

Creating Video Processing Suite Using Java Media Framework

By

Logenthiran A/L Manogaran

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

DEC 2009

Universiti Teknologi PETRONAS

Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Creating Video Processing Suite Using Java Media Framework

by

Logenthiran A/L Manogaran

A project dissertation submitted to the

Electric and Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRIC AND ELECTRONICS ENGINEERING)

Approved by,

(Dr. Vijanth Sagayan Asirvadam)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

DEC 2009

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

LOGENTHIRAN A/L MANOGARAN

iii

ABSTRACT

 This project is to develop a video processing suite using Java Media

Framework. Previously an advanced video processing suite has been successfully

been developed in MATLAB. However, due to the expensive licensing fees of

MATLAB, not all computers are able to be equipped with it and this has limited a

wider usage of the suite. By developing a simple video processing suite in Java, it is

believed that it can be implemented in any computer because most of the computer is

being installed with the Java Runtime Environment. The suite will be able to detect

video from the webcam, able to use the input from webcam as the input for the image

and video processing, able to manipulate the image and video input and to detect the

presence of foreign or moving object in the video. This suite will acts as a base for

future development of an advanced video processing suite matching or exceeding the

one developed previously in MATLAB. The tools needed for the completion of this

project are a laptop, webcam, Java Development Kit, Java Runtime Environment,

Java Media Framework and Java Integrated Development Editor.

iv

ACKNOWLEDGEMENT

I would like to thank God for the opportunity granted to me to be able to work on this

project with the support of many great people, family and friends. There are so many

people that I would like thanks for aiding and supporting me throughout the time

period that I am doing this project. Firstly, I would like thank my supervisor, Dr.

Vijanth Sagayan Asirvadam for his support, assistance, knowledge and solutions in

completing this project. I could not have a much better and supporting supervisor

than him and because of that, I would like say a lot of „Thank You‟ to him. Besides

that, I would like to thank my family, especially my parents, Mr. Manogaran and

Mrs. Teng Siew Hong, for their support and advice in managing the time and stress

due to the project. Another important person that I would like to thank is Mrs. Siti

Hawa for her willingness to go through my report to ensure proper formatting. I

would also like to thank all my course mates for their input and thought on this

project. Finally, I would like to thank all the individuals that I have came to know

through this project; you have made the journey to complete this project, a wonderful

and unique journey. To all the individuals that have been involved directly and

indirectly in my project, I would like to say: THANK YOU!

v

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENT iv

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1

 1.1 Background of Study 1

 1.2 Problem Statement 2

 1.3 Objective of the Project 2

 1.4 Scope of Study 2

CHAPTER 2: LITERATURE REVIEW 3

 2.1 Theory 3

 2.2 Application Programming Interface (API) . . 3

 2.2.1 Java 2D API 4

 2.2.2 Java Advanced Imaging 4

 2.2.3 Java Media Framework 4

CHAPTER 3: METHODOLOGY 6

 3.1 Procedure Identification 6

 3.2 System Development Methodology 15

 3.3 Tools and Equipments 16

vi

CHAPTER 4: RESULTS AND DISCUSSION 17

 4.1 Results 17

4.1.1. Graphic user interface overview . . 17

4.1.2. Functions of the suite 22

4.1.3. Image effects of the suite 22

4.1.4. Video effects of the suite 32

 4.2 Discussion 35

CHAPTER 5: CONCLUSION AND RECOMMENDATION . . 40

 5.1 Conclusion 40

 5.2 Recommendation 40

REFERENCES 41

APPENDICES 44

 Appendix 1 Source Code of the Suite 45

 Appendix 2 Activity Diagram of the Suite 73

vii

LIST OF FIGURES

Figure 1 The system diagram of the suite 7

Figure 2 The sequence of tasks related to the development of webcam

 detection 8

Figure 3 The sequence of tasks related to the development of the webcam

 input display 9

Figure 4 The sequence of tasks related to the development of the webcam

 input capture 10

Figure 5 The sequence of tasks related to the development of each image

effects 11

Figure 6 The sequence of tasks related to the development of each video

effect 12

Figure 7 The sequence of tasks related to the development of the motion

detection function 13

Figure 8 The sequence of tasks related to the function of developing the

graphic user interface of the suite 14

Figure 9 Prototyping methodology for video processing suite . . . 15

Figure 10 Overview of the previous GUI 18

Figure 11 Overview of the current GUI 19

Figure 12 Content of the Input tab 20

Figure 13 Content of Image Processing tab 21

Figure 14 Content of Video Processing tab 21

Figure 15 Initial start-up of the suite 23

Figure 16 Webcam input initialized 24

Figure 17 Captured image initialized 25

Figure 18 Horizontal image flip effect initialized 25

viii

Figure 19 Vertical image flip effect initialized 26

Figure 20 Sharpen image effect initialized 26

Figure 21 Blur image effect initialized 27

Figure 22 Binary image effect initialized 27

Figure 23 Gray-scale image effect initialized 28

Figure 24 Show edges effect initialized 28

Figure 25 Negative image effect initialized 29

Figure 26 Red band image effect initialized 29

Figure 27 Green band image effect initialized 30

Figure 28 Blue band image effect initialized 30

Figure 29 Average band image effect initialized 31

Figure 30 Sepia image effect initialized 31

Figure 31 Posterize image effect initialized 32

Figure 32 Webcam input initialized 34

Figure 33 Background image captured 34

Figure 34 Motion detection initialized 35

 1

CHAPTER 1

INTRODUCTION

1.1. Background Of Study

The definition of a software suite is a collection of software application of

related tasks, which shares the same user interface.

For this project, the video processing suite is an application, which main

function is to processing input signal in the video format. The functionality that can

be incorporated into the suite can range from video playback and save, video editing,

manipulation of video and other functionality. The video processing suite can

incorporate a large range of function in it. So the required functionality of the suite in

this project will be specified in the Scope of the Project section.

The development of the video processing suite will be done on Java

Programming Language. This programming language is being chosen because of its

large libraries support for the language, it is free to be used without any fees and the

developed software can be implemented on any operating system, as long Java

Runtime Environment is installed in the computer.

Another important part is the Java Media Framework, which is the extension

of Java libraries that add support for audio and video processing. Besides that, there

are a lot of communities and forums, which discussed regarding Java Programming

Language. With this support, it will contribute to a more rapid development of this

suite.

 2

1.2. Problem Statement

Previously, a video processing suite was successfully built through the use of

MATLAB. Even though the suite was successful in performing its tasks, the suite was

not able to be used in any computer. This is due to the construction of the suite

through the use of MATLAB. Since the license fees of MATLAB cost thousands, not

all the computer are able to be equip with it and this reduce the implementation of the

suite in any computer.

Due to that reason, this project is being initiated to build a video processing

suite through the usage of open-source programming language, which is free for

anyone or any computer to use it, which in this project will be the Java Programming

Language.

1.3. Objective

 To built a simple video processing suite through the use of Java Programming

Language.

1.4. Scope Of Study

 The scope of this project is to build a video processing suite, which function

as a surveillance system. The suite will be able to:

1. Detect and receive input from the camera or webcam

2. Apply certain effects on the image input from the camera or webcam

3. Apply certain effects on the video input from the camera or webcam

4. Detect and track the objects that have entered to the environment that is being

captured by the camera

 3

CHAPTER 2

LITERATURE REVIEW

2.1 Theory

Initially, the objective of this project is to develop a video processing suite

that have the ability to manipulate the video from an input that is a camera or webcam

and the ability to detect any motion or foreign object in the input. The jump start the

project, this project will be initialized through the development of an image

processing suite that have the same function as the video processing suite. The only

difference will be the type of input that the suite can operate.

2.2 Application Programming Interface (API)

This section will cover the components of Java Programming Language that

will be used for this project to achieve the development of a complete image and

video processing suite. The components that will be discussed are Java 2D API, Java

Advanced Imaging and Java Media Framework. All these three components will

work together to achieve the objective of this project that is the development of an

image and video processing suite.

 The three components are API that have been designed to achieve certain or

specific functionality. API or Application Programming Interface is a set of routines,

data structures, object classes and/or protocols provided by libraries and/or operating

system services in order to support the building of applications. [1]

 4

2.2.1 Java 2D API

The first required component is the Java 2D API, which has the primary

functionality of drawing two dimensional graphics. [2] The main use is to provide the

user with the tools to develop software, with similar features as paint program. How

ever, by using the java.awt.image.BufferedImage package, images from the computer

can be buffered into the memory of the computer and the buffered image can be

manipulated to produce certain effects, be displayed to a window and the manipulated

can be saved.

