure the Configuration is set to `iii Configuration''
r In Build Options - tick on Runtime image

(1MhKAM04=1)

n be larger than 32MB

. 11

+ Common Properties

- rr, rfp»Mm Ar{rrlws
G ne
locale
Buid opWn
E"onment
Custom Build ActKns
5ubprolect linage Settings

Budd oplaru;
jJ 6d1a Iiw_k. Je. w1. uRAM IIMGOSCAE'TURE-11

Enable ebool space n merray IIMGEBOOT-11

., Enable event uacligdurngbootllMGCELOGETU+. B, _ -1I Q Enable td -me dobuypry wtppt IIMG}f
Enable 4 emd deGippe (no IMGNOOEBUGGE Ej`11

[wJ EnableKITLIno1MGNOIJTL-01
QEnable U0dn91IMFOTER"II -j

STUB-11

fCönfptratbn Manapn...

Iý'-ýiiýaiittrYýLý<ý2ýý.
Ib 2airiiwtiýiRýý ýýý -

For this project, the image used is a released version, so set the Solution Configuration to
CEPC X86 Release

ýý ý, ;ý

The final step is to click on Build - Build Solution (F7)

� This step usually takes around one hour to complete

32

Appendix 2: Include 1EGD Driver into Image

1. In Solution Explorer, right click and click on properties or go to project-->properties.

-A new window will pop up, <project> Property Pages

-In Build Options - tick on Runtime image can be larger than 32MB

(IMGRAM64=1)

-in Environment create this variables and its value

SSIGD=<location of the driver>ssigd

SSOAL=wince

SSLPD=wince

MAKE MODE=unix

2. In Solution Explorer

-Go to Platform->CEPC->Parameter Files->Platform. bib

-Append this at the end of platform. bib where you can see there is a place to add
Files

ddi_iegd. dll $(SSIGD)\ddi_iegd. dll NK SHK

iegaidg3. dii $(SS1Gu)\iegd3dgi. au INK SHK

iegd3dg4. dll $(SSIGD)\iegd3dg4. dll

analog. dll $(SSIGD)\analog. dil

lvds. dll$(SSIGD)\lvds. dil

sdvo. dll $(SSIGD)\sdvo. dll

hdmi. dll $(SSIGD)\hdmi. dll

NK SHK

NK SHK

NK SHK

NK SHK

NK SHK

33

3. Go to Platform->Cepc->platform. reg

-Click on the source.

-Add this just before ENDIF "BSP_NODISPLAY! "

--

; IEGD

--

[HKEY_LOCAL_MACHINE\System\GDl\DisplayCandidates]

"Candidate3"="Drivers\\Display\\Intel"

#include "<location of the driver binaries>\iegd. reg"

4. Once u have finish adding the changes... Rebuild the solution in Build->Rebuild

Solution a, CTRL + ALT + r7

34

Appendix 3: Enabling the vertical extended mode

Included with the binaries, there is a file named iegd. reg. This file is used to set the initial

state of the driver once the image booted up. i Jere is where the setting of vertical

extended mode is being done.

Step 1- gets 2 displays - one DVI and one analog panel

Step L- ensure Coen displays can suppuri the same resuiuiiun

- Example, connect DVI that supports 10x7 and get an analog panel that is also
supporting 10x7

Step 3- In existing iegd registry configuration -u need to set the height = 2Xwidth

- Example below:

"w iciin"-ciwurci: 4Ov ;- 1024

"Height"=dword: 600 ;= 1536 = 768 x2

Step 4- configure for vertical extended

L»piayt-unng -uwuru: i

Step 5- ensure the correct ports are selected

"For iürder"-"24000"

;2= SDVOB, 4= int-LVDS

There are insiruciions on iup of every cuniiguraiiun in iegu. reg.

35

Appendix 4: Integrating the Shell System into OS image

Step 1:

In Wince Plattbrm Builder, in Catalog view, go to

Core OS - CEBASE - Shell and User Interface - Shell - Graphical Shell.

Uncheck the option. This is to disable the Standard Shell.

Step 2:

Create a Subproject under a name PI attiorm Startup.

