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ABSTRACT 

Torrefaction is thermal pretreatment process for biomass at temperature range from 200 

to 300°C which carried out at under inert atmosphere. This process is aiming to produce 

solid fuel which increased energy density, lowered moisture content and easy to 

comminute into small particle size by decomposing hemicellulose. In this study, three 

types of oil palm biomass namely empty fruit bunch (EFB), palm mesocarp fiber (PMF) 

and palm kernel shell are torrefied by using thermogravimetric analyzer (TGA) at 

different particle sizes, i.e. 250-355µm and 355-500µm. Two steps reaction are found 

out to give description about decomposition for EFB, PMF and PKS. For two steps, 

activation energies, Ea of 58267 kJ/mol and -34247 kJ/mol, respectively and pre-

exponential factors, A of 11x10
3
 and 1.24x10

-6
, respectively for EFB with particle size 

250-355 µm are found. During the process, only hemicellulose decomposition takes 

place. The hemicellulose decomposition is more significant compare to cellulose and 

lignin during torrefaction of oil palm biomass since temperature decomposition of 

hemicellulose between 225-325°C. TGA process conditions are replicated using tube 

furnace to determine energy yield and ultimate analysis for torrefied samples. Energy 

yield is found increasing with torrefaction temperature. Meanwhile, kinetic model is 

created and verified for predicting amount of torrefied solid. As conclusion, four main 

parameters give significant towards torrefaction process which are type of biomass, 

particle size, torrefaction temperature and reaction time. 
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CHAPTER 1: INTRODUCTION 

1.1. Background of Study 

Malaysian palm oil industry has grown tremendously over the last 4 decades and since 

then, it has maintained its position as the leading world‟s country in the production of 

palm oil. Nevertheless, the industry has also generated vast quantities of palm biomass, 

mainly from milling and crushing palm kernel. Generally, most of this biomass can be 

used as combustion fuels. Currently, the shell and fiber are the main sources of energy in 

palm oil mills. These fuels are burnt in boiler to produce steam for electricity generation 

to be used in the milling process. However, EFB, PMF and PKS, due to its physical 

properties and demands, are not normally utilized as fuel. In order to make use of the 

resource and expand its usage as fuel in various industries and applications, raw oil palm 

biomass should be treated and upgraded into uniform and useful fuels [1]. 

Small Renewable Energy Programme (SREP) Development in Sabah from Malaysian 

Palm Oil Board (MPOB) Perspective had presented their analysis regarding waste 

generated by palm at year 2009 where fiber generated 11.14 million tonnes, shell 

generated 5.14 million tonnes and empty fruit bunch generated 19.71 million tonnes. 

Over year, accumulated waste of palm causes Malaysia facing huge amount of abundant 

waste. Environmental issue rise from untreated decomposition of waste from 

irresponsible industry. As a concern, many researchers found out method to treat the 

waste in proper way by converting to solid, liquid and gas fuels. 

Over years, amount of fossil fuel in the world starts to decrease and hence, it is needed 

an alternative renewable energy resource for replacement. Due to that concern, many 

researches were developed to investigate an alternative energy resource. Conversion of 

biomass to bio oil is one of the prospective alternative energy resources. Wastes palm 

such as EFB, PMF, and PKS are used as a sample material and carried out through 

pyrolysis, gasification or combustion methods in order to decrease abundant waste and 

environmental problem of waste palm. 
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Figure 1: Waste Generated after Palm Oil Process. (a) Empty Fruit Bunch (EFB), (b) Palm Mesocarp Fiber (PMF) and (c) Palm 

Kernel Shell (PKS). (Taken from FELCRA, Bota, Perak) 

Unfortunately, after going through either method, product produced is worst in term of 

properties such as low energy density and high moisture content. It leads researchers to 

find out an alternative way to enhance the properties. A new method recently has been 

found and it has been proved to improve properties of bio oil to be used as a fuel. It is a 

pretreatment process, called as torrefaction process. 

The study on torrefaction has attracted a few researchers‟ focus in order to find 

replacement for fossil fuel. However, this study is still not widely used and the data 

regarding torrefaction process is less and limited. In order to continue further research 

on effectiveness of torrefaction process, research on kinetic study of torrefaction process 

of oil palm biomass has carried out and studied.  
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1.2. Problem Statement 

Torrefaction had been reported as one of the pretreatment method for improving 

properties of agricultural wastes. Despite all the reported data, the fundamental studies 

on torrefaction process for oil palm wastes; namely empty fruit bunch (EFB), palm 

mesocarp fiber (PMF) and palm kernel shell (PKS) are rather limited. Specifically, study 

on the optimum torrefaction conditions and parameters and kinetics of oil palm wastes is 

not widely discovered.   

However, the use of raw biomass materials as a fuel entails several problems, such as its 

high bulk volume, high moisture content and relatively low calorific value, which make 

raw biomass an expensive fuel to transport [2].  

Besides, untreated biomass has a relatively low energy density, high moisture content 

and is difficult to comminute into small particles. Those problems contribute in storage 

complications such as degradation and self-heating, lower combustion efficiencies and 

gasifier design limitations.    

Furthermore, enhancement of the energy yield is required to replace an equivalent 

amount of coal in applications such as combustion and gasification.  
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1.3. Objective and Scope of Study 

The objectives of this research are: 

1. to analyze weight loss of oil palm biomass (EFB, PMF and PKS) during torrefaction 

process 

2. to analyze temperature affect towards different types of oil palm biomass and 

decomposition of hemicellulose, cellulose and lignin during torrefaction process.  

3. to analyze energy yield of oil palm biomass before and after  torrefaction process. 

4. to analyze carbon, nitrogen, hydrogen, sulphur and oxygen contents before and after  

torrefaction process. 

5. to create model for torrefaction process through relationship between weight loss and 

reaction kinetic. 

This research is studied and carried out through experimental and modeling works. For 

experimental work, oven, grinder and sieving will used for sample preparation. TGA 

will be used to identify weight loss of waste palm, tube furnace will be used for process 

condition replication same as in TGA, CHNS analyzer will used to determine percent of 

carbon, hydrogen, nitrogen and sulphur contents (ultimate analysis) of oil palm biomass 

and bomb calorimeter will be used for identify calorific value of torrefied sample.  

