—
Y
e b

g 2

IN-VEHICLE INFOTAINMENT (IVI) DUAL DISPLAY SHELL SYSTEM

By

NORHASLIZA BT MOHAMAD YUSOFF

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2009
by
Norhasliza bt Mohamad Yusoff, 2009

CERTIFICATION OF APPROVAL

In-Vehicle Infotainment Dual Display Shell System

by
Norhasliza bt Mohamad Yusoff

A project interim submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

~ J:‘/]

| L

(DR YAP VOOI VOON)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
June 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Jorastiy

NORHASLIZA BT MOHAMAD YUSOFF

ABSTRACT

In-vehicle Infotainment system development is moving one step from the current
technology. This project is focused on developing a dual display framework for In-
Vehicle Infotainment System. The dual display is meant for the usage of the front and
rear passenger in car. The framework will help car manufacturer to apply the recent
technology to improve the in-vehicle infotainment system. Instead of having several
hardware such as GPS and DVD player in a car, combining all in single platform will
save space and provide a wide range of entertainment such as games and internet
browsing. The development of this project includes building the Windows CE as the
operating system, integrating and enabling dual display monitor using Intel Embedded
Graphic Driver, and specifying the coordinate that differentiate the two monitor for
application purposes. This report will discuss the method on developing the framework
with the solution for problem that arises during the development of the project. This
project was developed using a specific development machine and the problem are solved

only for the machine used. Recommendations have been added for future development of

the project.

ACKNOWLEDGEMENT

I would like to express my biggest appreciation to the following persons who
had given great contribution towards making my project successful. First of all, I
would like to thank to my project supervisor; Dr. Yap Vooi Voon who willing to
spend time in his busy work schedule for giving an idea and advice for this project.

His commitment and passion in guiding me has inspired me to work hard.

Secondly, I would like give a bunch of thanks to my internship supervisor,
Douglas Cheah and Alan Previn Teres Alexis who gives the initial idea for my final
year project. Their contribution on knowledge about Window CE and driver
architecture gives in depth information toward the completion of this project so as

gives help to any problem arises during the project development.

In particular, I would also like to express my gratitude towards great idea
contribution and tools support given by my colleagues. Thanks to them for all the
knowledge and skills that they share with me. Working with my project with a little
help from them is a great moment to remember. Sometimes we joke around with

each other to reduce our work stress.

Last but not least, thanks a lot to the examiner, because of their willingness to

evaluate my project and give some idea for project improvement.

TABLE OF CONTENTS

ABSTRACT.....cco00rvressssssssscasas

ACKNOWLEDGEMENT

LIST OF FIGURES

CHAPTER 1: INTRODUCTION................

1.1 Backeround STAY: . v ot ioas i tigus Svaitsspsads ol

1.2 Problem: Statement - o o s e e e e Al
1.2.1 Problem IdentifiCation. oo vouos vensaesssnsansnins svasssd
1.2.2 Significant of the Project.................occoiviei i3

1.3 SOODE OF SIUAY. .. o esiees rismmeis smnritss s anisnninsiasmsian £48 sxmasmassss it

CHAPTER 2: LITERATURE REVIEW...... cocesescisesnsessessssesersesearesrasnane 6

2.1 The Operating SYStemcuueeivrveeeeiennneceevnnneevenvanacd
2.2 The DiSpIaYIDIIVEL Lo es sra ixssinam sy gt Sn an By oS T S
23 The HArdWRIE. . reasie viseewshe o seman s See nels anls e ee Ao ia e T

CHAPTER 3: METHODOLOGY .ciccco0seersesesescscsssssssssscsscesessss

0 1 5 [0y, @ Ty e e S e e s e Bl gl
R L (T 1) 1 (= e e e s e
3.2 1 HardWare SetUD. .. 5 1. La e s acnsiiimh dais s ssSr st sasad &

3.2.2 Operating System Development.............................. 14
3.2.3 Application Development......................coeeeenen. 14

v

Tl o s) £ e)
B L HATAW AT o bt e ekt S Yy Nt
3.3.2 SOftWAIC. .. oo e e e e e e e e e 19

CHAPTER 4: RESULTS & DISCUSSION.....cccoceeutecriencencennens sessnsisssesadl)
A1 RESUMS00 oeeeiinnins coe vt ceanenvnnions son asasssnsnasanes suvese sansell)
SR BT IR e e SR e R B e
CHAPTER 5: CONCLUSION & RECOMMENDATION........ SRessEEbE SRR OHAN
5.1CoNCluSION.cooii i e e e 23
5.2 Recommendation...ceevervvrinniinveeveevvnvnn i vee eesvnnvennnn 24
REFERENCES

APPEND]CES (LR A R R R R R A R R A A R A R A R R R R A R] LA AR R L L R R L R L] 27

vi

Figure 1
Figure 2
Figure 3

Figure 4

Figure 5
Figure 6
Figure 7
Figure 8

Figure 9

LIST OF FIGURES

SCOPE OFf the PTOJECL... .cv uu cravaninarisesns ssananissnasnans ass sosmnnssnsssnsrnsns

Concept of Intel® In-Vehicle Infotainment System.........................

Vertical Extended to Two Different Display Concept.....................

Flow Chart of the Project.................

Hardware Setup Flowchart............oooovi i
First monitor size and cOOrdinates.ovv e vvnverre e evneee e
Second monitor size and COOTANALIES. vosivsinins sasbis sxusrvsss 5
Initial IVI Dual Display Looks & Feel................cooeiiii e,

Latest Look of the Framework... oo e,

vii

.12

.16

o I 4

.20

il

CHAPTER 1

INTRODUCTION

1.1 Background Study

Many reputed companies are planning to establish new province in the field of in-
vehicle infotainment systems. Today, a car is not just a medium of transport, but a
medium to practice digital life style. It becomes a place to carry out business, access
real time road and destination information, a medium for entertainment to listen to

music and watch movies. get in touch with e-mails and short messages.

Although, it can be observed that many advance changes in the in vehicle
infotainment system. there are some obstacles on the way to technology expansion.

Some of them are as follows:

o High cost of technology

¢ Disruptive communication systein for GPS system and internet access.

s Rcquirc additional knowlcdge to manage such systcms.

e Increase number of hardware components like ports, cable circuits,

antennas etc.

However, looking at the current advancement of technology, a “digital life” in car

can be implemented. All of above factors suggest an evolution of in vehicle

infotainment.

