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ABSTRACT 

Electrical Capacitance Tomography (ECT) is a non-intrusive measurement 

technique. It visualizes the phase distribution in closed pipes or vessels by measuring the 

variations in the dielectric properties of materials in within. Dielectric constant (Er) 

measured is the main concern in determining the type of material. The objective of this 

project is to develop ECT sensors and evaluate performance of different sensor designs. 

Capacitance sensors are designed and simulated using COMSOL software. COMSOL 

simulation gives a visualization of the potential distribution within the measuring area. 

Four types of sensor designs - with radial screen, without radial screen, internal electrodes 

and external electrodes sensors are simulated. Next, two types of sensors are fabricated - 

sensor with internal and external electrodes. The capacitance sensors are calibrated and 

experimented with various oil-in-water distributions. Data is obtained through the ITS 

M3000 multi-modal data acquisition unit and computer with M3000 software. Simulation 

results show that sensor with radial screen and sensor with internal electrodes perform 

better. Meanwhile, experimental results show both internal and external electrodes sensor 

designs are capable in visualizing static and dynamic oil-in-water distribution. As a 

conclusion, designed sensors are able to provide visualization of oil-in-water. Approximate 

visualization is achieved but image reconstructed do not show the exact oil-in-water 

distribution. 
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CHAPTER I 

INTRODUCTION 

1.1 Project Background 

Tomography imaging of an object is widely used in different industries. 

especially in medical and engineering field. In engineering field, tomography 

technique is well-known for its non-invasive and non-intrusive characteristic. It is 

ideal for monitoring, measuring and controlling industrial process without 

interrupting the flow. 

Electrical Capacitance Tomography (ECT) is one of the measuring techniques 

derived from the tomography imaging. According to Flores et al. (2005), physical 

arrangement of a basic ECT system consists of three major parts: capacitance sensor, 
data acquisition unit and a control computer (see Figure 1). 
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Figure 1: Basic tomography system 

The capacitance sensor measures the permittivity of the materials inside the 

enclosed pipe or vessel. Number of electrodes is different according to the 

application. Every capacitance sensors are connected to the data acquisition unit 
through a high-speed serial links. Meanwhile, high speed USß link cable connects the 
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data acquisition unit to the control computer. Data from the unit is then sent to a 
control computer for data storage. processing and display (ITS, 2004). 

There are increasing demands from the industry for accurate and 
instantaneous data of multiphase flow, especially in the petroleum industry. Hwili 

and Yang (2007) pointed out that the crude oil extracted from undersea contains a 

certain amount of water. Due to the high cost of transporting the oil to seashore for 

separation process, it is better to separate oil from water at the platform. Limited 

space available on the platform demands a dynamic oil-in-water visualization system. 
This system contributes to a more effective process planning. 

Oil and water are different in their dielectric properties, especially the 

permittivity value. The relative permittivity value for water (high permittivity) is 

around 80 while the relative permittivity is 2.1 for petroleum oil (low permittivity) 

(Ulaby, 2005). ECT technique is suitable for to two different liquids with huge 

difference in permittivity. In this project, ECT is used for oil (low permittivity) and 

water (high permittivity) distribution measurement. 

1.2 Problem Statement 

In the petroleum industries, pipelines and vessels are used to transport 

materials. In most conditions, it involves multi-phase flow (Hasan & Azzopardi, 

2007). Measurement and on-line visualization of oil and water distribution is 

important to provide an actual data on the productivity. Currently. there are two types 

of measurement techniques, namely destructive and non-destructive techniques. 
Destructive techniques are not favorable because it involves separation of materials 
before the measurement is taken. In this case, the data obtained is no longer up-to- 
date. In fact, the multi-phase flow data is usually used for the separation process 

planning. 

In general, direct in-line analyzer with non-destructive technique is preferable 
in upstream. Table I summarizes the types of non-destructive analyzer. Though being 
insensitive to conductivity variation, microwave techniques are applicable to both oil- 
in-water and water-in-oil condition (Pal, 1994). Electrical techniques include 

1) 



capacitance, impedance and conductance-based techniques. The advantages of these 

techniques are fast in response. inexpensive compared to other methods and safe. 

Radiation related techniques are considered reliable. I lowever, Pal (1994) 

highlights the health and safety concerns regarding its radiation source. As for density 

techniques, he also points out the problem which emulsion density becomes 

independent of the composition when the density of oil and water are indifferent. 

Meanwhile, viscosity techniques are not widely-used because it is dependent on 

droplet size and distribution, nature and concentration of surfactants, presence of 

electrolytes and etc. This method requires cautious control on the variables mentioned 

above. 

Table 1: Non-destructive analyzer 
No Name Remarks 

1 Electrical Fast in response, relatively inexpensive, safe 

2 Microwave Insensitive to conductivity (salt content) variation 

3 Radiation scattering Safety concerns of its radiation source 

4 Density Independent of composition when then density of oil 

and water are same 
5 Viscosity Dependent on droplet size and distribution, nature and 

concentration of surfactants, presence of electrolytes. 