Meanwhile for modeling, MATLAB software will be used for calculating reaction 

kinetics involved during torrefaction process. After that, model will be verified for 

predicting amount of torrefied product (solid fuel).  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Torrefaction of Biomass 

Torrefaction is a thermochemical treatment method in the first place earmarked by an 

operating temperature within the range of 200 to 300 °C. It is carried out under 

atmospheric condition and in the absence of oxygen. The name torrefaction is adopted 

from the roasting of coffee beans, which is, however, done at lower temperature and 

does allow the presence of oxygen. Nevertheless, the mechanical effects of torrefaction 

on biomass are supposed to be similar to its effect on coffee beans, which is their brittle 

structure afterwards. Torrefaction has many synonyms. Some examples are roasting, 

slow and mild pyrolysis, wood cooking and high-temperature drying. Especially the link 

with pyrolysis is easy to make as torrefaction covers part of the initial decomposition 

reactions of pyrolysis. 

The main torrefaction product is the solid phase, which is similar to pyrolysis referred to 

as the charred residue. In the field of torrefaction the solid product is also frequently 

called torrefied wood or torrefied biomass. Similar to pyrolysis, during torrefaction the 

chemical structure of biomass is altered. This leads to the formation of a variety of 

volatile (decomposition) products of which some are liquids at room temperature 

(condensable). By mass, important reaction products other than char are carbon dioxide, 

carbon monoxide, water, acetic acid and methanol [3]. After condensation, liquid 

products manifest themselves as a yellowish liquid. All these non-solid reaction products 

contain relatively more oxygen compared to the untreated biomass. Hence the O/C ratio 

of torrefied biomass is lower than untreated biomass, resulting in an increase of the 

calorific value of the solid product. 

Torrefaction of wood has attracted more interest recently. Pentanunt et al. (1990) carried 

out torrefaction experiments at the Asian Institute of Technology in Bangkok. They 

compared combustion characteristics of torrefied wood produced after 2-3 hours of 

torrefaction and concluded that torrefied wood produces less smoke compared with 

untreated wood. In Brazil, a bench unit was used to determine the effect of raw material, 

temperature, and residence time on the properties of torrefied wood at the University of 

Campinas. Torrefaction research is currently carried out at the National Renewable 
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Energy Centre (NREL) in Golden, Colorado [8] and the Royal Institute of Technology 

(KTH) in Stockholm, Sweden. However, torrefaction of palm waste is still not widely 

focused and data available is limited. As an incentive and concern about environmental 

issues in Malaysia, research on palm waste is carried out in this report. 

Lignocellulose is another word for biomass that originates from plants. It generalizes the 

structure of plants to the three main sugar-based polymeric structures; cellulose, 

hemicellulose and lignin. These three polymeric structures are mainly considered in 

most of the studies aiming for the understanding of decomposition mechanisms of 

woody and herbaceous biomass. In plant structures lignocellulose normally forms the 

most dominant group of constituents on a mass basis. Its main role is found in the 

cellular structure of plants and forms the foundation of cell walls and their mutual 

coherence. Lignocellulose provides mechanical strength and tenacity (toughness) to 

plant structures and so provides body and the opportunity to grow in height for optimal 

photosynthesis. 

A typical plant cell is structured as illustrated by figure 2. A single cell is typically 

described by a primary and a secondary wall. Subsequently, three individual layers 

describe the secondary wall. Individual cells are connected through a glue layer called 

the middle lamella. 

 

Figure 2: Detailed impression of the structure of a cell wall. (a) Part of the cell wall and middle lamella, primary wall and secondary 

wall, (b) macrofibrils mutual structure, (c) microfibrill structure, (d) individual cellulose polymers including micelles, and (e) mutual 

coherence of individual cellulose polymers on a micro level (Taken from Bergman et al., 2005) 
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The second layer of the secondary wall is the thickest one and is built from vertically 

oriented macrofibrils. The macrofibril is on its turn composed from macrofibrils, which 

predominantly consist of evenly oriented cellulose molecules of certain length. The 

cellulose chains comprise amorphous parts, but also crystalline parts whereby 

subsequent cellulose molecules are connected. 

The polymeric composition of the different walls and layers varies strongly and each 

wall has different tasks. Figure 3 and 4 illustrate how the polymeric composition varies 

throughout the cell wall. The middle lamella predominantly contains lignin. Lignin acts 

as a binding agent and can be considered a glue to bind adjacent cells. While the lignin 

fraction decreases cell inwards, the fraction of hemicellulose increases. Cellulose meets 

a maximum content in the S2 of the secondary layer and hemicellulose in S3. 

 

Figure 3: Distribution of lignocellulose within the three layered secondary wall (Taken from Bergman et al., 2005) 



20 
 

 

Figure 4: Distribution of lignocellulose within the three layered secondary wall (Taken from Bergman et al., 2005) 

The three-layered secondary cell wall mainly consists of cellulose and is very well 

organized by nature. The cellulose macrofibrils are embedded in a matrix of 

(disoriented) hemicellulose that bonds the macrofibrils mechanically, but also through 

hydrogen bonding. The cell wall has a repetitive pattern in which hemicellulose binds 

macrofibrils of a cell wall and lignin binds adjacent cells. The function of hemicellulose 

is often well illustrated by comparing its function to concrete in reinforced concrete. 

Without the concrete the iron rods lose their mutual coherence and orientation. 

Each layer of the three-layered cell wall has a different fiber orientation. The main body 

of the cells (S2) is a vertical oriented structure of fiber kept in a compact form by an 

outer husk (S1) and annular (inner) husk (S3) both with near perpendicular fiber 

orientation. The wood structure consists of many of these cellular units „glued‟ together 

by the lignin-rich primary walls. The anisotropic nature of wood, the fibrous structure, is 

caused due to the differences in thickness and orientation of the different layers. The 

way cell walls are mechanically organized is copied multiple times from nature because 

of the high strength and tenacity it provides. 