Choose Add and Item -add PlatformStartup. cpp file

Sample of PlatformStartup. cpp file is included in Appendix 8. This is to prepare the OS

to boot using the Shell System created.

Step 3:

Run CE ileWiz. exe (this is to make the application as a catalog added in the public

folder).

1. A window naIneu W inuows CE rue W izarü Will pop up. Oick on

AddFile(s) button

ii. Add the exe file of the application (in this case ShellApp. exe - located in

the <appProjectDirectory>/bin/debug@release).
iii. Put the Component name column as ShellAppCatalog.

iv. Click Build, add vendor's name and Done!

36

Step 4:

i. Go to catalog items view in Platform Builder 4 Click refresh 4 Expend the third

Party

The ShellAppCatalog option is visible now and then mark the ShellAppCatalog

option.

iii. Check the Solution explorer, the ShellApp is already included in the subproject.

iv. Any chances in the Shell app. lust rebuild the solution in the Shell app and rebuilt

solution for ShellAppCatalog.

v. Add these lines in the ShellAppCatalog 4 Parameter 4 ShellAppCatalog. dat

root: -Directory("\") : -Directory(" Startup")

Directory("\Startup"): -File("She] lApp. exe", "\windows\Shel IApp. exe")

37

Appendix 5: Sample codini for Shell System

using System;
using System. Collections. Generic;
using System. ComponentModel;

using System. Data;

using System. Drawing;

using System. Text;

using System. Windows. Forms;
using System. Diagnostics;

namespace ShellApp
{

public partial class Form 1: Form
{

{

}

public Forml()

TnitializeC'omponent(l;

private void buttonI_Click(object sender, EveiILALg-, e)
{

Prn(-, -«. Start("cehlavit", "a. wmv -v 100 -w800 -h400");
Xallini media slaver

}

private void button2_Click(object sender, ýLIILAýýs e)
{

Prix"t-ý proc = new Pi ('allim, an annlivation
proc. EnableRaisingEvents = false;
proc. StartInfo. FileName = "SpinningDonut";
proc. StartO;
proc. WaitForF. xit();
I

private void button3_Click(objeet sender, i'AeutAºg, e)
{

Prýir"cc proc = new Iýrnrrccýý

proc. EnableRaisingEvents = false;
proc. Startlnfo. FileName = "navigator3D";
pros. Start();
proc. WaitForF. xitO;

}

qü

private void button4_Click(nbject sender, ºýý, ý; ýr`ý e)
{

Process proc = new l'rocessO;
proc. EnableRaisingEvents = false;

proc. StartInfo. FileName = "cmd";
proc. StartQ;

proc. WaitForExit(;;
}

private void button6_Click(object sender, t: vventArýgs e)
{

}
Pr: ; :.: ý. Start("ClýJisplZ}Setlino", "4 5");

private void button5_Click(object sender, FvcntArgs e)
{

ilruccss. Start("cc: piayit", "a. wmr -x640 -y100 -wi60 -Ili 20");

}

private void button? Click(ohject sender, I-x ontAr`-c e)
{

}
Process. Start("ccplavit", "a. wmv -x 100 -v700 -w600 -h400");

private void pictureBox2_GotFocus(object sender, L, iiAi , e)
{y

/* this is to ensure client always remained at the hackeroun*
This function puts it at th emost bottom from z poitn*/

this. TopMost = false;

ý ý

39

Appendix 6: Sample coding of Ceplayit

r'; Main program code
int
APIENTRY
«'inAbin (

HINSTANCE hlnstance,
HINSTANCE hPrevlnstance,
LP T STR 1pCliidL'itiz,
int nCmdShow
)

J
l

TCHAR szFile[MAX_PATH]={0}, szCmd[MAX_PATH]={0},
szÜpt[MAX_PATH]= {0};

Cup ". viiuiiau. i iiilt.; 1Vl iiitiuiEAuüiuuii
StringCchCopy(szFile, MAX_PATH, 1pCmdLine);
ParseOptions(szFile, MAX_PATH, szCmd, MAX_PATH, szOpt, MAX_PATH);

if (! ParseCommandLine(szOpt))
return 1;

if (! ConvertFilename(szFile, MAX_PATH, szCmd))
return 1;