1.3 Objectives 

The following objectives are expected to achieve through project: 

" To study on FCT system as an oil-in-water analyzer. 

" To build capacitance sensors and investigate the effects of different sensor 
designs. 

" Sharpen the skill of trouble shooting and gain knowledge. 
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1.4 Scope of Study 

Throughout this project, knowledge and theory learned is much involved. The 

scope of study includes: 

" Background and theory of ECT system. 

" Overall operation of ECT system. 

" Measurement algorithm of ECT. 

" Concept and knowledge in electromagnetic for capacitance sensor design. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Electrical Tomography 

There are a numbers of non-destructive measurement techniques using the 

electrical methods. Oil and water in a mixture exhibit vast difference in their 

electrical properties. By measuring their electrical properties such as capacitance and 

conductance, the mixture distribution can be calculated. 

2.1 .1 Electrical Impedance Tomography (EIT) 

I. IT is another measurement technique used to obtain the concentration 
distribution. Electric currents are injected through the electrodes and the resulting 

currents are taken as raw data. It is a relatively simple and inexpensive technique 

(Wang, Yin, & Holliday, 2002). However, Wang et al. (2002) also mentioned that 

EI"1' would not be giving accurate data for stratified flow or an intermittent flow in a 
horizontal channel or large bubble formation and foams. This happens when some of 
the electrodes lose contact with the conductive fluid. 

2.1.2 Electrical Resistance Tomography (ERT) 

Dong ei al. (2003) agrees that FRT measurement precision sometimes may be 

poor. However, he also pointed out some strengths of ERT compared to other 

technique. 

1. ERT can provide two or three dimensional information on two-phase flow and 
thus more information. 

2. Phase distribution can be reconstructed at various times. 
3. Feasible to find precise method to estimate flow parameter by statistical 

analysis or pattern recognition. 
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2.13 Electrical Capacitance Tomography (ECT) 

ECT has the advantages of no radiation, rapid response, low cost, being non- 

intrusive and non-invasive characteristic (Ismail et al., 2005). Pal (1994) stated 

capacitance measurement has issue of high standing capacitance (stray capacitance) 

which results in low sensitivity of measured capacitance signal. In many situations, 

the stray capacitance can be much larger than the capacitance of the fluid being 

monitored. It is important consider the stray capacitance and minimize it in order to 

improve the sensitivity and accuracy of measurement. Furthermore, this method is 

generally restricted to oil external mixture. Table 2 reviewed on the advantages and 

disadvantages of EIT, CRT and ECT measurement techniques. 

Table 2: Characteristics of EIT, ENT and ECT 

Advantages Disadvantages 

Eli' Simple and inexpensive Inaccurate for stratified flow or 
intermittent flow in a horizontal channel 

/ large bubble formation and foams 

ERT Provide 2D and 3D flow, phase Low measurement precision but it is 

distribution can be reconstructed, feasible to find precise method 

ECT No radiation, rapid response. low Issue of stray capacitance and limited to 

cost, non-intrusive and non- measure oil mixture 
invasive 

2.2 Capacitance and Permittivity 

A capacitor is formed when any two conducting bodies (regardless of the 

shapes and sizes) separated by an insulating (dielectric) medium (Ulaby, 2005). 

When a voltage source is supplied to the conductors, charge of equal and opposite 

polarity is transferred to the conductors' surface as shown in Figure 2. To ensure a 

conductor as an equipotential body, excess charge distributes on the surface to 

maintain a zero electric field everywhere within the conductor. Thus, the electric 
potential is the same at every point in the conductor. 
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Figure 2: Voltage source connected to electrodes 

Capacitance can be defined as the magnitude of charges on both electrodes 

(Q) divided by the potential difference between the electrodes (V). Capacitance is 

also defined as a function of distance between two electrodes (d), area of the plate (A) 

and the constant of the dielectric (Cr) and free space (EO). 

c= Q/v 
C= (c, £oA)/a 

(1) 

(2) 

Dielectric 

FIcctrode Electrode 

Figure 3: Electric charge and voltage of capacitor 

Any insulator placed between the plates will cause the capacitance increase by 

a particular factor. The factor by which the capacitance is increased is the relative 

permittivity of the material between plates. Permittivity is defined as the material's 

ability to "permit" an electric field. 
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The concept of ECT is based on capacitance and permittivity of the medium 

within the vessel / pipe. Since the permittivity of each measured element is a 

constant, the measured element can be identified by knowing the capacitance / 

voltage between the electrodes. 