2.2.2 Java Advanced Imaging

The second component is Java Advanced Imaging or JAI. JAI is an API that

functions to provide developer the ability to do high performance image processing.

[3] This API has a lot of image processing functionality related to image processing

built into it. The buffered image that is being implemented through the Java 2D API

can be send to the JAI to achieve the required processing and can be saved to the hard

disk or to be displayed to a window. A lot more research have to be done to know the

full list of functions that this API can contributed towards the image and video

processing suite.

2.2.3 Java Media Framework

The last API is the Java Media Framework, which enabled the developer to

incorporate the ability to stream audio and video from the computer or audio and

video input devices such as microphone, webcam and etc. [4] This API will enable

the receiving of audio and video input and this input theoretically can be send to the

buffered image to enable it to be processed through the use of Java 2D API and JAI.

 5

Even though the title of this project “Video Processing Using Java Media

Framework”, it does not mean that this project will only focus on the usage of that

API. Instead Java Media Framework only enables the reception of audio and video

input and other API‟s are require to do some level of processing on to the input that

are able to be receive through the Java Media Framework.

 6

CHAPTER 3

METHODOLOGY

3.1. Procedure Identification

 The objective of this project is to develop a simple video processing suite,

which can be the bases of future upgrade or improvement in term of functionality and

complexity. However, the initial step in developing this video suite to build a simple

image suite, which will incorporate the effects or functionality of the video suite. The

reason behind this approach is video is a series of images being displayed in a

sequences at a certain speed. So by developing an image processing suite, it will

provide a fundamental and basic knowledge regarding the programming processes

and language.

 The project flow is being divided to four main sections, which are: the video

upload and image capture from the webcam, the image manipulation effects on

images, the video manipulation effects on video inputs from the webcam and the

graphic user interface of the suite. The first three section need to be completed or the

general idea of the first three section need to be obtained so that a more accurate GUI

can be designed for the suite and this will eliminate any major modification in the

future.

 For the video upload and image capture part, the input from the webcam are

required to be displayed into a window on the computer and has the ability to capture

the input from the webcam. For the image manipulation effects, this will consist of all

the required effects that will be applied to the input image from the webcam.

 7

For video manipulation effects, this will consist of all the required effects that will be

applied to the input video from the webcam. For the motion detection function, the

suite will be able to detect the entrance of new object or person into a set background.

For the GUI, it will be the user interface that the user will be using when the user is

operating the suite.

Figure 1: The system diagram of the suite

 8

Figure 2: The sequence of tasks related to the development of webcam detection

 9

Figure 3: The sequence of tasks related to the development of the webcam input

display

 10

Figure 4: The sequence of tasks related to the development of the webcam input

capture

 11

Figure 5: The sequence of tasks related to the development of each image effects

 12

Figure 6: The sequence of tasks related to the development of each video effect

 13

Figure 7: The sequence of tasks related to the development of the motion detection

function

 14

Figure 8: The sequence of tasks related to the function of developing the graphic user

interface of the suite

 15

3.2. System Development Methodology

There a few methodologies that are widely being used as a reference for

developing a certain system. For this project, a prototyping methodology has been

chosen as a guide in designing and developing the video processing suite. The figure

below shows the methodology that is being implemented for this project.

Figure 9: Prototyping methodology for video processing suite

Based on Figure 9 above, the first stage will be planning of the required

subsystem that is required by the system. The subsystem is actually representing the

class and the system is representing the image or video processing suite or

application. For each subsystem, the three stages will be done concurrently.

If the class is having problem in implementation, the class will need to go

through the three stages again until the class is successfully implemented. If the class

is unable to be implemented, the class is required to be re-planned to find the

alternative method of achieving the same required function. If the class is

successfully implemented, the class will be implemented into the application and the

whole methodology will be repeated again for the rest of the classes.

 16

3.3. Tools And Equipments

 Tools represent the equipment, hardware and software needed for the

completion of this project. The tools are:

1. Laptop

2. Webcam

3. Java Development Kit and Java Runtime Environment

4. Java Integrated Development Editor

5. Java Media Framework

 17

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Results

This section will be discussing on the graphic user interface (GUI) of the suite

and the functions and effects that have been incorporated into the suite. A detailed

discussion or explanation on the results will be done in the Discussion section.

4.1.1. Graphic user interface overview

Graphic user interface (GUI) is a human-computer interface that uses

windows, icons, buttons and menus, instead of command line interfaces, which relies

on user to key in certain command to activate certain functions. [5]

The GUI of this suite consists of 4 main sections that are:

1. The webcam input

The black box in the „Webcam Input‟ section is the area, which the input from

the webcam will be display. The input from the webcam will only be

displayed after the „Start Camera‟ button is being clicked.

2. The captured image

The black box in the „Captured Image‟ section is the area, which will display

the image that has been captured from the webcam at the instant that the

„Capture‟ button is being clicked.

 18

3. The control panel

In the „Control Panel‟ section, there are a few tabs and buttons and each

button has its functionality and the functionality of each button will be

discussed in the Discussion section. This section will contain all the buttons

that the user can access to achieve the functions and effects that the suite has.

4. The processed image

The black box in the „Processed Image‟ Section is the area, which will display

the image that has been manipulated according to the effects that the user has

selected. The image in the black area will only be displayed after the button

for the image effects, in the control panel is being clicked.

Figure 10 shows the GUI of the suite, which is the same as the one included in

the interim report for FYP1. Since then changes have been done towards the suite and

the current version of the suite is being shown in Figure 11.

Figure 10: Overview of the previous GUI

 19

Figure 11: Overview of the current GUI

 From the two figures above, it can be seen that changes have been in the

Control Panel Section. The current Control Panel consists of the three tabs with each

tab has its own grouping of functions that the suite can perform. The three different

tabs are:

1. Input

In the Input tab, there will be options for the input of the suite. Currently the

input for the suite will be webcam. However, two different webcam is able to

be implemented as input. Firstly, network webcam, which is the webcam

located at another computer and the input from that webcam is being stream at

a specific address. The input streaming will be detected by the suite and

displayed at the Webcam Input Section. Secondly, embedded camera, which

is the camera located at the computer that the suite is being operated.

 20

2. Image Processing

In the Image Processing tab, there will be options for the image manipulation

of captured image.

3. Video Processing

In the Video Processing tab, there will be options for the video manipulation

of the input video from the webcam.

 The figures below show the contents of each tab in the Control Panel section.

Figure 12: Content of the Input tab

 21

Figure 13: Content of Image Processing tab

Figure 14: Content of Video Processing tab

 22

4.1.2. Functions of the suite

As being shown in the previous section, in the Control Panel section, there are

three tabs with each tab having their own group of functions. In this section, the

functions in the Input and Image Processing tab will be discussed and since function

for Video Processing have not been developed yet, its functions will be discuss in the

next report.

In the Input tab, there are a total of three different functions that the user can

access to and they are:

1. Type of webcam

There are a total of two different webcam that the suite can access to as source

of input. Firstly, network webcam, which is the webcam located at another

computer and the input from that webcam is being stream at a specific

address. The input streaming will be detected by the suite and displayed at the

Webcam Input Section. Secondly, embedded camera, which is the camera

located at the computer that the suite is being operated.

2. Start Camera

By clicking at this button, it will enable the suite to display the input from the

selected webcam at the Webcam Input section.

3. Capture

By clicking at this button, it will enable the suite to capture the input from the

webcam and displayed it at the Captured Image section.

4.1.3. Image effects of the suite

In the Image Processing tab, there are a total of 14 image manipulation effects

that have been successfully implemented into the suite. From the 14 effects, a total of

7 effects have been implemented in the previous version of the suite and the other 7

effects has been developed and implemented into the suite since then. The image

effects that have been successfully implemented into the suite are:

 23

1. Horizontal image flip

2. Vertical image flip

3. Sharpen image

4. Blur image

5. Binary image

6. Gray-scale image

7. Show edges

8. Negative image

9. Red band image

10. Green band image

11. Blue band image

12. Average band image

13. Sepia image

14. Posterize image

The figures below show the execution of the suite from the initial start-up of

the suite and the functions and effects that the suite can achieve.

The figure below shows the initial start-up of the suite.

Figure 15: Initial start-up of the suite

 24

After the start-up is complete, the user will need to choose the type of webcam

that the suite will access as its input and click on the Start Camera button. After the

button has been clicked, the visual from the webcam will be displayed in the Webcam

Input section, as shown in the figure below.