In the past, it is not possible to bring full computer ability into in vehicle
infotainment system such as word processing. emails. entertainment (movie), games
and even with GPS system all in one car. Despite having one user in front of the car, it
will be an interesting application to have the children to be able to indulge themselves
with entertainment of technology. Long distance journev will not be such a boring trip

anymore.

1.2 Problem Statement

The recent technology has only one application per system for example GPS
(Global Positioning System) system or DVD plaver. These two systems are working on
different hardware independently which provide issues of space where the spacing in
car are limited and the power supply also have to be utilized for both hardware. Instead,
having both systems working in a single hardware might give solution to space and
power problem. The idea now is to have a single platform that do all the jobs; games,
GPS, movies, emails, and even internet. This is more like bringing the PC capabilities

into car.

Intel’s Tech Bulletin, May 21, 2008; cited Intel Corporation is committed to
providing technology and collaborating with leaders in the embedded and automotive
industries to advance in vehicle infotainment (IVI) solutions [2]. The product is called
Intel® Atom™ processor that is being introduced April 2008 which is ideal for IVI
system based on the small footprint and low-power design [2]. This product is an open
platform which means any company that uses Intel’s solution are able to customize

different application.

The above discussion indicates that the IVI system can have one platform but with
two different users: front seat and rear seat. Intel Embedded Graphic Driver support
dual display environment for Microsoft Windows CE 6.0 via vertical extended display
[3]. The most relieving part is Intel Embedded Graphic Driver support the chipset use
by IVI Reference Design; Intel® System Controller Ilub USISW [4]. By the
combination of Intel® Atom processor and Intel® System Controller Hub US15W
introduced in Low-Power Intel® In-Vehicle Infotainment Reference Design, enabled

with Intel Embedded Graphic Driver, IVI System in a car will be everyone’s dream.

1.2.1 Problem Identification

In general, automotive manufacturers have little or no experience in software
development, and especially User Interface development [1]. The framework that will
be created in this project is an implementation of new technology. Knowledge of both
Windows CE and Intel Embedded Graphics Driver has to be combined to achieve the

dual display framework shell system as proposed.

1.2.2 Significant of the Project

Manufacturer of the world’s vehicles face a revolutionary moment as vehicles in
future may have onboard computer systems, Internet access, and advanced
display/interaction hardware. The project of creating the framework for automotive
manufacture may breaks the IVI market that gives them solution to the product

introduce by Intel; Low-Power Intel® IVI Design. Ilaving a framework, customizing

the IVI System will be a simple programming helped by the framework’s manuals and

guidelines.

Looking deep into the significant of this project, the same framework can be
extended to be implemented for other purposes that need two displays with two

different users and two different usages in various fields.

1.3 Scope of Study

The aim of this project is developing a framework called Shell System for In-
Vehicle Infotainment System. As mentioned above, the operating system used;
Windows CE 6.0 is completely configurable especially the user interface. Windows CE
6.0 is a product of Microsoft and in order to help their user, video tutorial, blogs and 24
hour helpdesk is provided. The Windows CLC team will work closely with several
hardware manufacturers as they designed their device or product to ensure best possible

integration of hardware and software [5].

The framework will provide the protocol that enables the application to specify
the position of the display whether it is suppose to display at front seat display or at the
rear seat display based on the user query. In order to do that, some Windows CE
application has to be included in the Windows CE image to be tested out the protocols.
IHowever, the coverage of the project is not including the application that can be added
in the framework which as refer to the figure below is the contribution by the third party
and the scope of this project.

1
; Third - Party
A
| g 0t
2 Application
Application
| GPS "
Operatin

P

g System

Application)
Windows Media

Deveioper User

/ | \ \ Gt RIAYO o)
' ‘Car Manufacturer i | \ Application
Webcam
l (Reverse Camera)
|
i

Figure 1: Scope of the project

CHAPTER 2

LITERATURE REVIEW

2. Rear Seat

1. Front Seat

Figure 2: Concept of In-Vehicle Infotainment System

The aim of this project is to develop framework using Windows CE 6.0 as the
operating system to have the environment for IVI System as displayed in Figure 2. The

framcwork will have two displays that havc applications rclcvant to the usage.

Theoretically, the front passenger has access to applications such as movie
player, D3DM application, mp3 player and vertical to clone switch. While the rear
passenger, will have access of application such as movie player, mp3 player and games.
The applications for both front and rear monitor can be customize depending on the

needs of the user.

Vertical Extended mode is the utility that separate a desktop into two different
displays. By doing this, the user are able to customize the desktop so that physically it
looks like it is two different platforms but theoretically it is one platform with one
operating system. This mode can be enabled by using Intel Embedded Graphic Driver
[31.

2.1 The Operating System

There are several operating system manufacturers such as Microsoft, Linux and
Mac. HHowever, for embedded market such as in-vehicle infotainment system the most
important element is the capability for the operating system to be reconfigured
according to the needs of the application [6]. According to the survey by the chief editor
of embedded system magazine, Jim Turley, there are approximately 27 types of
operating system that is being used in embedded market [7]. The article is about a
survey of the type of operating system that is favorable to be used in the embedded
project. The survey shows top three of the list are VXWorks, XP Embedded and
Windows CE. The survey also shows that developers are prone to use operating system

that they are familiar with which in the project coverage is Windows.

The available embedded operating systems for embedded market proposed by
Microsoft are Windows CC, Window XP Cmbedded, Windows Cmbedded POSReady,

/i

Windows Embedded Enterprise and Windows Embedded NavReady [8]. The operating
system chosen must be suitable with this project requirement and Window CL is chosen
for several factors. Window CE develops small footprint devices which is an important
feature for embedded system which leads to low power consumption [8]. Window CE is
a componentized, real time operating system which is an advantage for in-vehicle
infotainment GPS system implementation while other operating system offered by
Microsoft requires third party plug-in [8]. Furthermore, this operating system offer
customized Win32 Application compared to full Win32 application compatibility in
Windows XP Embedded [8]. This feature provides customizable operating system and it
required small space that gives advantage to the application in In-Vehicle Infotainment

System.

Furthermore, Window CE or any other embedded operating system trial version
is available for evaluation. This is sufficient for this project as the license of the

operating system is available for trial.

2.2 The Display Driver

The aim of this project is to get the framework to display into two monitor and
behave independently. The key here is to make sure the framework display into both
monitor where in fact it is working with one operating system. Extended mode is a
capability that normally seen in Window XP which is provided by the graphic driver

used. Examples of other modes are Clone and Twin mode.