RETAILMSG(1, (TEXT("UEPlavit: Playing file 076s. 1r\n"), szFile));

LiCaiL iiiL; iiia II i %tiiiiüvýN
if (! Dolnit(hInstance, nCmdShow, szFile))

return 1;

': ý Oct COM intcrfäces
ColnitializeCx(NULL, COINIT_MULTITHREADED);

if (FAILED(GetInterfaces()))
{

CoUninitializeO;
return l;

}

IM C,
--t

initi-l window position change by lizAja,, *a, dicahle initial //window position

//SetlnitialPosition(:

OutputDebugString(TEXT("before entering plavmedia. 1r\n\r\n"));

40

i; Nom play the movie
PlayMedia(szFile, hInstance);

(l tý ýtl�lý}ýý 1Cfr ýi ýT(ýýT . n'ýc P1üý' RA .ýnr rý r\n"\\.
..... f .. Cý. .ý.. t. J 'I.

' Release C OM interfaces
CleanuplnterfacesO;
CoUninitializeO;

1`: 1 I'll, I /1` - l''f'C'I I ,\I .1_ 1u1.11üý %-A%: uO, u l1Vi LL. JI l ýüüý%. ýJ, lAV 1%.
i%.

It

if (! g_bKeepCESHFile)
DeleteTemporaryFile();

OutputDebugString(TEXT(" CEPlavit exiting. \r\n'r'\. n"));
return 0;

}

HRESULT PlayMedia(LPCTSTR 1pszMovie, HINSTANCE hInstance)

HRESULT hr = S_OK;
TCHAR bufT256];

if (g_bWindowless)
{

}
TiF(i ddffindoitiý°.. °iisRe:: üererTýurüý'i'ýý'\ý'ivBi%);

Allow DirectShow to create the I ilterUraph for this media tile
hr - pGB->RenderFile(lpszMovie, NULL);
if (FAILED(hr)) {

StringCchPrintf(buf, 256, TEXT("Failed(l., 08Ix) in RenderFile(%s)! 'ý[ýtl"),
hr, lpszMovie);

OutputDebugString(buf);
return hr;

}

, a, ý CV �ý ,V1t1Vr �4
V^: 1�1f1.

to ýr/,, 01 r h:. IV11
"i V 111VJJUýV vIINýl1 1ý4VV

ý,
r to ý 7V1 111Hýw

U application window Thic allrntiýc keyboard input to he transferred
i/ to our main window for processing.
//

II
/i If this is an audio-only or MIDI file, then put_MessageDrain will fail.

41

hr = pVW->put_MessageDrain((OAHWND) g_hwndMain);
if (FAILED(hr))
{

,, ý-V ,
II

,
hl,

,
UVU }IU1 IVIIIIVI JIIVN Ull, II ICU II IIIUUI. II NIIIUVý\

ShowCurrentAudioFile(lpszMovie);

ShowWindow(g_hwndMain, SW_SHOWNORMAL);
g_bShowingMainWindow = TRUE,
g_bAudioOnly = TRUE;
SetForegroundW i ndow(a_h wndMai n);
SetFocus(g_hwndMain);

)
else
{

Sho:: 'r'wr: e:: tý, ýidcoFile(k lYs; Movie);

I

lý
lIlit ldll Ll; Jltlll; Yd lld , Uil: J

g_psCurrent = psSTOPPED;
g_vsCurrent = vsDEFAULT;

üMessagcl3ox(NULL, L"Try Test", NULL, MB_OK);
Display first frame of the movie
hr = piviC->vausel ,

if (1'ýLLEL ju)) i
StringCchPrintf(of 256, TEXT("Failed(%OSlx) in PauscO! \r". n"), hr);
OutnutfchuvStrinf)(huf)-

return hr:
*/

//liz"jaja - change to make the original window not to display before set initial
position

Override defaults with command line options
Process StartupOptions();

U VCl I0LU1 IUI hC)4)l)il1U 111[)U1

SetFocus(g_hwndMain);
Ciý-j Fnr(wTrni, indWind(ý)v(,,,

_hwndMain);