From the three main polymeric constituents of biomass, cellulose has received most 

attention considering the thermal decomposition of biomass. Especially since the 

cellulose fraction is large. Therefore, in pyrolysis research cellulose decomposition is 

very important. During torrefaction, mass loss will predominantly come from the 

decomposition (devolatilisation) of particularly hemicellulose and some of lignin. 
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Xylan-based hemicellulose generally has its peaking rate in decomposition around 250 

to 280°C. Lignin decomposition proceeds slower, but shows a gradual increase of 

decomposition rate starting from temperatures of about 200 °C or even lower.  

Hemicellulose decomposition can be well described by a two-step mechanism as was 

found by Di Blasi and Lanzetta (1997). The first reactions usually taking place below 

250°C (first step) are depolymerisation reactions leading to altered and rearranged 

polysugar structures. The decomposition of these oligosaccharides and monosaccharide 

are at higher temperatures (250-300°C) results in the formation of chars, CO, CO2 and 

water. The formation of light volatiles like carbonyl compounds result from the 

fragmentation of the carbon skeleton. 

Up to 250 °C, thermal decomposition of cellulose is hardly accompanied with a serious 

mass loss. The most important mechanism occurring is found to be depolymerisation. 

Depolymerisation of cellulose has been observed at even 70 °C.It is known that 

depolymerisation of wood is already occurring at significant rates at 150 °C [9]. At 190 

°C, the rate of depolymerisation is already seriously fast. A variety of permanent gases, 

condensable liquids and char are formed during this step. 

Thermal degradation of lignin takes place over a wide temperature range. At 

temperatures below 200°C, some thermal softening has been observed resulting in a 

small weight loss of a few percent. Char formation and the release of volatiles result 

from a devolatilisation process in the temperature region of 240-600°C. From Mark et al. 

(2006), temperature decomposition for hemicellulose is from 225-325°C, lignin is from 

250-500°C and cellulose is from 305-375°C.  

 

 

 

 

 



22 
 

2.2. Torrefaction Temperature and Time (Reaction Time) 

Difficulties in interpreting the torrefaction process may arise from the definition of the 

torrefaction time. The term residence time is frequently used, but it only expresses the 

hold-up time of biomass in a torrefaction reactor. It does not tell how long actual 

torrefaction takes place, since part of the residence time is „lost‟ due to heating of the 

biomass possibly incombination with drying. Misunderstanding about the torrefaction 

time automatically leads toinaccuracies in relating product quality to torrefaction 

operating conditions. To overcome thisproblem, the use of (reactor) residence time has 

been abandoned and instead the definition ofreaction time is introduced. [9] 

When biomass is processed in a torrefaction reactor, it passes several stages with each 

having its own time-temperature characteristics. This is illustrated in figure 5 for a 

typical batchoperation. When moist biomass of ambient temperature is fed into a batch 

torrefaction reactor, the biomass is first heated to a temperature at which the biomass is 

dried. Then the temperature further increases until the desired torrefaction temperature is 

reached. This temperature is maintained until the reactor is cooled again. [9] 

The temperature window of torrefaction is generally considered to range from about 200 

°C to 300°C. Only in this temperature window the torrefaction decomposition reactions 

occur. In this temperature window three time temperature phases are recognized. First 

the biomass is heated from 200 °C to the desiredtorrefaction temperature (Ttor) in period 

ttor, h. Then the temperature is hold for period ttor at thetorrefaction temperature, until 

cooling during period ttor, c. During ttor the decomposition reactionswill contribute 

predominantly, but this will depend on the time contribution of the heating and cooling 

period. [9] 

The reaction time has been defined as the sum of ttor, h+ttor and thus leaving out the 

cooling time ttor, c. The heating period is important, as during this period the most 

thermally labile parts of the feed biomass will rapidly start to decompose. In contrast to 

the cooling period when the solid product is much more thermally stable as the highest 

reactive parts already reacted. It is therefore expected that the decomposition reactions 

will stop as soon as the temperature isdecreased.Hence the cooling period hardly 

contributes to the decomposition of the biomass. [9] 
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Figure 5: Stages in the heating of moist biomass from 'ambient' temperature to the desired torrefaction temperature and the 

subsequent cooling of the torrefied product. Temperature-time profile is considered typical for a torrefaction batch process. 

Explanation: th=heating time to drying, tdry=drying time, th, int=intermediate heating rate from drying to torrefaction, ttor=reaction time 

at desired torrefaction temperature, ttor, h=heating time torrefaction from 200°C to desired torrefaction temperature (Ttor), ttor, c=cooling 

time from the desired Ttor to 200°C, tc=cooling time to ambient temperature (Taken from Bergman et al., 2005) 
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2.3. Previous Study on Torrefaction 

2.3.1. Torrefaction of reed canary grass, wheat straw and willow to enhance 

solid fuel qualities and combustion properties  

This journal examines torrefaction in nitrogen of two energy crops, reed canary 

grass and short rotation willow coppice (SRC), and a residue, wheat straw. Product 

evolution and mass and energy losses during torrefaction are measured using a 

range of laboratory scale methods. Experiments at different torrefaction conditions 

were undertaken to examine optimization of the process for the three fuels. Figure 6 

gives a comparison of the mass loss profiles at 563 K of different samples. The 

greatest mass losses at all the temperatures investigated occurred in wheat straw 

although they were similar to that observed for reed canary grass, whilst the lowest 

change in mass was observed for willow. The difference in the cell wall 

composition (table1) provides an explanation for these differences. Hemicellulose is 

the most reactive of the three lignocellulose components found in biomass and 

during torrefaction it will undergo the most significant decomposition reactions. 

[12] 

Thus the composition of biomass fuels has a significant impact on the amount of 

both solid residue remaining and the volatile and gaseous products evolved during 

torrefaction. Wheat straw and reed canary grass have similar compositions whilst 

willow has a noticeably lower amount of hemicellulose but higher levels of 

cellulose and lignin. [12] 

Studies conducted using xylan (the prominent hemicellulose found in herbaceous 

biomass) have concluded that decomposition of hemicellulose starts at temperatures 

above 473 K and full devolatisation will occur by 623 K, with the major products 

being H2O, CO2, CO, and char, as well as traces or low molecular weight organics. 