In Window CE this features is also available with the usage of display driver. In

this project, Intel Embedded Graphic Driver is chosen to be used as the driver. This is

due to the features of enabling vertical extended mode for Window CE [3]. The
desktop of Window CE will be stretched vertically until the upper side of the desktop is
displayed on the first monitor while the lower side of the desktop is displayed on the
second monitor as shown in Figure 3 below. This feature is the key of success of the

Dual Display framework.

Figure 3: Vertical Extended to Two Different Display Concept

2.3 The Hardware

The scope of this project only covers the development of the framework. In
order to get develop this framework with Window CE as the operating system, some
requirement for powering the Window CE has to be highlighted. In-vehicle
Infotainment market is a new technology that is under development process. Intel
produce a reference board which is design specialize to be implemented in In-Vehicle
Infotainment market [4]. This project coverage will only touches the display part of the

whole system, purchasing the reference board for the project is not appropriate. Since

this project is related to the display of the framework, the important component that

needs to be similar to the reference board is the graphic.

The reference board produced by Intel uses Intel latest processor, Intel Atom
with Intel® System Controller Hub US15W chipset [2]. According to the product brief
of Intel Embedded Graphic Driver, the driver produce support the chipset and the

important element is that the driver can enable vertical extended mode.

The hardware for the target machine is decided to be chosen according to the
chipset used by the board. As long as it can support USB boot where Window CE will
be deploy and the chipset is supported by Intel Embedded Graphic Driver which
capable of enabling vertical extended mode is sufficient for this project. It is decided to
use a board that uses G33 express chipset which is supported by Intel Tmbedded
Graphic Driver [3]. Monitor used for display are analog and DVI monitor. This is due to

the availability of the monitor.

10

CHAPTER 3
METHODOLOGY

3.1 Flow Chart START

Problem
identificatin

A

Problem

analvsis -

A
Scheduling

Hardware
setup

Operating system

design

h

Application
developme

e

(ntegration ON
hardwares & e

\ e

END
Figure 4: Flow Chart of the Project

11

3.2 Procedure

The progress of this project can be divided into three stages. By referring to the
flowchart above, the first stage consist of problem identification, problem analysis and
scheduling which was done at the beginning of final year project period. Then, the
second stage is called development stage which consists of hardware setup, operating
system design and application development. Last stage is the testing stage where the
integration of the hardware and software is being done in this stage. Most of the effort is
concentrated in the last stage since as the framework design has to be compatible with

the hardware used.

3.2.1 Hardware Setup

Setup the Target
Machine

X
Make Pen Drive
Bootable

A

Create Batch File @
autoexec.exe

Figure 5: Hardware Setup Flowchart

Developing the framework leads to the need of having the exact environment of
the VI System proposed. The first step is to setup the target machine which is where
the Window CE image will be booted up. The hardware display must be two displays

12

that portray the front seat display and rear seat display. In this case, one DVI monitor
and one analog monitor are chosen for display purposes. Since it is still the stage of
developing the framework, only normal keyboard and mouse are utilized. While for the

type of hard disk used is a 2 GB pen drive.

As for the target machine where Windows CE image will be booted up, some
interrupts must be disable in order for Windows CL to work properly. The Windows CC
images that have been compiled will be stored in a pen drive with the bootloader.
Development of the operating system and application is done in another machine. In
order to make the image of Window CL to boot automatically, a batch file called

autoexec.exe is created with following command:

loadcepc /v nk.bin
loadcepe : the boot loader, included in the release folder while nk.bin is created
v : verbose option, that display the current activity when booting up the
image
nk.bin . image of Windows CE

It is important to make sure that the boot loader and the image is in the same
folder where the autoexec.bat is located if the command line used is the same as above.
If the boot loader or the image is located in a specified folder, the command line must
include the path of the object.

13

3.2.2 Operating System Development

As mentioned earlier, Windows CE is a configurable real time operating system
where it has to be built with the desired component. In my case, the binaries of IEGD
driver will be included in during the compilation of the operating system. The steps of
building the operating system are available in the internet. Appendix 1 consists of the

list of the steps that have been simplified to create a simple Windows CL operating

system.

Windows CE 6.0 is being chosen as the operating system for this project is
based on the ability to customize the look and feel of the desktop. It also support
vertical extended mode that is being enable by Intel Embedded Graphic Driver [3].
Appendix 2 shows the steps to include the IEGD driver into the image. While Appendix
3 shows the steps to enable the vertical extended mode. Appendix 4 shows the step to

include the Shell System created into the OS image.

However, the same dual display concept can also be applied using another
operating system such as Window XP and Linux. As long as the driver used can support
extended mode, the concept applied will still be the same. This will give some
flexibility to the car manufacturer to choose as the same framework can be used in other

type of application that requires dual display.

3.2.3 Application Development

Windows CE 6.0 uses C++ language as the SDK is delivered as the extensions

to the Microsoft Visual C!! development environment [5]. Ilowever, the Shell

14

programming is being done using C# language as there is a tools called CEFileWiz that
integrate the application to the image as long as the application is Windows CE based.
For other application like movie players and D3DM will be develop in C++ language

directly integrated with the image.

The lists of application need to be completed are:

1. Shell System — C# language
2. D3D application — mimic of GPS system — C# language

(3]

Vertical Exiended to Clone Display Swiich(violin Swiich) — C++ lunguage
4. CEplayit — C++ language

The shell system application was developed using C# language where the main
reason is to create the GUI where C# provides GUI programming to create GUI
application. Appendix 5 shows a sample coding of shell system. Each button reacts

when it is clicked on and process the instruction assigned to it. For example:

private void button2_Click(cbject sender, Eveculiiiys e)

{

Frocess proc = new rrocess|();//Calling an application
proc.EnableRaisingEvents = false;
proc.StartInfo.FileName = "SpinningbDonut";
proc.Start ()

;
proc.WaitForExit () ;

The application will retrieved the codes when the button2 is clicked. This is
automatically assigned when 1 choose a button to be placed in my application. The
coding inside the curly bracket are the instruction for the application to start a new
application. In this case once the button is clicked, the ShellApp will invoke to start a

15

new application named SpinnindDonut.exe. SpinningDonut.exe is a D3Dm application

that | have included in the image.