Figure 16: Webcam input initialized

After the input from the webcam is successfully being displayed at the

Webcam Input section, the user will be able to choose the instant to capture the input

from the webcam input by clicking the Capture button and the captured image will be

displayed in the Captured Image section and this is being shown in the figure on the

next page.

 25

Figure 17: Captured image initialized

After image has successfully being captured from the webcam, the user will

be able to choose the image effects to be applied to the captured image and the image

that has been applied with the selected effect will be displayed in the Processed

Image section. The figures after this will show the manipulated image for each effect.

Figure 18: Horizontal image flip effect initialized

 26

Figure 19: Vertical image flip effect initialized

Figure 20: Sharpen image effect initialized

 27

Figure 21: Blur image effect initialized

Figure 22: Binary image effect initialized

 28

Figure 23: Gray-scale image effect initialized

Figure 24: Show edges effect initialized

 29

Figure 25: Negative image effect initialized

Figure 26: Red band image effect initialized

 30

Figure 27: Green band image effect initialized

Figure 28: Blue band image effect initialized

 31

Figure 29: Average band image effect initialized

Figure 30: Sepia image effect initialized

 32

Figure 31: Posterize image effect initialized

4.1.4. Video effects of the suite

In the Video Processing tab, as seen in Figure 14, a total of 8 video effects

have been included into the suite and an additional two functions button have been

included to control the execution and process of the video effects. The video effects

are:

1. Binary video

2. Gray-scale video

3. Red-band video

4. Green-band video

5. Blue-band video

6. Negative video

7. Sepia video

8. Motion detection

The additional function buttons are:

1. Stop video

2. Background image

 33

As can be seen from the list of video effects above, it can be seen that it is the

same effects that have been implemented in the image processing section, expect for

the motion detection function. Due to that reason, the example for the effects

numbered from 1 to 7, will not be shown or discuss. More attention will be given to

the motion detection function.

 For the two additional function buttons, firstly, the „Stop Video‟ button has

the functionality to stop the execution of the selected video effect. Before the user

changes from one video effect to another, the user has to stop the execution of the

previous effects and continue with the execution of the required effect. Secondly, the

„Background Image‟ button has the functionality to capture the image from the

webcam, to be used as a source of reference for the motion detection function.

 For the motion detection function, this function is achieved through the

implementation of background subtraction method. Due to that reason, the suite

requires an initial image, which is the background image of the environment that the

function will be performed. With the reference of background image, the suite will be

able to detect any foreign object that enters to the environment, which is being

represented by the background image. The figures in the next pages show the

execution of the motion detection function of the suite.

 34

 Figure 32: Webcam input initialized

Figure 33: Background image captured

 35

Figure 34: Motion detection initialized

4.2. Discussion

This section will discuss on the functions and effects that have been

implemented into the suite.

Firstly, the addition of tabs into the Control Panel section, this is being done

to organized the functions and effects that the suite have into a more pleasant and

organized manner. Since each tab will have a group of related functions or effects in

it, it will further simply or ease the user to find the required functions or effects that

the user would like to implement.

 There are two type of webcam that can be accessed as the input for the suite

that are embedded webcam and network webcam. For the network webcam, the user

will to transmit the webcam at the computer at a specific address, which has been

hardcoded into the suite. The transmission can be done using „jmstudio‟. The

transmission of video is being achieved through the use of real-time transfer protocol.

[6] For the embedded webcam, the webcam can be used as the input for the suite as

 36

long as the webcam at the computer is detected and the driver for the webcam is

being installed. This is being achieved through directing the suite to receive the input

from the webcam through the internal address of the webcam, which is being

connected to the computer. [7]

In order for the suite to be able to use the input from the webcam as the image

input, the video from webcam will be captured and stored as bufferedimage. Since

video is a sequence of images, a frame grabber function is being used to capture the

frame of image at the required instant and use it as the input for the image

manipulation and processing. [7]

For the effects, there are specific ways to achieve the effects. For the binary

and gray-scale image, the captured image from the webcam will be altered its

properties in term of its colour. For binary image, the image will be created in type

byte binary [8] and for the gray-scale image; the image will be created in type byte

gray. [9] For the vertical and horizontal image flip, the processed image that is being

created, will be specified the orientation and coordinate, which the image will be

drawn and this will lead to the horizontal and vertical flip image. [10]

For the show edges, blur and sharpen effects, the captured image will be

passed through a filter. The filter will convolve each pixel of the picture with a

specific 3x3 matrix for each effects and resulting on the processed image that fulfil

the selected effects. [11] The convolution process that has been used in achieving the

effects is a spatial operation, which multiply the surround of the input pixel with a

specific 3x3 matrix. This method will allow the output pixel to be affected by the

immediate neighbour in a way that can only be mathematically specified by the value

of the matrixes that have been used. [12] The matrixes values are:

Matrix for show edges effect =

















 fff

fff

fff

0.10.10.1

0.00.00.0

0.10.10.1

 37

Matrix for blur effect =

















fff

fff

fff

0625.0125.00625.0

125.025.0125.0

0625.0125.00625.0

Matrix for sharpen effect =























fff

fff

fff

0.10.10.1

0.10.90.1

0.10.10.1

For the red band, green band, blue band and average band effect, the captured

image will be passed through a filter, which will filter out or changes the intensity

value of the colours. [13] For these effects, only the colour properties of the image is

being altered, which in the Java Programming Language, the raster of the image is

being altered. For red band, green band and blue band image, only the required colour

will not be filtered out by the filter and for the average band image, the intensity

value of each colours will be reduced into half. The colour properties of the image or

raster, is a 3x3 matrix, which the first column is representing the colour red, the

second column representing the colour green and the third column is representing the

colour blue. The matrix below shows the values for each of the effects:

Matrix for red band effect =

















fff

fff

fff

0.00.00.0

0.00.00.0

0.00.00.1

Matrix for green band effect =

















fff

fff

fff

0.00.00.0

0.00.10.0

0.00.00.0

Matrix for blue band effect =

















fff

fff

fff

0.10.00.0

0.00.00.0

0.00.00.0

 38

Matrix for average band effect =

















fff

fff

fff

5.00.00.0

0.05.00.0

0.00.05.0

For negative image, the captured image will be passed through a filter, which

will invert the colour value of each pixel, from high value to low value, which will

lead to a tonal inversion of the image. [14]

For the sepia image effect, the colour properties are being changed to achieve

a brownish coloured image. [15] The formula below shows the alterations that are

being made on the intensity value of the colour properties of the image, which is the

raster.

Gray Value = (Red Value + Blue Value + Green Value)/3

Red Value = Green Value = Blue Value = Gray Value

Red Value new = Red Value old (Gray Value) + 40

Green Value new = Green Value old + 20

For any intensity value that below 0, the value will be changed to 0 and any intensity

value, which exceeds 255, will be changed to 255. The addition that has been made to

the intensity value of the red and green colour is to achieve the brownish colour of the

image.

For posterize image effects, the image is being passed through a filter that will

alter the intensity value of each pixel of the picture, to achieve the oil paint like

image. The formula below is being used to alter the intensity value of each pixel for

the posterize image effect:

Intensity Value new = Intensity Value old – Remainder

Remainder = Remainder of (Intensity Value old /32)

The intensity value ranges from 0 to 255. [16]

 39

For the video effects that have been implemented into the suite, except for the

motion detection function, the video effects is being achieved through sequencing the

image effects in a continuous manner, which will leads to the achievement of video

effects. The sequencing is being achieved through the usage of timer functionality in

Java Programming Language. [17]

For the motion detection function, it is required to have an initial

representation of the environment that the function needs to be implemented, which is

the background image. After the background image is captured, the image will be

converted into gray scale image and divided into smaller segments. Then, the

intensity value of each segment is being determined.

When the motion detection function is initiated, the current frame of the video

will be processed by the suite, converting it into gray scale image, dividing it into

same segments as the background image and determining the intensity value of the

segments.

When the intensity value of the background image and current frame is

known, the absolute value of the difference of both of the intensity value is calculated

and the segment, in which the difference of the intensity value exceeded the

predefined value, will be boxed to highlight the object that appears on it. [18] This

function is being achieved through the usage of the background subtraction method.

 40

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1. Conclusion

A simple image and video processing suite is able to be developed through the

use of Java Programming Language. The suite is able to receive and display input

from the webcam, use the webcam as an image and video source for the webcam and

also able to manipulate the image and video input from the webcam. There are a total

of 14 image effects that have been incorporated into the suite, which focus on the

manipulation of the colours and properties of the image. For the video effects, there

are a total of 8 video effects that been added and out of the 8 effects, which includes

motion detection function. To achieve the motion detection function, the background

subtraction method is being used.