2.3 ECT Sensor 

Figure 4 is based on a common case of electrodes placed around the outer 

wall of the pipe. The function of different parts of the sensor is as listed below (1-lasan 

& Azzopardi, 2007): 

" Screen - Prevent interferences between the sensor's applied signal and any 
devices present near the capacitance sensor. 

" Electrode - Initiate the charge and detect capacitance between two electrodes. 

" Projected guard - Reduce stray capacitance between back surfaces of adjacent 

electrodes. 

Figure 4: Cross section of a sensor 

While other shapes of ECT sensor have been used, most ECT sensors are in 

circular shape. Usually, the diameter of an ECT sensor is between 2.5cm and 10cm 

(Yang, 2006). Figure 5 shows the choices of sensor design discussed by (Pal, 1994). 

(I) A pair of parallel metallic plates placed inside the pipe or mounted on the 

outside (non-conductive) pipe wall. 
(11) A pair of concave metallic plates placed inside the pipe or mounted on the 

outside (non-conductive) pipe wall. 
(Ill) A series of concave metallic plates placed staggered spirally around the 

outside (non-conductive) pipe wall. 
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(IV) A pair of continuous metallic helices mounted on the outside (non- 

conductive) pipe wall. 
(V) Three pairs of continuous metallic helices mounted on the outside (non- 

conductive) pipe wall and connected alternatively in parallel. 
ELECTRODES 

unti_rnunirlNr ..,.. PIPE '-""-- 

m 

(x) 
ra 

(IZ 

Cm) 

Figure 5 Electrode sensors 

There are four main issues to consider when designing a sensor - number of 

electrodes, length of electrodes, external or internal electrodes and earthed screen. 

2.3.1 Number of Electrodes 

There are trade-offs when considering the number of electrodes used. 
Commonly, 8 and 12 electrodes are used for ECT sensors. For higher image 

resolution, people consider the optimum number of electrodes because the increase of 

electrode generates more number of independent measurements. However, there are a 
few benefits of using less number of electrodes. Firstly, hardware design can be 

simplified by reducing the number of data acquisition channel, coaxial cables and 
SMB plugs. Next, there will be less data acquisition and processing time because the 

number of independent measurement is reduced (Yang, 2006). 
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Figure 6 Width of electrodes 

The length of electrodes can also be reduced by having less number of 

electrodes. As we reduce the number of electrode, each independent width of 

electrode can be increased as well. The inter-electrode capacitance is proportional to 

the area of electrode. To maintain the inter-electrode capacitance. we can increase the 

width meanwhile reducing the length. The relevancy of electrode length with sensor 

performance is discussed at the following part. 

2.3.2 Length of Electrodes 

Shorter electrode is more sensitive to the dynamic flow. However, by 

reducing the length, the inter-electrode capacitance is reduced as well. It is important 

to make sure that the smallest capacitance is able to be measured by the capacitance 

measuring circuit. It is impossible to reduce the length to the µm or mm value, 

considering that currently the smallest capacitance can be measured is 0.8aF (Yang, 

2006). Typically, length of measurement electrodes is around twice the diameter of 

the sensor. In this case, the fringe effect at the two axial ends can be ignored and the 

inter-electrode capacitance is independent of the diameter of the sensor. 

2.3.3 External or Internal Electrodes 

There are two types of sensor design - invasive and non-invasive. External 

electrodes are considered non-invasive because it has no direct contact with the 

measurement area. Internal electrodes are invasive. Non-invasive sensors are subject 

to coating wax, dirt and etc while invasive sensors have higher sensitivity. Thinner 

wall gives the better sensor performance because the wall capacitance is effectively in 

series with the internal capacitance (Yang, 2006). 
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Niu e! (11. (2004) discussed the followings shortcoming of sensor with external 

electrodes: 
i) Introduce pipe wall parasitical capacitance which is difficult to immune. 

ii) Increase the distance between every electrode pair and the capacitance 

become smaller. 

iii) Sensitivity map of neighbor electrodes sometimes gives negative values. 

iv) Image reconstruction is more difficult because of the permittivity of pipe 

wall (E ) existing. 

2.3.4 Earthed Screen 

Figure 7: Sensor with radial earthed screen 

Beside the outer screen, there are axial end screens and radial screens. Axial 

end screens are placed at the both ends of measurement electrodes to reduce external 

noise. However, Yang (2006) pointed out the earthed axial screens have a negative 

effect on capacitance measurement because the electrical field is dragged to the 

earthed axial end screens. Earthed radial screen is the grounded electrodes placed in 

between the measurement electrodes to more effectively eliminate the stray 

capacitance between back surfaces of adjacent electrodes (Ismail et a!., 2005). The 

stray capacitance affecting adjacent electrodes is significantly reduced. 

2.3.5 COMSOL simulation 

Fuchs (2007) had done a simulation-based analysis using commercial FEM 

software COMSOI_ Multiphysics. The software is used to calculate the sensitivity of 

the ECT system. Besides, Flores (2005) and l iwili (2007) also designed the electrical 

capacitance verified by simulation using COMSOL. liwili concluded the following 

based on simulations using COMSOL: 
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- Sensitivity is higher if the distance to electrode decrease. 