Pure cellulose has a comparatively slower decomposition process at temperatures in 

excess of 523 K, and the rate of thermal decomposition only becomes more rapid 

above 573 K. In the 523–573 K range up to 20–30% of the polysaccharide will 

devolatise. However, a number of studies have concluded that accompanying this 
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observed mass loss are depolymerisation reactions that reduce the length of the 

polysaccharide polymers from 1000 to 200 monomer units. [12] 

The thermal decomposition of biomass within torrefaction temperatures yields a 

number of different products. Water is the major product and is released in two 

different mechanisms, firstly during drying when moisture evaporates and secondly 

during dehydration reactions between organic molecules. However, there are a 

number of other organic and inorganic products present in the volatile component 

liberated during the decomposition of biomass. [12] 

 

Figure 6: Mass loss of wheat straw, reed canary grass and willow during torrefaction at 563 K (Taken from 

Bridgeman et al., 2008) 

Table 1: Mass % of hemicellulose, cellulose and lignin in raw biomass fuels (dry ash free basis)(Taken from 

Bridgeman et al., 2008) 
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Progress of torrefaction was also followed by chemical analysis (table 2) and it was 

seen that the characters of the biomass fuels begin to resemble those of low rank 

coals in terms of the van Krevelen coal rank parameter. [12] 

Table 2: Ultimate analysis, HHV (dry ash free basis), and moisture of untreated and torrefied biomass fuels 

(Taken from Bridgeman et al., 2008) 

 

In addition, the results indicate that the volatile component of biomass is both 

reduced and altered producing a more thermally stable product, but also one that 

produces greater heats of reaction during combustion. The difference between the 

mass and energy yield was shown to improve for the higher torrefaction 

temperatures investigated. [12] 

The combustion behavior of raw and torrefied fuels was studied further by 

differential thermal analysis (DTA) and also, for willow, by suspending individual 

particles in a methane–air flame and following the progress of combustion by high-

speed video. It is shown that both volatile and char combustion of the torrefied 

sample become more exothermic compared to the raw fuels, and that depending on 

the severity of the torrefaction conditions, the torrefied fuel can contain up to 96% 
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of the original energy content on a mass basis. Upon exposure to a methane-air 

flame, torrefied willow ignites more quickly, presumably because its low moisture 

content means that it heats faster. Torrefied particles also begin char combustion 

quicker than the raw SRC particles, although char combustion is slower for the 

torrefied fuel. [12] 

2.3.2. Torrefaction of wood  

The weight loss kinetics for torrefaction of willow, a deciduous wood type, was 

studied by isothermal thermogravimetry. 

 

Figure 7: TGA of various biomass compounds, (a) at 248°C and (b) at 267°C. Heating rate 10°Cmin-1, particle size 0.5-2 mm; 

dotted line is the heating curve (Taken from Prins et al., 2006). 
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Figure7 showed the weight loss curves of the various biomass types at 248 and 

267°C obtained from isothermal TGA experiments. The weight loss observed 

during heating of the sample from 200°C, the temperature at which thermal 

decomposition begins to occur, to the required temperature is relatively small, 

except for xylan. From figure7, it can be concluded that xylan, the main 

hemicellulose component of deciduous wood, is the most reactive component. It 

starts decomposing around 200°C and has a high weight loss. At 267°C, limited 

weight loss of cellulose is found. [5] 

The hardwoods beech and willow have comparable reactivity. The weight loss 

observed lies between that of xylan and cellulose, which was expected as wood 

contains these fractions. High xylan content also explains the relatively high weight 

loss of wheat straw, although catalytic effects due to the presence of mineral matter 

could also play a role. Finally, the coniferous larch reacts a lot slower than the 

hardwoods. [5] 

As a preliminary conclusion, hardwood loses considerably more weight than 

softwood and therefore a higher increase in energy density (J/g) may be expected. 

This makes hardwood an attractive feedstock for torrefaction processes. [5] 

 

Figure 8: Experimental and modeled relative weight of willow versus time, for various temperatures. Starting weight defined 

at 200°C; time includes a heating period of 7-10 min (heating rate=10°C min-1) (Taken from Prins et al., 2006) 
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To verify the final char yield predicted by the model, TGA experiments with a 

longer reaction time of 435 min were carried out and included a heating period of 

7–10 min at a heating rate of 10°C min
-1

. The results are shown in figure 8. At 

temperatures of 280–300°C, predicted char yields of 29–31% showed good 

agreement with experimental data, whereas determination of the final char yield at 

270°C was not possible because the weight had not stabilized yet within 435 min. 

Careful consideration of the experimental weight curves teaches that these do not 

become completely horizontal, but the weight continues to decrease very slowly. [5] 

The final char yield is the product of the solid yield for the first decomposition 

reaction and the second decomposition reaction. For the temperature range studied, 

solid yield for the first decomposition decreases from 88% at 230°C to 70% at 

300°C, whereas second decomposition is fairly constant at 41%. The first reaction 

with a relatively low weight loss could very well be representative of decomposition 

of the reactive xylan in willow wood, since hardwood contains up to 30% of xylan. 

[5] 

The high weight loss in the second reaction can be explained by decomposition of 

the other fractions contained in the wood, notably the cellulose fraction, perhaps in 

combination with charring of the remaining hemicellulose fraction. This is also 

plausible because the activation energy found for the second weight loss step is 

close to literature values. It may be that the primary decomposition products of 

xylan decomposition, i.e. acids, initiate decomposition of cellulose fraction. [5] 

The kinetics of torrefaction reactions in the temperature range of 230–300°C can be 

described accurately by a two-step mechanism. The first step is much faster than the 

second step, so that these steps can be demarcated in time. The first step is 

representative of hemicellulose decomposition, while the second step represents 

cellulose decomposition. The solid yield for the first step is higher than for the 

second step: 70–88% (decreasing with temperature) versus 41%. This may be 

explained because deciduous wood, such as willow, contains less xylan (the reactive 

component in its hemicellulose fraction) than cellulose. Xylan reacts approximately 

one order of magnitude faster than willow, a classical hardwood containing up to 
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30% xylan. However, initial experiments have shown that softwood is much less 

reactive and therefore lower rate constants can be expected. [5] 
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2.4. Reaction Kinetic 

For hemicellulose decomposition, a global one-step reaction gives a very rough 

impression of kinetics of the overall reaction but it is difficult to compare parameters 

consistently with other researchers. That hemicellulose decomposition could not be 

modeled by simple kinetics. Research done on multi-step reaction mechanisms gives 

better results. They found a model of competitive reactions could not describe their data, 

and proposed a model with two successive reactions, as given in figure 9. In such a 

model, Xylan is assumed to form an intermediate reaction product, which is a solid with 

a reduced degree of polymerization. This intermediate then reacts to the final product. 