5.2. Recommendations

For future development and improvement of this project, it is suggested that

an offline image upload is being added into the suite. This will add the versatility of

the suite in working with image and video inputs, besides the one from the webcam.

Another recommendation is that a save function is being added to the suite to save the

image and video that have been manipulated or processed. Besides tha t, another

further improvement that can be done is the motion detection function. The method,

which is being used in the suite doesn‟t take into the account of changing light

condition and small objects that maybe come into the background image. Due to that

reason, it is suggested that a better and smarter algorithm is being develop in the

future to take into account of the dynamic factor of the environment.

 41

REFERENCES

[1] Orenstein D. (2000). Quick Study: Application Programming Interface (API).

 Retrieved on 12th of March, 2009, from Computer World website

Website:

http://www.computerworld.com/action/article.do?command=viewArticleBasic&art icleId=43

487

[2] Mihalenko P. (2007). Learn what the Java 2D API graphics package offers.

 Retrieved on 12th of March, 2009, from ZD Net Asia website

 Website: http://www.zdnetasia.com/techguide/java/0,39044898,62035312,00.htm

[3] FAQ: Java Advanced Imaging API,

 Retrieved on 11th of March, 2009, from Java Sun website

 Website: http://java.sun.com/products/java-media/jai/forDevelopers/jaifaq.html#fileformat

[4] Java SE Desktop Technologies

 Retrieved on 17th of April, 2009, from Java Sun website

 Website: http://java.sun.com/javase/technologies/desktop/media/jmf/

[5] GUI definition

 Retrieved on 22nd of April, 2009

 Website: http://www.lin fo.org/gui.html on 22 april 2009-04-22

[6] Receiving Audio and Video Using RTP

 Retrieved on 1st of December 2009, from Sun Development Network

Website:

http://java.sun.com/javase/technologies/desktop/media/jmf/2.1.1/solutions/AVReceive.html

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.zdnetasia.com/techguide/java/0,39044898,62035312,00.htm
http://java.sun.com/products/java-media/jai/forDevelopers/jaifaq.html#fileformat
http://java.sun.com/javase/technologies/desktop/media/jmf/
http://www.linfo.org/gui.html%20on%2022%20april%202009-04-22
http://java.sun.com/javase/technologies/desktop/media/jmf/2.1.1/solutions/AVReceive.html

 42

[7] Java Media Framework - Re: Here is the source code to JMF Webcam app +

saves jpeg

Retrieved on 23th of October 2009, from forums.sun.com

Website: http://forums.sun.com/thread.jspa?threadID=247253&start=0@tstart=0

[8] Class Bufferedimage

Retrieved on 23th of October 2009, from java.sun.com

Website: http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/BufferedImage.html

[9] Creating Gray-Level Images

Retrieved on 23th of October 2009, from Java Image Processing Cookbook

Website: http://www.lac.inpe.br/~rafael.santos /JIPCookbook/1200-create-gl.jsp

[10] Ultimate Java Image Manipulation

Retrieved on 23th of October 2009, from Javalobby

Website: http://www.javalobby.org/articles/ultimate-image/

[11] Show Other Image Effects

Retrieved on 23th of October 2009, from RoseIndia website

Website: http://www.roseindia.net/java/example/ java/swing/graphics2D/other-image.shtml

[12] Class ConvolveOp

 Retrieved on 1st of December 2009, from Java 2 Platfrom SE v1.4.2

 Website: http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/ConvolveOp.html

[13] Show Image Effects

Retrieved on 23th October 2009, from RoseIndia website

 Website: http://www.roseindia.net/java/example/ java/swing/graphics2D/image-effect.shtml

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/BufferedImage.html
http://www.lac.inpe.br/~rafael.santos/JIPCookbook/1200-create-gl.jsp
http://www.javalobby.org/articles/ultimate-image/
http://www.roseindia.net/java/example/java/swing/graphics2D/other-image.shtml
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/ConvolveOp.html
http://www.roseindia.net/java/example/java/swing/graphics2D/image-effect.shtml

 43

[14] Color Effect On Image

Retrieved on 23th October 2009, from RoseIndia website

Website: http://www.roseindia.net/java/example/ java/swing/color-effect-image.shtml

[15] Sepia tone image filter for Java

 Retrieved on 19th July 2009, from comp.lang.java.programmer Google Group

Website:

http://groups.google.com/group/comp.lang.java.programmer/browse_thread/thread/9d20a72c

40b119d0

[16] Image Demo

Retrieved on 23th of October 2009, from Java2s website

Website: http://www.java2s.com/Code/Java/2D-Graphics-GUI/Imagedemo.htm

[17] Class Timer

Retrieved on 23th of October 2009, from java.sun.com

Website: http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/Timer.html

[18] Java Image Comparison/ Motion Detection

Retrieved on 23th of October 2009, from Mind Meat

Website: http://mindmeat.blogspot.com/2008/07/ java-image-comparison.html

http://www.roseindia.net/java/example/java/swing/color-effect-image.shtml
http://groups.google.com/group/comp.lang.java.programmer/browse_thread/thread/9d20a72c40b119d0
http://groups.google.com/group/comp.lang.java.programmer/browse_thread/thread/9d20a72c40b119d0
http://www.java2s.com/Code/Java/2D-Graphics-GUI/Imagedemo.htm
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/Timer.html
http://mindmeat.blogspot.com/2008/07/java-image-comparison.html

 44

APPENDICES

 45

APPENDIX 1

SOURCE CODE OF THE SUITE

 46

In this section, the source code of the suite will be included.

package suite;

// Import from JAVA
import java.net.MalformedURLException;
import javax.swing.border.*;
import javax.media.*;
import javax.media.Buffer;
import javax.media.control.FrameGrabbingControl;
import javax.media.format.VideoFormat;
import javax.media.util.BufferToImage;
import java.awt.event.*;
import javax.swing.*;
import javax.imageio.*;
import java.io.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import com.sun.image.codec.jpeg.*;

public class Video extends JFrame implements ControllerListener
{
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 // Variables declaration
 private JPanel contentPane;
 //-----
 private JPanel jPanel1;
 //-----
 private JPanel jPanel2;
 //-----
 private JButton jButton2;
 private JButton jButton3;
 private JButton jButton4;
 private JButton jButton5;

private JButton jButton6;
 private JButton jButton7;
 private JButton jButton8;

 private JButton jButton9;
 private JButton jButton10;
 private JButton jButton11;
 private JButton jButton12;
 private JButton jButton13;
 private JButton jButton14;
 private JButton jButton15;
 private JButton jButton16;
 private JButton jButton17;
 private JButton jButton18;
 private JButton jButton19;
 private JButton jButton20;
 private JButton jButton21;
 private JButton jButton22;
 private JButton jButton23;
 private JButton jButton24;
 private JButton jButton25;
 private JButton jButton26;
 private JButton jButton27;
 private JButton jButton28;
 private JButton jButton29;

 47

 private JPanel jPanel3;
 //-----
 private JPanel jPanel4;
 private JPanel FrameCapturePanel;
 private JPanel FrameProcess;
 private JPanel VideoPanel;
 //tabbed
 private JPanel InputPanel;
 private JPanel InputPanel0;
 private JPanel InputPanel1;
 private JTabbedPane tab1;
 //radiobutton
 private JRadioButton radiobutton1;
 private JRadioButton radiobutton2;

 // RTP Variable Declaration
 private String rtpAdd = new String();
 private MediaLocator mlr = null;

 private Player player = null;

 // End of RTP Variable Declaration;

 // FrameGrabber Variable Declaration
 private FrameGrabbingControl frameGrabbingControl= null;
 private Buffer buffer = new Buffer();
 private Image bufferedToImage = null;
 private BufferToImage bufferToImage = new BufferToImage ((VideoFormat)buffer.getFormat());
 private Image capturedImage;
 private BufferedImage photo;
 private BufferedImage capturedphoto;
 private BufferedImage backgroundimage;

 // End of FrameGrabber Variable Declaration;
 //test show edges
 private BufferedImage photo1;
 private BufferedImage photo2;