Since the backgound image will be covering two desktop, the proposed scheme
will be using two different background image. As being set in iegd.reg, once the OS is
booted up, the OS will be supporting resolution of 800x1200 where in a normal
windows this resolution is being compared with 800x600. The background image can
be included using the toolbox available in Visual C#. The image originated form two

different image are attached to it’s bottom and top.

The movie player appication coding was taken form the coding provided by
WinCL 6.0 platform builder. Some modification in it’s configuration need to be made
in order to make sure that he coding is compiled as executable application. The features
of this player is that it can play two instances at a time. Therefore, one movie can be
played in the forst monitor and a second instances can be running on the second
monitor. In order to do that, when the application is called in to be run the correct
coordinate must be assigned in the command line so that the movie is being played at
the correct monitor. Refering to Appendix 5, the coordinate for the first monitor is (0,0)
where the width and height for the movie window is specified. Below is a figure

showing the size and coordinate to be assigned for the first and second monitor.

800
A l(+— (800,0)
A
(0,0)
600
(0,600) (800,600)
// /
v %

Figure 6: First monitor size and coordinates

16

800

A
v

(800,600)

—
&

'R

N

(800, 1200)

(0, 1200) /
v red

Figure 7: Second monitor size and coordinates

Once the correct coordinates have been correctly assigned, the ceplayit windows
appeared with its default window size initially before resize to the size assigned. This
application was written in class programming style. It involves several cpp files that
handles different job at a time. Looking through the codes, some modification made so
that the windows will directly displayed into assigned size. Appendix 5 enclosed consist
of snippet codes from ceplayit application. There are two areas that were written by
Microsoft that cause the window to appear to its original position before resizing to the

new size. Both codes already being commented out and marked as “change by li*jaja”

The D3DM application can be run in the WinCE. The sample codes of the
application are included in Appendix 7. The idea of this application is to have a mimic
of GPS system that could visualize the D3D usage on this machine. The plan was to
create a window and have a texture to be render inside the windows. The texture is then

being rotate in cylindrical motion results in a moving effect of a map; having a map as

17

the texture. The code enclosed manages to create and render unmoved texture. This is

the function that handles the rotation of the maps:

private void rotateSprite()
{
//Change the count to move to the next sprite tile
countY++;
if (countyY >= 600)
{

0N
Vr

]

county

countX++;

//1if (countX >= 4)
L1
l/ countX = 0;
Ve

//Set the coordinates for the current tile

tilePosition.X = tileSet.XOrigin + (countX *

tilePosition.Y = tileSet.YOrigin + (countY *

tileSet.ExtentY):

The rotateSprite function will be called by the main program. Suppose that the
equation will rotationg the cylinder that wrap with texture which in this case the texture
is a map image. However, since the rendering process it too fast, the texture is not

visible. This application is the prove of the ability to develop application that uses
D3DM library.

18

3.3 Tools

3.3.1 Hardware

To achieve the objective the hardware used has to be similar to the environment

plan. The hardware used in this project is:
1. Monitors; 1 DVI and 1 analog
2. DVI card; Silicon image DVI card

3. Target Machine; micro-ATX Intel Desktop Board DG31PR, Core2Duo
processor, integrated 10/100/1000 Network connection and on board vga.

4, Development Machine — 945GM Mobile Board, Centrino Duo processor.
5. Kingston 2GB pen drive.

6. PS/2 keyboard & mouse.

3.3.2 Software

There are two software needed for this project and are available as a trial version

in Microsoft webpage. The activation key can be request thru the webpage. The

software are:

1. Microsoft Visual Studio 2005
2. Windows CLC 6.0 Platform Builder

19

CHAPTER 4

RESULTS & DISCUSSION

4.1 Results

Figure 8: Initial IVI Dual Display Desktop Looks & Feel

To date, the Windows CE operating system with IEGD driver included is build
and the shell as startup application is implemented. The shell is configured so that the
look of the two displays as shown in Figure 3. This is the requirement for basic
framework of the IVI system. By booting the Windows CE 6.0 with custom shell is the
turning point of the success of the project. It proves that the main idca of having two
different displays under one operating system can be implemented by using Intel
Embedded Graphic Driver.

20

Move on to the next step is including applications for the shell to work with. The
first application included in the image is a movie player. The basic coding of the movie
player is provided in the Windows CE 6.0 Platform Builder package but is not
configured to be an executable application. Some of the configuration need to be
modify so that the player can be used in the OS. The movie piayer or known as cepiayit
can be called using command line with display size and position set by user input. The

movie player can now be use and display in different monitor.

The framework is ready to be used. Now is the time to integrate the framework
to a real life model for better experience using the framework. The touch screens that
support Window CE is the one that has board connected to it. Touch screen that is
available with the size needed and driver support is meant for Window XP, Linux and

Mac OS. The DVI output can be converted to VGA using DVI to VGA converter.

Now 1s the stage of applying the framework using touch screen. However, there
is a slight problem with the DVI to VGA converter. The converter purchased cannot
convert the signal from the DVI port to the monitor. The monitor is working fine, so as
the DVI port when I use DVI monitor. This may due to the compatibility problem
between the dvi card with the converter. Usually, DVI to analog converter is ship with

the display card iiself.

Figure 9: The latest look of the framework

21

4.2 Discussion

The main idea of this project is providing a framework that can be used by
Intel® solution; Low-Power Intel® In-Vehicle Infotainment Design with Intel
Embedded Graphic Driver. Since the reference design is available for Intel’s employee
for internal development used only, the target machine is substitute with a micro-ATX
Intel Desktop Board DG31PR. The concept is still the same with the usage of ILGD
driver and lucky for me that IEGD driver also support other chipset. However, the
architecture of the machine used is the same to the reference design which is x86

ProcCessor.

Booting Windows CE took quite an effort due to the interrupt problem. This is
because the higher priority will get the machine attention compared to lower priority.
Since a pen drive is used as the hard disk for this project, the USB priority might be
lower than other interrupt in the system, causes hangs during booting up Windows CE.
After disabling some unused feature in the system bios, the operating system boots

normally.

The shell system is being developed using C# language. There is a tool called
CELTileWiz that convert the executable file (.exe) into the Windows CE 8.0 catalog.
This way, we can select the component created in the catalog that will then include the
application directly as the subproject. This feature gives the flexibility of developing

graphical user interface like application.