The first reaction was found to be substantially faster than the second one. [5] 

 

 

Figure 9: Equation 1 (Taken from Prins et al., 2006) 

The yields of solid product are denoted as the parameters y1 andy2 for the first and 

second reactions, respectively. These parameters as temperature-independent, i.e.for 

Xylan decomposition, constant values for the solidyields of the first and second 

reactions were reported. Therefore,the model fails to take into account the change of 

final charyield (which equals the product of y1 and y2) with temperature. Nevertheless, 

the final char yield can be expected todecrease with temperature, as the hemicellulose 

componentis dehydrated to a larger extent. [5] 

Di Blasi and Lanzetta (1997) used isothermal TGA measurements for evaluation of the 

kinetic parameters of torrefaction of Xylan. They modeled the kinetics by a combination 

of a two-step mechanism (figure 9) with parallel reactions for the formation of solids 

and volatiles. 

 

 

Figure 10: Two-Step Mechanism (Taken from Prins et al., 2006) 
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The solid yields are given by: 

 

 

Figure 11: Equation 2 (Taken from Prins et al., 2006) 

When the activation energy of kV1 (respectively, kV2) is higher than that of k1 

(respectively, k2), the solid yield drops withincreasing temperature. So the introduction 

of separate formation of different product classes, which may be questioned fromthe 

viewpoint of analytical chemistry, is a mathematical approximation to describe the fact 

that the ratio between formed solids and volatiles depends on temperature. [5] 

The differential rate equations are given for the solids by 

 

Figure 12: Equation 3 (Taken from Prins et al., 2006) 

Similar equations may be derived for the volatile products. If all reactions are assumed 

to be of first order, the system ofequations can be solved analytically. Integration of 

thedifferential equations, with the initial condition that only A is present at the beginning 

of the reactions, and addition givesan expression for the relative solid weight: 

 

Figure 13: Equation 4 (Taken from Prins et al., 2006) 
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Figure 14: Equation 5 (Taken from Prins et al., 2006) 

where: 

 

The final char yield, which can be determined experimentally, is equivalent to the last 

term in figure 14: 

 

 

Figure 15: Equation 6 (Taken from Mark et al., 2006) 

For higher reaction orders, e.g. a second-order reaction followed by a first-order 

sequential reaction, the system of equationsis non-linear and of stiff nature. This system 

can be solved numerically using a suitable algorithm, i.e.in Matlab; a one-step solver 

based on a modified Rosenbrock formulaof order two may be applied. [5] 
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CHAPTER 3: METHODOLOGY 

3.1. Sample Preparation 

3.1.1. Drying 

 

Figure 16: Oven 

Procedure:  

An oven model LHT 4/120 manufactured by Carbolite was used for drying process 

(figure 16). Fresh oil palm biomass samples (EFB, PMF and PKS) were prepared on 

aluminium foil before entering the oven. Sample was weighed before entering oven. 

Oven was set up at temperature 120 °C for 24 hours. After 24 hours, biomass 

samples were brought out from the oven for weighing. Then, samples were entered 

oven for next an hour at same temperature. After that, samples were brought out 

from oven and weighing again until weight of sample was constant. 
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3.1.2. Particle Sizing  

 

Figure 17: Grinder 

 

Figure 18: Siever 

Procedure:  

After drying process, biomass sample was prepared for grinding process. Grinder 

(model: Upper Part-Pulverisette 25, Bottom Part-Pulverisette 19, Vacuum-Oertzen) 

manufactured by Fritsch was used (figure 17). Biomass sample was entered into top 

side for first cutting process (cut samples into small size around 1 to 2 inches). After 

that, biomass sample was entered into side container for second cutting process 

(sample size become smaller than 1 inches or powder). After that, sample was sized 

using siever model BA300N manufactured by CISA (figure 18).Sieve trays were 

arranged from large into small particle size. Sample collected from grinder was put 

into sieve tray for sieving process. After that, sample was collected in each tray and 

put into respectively bottle in order to avoid from moisture. 
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3.2. Torrefaction Process 

3.2.1. Thermogravimetric Analyzer (TGA)  

 

Figure 19: Thermogravimetric Analyzer 

Procedure: 

The torrefaction process was carried out using thermogravimetric analyzer model 

S11-AST-2 manufactured by Diamond TG/DTA (figure 19). The tested sample was 

loaded in a crucible and measured the weight. For all the experimental runs, 

approximately 2 mg of samples were used. Nitrogen gas was used as a carrier gas 

was fixed at 100 ml min
-1

, so that the samples were torrefied in an inert environment. 

In this work, the heating rate used was 10°C min
-1

 for two different particle sizes of 

samples namely 250-355 µm and 355-500 µm. the torrefaction temperatures were 

200, 220, 240, 260, 280 and 300°C. Specifically, the temperature of the TG was 

raised from 50°C to the torrefaction temperature. Once the TG reached the 

torrefaction temperature, the biomass was torrefied for 2 hours. During torrefaction 

was performed, a temperature program consisting of a dynamic heating period and 

an isothermal heating period.  
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3.2.2. Tube Furnace 

 

Figure 20: Tube Furnace 

Procedure:  

Due to limited amount of oil palm biomass sample was produced from TGA; tube 

furnace was used in order to produce more amount for analyses, i.e. ultimate analysis 

and calorific value.  Tube furnace model TSH17/75/450-2416-2116 manufactured by 

Elite Thermal Systems Limited was used for torrefaction process (figure 20). Tube 

furnace conditions were replicated same in TGA. Tube furnace was switched on as 

well as nitrogen gas. Sample was weighed and placed in crucible (ship shape). 