 Raster raster;
 WritableRaster writableRaster;

 public javax.swing.Timer timerbinary;
 public javax.swing.Timer timergray;
 public javax.swing.Timer timerred;
 public javax.swing.Timer timergreen;
 public javax.swing.Timer timerblue;
 public javax.swing.Timer timernegative;
 public javax.swing.Timer timersepia;
 public javax.swing.Timer timerdetection;

 public Video()
 {
 super();
 initializeComponent();

 setUrlAdd();
 setMediaLocator();

 this.setVisible(true);
 }

 48

 /**
 * This method is called from within the constructor to initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is always regenerated
 * by the Windows Form Designer. Otherwise, retrieving design might not work properly.
 * Tip: If you must revise this method, please backup this GUI file for JFrameBuilder
 * to retrieve your design properly in future, before revising this method.
 */
 private void initializeComponent()
 {
 contentPane = (JPanel)this.getContentPane();
 //-----
 jPanel1 = new JPanel();
 //-----
 jPanel2 = new JPanel();
 //-----
 jButton2 = new JButton();
 jButton2.setPreferredSize(new Dimension(140,30));
 jButton3 = new JButton();
 jButton3.setPreferredSize(new Dimension(140,30));
 jButton4 = new JButton();
 jButton4.setPreferredSize(new Dimension(110,30));

 jButton5 = new JButton();
 jButton5.setPreferredSize(new Dimension(110,30));
 jButton6 = new JButton();
 jButton6.setPreferredSize(new Dimension(110,30));
 jButton7 = new JButton();
 jButton7.setPreferredSize(new Dimension(110,30));
 jButton8 = new JButton();
 jButton8.setPreferredSize(new Dimension(110,30));
 jButton9 = new JButton();
 jButton9.setPreferredSize(new Dimension(110,30));
 jButton10 = new JButton();
 jButton10.setPreferredSize(new Dimension(110,30));
 jButton11 = new JButton();
 jButton11.setPreferredSize(new Dimension(110,30));
 jButton12 = new JButton();
 jButton12.setPreferredSize(new Dimension (110,30));
 jButton13 = new JButton();
 jButton13.setPreferredSize(new Dimension (110,30));
 jButton14 = new JButton();
 jButton14.setPreferredSize(new Dimension (110,30));
 jButton15 = new JButton();
 jButton15.setPreferredSize(new Dimension(140,30));
 jButton16 = new JButton();
 jButton16.setPreferredSize(new Dimension(110,30));
 jButton17 = new JButton();
 jButton17.setPreferredSize(new Dimension(110,30));
 jButton18 = new JButton();
 jButton18.setPreferredSize(new Dimension(110,30));
 jButton19 = new JButton();
 jButton19.setPreferredSize(new Dimension(140,30));
 jButton20 = new JButton();
 jButton20.setPreferredSize(new Dimension(140,30));
 jButton21 = new JButton();
 jButton21.setPreferredSize(new Dimension(140,30));
 jButton22 = new JButton();
 jButton22.setPreferredSize(new Dimension(140,30));
 jButton23 = new JButton();
 jButton23.setPreferredSize(new Dimension(140,30));
 jButton24 = new JButton();
 jButton24.setPreferredSize(new Dimension(140,30));
 jButton25 = new JButton();
 jButton25.setPreferredSize(new Dimension(140,30));
 jButton28 = new JButton();
 jButton28.setPreferredSize(new Dimension(140,30));
 jButton29 = new JButton();

 49

 jButton29.setPreferredSize(new Dimension(140,30));
 //radio button
 radiobutton1 = new JRadioButton("Embedded Webcam", false);
 radiobutton1.setPreferredSize(new Dimension(140,30));
 radiobutton2 = new JRadioButton("Network Webcam", false);
 radiobutton2.setPreferredSize(new Dimension(140,30));

 jPanel3 = new JPanel();
 //-----
 Panel4 = new JPanel();
 //-----
 FrameCapturePanel = new JPanel();
 FrameProcess = new JPanel();
 VideoPanel = new JPanel();
 //tab
 InputPanel = new JPanel();
 InputPanel0 = new JPanel();
 InputPanel1 = new JPanel();
 Tab1 = new JTabbedPane();
 tab1.setPreferredSize(new Dimension(383,257));

 //
 // contentPane
 //
 contentPane.setLayout(new GridLayout(2, 2, 0, 0));
 contentPane.add(jPanel1, 0);
 contentPane.add(jPanel2, 1);
 contentPane.add(jPanel3, 2);
 contentPane.add(jPanel4, 3);
 contentPane.setBorder(BorderFactory.createLoweredBevelBorder());
 //
 // jPanel1
 //
 jPanel1.setLayout(new BorderLayout());
 jPanel1.setBorder(new TitledBorder("Webcam Input"));
 jPanel1.add(VideoPanel,BorderLayout.CENTER);
 //
 // jPanel2
 //
 jPanel2.setLayout(new BorderLayout());
 jPanel2.setBorder(new TitledBorder("Captured Image"));
 jPanel2.add(FrameCapturePanel,BorderLayout.CENTER);
 //
 // FrameCapture
 //
 FrameCapturePanel.setLayout(new BorderLayout());
 //
 //
 // FrameProcess
 //
 FrameProcess.setLayout(new BorderLayout());
 //
 // jButton2
 //
 jButton2.setText("Start Camera");
 jButton2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton2_actionPerformed(e);
 }

 });
 //
 // jButton3
 //
 jButton3.setText("Capture");

 50

 jButton3.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton3_actionPerformed(e);
 }

 });
 //
 // jButton4
 //
 jButton4.setText("Binary");
 jButton4.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton4_actionPerformed(e);
 }

});
 //
 // jButton5
 //

 jButton5.setText("Gray Scale");
 jButton5.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton5_actionPerformed(e);
 }

 });
 //
 // jButton6
 //

jButton6.setText("Show Edges");
 jButton6.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton6_actionPerformed(e);
 }

 });
 //
 // jButton7
 //
 jButton7.setText("Negative");
 jButton7.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton7_actionPerformed(e);
 }

 });
 //
 // jButton8
 //
 jButton8.setText("Red Band");
 jButton8.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton8_actionPerformed(e);
 }

 });
 //
 // jButton9
 //
 jButton9.setText("Green Band");

 51

 jButton9.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton9_actionPerformed(e);
 }

 });
 //
 // jButton9
 //
 jButton10.setText("Blue Band");
 jButton10.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton10_actionPerformed(e);
 }

 });
 jButton11.setText("Flip(Horizontal)");
 jButton11.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)

 {
 jButton11_actionPerformed(e);
 }

 });

 jButton12.setText("Flip(Vertical)");
 jButton12.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton12_actionPerformed(e);
 }

});

 jButton13.setText("Sharpen");
 jButton13.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton13_actionPerformed(e);
 }

 });

 jButton14.setText("Blur");
 jButton14.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton14_actionPerformed(e);
 }

 });

 jButton15.setText("Binary Video");
 jButton15.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton15_actionPerformed(e);
 }

 });

 jButton16.setText("Average Band");
 jButton16.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)

 52

 {
 jButton16_actionPerformed(e);
 }

 });
 jButton17.setText("Sepia");
 jButton17.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton17_actionPerformed(e);
 }

 });
 jButton18.setText("Posterize");
 jButton18.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton18_actionPerformed(e);
 }

 });

 jButton19.setText("Stop Video");
 jButton19.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton19_actionPerformed(e);
 }

 });
 jButton20.setText("Gray-Scale Video");
 jButton20.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton20_actionPerformed(e);
 }

 });
 jButton21.setText("Red-Band Video");
 jButton21.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton21_actionPerformed(e);
 }

});
 jButton22.setText("Green-Band Video");
 jButton22.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton22_actionPerformed(e);
 }

 });
 jButton23.setText("Blue-Band Video");
 jButton23.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton23_actionPerformed(e);
 }

 });
 jButton24.setText("Negative Video");
 jButton24.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton24_actionPerformed(e);

 53

 }

 });
 jButton25.setText("Sepia Video");
 jButton25.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton25_actionPerformed(e);
 }

 });
 jButton28.setText("Background Image");
 jButton28.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 jButton28_actionPerformed(e);
 }

 });
 jButton29.setText("Motion Detection");
 jButton29.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)
 {
 jButton29_actionPerformed(e);
 }

 });

 ButtonGroup radiobuttongroup = new ButtonGroup();
 radiobuttongroup.add(radiobutton1);
 radiobuttongroup.add(radiobutton2);

 //
 // jPanel3
 //
 jPanel3.setLayout(new FlowLayout(FlowLayout.CENTER, 0, 0));
 //
 InputPanel.add(radiobutton2,0);
 InputPanel.add(radiobutton1,1);
 InputPanel.add(jButton2, 2);
 InputPanel.add(jButton3, 3);