; '/ Start playback
hr - pMC->Runo ;
if(FAILED(hr)) {

42

StringCchPrintf(buf, 256, TEXT("Failed(°-0081x) in Rupf 1" r', n"), hr);
OutputDebugString(buf);
return hr;

}

('ý I1 11
rr JC: I IU I/

'UIIJI.
II: CII IIIUUC; II IUI: JII: U

if (g_bFullScreenStart)
ToggleFulIScreenO;

// Update state variables
g psCurrent = psRUNNING;
g hC ontinue = TRl JF:

g_US}iowEveiits - TRUE;
Fiucc>a uiiü iMýýL,)iww cVCutS

ProcessEventLoopO;

if (g_bShowingMainWindow)
{

}
ShowWindotiv(g__hv.:: 6.4air., S : V__HIDE);

CLEANiýr:
ICIUCIl hr;

}
Appendix 7: Sample coding D3Dm application

using System;
using System. Collections. Generic;
using System. ComponentModel;
using System. Data;
using System. Drawing;
using System. Text;
using System. Windows. Forms;
using Microsoft. WindowsMobile. DirectX;
using Microsoft. WindowsMobile. DirectX. Direct3D;
using System. Reflection;

namespace navigator3D
{

partial class i'uiiii i: i'miii

{
nf- -; -" DX Device = null; // Drawinc device
Texture texture = null; /'Sprite bmp
Rectangle tilePosition; , 'Location of tile
TileSet tileSet = null; ' Local TileSet

43

ýpr1t sprite; ' price V ýrihle
Int10 countX = 0; //Count to Track Columes of Tiles
Int10 countY = 0; , "Count to Track Rows of Tiles

Vector 3 spritePosition = new Vector_ (0,0,0); //Start Location
h Ut Sprite

v ,, i ", spriteCenter= 1ic11 . (0,0,0);,, 'Stliilc Lclilci

spriteVelocity = new "_. t : ý(1

public Forml()
{

this. ClientSize = new Size(400,400); i Specify the client
Us ize

this. Text = "GPS System";
this. MinimizeBox = false;
this. MaximizeBox = false;
this. BringToFront();

}

public bool Initial izeDirect3DO
{

trv
{

I'resentl'arameters pps = new 11 resent Parameterso;
pps. Windowed = true; ii Specify that it will be in a

/lwindow
IJ When it llelti lralile is swapped to die ilullt bu lel,

., l 1, -l'
�

v.
u: u... a. u. u

pps. BackBufferCount = 1;
pps. BackBufferFormat = Format. R5G6B5;
pps. BackBufferHeight = this. Height;
pps. BackBufferWidth = this. Width;
pps. SwapEffect = ý)\ýapt�ttcct. Discard;

- ,. ". ,,,,, t111C: 1 tliC l. üilCllt JI. ICCII 1, ul[lWl, it ý11i1 UC

:. r+. nlýý rl, L, tniý frOST! n: n,,. n'
,....,. .. al ... ý..,,

DX Device = new hevice(0, DhvireTvno. Default, this,
CreateI Ias. None, pps); Put everything into the

//device

DX_Device. DeviceReset += new Eventi-iandier(
this. OnResetDevice);

this. OnResetDevice(DX_Device, null);

}
catch (l)trcctXLxccption e)
}

44

Mrcc"1f'rl,,.. Show(e. ToStringO, "Error"); 1/ Handle all
//the exceptions

return false;
}
return true;

ý f

void OnResetDevice(object sender, º=\ ow ;\ ri'c e)
{

Device dev = (Device)sender;

.: L. IVULI. .3 }JIII%. VUJLLL \lll UI. ýILI.

sprite = new Sprit-_(dev);

texture =* ['extureLoader. From Stream(dev,
Asscmbl \,. GetExecutingAssemblyO

.
GetManifestResoureeStream("na\ i`ýator3D. aaa, jpg"),

i): %. Default, 256,256,0,
:.,;,,,.. None, `,,, -.,., _-,. Unknown, ', '.;:;;. VideoMemory,

(Microsoft. WindowsMobile. DirectX. Direct3D. {:; ýt ýr)n: nW. Default,
(Microsoft. WindowsMobile. DirectX. Direct3D. Filtcr)D3DX. Default, 0);