22

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

The aim of this project is to be able to use IEGD driver to develop a framework
that can be use in In-Vehicle Infotainment System. There is a bright possibility that the
framework can be developed and customized as the turning point of developing dual
display has already been achieved. All of the applications are able to run on the
platform and operating system. However, there are still some polishing programming
needs to be added for the application to be run flawlessly. The application included will
depend on the user based on the usage. The integration steps are included in the
appendix. This way, any application developer can create application for [VI system

and then integrate with the framework.

This project require several steps to enabled the framework that requires to the
building the operating system, the driver, disable the default and attached with the
framework that handle the dual display. All this steps need to be done accordingly to
integrate the framework. The objective of this project is achieved as a framework of the

dual display was created and can be further.

23

5.2 Recommendation

The framework for Dual Display Shell System was created in this project.
Basically, more improvement can be done from this point in term of customizing with
more interesting graphical user interface (GUI) for the framework, depending on the

requirement of the user.

Implementing the framework to different hardware architecture may require
different steps in term of compatibility. It is highly recommended to make sure the
architecture of the processor, as in this project the framework is develop on x86
processor and the driver compatibility which in this project the driver used is Intel
Cmbedded Graphic Driver.

Windows CE is a customizable real time operating system. Some of the features
can be added during the operating system development. This will give more flexibility
to the user so that it can be customize according to their need. Application such as
reverse camera can be included for further improvement. This is proven as one of the

application in the project uses D3DM library.

24

REFERENCES

[1] Deborah A. Boehm-Davis, Aaron Marcus, Paul Allen Green, Hidek1 Hada, David
Wheatly, The next revolution: vehicle user-interfaces and the global rider/driver

experience, CHI 03 extended abstract on Human factor in computing systems, April 05
— 10, 2003, Ft. Lauderdale, Florida, USA.

[2] Intel® Corporation, INTEL ADVANCES IN-VEHICLE INFOTAINMENT
SOLUTIONS WITH OPEN PLATFORMS,

http://www.intel.com/pressroom/archive/reference/IVIOpenPlatforms.pdf, NOVI Mich.,
May 21, 2008.

[3] Intel® Corporation, Intel® Embedded Graphics Driver for Embedded Intel®
Architecture-Based Chipsets,

http://www.intel.com/design/intarch/swsup/graphics drivers.htm.

[4] Intel® Corporation, Low-Power Intel® IN-Vehicle Infotainment Reference Design,
http://download.intel.com/design/embedded/infotainment/docs/Intel IVI Reference De
sign.pdf, 0408/LS/OCG/XX/PDF, 319785-0001US, 2008.

[5] Robert O’Hara, Microsoft Windows CE: A New Handheld Computing Platform,
Microsoft Corporation, One Microsoft Way, Redmond WA 98052-6399, ACM 0-
89791-850-9 97 0002, 1997.

[6] S. Baskiyar, N. Meghanathan, A Survey of Contemporary Real Time Operating
Systems, June 26, 2004.

25

[7] Jim Turley, Embedded System on the Rise,
http://'www embedded.com/columns/showArticle. jthtml?article]lD=187203732, June
21%.2006.

[8] Windows Embedded Product Description,

http://www.microsoft.com/windowsembedded/en-

us/products/whichproduct/default. mspx.

26

APPENDICES

27

Appendix 1: Creating a Window CE 6.0 Operating System

Raocine:
ASADAND .

- Start Visual Studio 2005, File -> New -> Project.

New Project ﬁlgl

Project types: Templates: L L

= Visual C++ Visual Studio installed templates
ATL
[t & 05 Design
General
MFC My Templates
smatDevke ISearch Onkine Templates
Wwin32 -

Other Languages

. Other Project Types

Platform Bulder for CE 6.0 -

A poject for toolew a Winduws Embedded C_E 6.0 vperating system

Name:
Location: CAWINCES00\OSDesigns ~ Browse...
Solution Name: <Enter_name> [F]Create drectory for solution

Select Platform Builder for CE 6.0, OS Design

Create custom device platform with the following selections for the step specified. 1f a

step is not specified, then just click NEXT.

Windows Embedded CE 6.0 OS Design Wizard

Py Welcome to the Windows
Wn‘d'-da;s Embedded CE 6.0 OS Design
|
EmbeddedCE6o Wizard

Thes weard gudes you through the process of crealing an
0s du\nklal:[Sob.nudguh An 05 design
defines the charactenstics of a CE 6.0 05

You can create an 05 design by choosng a design
template and one o r:n:o suppot a0es
(B5Ps] A BSP includes an DEM adaptstion layer [DAL)
and duvers

Thes weard heips your

Choose a BSP.

Chooze a design template

Add tems to your 05 dengn or remove dems fom i

To cortnue. chck Next

|Ne¢t>||bmh Cancel

28

- Step 1: New Project

- Step 2: Board Support Packages (BSPs)

v" CEPC: X86

Windows Embedded CE 6.0 0S5 Design Wizard
Board Suppon Packages (BSPs)
A BSP contams a set of device diivers thal are added lo your 05 design

Avalable BSPs

[j 7“ Sy Select one of more BSPs for yous DS detign
(] Device Emulator ARMVA A BSP lor 8 Windows Embedded CE PC-based
8 O i ey pon gt

Mote: Only BSPs supported by installed CPUs are
displayed in the lst.

[<Pievious |[Met> | [Fowh | [Concel

- Step 3: Design Templates
v Custom Device
- Step 4: Annlications - Fnd Tiser

v' Games
v' WordPad

- Step 5: Applications and Services Development

s A i mlzall el r 1T AN
v JNE L LuInpdact rraimcwoIlk £.v

v C Library and Runtimes

29

- Step 7: Core OS Services

v Device Manager
v" Display Support
v Kernel Functionality — Target Control Support (Shell.exe)

- Step 8: Devices Management

- Step 9: File Systems and Data Store

v File System —Internal — RAM and ROM File System
v" Registry Storage — RAM—based Registry

- Siep 10: Fonis

v" Aral
v" Courier New

¥" Times New Roman
- Step 11: Graphics and Multimedia Technologies

v (raphics
v Media

- Siep iZ: internavionai
None
- Step 13: Internet Client Services
v Internet Explorer 6.0 for Windows Embedded
- Step 14: Security

None

30

- Step 15: Graphics, Windowsing and Events

v Qhall _s ranhinal Chall s Qtandar Chall
ASARN AL " \Jlur“lwul A AANI AR 4 DAL s]

v Sheill — Command Shell — Console Window

v" UL Everything except for Software Input Panel and Touch Screen

Windows Embedded CE 6.0 05 Design Wizard

0S Design Project Wizard Complete

You have completed the waard Press Finish lo create your 05 Design project

[<Pwm [Fingh H Cancel]

The below notification is the acknowledgement of using third party DVD Renderer. Click

4. Catalog Item Notification

~
DVD-Video
Usage Notification
Usage Notification
DVD-Video requires a third party CVD Renderer in order to function. Please
see thas Micresoll Vel site for mere information
Internet Explorer RPC Support
Security Warning
Security Warning
The remaoting compenent of DCOM will be removed from future releases cf
Windsws Embedded CE
This catelog item includes the Distnbuted Compenent Cbject Mcdel (DCOM) 3
[LAcknoviedoe | [Concel |

31

In Solution Explorer, right click and choose on properties @ go to Project — Properties.