Segmented electrodes are able to calibrate each other and to give a more 
accurate data. 

- Capacitance decrease with the decreasing of electrode size. 

2.4 Measurement 

The cross section to be images is surrounded by a set of capacitance 

electrodes and the electrical capacitances between all combinations of the electrodes 

within each set are measured (http: //www. tomography. com). Materials of the cross 

section inside the pipe enclosed by sensor have varies permittivity. The measured 
data is then sent to data acquisition unit. 

There are various types of measurement strategies. A commonly used method 

is normal adjacent. Voltage is applied through an electrode and the permittivity 
between the initialized electrode and other electrodes are measure. For example, 

when the first electrode is initialized, the voltage between first and second electrode 
is measured. This 1-2 voltage measurement continued with 1-3,1-4 ... 1-8 voltage 

measurements. After completing 2-3,2-4,2-5 ... until 7-8 voltage measurement, it is 

considered one set of data. 

These steps are repeated by initializing the other electrodes. For N number of 

electrodes, there are N (N-1)/2 measurements taken. Referring to Figure 8, a 12- 

electrode sensor has 66 independent measurements. 

-`ý, 

, ýýý 

ýý! 
1ý 

,, ý,,, 

Figure 8: 66 measurements for 12-electrode sensor 
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2.5 Oil-in-Water Flow 

Multiphase flow study is important in the later part of this project when the 

sensor is used to measure the flowing fluids. Commonly seen flow patterns are as 
followed (Angeli & Hewitt, 2000): 

i. Stratified : Low density material is on top of the high density 

material. 

ii. Annular : One phase forms the annular in the middle part of the 

pipe. 
iii. Three-Layer : There are obvious oiI and water layer at the top and 

the bottom. The third layer appears in between the oil and water, 

where drops of each phase appear within the other phase. 
iv. Bubble : Low fraction material forms bubbles in the high 

fraction material. 

v. Mixed : One phase is dispersed almost uniformly into the other 

and occupies a whole pipe cross section 

13 



CHAPTER 3 

METHODOLOGY / PROJECT WORK 

3.1 Research Methodology 

i 
T 

End 

Figure 9: Research methodology 

The research methodology for the final year project is meant to be conducted 
in two semesters. In the first semester, literature reviewed and design for sensor and 

test rig are done. The modeling of sensor is conducted in both semesters. For the rest, 
it is carried out in the second semester. 

Start 

v 
Literature Review 

T 

Sensor Design & Fabrication 

T-- 

Test Rig Design & Build Up 

Calibration 

Data Acquisition 

Data Processing & Analysis 
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3.2 Project Activities 

Gantt chart and key milestones is attached in Appendix A of this report. The 

main stages in this project include literature review (Chapter 2), sensor design and 

modeling, test rig design and build-up, data acquisition, data processing & analysis 

will he discussed in Chapter 4. In the first semester of final year project, oil-in-water 

mixture is experimented using ECT equipments in the laboratory. Steps of 

calibration, data acquisition, processing and analysis can proceed without going 

through the sensor fabrication. 

3.2.1 COMSOL simulation 

The sensor is designed using COMSOL software. In COMSOL. the 

capacitance sensor is defined as an electrostatic problem. According to Flores (2005). 

the three-dimension model of sensor is possible to represent by a two-dimension 

model. During this step, the number of sensors used, sensor placement, shape and 

other details are determined. Simulation run by COMSOL gives visualization on the 

voltage distribution within the measurement area when the electrode is initialized. 

Geometry drawing is created using graphical user interface (GUI) of the 

software. It is based on 8-electrodes sensor where each electrode occupied 30° of the 

pipe wall. Three major parts in this design flow are (1) geometry drawing (shown in 

Figure IOa); (2) boundary conditions assignment; (3) defines the subdomain 

conditions. 

For boundary condition assignment, three types of boundary conditions are 
defined. Figure I Ob shows the arrangement of each boundary condition when the first 

electrode is initialized. Grounded boundary (blue), initialized boundary (green) and 

continuity boundary (red) are using the equation 3,4 and 5 respectively. 

V= 0 

V=Vo-2V 

n. (D1 - DZ) =0 

(3) 

(4) 

(5) 
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(a) Geometry drawing (b) Boundary settings 

Figure 10: Geometry drawing and boundary settings 

Equation 6 is used for the electrostatics model in defining the subdomain 

condition. Relative permittivity of copper electrodes and pipe is defined as l and 2.9 

respectively. The measuring area is set to permittivity ] for air-filled pipe. 