 InputPanel0.add(jButton11, 0);
 InputPanel0.add(jButton12, 1);
 InputPanel0.add(jButton13,2);
 InputPanel0.add(jButton14,3);
 InputPanel0.add(jButton4, 4);
 InputPanel0.add(jButton5, 5);
 InputPanel0.add(jButton6, 6);
 InputPanel0.add(jButton7, 7);
 InputPanel0.add(jButton8,8);
 InputPanel0.add(jButton9,9);
 InputPanel0.add(jButton10,10);
 InputPanel0.add(jButton16, 11);
 InputPanel0.add(jButton17, 12);
 InputPanel0.add(jButton18,13);

 InputPanel1.add(jButton15, 0);
 InputPanel1.add(jButton20, 1);
 InputPanel1.add(jButton21, 2);
 InputPanel1.add(jButton22, 3);
 InputPanel1.add(jButton23, 4);
 InputPanel1.add(jButton24, 5);
 InputPanel1.add(jButton25, 6);
 InputPanel1.add(jButton19, 7);
 InputPanel1.add(jButton28, 8);

 54

 InputPanel1.add(jButton29, 9);

 tab1.addTab("Input", null ,InputPanel,"Input Options");

 tab1.addTab("Image Processing", null ,InputPanel0,"Image Processing Options");

 tab1.addTab("Video Processing", null ,InputPanel1,"Video Processing Options");

 jPanel3.add(tab1);

 jPanel3.setBorder(new TitledBorder("Control Panel"));
 //
 // jPanel4
 //
 jPanel4.setLayout(new BorderLayout());

jPanel4.setBorder(new TitledBorder("Processed Image"));
 jPanel4.add(FrameProcess,BorderLayout.CENTER);
 //
 // Video
 //
 this.setTitle("Image Analysis");

 this.setLocation(new Point(30, 30));
 this.setSize(new Dimension(800, 600));
 this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 this.setResizable(false);

 }

 private void jButton2_actionPerformed(ActionEvent e)
 {

 createPlayer();

 }

 private void jButton3_actionPerformed(ActionEvent e)
 {

 capturedImage = grabFrameImage();

 if (capturedImage != null){

capturedphoto = new BufferedImage(FrameCapturePanel.getWidth(),
FrameCapturePanel.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = capturedphoto.createGraphics();

 G.drawImage(capturedImage, 0, 0,FrameCapturePanel.getWidth(),FrameCapturePanel.getHeight(), null);

 G.dispose();

 Graphics2D g = (Graphics2D) FrameCapturePanel.getGraphics();

 g.drawImage(capturedphoto, 0, 0, null);

 g.dispose();

 }

 else
 {
 System.err.println ("Error : Could not grab frame");
 }

 }

 55

 private void jButton4_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(),
FrameProcess.getHeight(),BufferedImage.TYPE_BYTE_BINARY);

 Draw1();

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

 private void jButton5_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(),
FrameProcess.getHeight(),BufferedImage.TYPE_BYTE_GRAY);

 Draw1();

 Draw2();

}
 else
 {
 System.err.println ("Error ");
 }

 }

 private void jButton6_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 //
 photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = photo1.createGraphics();

 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight() , null);
 G.dispose();

 photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 Graphics G1 = photo2.createGraphics();

 G1.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight() , null);
 G1.dispose();

 float value[] = { 1.0f, 0.0f, -1.0f, 1.0f, 0.0f, -1.0f, 1.0f, 0.0f,-1.0f };
 Kernel kernel = new Kernel(3, 3, value);
 ConvolveOp convolve = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,null);
 convolve.filter(photo1, photo2);
 photo = photo2;

 Draw2();

 56

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton7_actionPerformed(ActionEvent e)
 {

if (capturedImage != null){

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Draw1();

 LookupTable lookup;
 byte reverse[] = new byte[256];
 for (int i = 0; i < 256; i++) {
 reverse[i] = (byte) (255 - i);

 }
 lookup = new ByteLookupTable(0, reverse);

LookupOp lop = new LookupOp(lookup, null);
 lop.filter(photo, photo);

Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton8_actionPerformed(ActionEvent e)
 {
 if (capturedImage != null){

 float RED_MATRIX[][] = { { 1.0f, 0.0f, 0.0f },{ 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };

photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = photo1.createGraphics();

 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);

 G.dispose();
 raster = photo1.getRaster();

photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 writableRaster = (WritableRaster) photo2.getRaster();

 float combineMatrix[][];
 combineMatrix=RED_MATRIX;
 BandCombineOp band = new BandCombineOp(combineMatrix, null);
 band.filter(raster, writableRaster);
 photo = photo2;

 Draw2();

 }
 else
 {
 System.err.println ("Error ");

 57

 }

 }

private void jButton9_actionPerformed(ActionEvent e)
 {
 if (capturedImage != null){

 float GREEN_MATRIX[][] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };

 photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = photo1.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);
 G.dispose();
 raster = photo1.getRaster();

photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 writableRaster = (WritableRaster) photo2.getRaster();

 float combineMatrix[][];
 combineMatrix=GREEN_MATRIX;

 BandCombineOp band = new BandCombineOp(combineMatrix, null);
 band.filter(raster, writableRaster);
 photo = photo2;

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton10_actionPerformed(ActionEvent e)
 {
 if (capturedImage != null){

 float BLUE_MATRIX[][] = { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };

 photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

Graphics G = photo1.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);
 G.dispose();
 raster = photo1.getRaster();
 photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 writableRaster = (WritableRaster) photo2.getRaster();

 float combineMatrix[][];
 combineMatrix=BLUE_MATRIX;
 BandCombineOp band = new BandCombineOp(combineMatrix, null);
 band.filter(raster, writableRaster);
 photo = photo2;

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

 58

private void jButton11_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = photo.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);

G.drawImage(photo, 0, 0, FrameProcess.getWidth(), FrameProcess.getHeight(), FrameProcess.getWidth(), 0, 0,
FrameProcess.getHeight(), null);

 G.dispose();

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton12_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 Graphics G = photo1.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);
 G.dispose();

 Graphics G1 = photo.createGraphics();

G1.drawImage(photo1, 0, 0, FrameProcess.getWidth(), FrameProcess.getHeight(), 0, FrameProcess.getHeight(),
FrameProcess.getWidth(), 0, null);

 G1.dispose();

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton13_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 //

photo1 = new BufferedImage(FrameProcess.getWidth(),
FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = photo1.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight() , null);
 G.dispose();

 59

 photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 Graphics G1 = photo2.createGraphics();

G1.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight() , null);

 G1.dispose();

 float value[] = { -1.0f, -1.0f, -1.0f, -1.0f, 9.0f, -1.0f, -1.0f, -1.0f,-1.0f };
 Kernel kernel = new Kernel(3, 3, value);
 ConvolveOp convolve = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,null);
 convolve.filter(photo1, photo2);
 photo = photo2;

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton14_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 //
 photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 Graphics G = photo1.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight() , null);
 G.dispose();

 photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 Graphics G1 = photo2.createGraphics();

 G1.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight() , null);
 G1.dispose();

 float value[] = { 0.0625f, 0.125f, 0.0625f, 0.125f, 0.25f, 0.125f, 0.0625f, 0.125f, 0.0625f };
 Kernel kernel = new Kernel(3, 3, value);
 ConvolveOp convolve = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,null);
 convolve.filter(photo1, photo2);
 photo = photo2;

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }

 }

private void jButton15_actionPerformed(ActionEvent e)
 {

 timerbinary = new javax.swing.Timer(200, BinaryVideo);
 timerbinary.start();

 }

 60

private void jButton16_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 float AVG_MATRIX[][] = { { 0.5f, 0.0f, 0.0f }, { 0.0f, 0.5f, 0.0f }, { 0.0f, 0.0f, 0.5f } };

 photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 Graphics G = photo1.createGraphics();

 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);

 G.dispose();
 raster = photo1.getRaster();
 photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 writableRaster = (WritableRaster) photo2.getRaster();

 float combineMatrix[][];
 combineMatrix=AVG_MATRIX;

 BandCombineOp band = new BandCombineOp(combineMatrix, null);
 band.filter(raster, writableRaster);
 photo = photo2;

 Draw2();

 }
 else
 {
 System.err.println ("Error ");
 }
 }

private void jButton17_actionPerformed(ActionEvent e)
 {

 if (capturedImage != null){

 photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess .getHeight(),BufferedImage.TYPE_INT_RGB);