= A mnourwwindaur unll man in Cnratants Deanartu Damac
-~ 4 % oaav Y FYLAANAR/ ¥FY ¥V ALL P\I"J ur, “Fl UJVVV L IUFVI‘J s “bvl)

Y

Make sure the Configuration is set to “All Configuration™
In Build Options - tick on Runtime image/eﬁ be larger than 32MB
(IMGRAM64=1) /‘/

‘f

1est1 Property Pages

v |

;CWM‘ Al Configur ations

+ Common Properties Buid ophons:

= Configuration Properties) Buifor tacked everis w RAM (IMGOSCAPTURE =1
General [Z] Enable eboot space in memary IMGEBOOT=1) [
Locale [7] Enable evert hacking durng boot IMGCELOGEN d
Budd Opbiors [[] Enable haudwaie-asnsted
Envronment Enable kemel debugger (no IMGNODEBUGGE B=1) |

Custom Buld Actions [] Enable KITL [ro IMGNOKITL=1)
Subproject Image Settings |] Enable proking [IMGPROFILER=1)
,’T Fhasiy V)

For this project, the image used is a released version, so set the Solution Configuration to
CEPC X86 Release

Help

Community

CEPC x86 Rele ~ |Platform Builder-Specific (_TG ~ % i

i
I
L

o Ry ar IEGE

v+ 3 X platform.bib
L
o ‘ 0

The final step is to click on Build — Build Solution (F7)

v’ This step usually takes around one hour to complete

32

Appendix 2: Include IEGD Driver into Image
1. In Solution Explorer, right click and click on properties or go to project-->properties.
-A new window will pop up, <project> Property Pages

-In Build Options - tick on Runtime image can be larger than 32MB
(IMGRAM64=1)

-in Environment creaie inis variabies and 1is vaiue
SSIGD=<location oF the driver>ssigd
SSOAL=wince
SSLPD=wince

MAKE MODE=unix

2. In Solution Explorer
-Go to Plattorm->CEPC->Parameter Files->Platform.bib

-Append this at the end of platform.bib where you can see there is a place to add

Tiles
ddi_iegd.dll $(SSIGD)\ddi_iegd.dll NK SHK

AT et 1.

legd3dg3.dii 3(SSIGD)\iegd3dgs.dii

i

~r T

:zl

iegd3dgd.dll $(SSIGD)\iegd3dg4.dll NK SHK
analog.dll $(SSIGD)\analog.dll NK SHK
Ivds.dl1$(SSIGD)\lvds.dll NK SHK
sdvo.dll $(SSIGD)\sdvo.dll NK SHK
hdmi.dll $(SSIGD)\hdmi.dll NK SHK

33

3. Go to Platform->Cepc->platform.reg
-Click on the source.

-Add this just before ENDIF "BSP_ NODISPLAY!”

; IEGD

[HKEY LOCAL_ MACHINE\System\GDI\DisplayCandidates]
"Candidate3"="Drivers\\Display\\Intel"

#include "<location of the driver binaries>\iegd.reg"

4. Once u have finish adding the changes...Rebuild the solution in Build->Rebuild
Solution @ CTRL+ALT+I'7

34

Appendix 3: Enabling the vertical extended mode

Included with the binaries, there is a file named iegd.reg. This file is used to set the initial
state of the driver once the image booted up. Ilere is where the setting of vertical
extended mode is being done.

Step 1- gets 2 displays — one DVI and one analog panel

Siep Z — ensure boih dispiays can suppori ihe same resoiuiion

- Example, connect DVI that supports 10x7 and get an analog panel that is also
supporting 10x7

Step 3 - In existing iegd registry configuration — u need to set the height = 2Xwidth
- Example below:
"Widih"—dword:400 ; — 1024

"Height"=dword:600 ; = 1536 = 768 x 2

Step 4 — configure for vertical extended
"DispiayConiig"—dword: i
Step 5 — ensure the correct ports are selected
"PoriOrder"—"24000"

; 2=SDVOB, 4 = int-LVDS

** There are insiruciions on op of every conilguraiion in iegd.reg.

35

Appendix 4: Integrating the Shell System into OS image

Step 1:
In Wince Plattorm Builder, 1n Catalog view, go to
Core OS = CEBASE -> Shell and User Interface = Shell 2 Graphical Shell.

Uncheck the option. This is to disable the Standard Shell.

Step 2:
Create a Subproject under a name PlattormStartup.
Choose Add and Item —>add PlatformStartup.cpp file

Sample of PlatformStartup.cpp file is included in Appendix 8. This is to prepare the OS
to boot using the Shell System created.

Step 3:

Run CEFileWiz.exe (this 1s to make the application as a catalog added 1n the public
folder).

L. A window named Windows CE Fiie Wizard wiii pop up. Ciick on
AddFile(s) button
1. Add the exe file of the application (in this case ShellApp.exe - located in
the <appProjectDirectory>/bin/debug@release).
iii. Put the Component name column as ShellAppCatalog.

iv. Click Build. add vendor's name and Done!

36

Step 4:

il

1.

iv.

Go to catalog items view in Platform Builder - Click refresh = Expend the third
Party

The ShellAppCatalog option is visible now and then mark the ShellAppCatalog
option.