'(. uni gure I ileSet to the size of ti le in burp
tileSet = new i iic: I)et(texture, 0,0,600,0,800,600);

Go1 IiloPocition inoliujino tho oft', -: o1 to iho rontor of ihr
8sprtte

tilePosition = new fZectanýýlc(tileSet. XOrigin,
tileSet. YOrigin, tileSet. ExtentX, tileSet. ExtentY);

}
private void Render()
{

if (DX Device = null) lithe dc% ice is empty don't bother rcilderimu

t
}

return;

DX_Device. Clear(('! _-_Irh'! ýý-, Target, (, %,! -r. White,]. Of, 0);
('Irar the window to white.

DX_Device. BeginScene(;

sprite. Begin(-)hritcl, Iags. None);

45

Ilraýý n ýnri1 at till- clirront nncitinn

sprite. Draw(ti le Set. Texture, tilePosition,
spriteCenter, spritePosition, CuIur. White. ToArgbO);

sprite. Endo;

DX_Device. EndScene();
DX_Device. PresentO;

}
rotateSpriteO;

private void rotateSprite()
{

ýt'h-ýnýý. " tho coiin t to mowP to tho novt cnritý -ý --__. _. . _. ý.... ý ý

countY++;
if (countY >= 600)

i countY = 0;
countX++;

/J countX = 0:

, ýJ
}

pct the coordinates bur the current tile

tilePosition. X = tileSet. XOrigin + (countX * tileSet. ExtentX);
tilePosition. Y = tileSet. YOrigin + (countY * tileSet. E xtentY);

}

protected override void OnPaint(I'aintL-ventArus e)
{

� vi. NL..,. u.. b

this. RenderO;

it Render again
this. InvalidateO;

}

}
}

46

Appendix 7: Sample of PlatformStartup. cpp file

PlatformStartup. cpp : Defines the entry point for the application.

#include "stdaf. \. h"

void ProcessStartupFolderO;

int WINAPI WinMain(HINSTANCE hlnstance,
HINSTANCE hPrevlnstance,
LPTSTR IpCmdLinc,
int nCmdShow)

{
Since this is annlication is launched through the reeistrv HKI, M\init we need to call

Si enalStarted passing in the command line parameter
SignalStarted(_wtol(lpCmdLine));
ProcessStartupFolder();

return 0;
}

i The purpose of this function is to start all applications found in our custom Startup
folder

the Windows Explorer shell contains a "Special Folder" \\Start Menu\Programs\Startup

- CSIDL STARTUP
For this demo I'm going to override this '. ̀: i. h a fixed location folder callcd "', Startup"

if Thic code is taken from the Microcnft Windows CF Shared Co, irre in the following
location.
ii c: \wwwince500\public\shcll\oak\hpc\explorer\main\explorer. cpp

void ProcessStartupFolder()
{

WCHAR szPath[MAX_PATH];
HANDLE hFind = NULL;
WIN32 FIND DATA fd = (0);
vvý. R.,.. , ", HR pJGCIICLVQIIIG i1V1NÄ_I"H 1 i-1I,

it N . ýe that JJJ n... J to 're` to the Startup folder
this can he achieved in one of two wave

// 1. Create the Startup Folder using this projects . DAT file
or..
..

iviap our appiications into the >tartup i-oicier usinýi ii. tii ie iz (m\ pretered option

47

lstrcpy(szYath, L", \Startupll*. *");

hFind = FindFirstFile(szPath, &fd);
if (INVALID_HANDLE_VALUE != hFind)
{

SHELLEXECUTEINFO sei = {0};
sei. cbSize = sizeof(sei);
sei. nShow = SW SHOWNORMAL;
sei. lpFile = pszFileName;

do
{

lstrcpy(pszFileName, L" ̀ 'Startup "
if ((! (FILE_ATTRIBUTE_DIRECTORY & fd. dwFileAttributes)) &&

(0 !_
_tcsicmp(TEXT("drsktop.

ini"), fd. cFileName)))
{

lstrcat(rszFileName, fd. cFileName);
Shel IExec uteF: x(&sei);

}
} while (FindNextFile(hFind, &fd));
FindClose(hFind);

}
1

48