Sample was entered into cylinder of the furnace and closed it. Valve was opened for 

flow the nitrogen gas into tube furnace. Nitrogen flow was controlled based on 

desired flow rate. Parameters (heating rate, target temperature, reaction time and 

ending condition) were setup on display screen of tube furnace. After all required 

parameters were setup, isolated button was pressed followed by run button that 

locate on display screen of tube furnace. 

 

 

 

 

 

 

 



38 
 

3.3. Sample Analyses 

3.3.1. Calorific Value 

 

Figure 21: Bomb Calorimeter 

Procedure:  

The calorific value was measured using bomb calorimeter model C2000 series 

manufactured by IKA-WERKE (figure 21). Bomb calorimeter, oxygen tank and 

cooling fan are switched on. Sample was weighed and placed into crucible using 

balance. Cotton thread was tied up at ignition wire and crucible was placed inside 

decomposition vessel. Vessel was closed. On the main screen of bomb calorimeter, 

weight of sample was recorded. Vessel was put inside calorimeter system. Start 

button was pressed for running the bomb calorimeter. Measurement of gross and net 

calorific value were according to DIN 51900, BS 1016 Part 5 1977, ASTM D3286-

91, ASTM D240-87, ASTM E711-87, ISO 1928-1976, ASTM D1989-91 and BSI. 

3.3.2. Ultimate Analysis 

 

Figure 22: CHNS Analyzer 

Procedure:  

CHNS analyzer model CHN-900/CHNS-932 manufactured by LECO was used for 

ultimate analysis. Biomass sample was prepared using micro balance provided. 

Sample was prepared in range from 1.5 mg to 2 mg into small tin capsule. After that, 

tin capsule was fold and weighed again. Sample weight was recorded. The analysis 

was carried out by technician. 
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3.4. Kinetic Parameters Calculation through MATLAB 

The experimental data obtained from TG was used to create a model for predicting yield 

of torrefied sample.  

In order to identify reaction order of the torrefaction process, graphical method was used 

by plotting two types of graphs. Graph   
[ ( )]

[ ( )]
             for first order reaction and 

 

[ ( )]
 

 

[ ( )]
             for second order reaction were plotted respectively. If 

straight line was shown, the reaction order was valid for that process. 

Meanwhile, graph ln k versus 1/T was plotted for finding activation energy and pre-

exponential factor from deriving Arrhenius equation below:  

          
   
   

             (
   
 
)
 

 
     

       

A was pre-exponential factor, Ea was activation energy, R was gas constant and T was 

temperature. Besides, k1 and k2 were determined from Arrhenius equation. Rate of 

reaction was determined by following equation 1, 2 and 3: 

        
                 (Equation 1) 

 

       
      

     (Equation 2) 

 

       
                    (Equation 3) 

 

where rA, rB and rCrepresented rate of reaction for solid A, B and C. A was initial 

feedstock, B was intermediate product, C was torrefied product. Meanwhile, WA, WB and 

WCwere weight of solid A, B and C while n was a reaction order. 
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CHAPTER 4: RESULT AND DISCUSSION 

4.1. Experimental and Model Curves for Different Types of Biomass 

 

Figure 23: Experimental and model curves for EFB at various final torrefaction temperature (°C) and particle size 250-355 µm 

Figure 23 showed experimental and model curves at different final torrefaction 

temperature for EFB particle size between 250-355 µm. The final torrefaction 

temperature applied: 200, 220, 240, 260, 280 and 300°C. The torrefaction was carried 

out for 2 hours of reaction time. Line and symbol curves represented modeling data and 

experimental respectively. 

Figure 23 mentioned time axis was started at 17 minutes for all different final 

torrefaction temperatures. It was due to EFB intrinsic moisture removal during past 17 

minutes. Even though the EFB already had drying process but this drying process only 

managed to remove extrinsic moisture. The existence of intrinsic process was due to 

xylem structure that located inner side EFB tissues. Xylem was responsible to carried 

out water and minerals throughout the EFB and provided mechanical support as well. It 

was important to carry out this intrinsic moisture removal process before going through 
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torrefaction process in order to avoid weight loss due to moisture took place during 

torrefaction process.  

For experimental curves, the weight of EFB decreased with increasing torrefaction 

temperature. Weight of EFB had less weight loss during temperature 200°C and more 

weight loss at temperature 260, 280 and 300°C. It was due to decomposition either 

hemicellulose or cellulose or lignin. Since those three were the main polymeric 

structures inside the biomass and they had their own temperature decomposition. 

However, the hemicellulose decomposition was more significant compared to cellulose 

or lignin during the torrefaction of EFB since temperature decomposition of 

hemicellulose between 225-325°C [5]. Chen and Kuo (2010) mentioned temperature 

decomposition of hemicellulose occurred between 150 to 350°C. Both references on 

hemicellulose temperature decomposition showed most of hemicellulose were 

decomposed during torrefaction process. Figure 23 showed the decomposition of 

hemicellulose started reactive at temperature 260°C and above. It concluded most of 

hemicellulose decomposed at 260°C rather than below 260°C.  

Besides, from experimental curves, the weight loss percent can be calculated using 

equation 4 for identifying amount of weight loss from the original sample during 

torrefaction process.  

                      

 
(                                                          )

                             
       

(          ) 

For 200, 220, 240, 260, 280 and 300°C, the weight loss percent were 28.23, 50.54, 

61.89, 66.85, 65.49 and 42.01 respectively.  It showed that, there was decomposition of 

hemicellulose for every temperature. It seemed that, decomposition of hemicellulose 

already took place at very beginning of torrefaction process. Each temperature showed 

different amount of weight loss. 
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In the other hands, modeling for the torrefaction process of EFB was created for 

predicting torrefied product and compared with experimental data. Figure 23 represented 

both experimental and modeling curves. During modeling of torrefaction process, two 

reactions took place during the process. First process called as fast decomposition while 

second process called as slow decomposition. Since from above discussion, both two 

reactions were referred to hemicellulose decomposition. 