 Draw1();

 int sepiaDepth = 20;
 int w = photo.getWidth();
 int h = photo.getHeight();
 writableRaster = photo.getRaster();

 int[] pixels = new int[w*h*3];
 writableRaster.getPixels(0, 0, w, h, pixels);

 for (int i=0;i<pixels.length; i+=3)
 {
 int r = pixels[i];
 int g = pixels[i+1];
 int b = pixels[i+2];
 int gry = (r + g + b) / 3;
 r = g = b = gry;
 r = r + (sepiaDepth * 2);
 g = g + sepiaDepth;
 if (r>255) r=255;
 if (g>255) g=255;
 if (b>255) b=255;

if (b<0) b=0;

 61

if (b>255) b=255;
 pixels[i] = r;
 pixels[i+1]= g;
pixels[i+2] = b;
}
 writableRaster.setPixels(0, 0, w, h, pixels);

Draw2();

}
 else

 {
 System.err.println ("Error ");
}

 }

private void jButton18_actionPerformed(ActionEvent e)
 {

if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

Draw1();

 LookupTable lookup;
short[] posterize = new short[256];
 for (int i = 0; i < 256; i++) {
posterize[i] = (short) (i - (i % 32));
}
 lookup = new ShortLookupTable(0, posterize);
LookupOp lop = new LookupOp(lookup, null);
lop.filter(photo, photo);

Draw2();

}
 else

 {
System.err.println ("Error ");

 }

 }

private void jButton19_actionPerformed(ActionEvent e)
 {
 if(timerbinary != null){
 timerbinary.stop();}
 if(timergray != null){
 timergray.stop();}
 if(timerred != null){
 timerred.stop();}
 if(timergreen != null){
 timergreen.stop();}
 f(timerblue != null){
 timerblue.stop();}
 if(timernegative != null){
 timernegative.stop();}
 if(timersepia != null){
 timersepia.stop();}
 if(timerdetection != null){
 timerdetection.stop();}

 62

 }

private void jButton20_actionPerformed(ActionEvent e)
 {

 timergray = new javax.swing.Timer(200, GrayVideo);
 timergray.start();

 }

Private void jButton21_actionPerformed(ActionEvent e)
 {

 timerred = new javax.swing.Timer(200, RedVideo);
 timerred.start();

 }

private void jButton22_actionPerformed(ActionEvent e)
 {

 timergreen = new javax.swing.Timer(200, GreenVideo);
 timergreen.start();

 }

private void jButton23_actionPerformed(ActionEvent e)
 {

 timerblue = new javax.swing.Timer(200, BlueVideo);
 timerblue.start();

 }

private void jButton24_actionPerformed(ActionEvent e)
 {

 timernegative = new javax.swing.Timer(200, NegativeVideo);
 timernegative.start();

 }

private void jButton25_actionPerformed(ActionEvent e)
 {

 timersepia = new javax.swing.Timer(200, SepiaVideo);
 timersepia.start();

 }

private void jButton28_actionPerformed(ActionEvent e)
 {

capturedImage = grabFrameImage();

if (capturedImage != null){

backgroundimage = new BufferedImage(FrameCapturePanel.getWidth(),
FrameCapturePanel.getHeight(),BufferedImage.TYPE_INT_RGB);

Graphics G = backgroundimage.createGraphics();
G.drawImage(capturedImage, 0, 0,FrameCapturePanel.getWidth(),FrameCapturePanel.getHeight(), null);
G.dispose();

 63

Graphics2D g = (Graphics2D) FrameCapturePanel.getGraphics();
g.drawImage(backgroundimage, 0, 0, null);
 g.dispose();

}

else
 {

 System.err.println ("Error : Could not grab frame");
 }

 }

private void jButton29_actionPerformed(ActionEvent e)
 {
 timerdetection = new javax.swing.Timer(500, DetectionVideo);
 timerdetection.start();

 }

private void Draw1(){

 Graphics G = photo.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);

G.dispose();
}

private void Draw2(){

 Graphics2D g = (Graphics2D) FrameProcess.getGraphics();
 g.drawImage(photo, 0, 0, null);
 g.dispose();
 }

protected static BufferedImage imageToBufferedImage(Image img) {
BufferedImage bi = new BufferedImage(img.getWidth(null), img.getHeight(null), BufferedImage.TYPE_INT_RGB);
Graphics2D g2 = bi.createGraphics();
g2.drawImage(img, null, null);
return bi;

 }

ActionListener BinaryVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 capturedImage = grabFrameImage();
 if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(),
FrameProcess.getHeight(),BufferedImage.TYPE_BYTE_BINARY);
Graphics G = photo.createGraphics();
G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight(), null);

 G.dispose();

Graphics2D g = (Graphics2D) FrameProcess.getGraphics();
g.drawImage(photo, 0, 0, null);
 g.dispose();

 }

 else
 {
 System.err.println ("Error : Could not grab frame");
 }
 }
 };

ActionListener GrayVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 64

 capturedImage = grabFrameImage();
 if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(),
FrameProcess.getHeight(),BufferedImage.TYPE_BYTE_GRAY);

Graphics G = photo.createGraphics();
G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(),FrameProcess.getHeight(), null);
G.dispose();

Graphics2D g = (Graphics2D) FrameProcess.getGraphics();
 g.drawImage(photo, 0, 0, null);
g.dispose();

}

 else
 {
 System.err.println ("Error : Could not grab frame");
 }
 }

 };

ActionListener RedVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 capturedImage = grabFrameImage();
 if (capturedImage != null){

float RED_MATRIX[][] = { { 1.0f, 0.0f, 0.0f },{ 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };

photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

Graphics G = photo1.createGraphics();
G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);
G.dispose();

 raster = photo1.getRaster();

photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
writableRaster = (WritableRaster) photo2.getRaster();

 float combineMatrix[][];
combineMatrix=RED_MATRIX;
 BandCombineOp band = new BandCombineOp(combineMatrix, null);
band.filter(raster, writableRaster);
photo = photo2;

Draw2();

}

 else

 System.err.println ("Error : Could not grab frame");
 }
 }
 };

ActionListener GreenVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 apturedImage = grabFrameImage();
 if (capturedImage != null){

float GREEN_MATRIX[][] = { { 0.0f, 0.0f, 0.0f },{ 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };

photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

 65

Graphics G = photo1.createGraphics();
 G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);
 G.dispose();

 raster = photo1.getRaster();
photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
writableRaster = (WritableRaster) photo2.getRaster();

float combineMatrix[][];
combineMatrix=GREEN_MATRIX;
 BandCombineOp band = new BandCombineOp(combineMatrix, null);
band.filter(raster, writableRaster);
photo = photo2;

Draw2();

 }

 else
 {
 System.err.println ("Error : Could not grab frame");
 }

 }
 };

ActionListener BlueVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 capturedImage = grabFrameImage();
 if (capturedImage != null){

float BLUE_MATRIX[][] = { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };

photo1 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
Graphics G = photo1.createGraphics();
G.drawImage(capturedImage, 0, 0,FrameProcess.getWidth(), FrameProcess.getHeight(), null);
G.dispose();
raster = photo1.getRaster();
photo2 = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
writableRaster = (WritableRaster) photo2.getRaster();

float combineMatrix[][];
combineMatrix=BLUE_MATRIX;
BandCombineOp band = new BandCombineOp(combineMatrix, null);
band.filter(raster, writableRaster);
photo = photo2;

Draw2();

 }

 else
 {
 System.err.println ("Error : Could not grab frame");
 }
 }
 };

ActionListener NegativeVideo = new ActionListener() {
public void actionPerformed(ActionEvent evt) {

 capturedImage = grabFrameImage();
 if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
 Draw1();

 LookupTable lookup;

 66

byte reverse[] = new byte[256];
for (int i = 0; i < 256; i++) {
 reverse[i] = (byte) (255 - i);
}
lookup = new ByteLookupTable(0, reverse);

 LookupOp lop = new LookupOp(lookup, null);
 lop.filter(photo, photo);

Draw2();

}

 else

 {
 System.err.println ("Error : Could not grab frame");
 }
 }
 };

ActionListener SepiaVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {

 capturedImage = grabFrameImage();
 if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);
Draw1();

int sepiaDepth = 20;
 int w = photo.getWidth();
int h = photo.getHeight();
writableRaster = photo.getRaster();

int[] pixels = new int[w*h*3];
writableRaster.getPixels(0, 0, w, h, pixels);

for (int i=0;i<pixels.length; i+=3)
{
int r = pixels[i];
int g = pixels[i+1];
int b = pixels[i+2];
 int gry = (r + g + b) / 3;
r = g = b = gry;
r = r + (sepiaDepth * 2);
g = g + sepiaDepth;
if (r>255) r=255;
if (g>255) g=255;
 if (b>255) b=255;

if (b<0) b=0;
if (b>255) b=255;
pixels[i] = r;
pixels[i+1]= g;
pixels[i+2] = b;
}
writableRaster.setPixels(0, 0, w, h, pixels);