Check the Solution explorer, the ShellApp is already included in the subproject.
Any changes in the Shell app. just rebuild the solution in the Shell app and rebuilt

solution for ShellAppCatalog.
Add these lines in the ShellAppCatalog => Parameter = ShellAppCatalog.dat

root:-Directory("\"):-Directory("Startup")

Directory("\Startup"):-F ile("ShellApp.exe","\windows\ShellApp.exe")

37

Appendix 5: Sample coding for Shell System

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;
using System.Diagnostics;

namespace ShellApp
! public partial class Form|1 : Form
public Form1()
: InitializeComponent();
i

private void button1_Click(object sender, EventAigs e)
{
Process, Start("ceplayit"”, "a.wmyv -y100 -w800 -h400");
//Calling media player
}

private void button2_Click(object sender, CveniAigs)
{ Process proc = new Process();/Calling an application
proc.EnableRaisingEvents = false;
proc. StartInfo.FileName = "SpinningDonut";
proc. Start();
proc. WaitForExit();

H

private void button3_Click(object sender, EventAigs €)
{ Process proc = new Process(),
proc.EnableRaisingEvents = false;
proc.StartInfo.FileName = "navigator3D";
proc.Start();
proc. WaitForExit();

R

private void button4_Click(object sender, FventArgs g)
{
Process proc = new Process();
proc.EnableRaisingEvents = false;
proc.StartInfo.FileName = "cmd";
proc.Start();
proc. WaitForExit(),

}

private void button6_Click(object sender, EventArgs)

{
Process.Start("CEDisplaySetting”, "4 5");
}

private void button5_Click(object sender, EventArgs e)

t
rrocess.Start("ceplayit”, "a.wmv -x640 -y 100 -wi160 -h120");,
H

private void button7 Click(object sender, FventAros e)

{
Process.Start("ceplayit”, "a.wmv -x100 -y700 -w600 -h400"),

H

privatc void pictureBox2_GotFocus(objcct sender, LyvcitAigs)
{
/* this is to ensure client always remained at the backgroun*®
This function puts it at th emost bottom from z poitn*/
this. TopMost = false;

-

39

Appendix 6: Sample coding of Ceplayit

// Main program code

int

APIENTRY

WinMain (
HINSTANCE hlinstance,
HINSTANCE hPrevinstance,
LPTSTR 1pCmidLine,
int nCmdShow

)
-

L
TCHAR szFile]MAX_PATH]={0}, sz2Cmd[MAX_PATH]={0},
szOpt[MAX_PATH]={0};

// Copy command line {or manipulation
StringCchCopy(szFile, MAX PATH, IpCmdLine);
ParseOptions(szFile, MAX PATH, szCmd, MAX PATH, szOpt, MAX_PATH);

if ('ParseCommandLine(szOpt))
return 1;

if (! ConvertFilename(szFile, MAX PATH, szCmd))
return 1;

RETAILMSG(1, (TEXT("CEPlayit: Playing file %s.\r\n"), szFile)),

// Create the main window
if ('Dolnit(hInstance, nCmdShow, szFile))
return 1;

// Get COM 1nterfaces
ColnitializeEx(NULL, COINIT MULTITHREADED);

if (FAILED(GetInterfaces()))
{

CoUninitialize();
return 1;

H

/] Set initial window position — change by liz"\jaja;disable initial //window position
//SetlnitialPosition():

OutputDebugString(TEXT("before entering playmedia.\r\n\r\n"));

40

/I Now play the movie
PlayMedia(szFile, hInstance);

//OutputDebugString(TEXT("Lepas Play Media.\r\n\r\n")),

// Release COM interfaces
Cleanuplnterfaces();
CoUnimtialize();
/I If a temporary file was created (for CESI source), delete it
if ('g bKeepCESHFile)

DeleteTemporaryFile();

OutputDebugString(TEXT("CEPlayit exiting.\r\n\r\n"));
return 0;

}

HRESULT PlayMedia(LPCTSTR IpszMovie, HINSTANCE hInstance)
]
]

HRESULT hr=S_OK;

TCHAR buf]256].

if (g_bWindowless)

{
JIF(AddWindowlessRendererToGraph(pGB));

}

/I Allow DirectShow to create the FilterGraph tor this media tile
hr = pGB->RenderFile(lpszMovie, NULL);
if (FAILED(hr)) {
StringCchPrintf(buf, 256, TEXT("Failed(%081x) in RenderFile(%s)!\r\n"),
hr, IpszMovie);
OutputDebugString(buf);
return hr;

}

// Set the message drain of the video window to point to our hidder
// application window. This allows kevboard input to be transferred
// to our main window for processing.

//

//'If this is an audio-only or MIDI file, then put MessageDrain will fail.

41

hr = pVW->put_MessageDrain((OAHWND) g_hwndMain);
if (FAILED(hr))
{

'/ QY | IR [T)x [S o ar g] L - e ., |
/- Show the main hidden window for KLy UUdIU LUl Ul

ShowCurrentAudioFile(lpszMovie);

ShowWindow(g_hwndMain, SW_SHOWNORMAL);
g bShowingMainWindow = TRUE,
¢ bAudioOnly = TRUE;
SetForegroundWindow(g hwndMain);
SetFocus(g hwndMain);
j

else
ShowCurrentVideoFile(1pszMovie);

H

// Initialize stale variables

g psCurrent = psSTOPPED;
g vsCurrent = vsDEFAULT;

//MessageBox(NULL,L"Try Test",NULL,MB OK);
/I Display first frame of the movie
/* hr = pMC->Pause(),
il (FAILED(hi)) {
StringCchPrintf(buf, 256, TEXT("Failed(%081x) in Pause()!\r\n"), hr);
OutputDebugString(buf):
return hr;
¥/
//hz"jaja - change to make the original window not to display betore set initial
position

/I Override defaults with command line options
ProcessStartupOptions();

/1 Get focus for keyboard input
SetFocus(g_hwndMain);
SetForegroundWindow(g_hwndMain);

// Start playback
hr = pMC->Run();
il (FAILED(hr)) {

42

StringCchPrintf(buf, 256, TEXT("Failed(%081x) in Run()!\r\n"), hr);
OutputDebugString(buf);
return hr;

j

/l Set to fullscreen mode i';‘lcquc:xicd
if (g_bFullScreenStart)
ToggleFullScreen();

/I Update state variables
g psCurrent = psRUNNING;
g bContinue = TRUFE;

g bShowEvents = TRUE,
// Process messages and DirectShow events

ProcessEventLoop();

if (g_bShowingMainWindow)
{

ShowWindow(g _hwndMain, SW HIDE),
}

CLEANUP:
return hr;