Average Absolute Deviation (AAD) (equation 5) was introduced in order to identify 

error between modeling and experimental data before verifying the model. 

    
 

 
∑|  |(          )

 

   

 

       

                                        

              

Table 3: AAD for EFB 250-355 µm 

Temperature Experimental Modeling Error (%) 

200.00 1.46 1.44 1.40 

220.00 1.02 1.06 4.00 

240.00 0.77 0.77 0.00 

260.00 0.68 0.67 1.47 

280.00 0.70 0.7 0.00 

300.00 0.68 0.69 1.47 

AAD between Experimental and Modeling 1.39 

From AAD calculation (table 3) for figure 23, AAD between experimental and modeling 

data was 1.39. It was less than of 5% of error between experimental and modeling data. 

As conclusion, figure 23 showed that 260, 280 and 300°C had completed torrefaction 

reaction while for 200, 220 and 240°C were incomplete reaction.  
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Figure 24: Experimental and model curves for PMF at various final torrefaction temperature (°C) and particle size 250-355 µm 

Figure 24 showed experimental and model curves at different final torrefaction 

temperature for PMF particle sizes between 250-355 µm. The final torrefaction 

temperature applied: 200, 220, 240, 260, 280 and 300°C. The torrefaction was carried 

out for 2 hours of reaction time. Line and symbol curves represented modeling data and 

experimental respectively. 

Figure 24 mentioned time axis was started at 17 minutes for all different final 

torrefaction temperatures. It was due to PMF intrinsic moisture removal during past 17 

minutes. Even though the PMF already had drying process but this drying process only 

managed to remove extrinsic moisture. The existence of intrinsic process was due to 

xylem structure that located inner side PMF tissues. Xylem was responsible to carried 

out water and minerals throughout the PMF and provided mechanical support as well. It 

was important to carry out this intrinsic moisture removal process before going through 

torrefaction process in order to avoid weight loss due to moisture took place during 

torrefaction process.  
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For experimental curves, the weight of PMF decreased with increasing torrefaction 

temperature. By comparing figure 23 and figure 24, both of EFB and PMF had similar 

weight loss. For the first four curves, EFB had higher weight loss while for last two 

curves; it changed to PMF for had higher weight loss. It seemed due to different fraction 

of polymeric structure (hemicellulose, cellulose and lignin) and structure strength inside 

the EFB and PMF. PMF had strong structure than EFB and it needed high temperature 

in order to break the structure of PMF. After the breaking at 280°C, PMF had more 

weight loss. However, during that time, polymeric structures in EFB almost finish the 

decomposition.   

Weight of PMF had less weight loss during temperature 200°C and more weight loss at 

temperature 280 and 300°C. It was due to decomposition either hemicellulose or 

cellulose or lignin. Since those three were the main polymeric structures inside the 

biomass and they had their own temperature decomposition. However, the hemicellulose 

decomposition was more significant compared to cellulose or lignin during the 

torrefaction of PMF since temperature decomposition of hemicellulose between 225-

325°C [5]. Chen and Kuo (2010) mentioned temperature decomposition of 

hemicellulose occurred between 150 to 350°C. Both references on hemicellulose 

temperature decomposition showed most of hemicellulose were decomposed during 

torrefaction process. Figure 14 showed the decomposition of hemicellulose started 

reactive at temperature 280°C and above. It concluded most of hemicellulose 

decomposed at 280°C rather than below 280°C.  

Besides, from experimental curves, the weight loss percent can be calculated using 

equation 4 for identifying amount of weight loss from the original sample during 

torrefaction process. For 200, 220, 240, 260, 280 and 300°C, the weight loss percent 

were 14.64, 35.02, 49.66, 58.69, 75.87 and 73.38 respectively.  It showed that, there was 

decomposition of hemicellulose for every temperature. It seemed that, decomposition of 

hemicellulose already took place at very beginning of torrefaction process. Each 

temperature showed different amount of weight loss. 
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In the other hands, modeling for the torrefaction process of PMF was created for 

predicting torrefied product and compared with experimental data. Figure 24 represented 

both experimental and modeling curves. During modeling of torrefaction process, two 

reactions took place during the process. First process called as fast decomposition while 

second process called as slow decomposition. Since from above discussion, both two 

reactions were referred to hemicellulose decomposition. 

Average Absolute Deviation (AAD) (equation 5) was introduced in order to identify 

error between modeling and experimental data before verifying the model.  

Table 4: AAD for PMF 250-355 µm 

Temperature Experimental Modeling Error (%) 

200.00 1.73 1.71 1.16 

220.00 1.33 1.37 3.00 

240.00 1.02 1.06 3.92 

260.00 0.83 0.8 3.61 

280.00 0.48 0.47 2.08 

300.00 0.55 0.49 10.90 

AAD between Experimental and Modeling 4.11 

From AAD calculation (table 4) for figure 24, AAD between experimental and modeling 

data was 4.11. It was less than of 5% of error between experimental and modeling data. 

As conclusion, figure 24 showed that 280 and 300°C had completed torrefaction reaction 

while for 200, 220, 240 and 260°C were incomplete reaction.  
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Figure 25: Experimental and model curves for PKS at various final torrefaction temperature (°C) and particle size 250-355 µm 

Figure 25 showed experimental and model curves at different final torrefaction 

temperature for PKS particle sizes between 250-355 µm. The final torrefaction 

temperature applied: 200, 220, 240, 260, 280 and 300°C. The torrefaction was carried 

out for 2 hours of reaction time. Line and symbol curves represented modeling data and 

experimental respectively. 

Figure 25 mentioned time axis was started at 17 minutes for all different final 

torrefaction temperatures. It was due to PMF intrinsic moisture removal during past 17 

minutes. Even though the PKS already had drying process but this drying process only 

managed to remove extrinsic moisture. The existence of intrinsic process was due to 

xylem structure that located inner side PMF tissues. Xylem was responsible to carried 

out water and minerals throughout the PMF and provided mechanical support as well. It 

was important to carry out this intrinsic moisture removal process before going through 

torrefaction process in order to avoid weight loss due to moisture took place during 

torrefaction process.  
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For experimental curves, the weight of PKS decreased with increasing torrefaction 

temperature. By comparing figure 23, figure 24 and figure 25, PKS had less weight loss 

compare to EFB and PMF. It seemed due to different fraction of polymeric structure 

(hemicellulose, cellulose and lignin) and structure strength inside the EFB, PMF and 

PKS. PKS had different fraction of polymeric structure and strong structure than EFB 

and PMF. It needed high temperature in order to break the structure of PKS.  