-V. EoErOV =p (6) 

The electric potential 0 within the sensor is calculated by solving the 

Ibllowing second order partial differential equation 7 (Flores et al., 2005) where 

O(x, y) is the potential distribution in two dimensions and e(x, y) is the relative 

permittivity distribution in two dimensions. 

V. [E(x, Y)0o(x, Y)l =0 (7) 

By solving equation 7, the potential distribution E(x, y) is obtained within the 

sensor. A way to calculate E(x, y) is using finite element method (FEM) as shown in 

Figure 11. This method gives an approximation to the potential 0 in the sensor at a 

finite set of points. The finite set points are determined by corresponding nodes of 

triangular mesh. After the potential distribution is obtained, the electric charge Qj on 

each detector electrode is calculated by using Gauss Law (Flores et al., 2005). 

Qi = ý( £(x, y)VO(x, y)" n)ds (8) 
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Figure 11: Finite element method 

3.2.2 Sensor Fabrication 

The design step is followed by its fabrication. During the fabrication, precise 

measurements are taken so that the parts and pieces can be assembled as planned. The 

specifications are confirmed to make sure the functionality matches the purpose. 

Copper electrodes are placed at the inner wall of the pipe to increase the 

accuracy of measurements by neglecting the effect of wall thickness. The acrylic pipe 
is cut into half (see Figure l2a) and the reassemble back to enable the copper foil 

stick at the inner wall. Another sensor has the electrodes at the outer pipe wall. 

(a) Acrylic cut into half (b) Electrodes reside at the inner wall 

Figure 12: Internal-electrodes sensor fabrication 
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Data cable RG-174 is the coaxial cable used to transfer capacitance data from 

the electrode to the data acquisition unit. Figure 13 shows the components of the 

cable. The use of coaxial cable is able to reduce the stray capacitance around the 

vessel and along the cable itself. 

1. Conductor 
2. Dielectric 

0> 3. Screen 
> 4. Sheath 

Figure 13: Components of RC-174 cable 

The conductor of the data is soldered to the electrode of sensor by drilling a 

hole through the acrylic pipe. Meanwhile, the other end of the coaxial cable is 

connected to SMB straight female crimp plug according to the specification shown in 

Figure l 4a. 

-; ýý 
S. ün 

f----+ i 

ý : n. i"ý 

; 

'ý ""40" 

(a) Connection specification 
4001* 

'j 
(b) RC-174 connected to SMB 

Figure 14: RG174 cable and SMB plug connection 

3.2.3 Test Rig Design & Set up 

The purpose of building a test rig is to examine the sensor performance in 

measuring a dynamic oil-in-water flow. Referring to Figure 15 and 16, the fabricated 

sensor is placed before the mixture tank. Sensor electrodes are connected to the data 

acquisition unit. The pumps are immersed into oil and water respectively. It is 

connected to different flow meters to measure its flow. A valve is located after each 

flow meter to control the liquid flow. 

However, flow meter used to measure the oil flow is removed when the 
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experiments are carried out. This is mainly due to two issues. Firstly, the 

conventional flow meter is applicable for water-flow measurement only. Using it to 

measure the oil flow causes inaccuracy. Secondly, the oil pump is not powerful 

enough to pump up the oil when the flow meter is installed. During the designing 

stage, the difference of water and oil viscosity is overlooked. The oil used for this 

experiment is having viscosity of 2.19mm2/s compared to water viscosity of 

0.001 mm2/s. It needs a much larger power pump for oil. 

When the flow meter is installed, the friction is further increased; thus the 

pump is not strong enough to pump up the oil. This problem did not occur before the 

flow meter installation. To overcome this problem, the flow meter was replaced by a 

pipe of same height. The oil-flow was measure manually. 

P-7 P-9 

ý 

P-1 

W np 1 

P-6 

'ljý 

P-2 

wrrp 2 

P-8 

P-A 

P-11 

P-10 

Figure 15: Test rig design 

Figure 16: Experiment Setup 

ý 

ww 
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3 . 2.4 ECT Equipments 

Calibration, data acquisition and processing arc done using the FCT 

equipments in laboratory. With the data acquired from the experiment, built-in 

software processed the data in to graphs and images. Raw and processed data are 

then analyzed. 

Figure 17 shows the ECT equipment facility available in the laboratory. The 

ECT equipments are consists of three major parts: data acquisition unit (left). 

capacitance sensor (middle) and data processing unit (right). 

Figure 17: ECT equipments 

A pre-defined flow (see Figure 18) of Ect-onep-1 is used. This flow analyze 

on one plane; 12 electrodes per plane. Its functions include online measurement, 

display and save. The settings in each step are as followed: 

Protocol : Number of electrodes, current inject base, voltage inject base and 

array size. 

Calibration Low / 1-ligh calibration, measurement. 
Acquisition : Pipe width, min and max permittivity, number to average and time 

interval. 