Draw2();

}

 else
 {
 System.err.println ("Error : Could not grab frame");
 }
 }
 };

 67

ActionListener DetectionVideo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 capturedImage = grabFrameImage();

if (capturedImage != null){

photo = new BufferedImage(FrameProcess.getWidth(), FrameProcess.getHeight(),BufferedImage.TYPE_INT_RGB);

Draw1();
Draw2();

 ImageCompare ic = new ImageCompare(backgroundimage, photo);
 ic.setParameters(8, 6, 5, 10);
 ic.setDebugMode(0);
ic.compare();

Graphics2D g = (Graphics2D) FrameProcess.getGraphics();

g.drawImage(ic.getChangeIndicator(), 0, 0, null);

g.dispose();
}

 else
 {
 System.err.println ("Error : Could not grab frame");
 }
 }

};

public String[] getFormats() {
 String[] Formats = ImageIO.getWriterFormatNames();
 TreeSet<String> FormatsSet = new TreeSet<String>();
 for (String s : Formats) {
 FormatsSet.add(s.toLowerCase());
 }
 return FormatsSet.toArray(new String[0]);
 }

 private void setUrlAdd() {

rtpAdd = "rtp://224.123.111.101:22224/video/1";

}

private void setMediaLocator() {
 //below the code to get video across the internet/broadcast
 radiobutton1.addActionListener(

 new ActionListener() {
public void actionPerformed(ActionEvent e)
{
 JRadioButton rbutton = (JRadioButton) e.getSource();
if (rbutton.equals(radiobutton1)) {
mlr = new MediaLocator("vfw://0");
}

 }

 }
);

 radiobutton2.addActionListener(

 68

 new ActionListener() {
public void actionPerformed(ActionEvent e)
{
JRadioButton rbutton = (JRadioButton) e.getSource();
if (rbutton.equals(radiobutton2)) {
mlr = new MediaLocator(rtpAdd);
 }
}

}
);

 }

 private void createPlayer() {

if (mlr == null) {
 System.err.println("Can't build MRL for RTP:"+ rtpAdd);
System.exit(1);
}

 try {

player = Manager.createPlayer(mlr);
player.addControllerListener(this);

 player.start();

 } catch (NoPlayerException e) {
 System.err.println("Error:" + e);

} catch (MalformedURLException e) {
System.err.println("Error:" + e);

 } catch (IOException e) {
 System.err.println("Error:" + e);

}

 }

 public synchronized void controllerUpdate(ControllerEvent event) {

Component comp = null;

if (event instanceof RealizeCompleteEvent){

comp = player.getVisualComponent();
if (comp != null){
jPanel1.add (comp, BorderLayout.CENTER);
validate();

}
}

if (event instanceof StopEvent){

try{
playerClose();
}catch(Exception e){

 JOptionPane.showMessageDialog(this,"Problem closing CAM:\nPlayer Exception: "+e);
 }

}

 69

if (event instanceof ResourceUnavailableEvent) {

playerClose();
 }
 }

 private void playerClose() {

if (player != null){

player.close();
player.deallocate();

 player = null;

}
 }

private Buffer grabFrameBuffer() {
if (player != null)

 {
 frameGrabbingControl = (FrameGrabbingControl)player.getControl

 ("javax.media.control.FrameGrabbingControl");

 if (frameGrabbingControl != null)

{
 return (frameGrabbingControl.grabFrame());

}
else

 {
System.err.println ("Error : FrameGrabbingControl is null");

 return (null);
 }
 }
 else
 {
 System.err.println ("Error : Player is null");
 return (null);
 }

 }

 private Image grabFrameImage() {

 buffer = grabFrameBuffer();

if (buffer != null)
 {
 // Convert it to an image
 bufferToImage = new BufferToImage ((VideoFormat)buffer.getFormat());

if (bufferToImage != null)
 {
 bufferedToImage = bufferToImage.createImage (buffer);

if (bufferedToImage != null)
{

 return (bufferedToImage);
 }
 else
 {
 System.err.println ("Error : BufferToImage cannot convert buffer");
 return (null);
 }
 }
 else
 {
 System.err.println ("Error : cannot create BufferToImage instance");
 return (null);

 70

 }
 }
 else
 {
 System.out.println ("Error : Buffer grabbed is null");
 return (null);
 }
 }

//============================= Testing ================================//
//= =//
//= The following main method is just for testing this class you built.=//
//= After testing,you may simply delete it. =//
//==//

public static void main(String[] args)
 {
 JFrame.setDefaultLookAndFeelDecorated(true);
 JDialog.setDefaultLookAndFeelDecorated(true);
 try
 {
 UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

 }
 catch (Exception ex)
 {
 System.out.println("Failed loading L&F: ");
 System.out.println(ex);
 }
 new Video();
 }

//= End of Testing =
}

 71

package suite;

import javax.swing.*;
import java.io.*;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import com.sun.image.codec.jpeg.*;

 public class ImageCompare {

protected BufferedImage img1 = null;
protected BufferedImage img2 = null;
protected BufferedImage imgc = null;
protected int comparex = 0;
protected int comparey = 0;
protected int factorA = 0;
protected int factorD = 10;
protected boolean match = false;
protected int debugMode = 0;
 // 1: textual indication of change, 2: difference of factors

public ImageCompare(BufferedImage img1, BufferedImage img2) {
this.img1 = img1;
this.img2 = img2;
autoSetParameters();
}

protected void autoSetParameters() {
comparex = 10;
comparey = 10;
factorA = 10;
factorD = 10;
}

public void setParameters(int x, int y, int factorA, int factorD) {
this.comparex = x;
this.comparey = y;
this.factorA = factorA;
this.factorD = factorD;
}

public void setDebugMode(int m) {
this.debugMode = m;
}

// compare the two images in this object.
public void compare() {
// setup change display image
imgc = imageToBufferedImage(img2);
Graphics2D gc = imgc.createGraphics();
gc.setColor(Color.RED);
// convert to gray images.
img1 = imageToBufferedImage(GrayFilter.createDisabledImage(img1));
img2 = imageToBufferedImage(GrayFilter.createDisabledImage(img2));
// how big are each section
int blocksx = (int)(img1.getWidth() / comparex);
int blocksy = (int)(img1.getHeight() / comparey);
// set to a match by default, if a change is found then flag non-match
this.match = true;
// loop through whole image and compare individual blocks of images
for (int y = 0; y < comparey; y++) {
if (debugMode > 0) System.out.print("|");
for (int x = 0; x < comparex; x++) {
int b1 = getAverageBrightness(img1.getSubimage(x*blocksx, y*blocksy, blocksx - 1, blocksy - 1));
int b2 = getAverageBrightness(img2.getSubimage(x*blocksx, y*blocksy, blocksx - 1, blocksy - 1));

 72

int diff = Math.abs(b1 - b2);
if (diff > factorA) { // the difference in a certain region has passed the threshold value of factorA
// draw an indicator on the change image to show where change was detected.
gc.drawRect(x*blocksx, y*blocksy, blocksx - 1, blocksy - 1);
this.match = false;
}
if (debugMode == 1) System.out.print((diff > factorA ? "X" : " "));
if (debugMode == 2) System.out.print(diff + (x < comparex - 1 ? "," : ""));
}
if (debugMode > 0) System.out.println("|");
}
}

// return the image that indicates the regions where changes where detected.
public BufferedImage getChangeIndicator() {
return imgc;
}

// returns a value specifying some kind of average brightness in the image.
protected int getAverageBrightness(BufferedImage img) {
Raster r = img.getData();

int total = 0;
for (int y = 0; y < r.getHeight(); y++) {
for (int x = 0; x < r.getWidth(); x++) {
total += r.getSample(r.getMinX() + x, r.getMinY() + y, 0);
}
}
return (int)(total / ((r.getWidth()/factorD)*(r.getHeight()/factorD)));
}

// returns true if image pair is considered a match
public boolean match() {
return this.match;
}

// buffered images are just better.
protected static BufferedImage imageToBufferedImage(Image img) {
BufferedImage bi = new BufferedImage(img.getWidth(null), img.getHeight(null), BufferedImage.TYPE_INT_RGB);
Graphics2D g2 = bi.createGraphics();
g2.drawImage(img, null, null);
return bi;
}

}

 73

APPENDIX 2

ACTIVITY DIAGRAM OF THE SUITE

 74