}

Appendix 7: Sample coding D3Dm application

using System:;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using Microsoft. WindowsMobile DirectX;

using Microsoft. WindowsMobile. DirectX.Direct3D;
using System.Reflection;

namespace navigator3D
{
partial class Forul : Form
{np\:imx DX Device = null; // Drawing device
Texture texture = null; //Sprite bmp
Rectangle tilePosition; //Location of tile
TileSet tileSet = null; //Local TileSet

43

Sprite sprite; //Sprite Varible
Int16 countX = 0; //Count to Track Columes of Tiles
Int16 countY =0; //Count to Track Rows of Tiles
Vector3 spritePosition = new Vector3(0, 0, 0); /Start Location
//Of Sprite
Vectoid spriteCenter = new Vecioi3(0, 0, 0);s':'5pl ite Centei
Vector2 spriteVelocity = new Vector2(1, 1)/ x,y velocity

public Form1()

{
this.ClientSize = new S1z¢(400,400);//Specity the client

//size

this.Text = "GPS System"; // Specify the title
this.MinimizeBox = false;
this.MaximizeBox = false;
this.BringToFront();

}

public bool InitializeDirect3D()
{

try

PresentParameters pps = new PresentParameters();
pps. Windowed = true; // Specify that it will be in a
//window
// When a new [tame is swapped (o ihe front bufTer,
// the old framc will be discarded
pps.BackBufferCount = 1;
pps.BackBufferFormat = Format.RSG6BS5;
pps.BackBufferHeight = this. Height;
pps.BackBufferWidth = this. Width;
pps.SwapEffect = Swapt-tiect.Discard;
/I After the current scieen is drawn, it will be
//automatically deleted from memory
DX Device = new Device(0, DeviceType.Default, this,
CreateFlags.None, pps); // Put everything into the
//device

DX _Device.DeviceReset += new EventHandier(
this.OnResetDevice);

this.OnResetDevice(DX Device, null);

}

catch (DirectXException e)

{

MessageBox. Show(e. ToString(), "Error"); // Handle all
/the exceptions
return false;

}

return true;
1
;

void OnResetDevice(object sender, FventAros e)

{
Device dev = (Device)sender;

//Create sprite object on device
sprite = new Sprite(dev);

texture = Texturel.oader.FromStream(dev,
Assembly.GetExecutingAssembly()
.GetManifestResourceStream("navigator3D.aaa.jpg"),
D31X.Default, 256, 256, 0,
Usage.None, ['orimat.Unknown, Pool.VideoMemory,
(Microsoft. WindowsMobile. DirectX . Direct3D.Filter)N3DX Default,
(Microsoft. WindowsMobile.DirectX.Direct3D.Filter)D3DX . Default, 0);

//Contigure |1leSet to the size of tile in bmp
tileSet = new TileSci(texture, 0, 0, 600, 0, 800, 600);

//Set tilePosition invllldin:_r the offset to the center of the
//sprite
tilePosition = new Rectangle(tileSet. XOrigin,
tileSet. YOrigin, tileSet. ExtentX, tileSet. ExtentY);

}
private void Render()

{
d

return;

}

DX_Device.Clear(ClearFlags Target, Color. White, 1.0f, 0);
/I Clear the window to white
DX Device.BeginScene();

if (DX_Device == null) // If the device is empty don't bother rendering

sprite. Begin(Spritellags. None);

45

/Mraw a sprite at the current position
sprite. Draw(tileSet. Texture, tilePosition,
spriteCenter, spritePosition, Color. White. ToArgb());

sprite. End();

DX_Device. EndScene();
DX_Device.Present();

rotateSprite();
}

private void rotateSprite()
{ //Change the count to move to the next sprite tile
countY++;
if (countY >= 600)
{
countY = 0;
countX++;
//if (countX >— 4)
/{
/I countX = 0:
I}
}
//Set the coordinates tor the current tile
tilePosition. X = tileSet. XOrigin + (countX * tileSet.ExtentX);
tilePosition. Y = tileSet. YOrigin + (countY * tileSet.ExtentY);

}

protected override void OnPaint(PaintkventArgs e)

{

I/ ar e T .
// Render on painting

this.Render();
// Render again

this.Invalidate();
}

46

Appendix 7: Sample of PlatformStartup.cpp file

// PlatformStartup.cpp : Defines the entry point for the application.
1

#include "stdafx.h"

void ProcessStartupFolder();

int WINAPI WinMain(HINSTANCE hlInstance,

HINSTANCE hPrevinstance,

LPTSTR IpCmdLine,

int nCmdShow)
{
// Since this is application is launched through the registrv HKI.M\Init we need to call
SignalStarted passing in the command line parameter
SignalStarted(_wtol(lpCmdLine));
ProcessStartupFolder();

return 0;

}

// ' The purpose of this function is to start all applications found in our custom Startup
folder

// the Windows Explorer shell contains a "Special Folder" \Start Menu\Programs\dtartup
- CSIDL_STARTUP

/! For this demo I'm going to override this with a fixed location folder called "\Startup"
/I 'This code is taken from the Microsoft Windows CE Shared Source in the following
location.

// ¢:\wince500\public\shell\oak\hpc\explorer\imain\explorer.cpp

void ProcessStartupFolder()
{
WCHAR szPathMAX PATH];
HANDLE hFind = NULL;
WIN32_FIND DATA fd= {0};
WCHAR pseFileName [(MAX_FATH],
// Note that we will need to create the Startup folder
// this can be achieved in one of two ways
i
//'1. Create the Startup Folder using this projects .DAT file
// or..
/1 2. Map our applications into the Startup Foider using CEFileWiz (my prefered option)

47

Istrepy(szPath,L"\Startup* *");

hFind = FindFirstFile(szPath, &fd);
if INVALID_HANDLE VALUE != hFind)
{
SHELLEXECUTEINFO sei = {0};
sei.cbSize = sizeof(sei);
sel.nShow = SW_SHOWNORMAL;
sei.lpFile = pszFileName;

do
{
Istrepy(pszFileName,L"\\Startup\\");
if ((FILE_ATTRIBUTE DIRECTORY & fd.dwF ileAttributes)) &&
(0 !=_tesiemp(TEXT("desktop.ini"), fd.cFileName)))

Istrcat(pszFileName, fd cFileName);
ShellExecuteEx(&set);
i
} while (FindNextFile(hFind, &fd));
FindClose(hFind);
1
J

j

48