Others : Location of save the data. 
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Protocol 

Line Graph 

Calibration 

Data Acquisition 

Linear Back 
I Prgicction (LßP) ý 
ý-_ __ý-- -_-- 

[-Sensitivity 
Map 

Figure 18: Pre-defined flow 

3.3 Tools Required 

Software required in assisting in the design and simulation is COMSOL. The 

commercial finite element method software COMSOL Multiphysics version 3.3 was 

used to generate voltage distribution image of design sensors. For sensor fabrication, 

tools listed in Table 3 are used. Equipments required for building up the test rig is 

shown in Table 4. 

Table 3: Tools for sensor fabrication 

No. "fools Description 

1 50Q RG174U coaxial cable used for radio 
. 

Data cable (Appendix B) frequency. 

SMB 50 Q straight female crimp plug with 2 q1 connectors in clamp and crimp termination 
options. Reliable and quick connect system. Plug (Appendix C) 

`ý1 
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3 . To crimp plug onto RG174V data cable. 

Crimping tool 

"Transparent acrylic pipe to allow flow observation. 
4. Diameter of 1 inch is same as the diameter of test 

PVC i e ri p p . g 

Acrylic pipe 

ý 

. 5 To solder one termination of data cable onto 
copper foil and another termination to plug. 

Soldering gun and lead 

AT526 35. t Copper Foil Shielding Tape coated 
6. with an electrically conductive acrylic adhesive 

supplied on a removable silicone liner. 
Copper foil (Appendix D) 

7. To seal the connections of acrylic pipe. 

Silicone sealant 
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Table 4: Tools for test rig setup 

No. Tools Description 

Diameter of I inch to fit the acrylic pipe. 
1 Light, economical, available, and easy to 

cut and connect. 
PVC pipe 

.,; err 
"- PVC ball valve of 1 inch. Connectors 

.,,.. needed are 1 inch T-connector, L- 
connector and straight connector. 

PVC valve and connectors 

CT Platon vertical water flow meter with 
4 measurement range from 0.2 liter/min to 

40 liter/min. 

Flow meter 

5 Kerosene with density of 0.769kg/dm3 
and viscosity of 2.19mm2/s. 

Exxsol D80 (APPENDIX E) 

3 At-104 pump with maximum pump rate of 
1800 liter/hour. 

Pump (Appendix F) 

Exxsol D80 is used as oil component in the oil-in-water experimental set up 
discussed by Azlina (2006) and Angeli (1999). Both papers discussed the oil-in-water 
flow pattern in defined velocity, water fraction and types of pipe. However, due to 
delayed transportation of this material, it is not used in experiments carried out. As a 

substitution, palm oil is used as the oil component instead of Exxsol D80. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Sensor Design 

COMSOL uses finite clement method (FEM) to calculate the potential 

distribution. When one electrode is initialized, voltage is not evenly distributed to the 

measurement area. The nearer distance to the initialized electrode will have higher 

voltage distribution. 

Two types of sensors are simulated using COMSOL - with radial screen and 

without radial screen. It is observed that sensor with radial screen is less likely to be 

affected. Earthed radial screen protect other measurement electrodes from 

interferences of unwanted electromagnetic fields. 

Max. 2V 

w 

Min- OV 

(a) with radial screen (b) without radial screen 

Figure 19: Sensor with and without radial screen 

The voltage distributions of both internal and external electrodes are shown in 

the following figures. For the sensor with mounted electrodes at the inner wall, the 

media in the pipe can be measured directly. Meanwhile, the pipe wall's thickness has 

negative impact on the measurement. The capacitance characteristic of pipe wall is 
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measured as part of the oil-in-water flow. which results in lower accuracy. 'T'hus, 

whenever possible. the electrodes should be mounted at the inner pipe / vessel wall. 

(a) with internal electrode 

Max. 2 

w 
Min. 0 

(b) with external electrode 

Figure 20: Sensor with internal and external electrodes 

4.2 Measurement 

The measurement was taken through the capacitance sensors and data 

acquisition unit. Figure 25 shows an example of the measurement taken and arranged 

by ITS Toolsuite. As discussed, 8-electrode sensor generates 28 independent 

measurement data. The data is used to generate the line graph and sensitivity map. As 

an alternative, the raw voltage and capacitance can he exported out to further 

manipulate the data. 
irhage t ra_ irerner, t P6Ci: _ 

L: U-i D` Lif LI; 0':: 

01 1.076e+003 7.632e+002 7.537e+002 7.487e+002 7.371e+002 7.444e+002 7.480e+002 

02 1.040e+003 7.687e+002 7.571e+002 7.435e+002 7.502e+002 7.524e+002 

03 1.072e+003 7.652e+002 7.481e+002 7.535e+002 7.548e+002 

04 1.035e+003 7.566e+002 7.589e+002 7.589e+002 

05 1.041e+003 7.830e+002 7.737e+002 

Ot 9.049e+002 7.560e+002 
LI' 1.060e+003 

Figure 21: Data measurement set 

4.3 Calibration 

Calibration is done using the ITS Tomography Toolsuite in laboratory. Oil is 

set as low calibration while water is set as high calibration. During low calibration, 

whole pipe is filled with oil for measurement. During high calibration, whole pipe is 
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tilled with water for measurement. In the following graphs. X-axis indicates the 

number of voltage measurement taken and Y-axis indicates the voltage value. 

Comparing both line graphs, low calibration shows slightly higher voltage 

value. This is expected because water (high calibration) has permittivity of 80 while 

oil (low calibration) has permittivity ot'around 3. 

44 

(1 -as i 

(a) Low calibration image (h) High calibration image 

Figure 22: Low and high calibration images 

Voltage 

Electrode pair 

Figure 23: Low calibration line graph 
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Electrode pair 

Figure 24: High calibration line graph 

4.4 Static and Dynamic Experiments 

In this project, two types of sensors are fabricated - internal electrodes and external 

electrodes sensors. For each fabricated sensor, its static and dynamic performances 

are experimented. ITS M3000 sensor is part of the ITS Tomography System. It is also 

experimented with static and dynamic oil-in-water distribution. The specifications of 

ITS M3000 sensor used in the experiments are: 

- 12 electrodes 

- External electrodes 

- Pipe diameter of 4" 

4.4.1 Static Tests 

In the static test, the pipes were placed horizontally during the measurements. 
25% and 50% oil-in-water distribution were experimented. Due to high viscosity of 
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oil, some oil stuck at the bottom part of the pipe instead of floating to the top of the 

water. There is no clear stratified distribution of oil and water. This issue is less 

noticeable for ITS M3000 sensor. It is due to its larger pipe diameter. The layer of oil 

stuck at the pipe wall is relatively small when the pipe diameter is larger. Comparing 

to the 25% oil-in-water, 50% oil-in-water distribution is expected having more oil 

(blue) area shown in the image. Though, there are errors in displaying the actual oil- 

in-water measurement. Only a rough oil-in-water distribution images are obtained. 

Static Dynamic Stirred 
25% 50% 20% Mixture 

oil-in-water oil-in-water oil-in-water 

Internal 

electrodes 

External 

electrodes 

I 
4w 

I 

ITS M3000 N/A 
sensor 

Figure 25: Static and dynamic test 

4.4.2 Dynamic Tests 

The test rig mentioned in previous chapter was used for dynamic tests. Same 

condition as the static test, a layer of oil stuck at the bottom part of pipe due to high 

viscosity. The air trapped in the pipe during the experiment contributes error to the 

measurement taken. The permittivity of air is I (low). Thus. area occupied by the air 

gives reading of low permittivity, which is almost same as the oil. In the post 

processing image generated, the area occupied by air is displayed as blue, which is 
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supposed to indicate oil distribution. Dynamic test for ITS M3000 is unavailable 
because there is no opening at other end of pipe. Due to time constraint, only 20% 

oil-in-water distribution was experimented. Further experiments on other percentage 

of oil-in-water distribution are recommended. 

4.4.3 Stirred Mfrture 

When the mixture is stirred, ITS M3000 sensor provides an image of oil and 

water roughly formed a circle without mixing up. This effect cannot be observed for 

the internal and external electrodes sensors. This is because the diameter of ITS 

M3000 is larger than the others. It creates enough space for oil and water movement. 

Considering the result from external electrodes, oil and water tends to hold back to its 

initial position when it is stirred. When the stirring force exceeded a limit, a mixture 

of oil and water is created. This is indicated by green area shown in the result column 

of stirred mixture of internal electrode. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The sensor is designed by represent it with two-dimensional model. 
Simulation of the sensor using COMSOL software enables to know the voltage 
distribution of measurement area. According to simulation results, sensor with radial 

screen and internal electrodes provides better measurement data. 

ITS M3000 Multi-Modal Tomography System in laboratory is used to 

conduct the calibration, data acquisition, data processing and data analyzing. 
Symmetry line graph showed good calibration is obtained. Oil-in-water mixture in 

measuring pipe is visualized by developing sensitivity map from the raw data 

obtained. Tool errors such as loose cable connectivity, electrodes do not charge / 

discharge properly reduce the accuracy of data obtained. 

Three types of sensors are experimented - ITS M3000 sensor, fabricated 

internal and external sensors. These sensors were tests with static 25% and 50% oil- 
in-water distribution, 20% oil-in-water dynamic flow and stirred mixture. Different 

results of ITS M3000 and fabricated sensors are mainly due to different sensor 
diameter. Differences caused by electrodes placement (internal/external) and number 

of electrode is hard to identify. In general, the results do not show the exact 
distribution of oil-in-water. only a rough estimation is obtained. 
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5.2 Recommendation 

For dynamic test, different experiments on vary percentage of oil-in-water 

distribution are recommended. This project can further investigate the impact of 

different number of electrodes, length and width of electrodes, effect of different 

types of earthed screed and etc. When studying on a certain effect, other 

specifications should be remained constant. 

In this project, the study is focused on the sensor part. In an ECT system, 

there are another two main parts - data acquisition unit (DAQ) and data processing 

software. This project can be further carried out by studying and implementing DAQ 

and data processing parts. 

Two types of capacitance measuring circuits are widely used in DAQ - the 

charge/discharge circuit and AC-based circuit. Both circuits are different in the 

aspects of circuit design, signal-to-noise ratio (SNR), cost, complication and etc. 

Study on each circuit's suitability of various implementations and circuit build-up can 

increase the overall understanding of the system. 

There are two approaches to reconstruct the image from raw data obtained - 

single-step calculation and iterative processing. An example of single-step calculation 

is linear back projection (LBP) is the most popular reconstruction method for 

electrical tomography. This method is also used by the ITS M3000 System itself to 

generate the sensitivity maps. LBP is an important part of ECT to study on. 
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APPENDIX B 

DATA CABLE 
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APPENDIX C 

STRAIGHT FEMALE CRIMP PLUG 

_ ý  5.;; ^ý, ý 
i=--º 

Attributes 

4ý 
10.7Tn 

Attribute Type Attribute Value 

Gender Jack 

Mounting cable 
Orientation Straight 

Impedance Q 50 

Contact Plating Gold 

Contact Material beryllium copper 

Contact Termination Method Solder 

Cable Type RG174A/U 

Range Overview 

SMB 5052 Connectors in clamp and crimp termination options. 
Reliable and quick connect/ disconnect system 

Technical specification 
Working Voltage 250V max. 
Proof Voltage 750V rms max. 
Insulation Resistant >5 x 10952 
Temperature Range -65°C to +165° 
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APPENDIX D 

COPPER FOIL SHIELDING TAPE 

Technical Data 
. _t,:. . 

AT526 35 Micron Copper Foil 
Shielding Tape 

General description 
rrF: ri:. - LGPjü-r r711 CJati"d min an GIC-: tw ei _i ccnduc: r; r, i. -ryýic 3ý7Yr.:: i1'ý: " 

sup::, r d o7 a rerr7eable sillcc e liner. 

" C-ýndu. tr. +e acrylic a. °esivr 
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" l3sy lr'"!: r'_ 

Specitication 
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" aria rr-r'-ats rrülidý j spalcaUCn P. M --=; C17 
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Technical Details 
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APPENDIX E 

Effecave date: Mar t 2002 

FXXSOITM D80 

EXXSOL D80 

Dearom: a: zed Al, p. ̂. a:, c -i; drocar. ran 

Product Properties 

Property Units Typical Test method 
values 

D. st I a: o- ra-de `C 
=- zc7 

DF _43 

, L=Tb' D c? 

e= ASTV C, :' Flash port 
G-r. sr, 'y ýq: 15'C 

,. scostygý_5`_ 

Ay'cm' 0 -Ee 
_E 

;, _TI, " D 4Q. '_ 

AST1. ' Cl 44! 

E-aoora: o ra: e1 2 EA1; . -F-F"vt 

F6 :3 Je 

. 4n we t: -ir. 

AT? ,"0? 3 
z, :, T1" G ^' 1 
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. ;r Colour 
ý: Saybo`; ASTM D' Se 

6rcm ne index niw 'C-Ca 40 h:, Tl. " D -? 1J 

Su fa e: ensior iý' ==''` n N: rý2 EC-. ", r-FC2 Nil-h-p Flatei 

R? fra:: Ye nda rv. _= 
1 $. 3C 4_. T1, ' D 'Z lE 

Notes 
Values indicated descr>be typical physical properties and do not constitute specdwation limits. 
This product typically contains less than 2 ppm sulphur. 
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APPENDIX F 

LIQUID PUMP 

POWER CONSUIN1PTION(W) 18.0 

FLOW RATE 1100L/H(319(. /H) 

HN1AX(M) 1.8 

OUTLET CONNECTION 13/2044,16/20. °44,19/20 44 

FLOW CONTROL(L/H) 0-1100L/H(319G/H) 

I-1Z 50-60HZ 

INPUT VOLTAGE(V) 12/100/110/120/220-240 

UIMNSIONS L*W*LI(MM) 93*58*77 

35001 H 
3200L H 
3000L H 
2800L H 
2500L H 
22001 H 
2000L H 
1800L H 
1500L H 
1 2001 H 
10001 H 

800L H 
600L. H 
400L H 
200L H 

0 2m 0 6m 1 T. ý 1m $m 
, 
2rr 2 2rr. 2.6m 3m 3-'m 3.8m 

! 
.Rý.. 
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