Weight of PKS had less weight loss during temperature 200°C and more weight loss at 

temperature 280 and 300°C. It was due to decomposition either hemicellulose or 

cellulose or lignin. Since those three were the main polymeric structures inside the 

biomass and they had their own temperature decomposition. However, the hemicellulose 

decomposition was more significant compared to cellulose or lignin during the 

torrefaction of PMF since temperature decomposition of hemicellulose between 225-

325°C [5]. Chen and Kuo (2010) mentioned temperature decomposition of 

hemicellulose occurred between 150 to 350°C. Both references on hemicellulose 

temperature decomposition showed most of hemicellulose were decomposed during 

torrefaction process. Figure 25 showed the decomposition of hemicellulose started 

reactive at temperature 280°C and above. It concluded most of hemicellulose 

decomposed at 280°C rather than below 280°C. Other than that, it was found that PKS 

composed less hemicellulose than EFB and PMF. It was found by observing the way 

PKS decomposed during torrefaction process. 

Besides, from experimental curves, the weight loss percent can be calculated using 

equation 4 for identifying amount of weight loss from the original sample during 

torrefaction process. For 200, 220, 240, 260, 280 and 300°C, the weight loss percent 

were 11.48, 28.54, 43.55, 56.99, 66.81 and 67.67 respectively.  It showed that, there was 

decomposition of hemicellulose for every temperature. It seemed that, decomposition of 

hemicellulose already took place at very beginning of torrefaction process. Each 

temperature showed different amount of weight loss. 

In the other hands, modeling for the torrefaction process of PMF was created for 

predicting torrefied product and compared with experimental data. Figure 25 represented 

both experimental and modeling curves. During modeling of torrefaction process, two 
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reactions took place during the process. First process called as fast decomposition while 

second process called as slow decomposition. Since from above discussion, both two 

reactions were referred to hemicellulose decomposition. 

Average Absolute Deviation (AAD) (equation 5) was introduced in order to identify 

error between modeling and experimental data before verifying the model.  

Table 5: AAD for PKS 250-355 µm 

Temperature Experimental Modeling Error (%) 

200.00 1.87 1.84 1.60 

220.00 1.47 1.49 1.36 

240.00 1.16 1.15 0.86 

260.00 0.88 0.85 3.41 

280.00 0.67 0.67 0.00 

300.00 0.66 0.63 4.55 

AAD between Experimental and Modeling 1.96 

From AAD calculation (table 5) for figure 25, AAD between experimental and modeling 

data was 1.96. It was less than of 5% of error between experimental and modeling data. 

As conclusion, figure 25 showed that 300°C had completed torrefaction reaction while 

for 200, 220, 240, 260 and 280°C were incomplete reaction.  
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Figure 26: Experimental and model curves for EFB at various final torrefaction temperature (°C) and particle size 355-500 µm 

Figure 26 showed experimental and model curves at different final torrefaction 

temperature for EFB particle size between 355-500 µm. The final torrefaction 

temperature applied: 200, 220, 240, 260, 280 and 300°C. The torrefaction was carried 

out for 2 hours of reaction time. Line and symbol curves represented modeling data and 

experimental respectively. 

Figure 26 mentioned time axis was started at 17 minutes for all different final 

torrefaction temperatures. It was due to EFB intrinsic moisture removal during past 17 

minutes. Even though the EFB already had drying process but this drying process only 

managed to remove extrinsic moisture. The existence of intrinsic process was due to 

xylem structure that located inner side EFB tissues. Xylem was responsible to carried 

out water and minerals throughout the EFB and provided mechanical support as well. It 

was important to carry out this intrinsic moisture removal process before going through 

torrefaction process in order to avoid weight loss due to moisture took place during 

torrefaction process.  

0.00

0.50

1.00

1.50

2.00

2.50

17.00 37.00 57.00 77.00 97.00 117.00 137.00

W
o

 (
m

g)
 

Time (min) 

200

220

240

260

280

300

200 Model

220 Model

240 Model

260 Model

280 Model

300 Model



50 
 

For experimental curves, the weight of EFB decreased with increasing torrefaction 

temperature. By comparing with figure 23, weight loss of EFB at figure 26was less than 

figure 23. It was due to different of particle sizes for EFB. 250-355 µm was belonged to 

figure 23 had larger sample area compare to 355-500 µm in figure 26. As a result, larger 

area provided more space in sample to absorb heat from outside for decomposition 

rather than small area. Therefore, figure 26 resulted less weight loss. 

Figure 26 had less weight loss during temperature 200°C and more weight loss at 

temperature 300°C. It was due to decomposition either hemicellulose or cellulose or 

lignin. Since those three were the main polymeric structures inside the biomass and they 

had their own temperature decomposition. However, the hemicellulose decomposition 

was more significant compared to cellulose or lignin during the torrefaction of EFB 

since temperature decomposition of hemicellulose between 225-325°C [5]. Chen and 

Kuo (2010) mentioned temperature decomposition of hemicellulose occurred between 

150 to 350°C. Both references on hemicellulose temperature decomposition showed 

most of hemicellulose were decomposed during torrefaction process. Figure 26 showed 

the decomposition of hemicellulose started reactive at temperature 240°C and above. It 

concluded most of hemicellulose decomposed at 240°C rather than below 240°C.  

Besides, from experimental curves, the weight loss percent can be calculated using 

equation 4 for identifying amount of weight loss from the original sample during 

torrefaction process.For 200, 220, 240, 260, 280 and 300°C, the weight loss percent 

were 24.46, 52.15, 65.10, 60.46, 69.07 and 72.15 respectively.  It showed that, there was 

decomposition of hemicellulose for every temperature. It seemed that, decomposition of 

hemicellulose already took place at very beginning of torrefaction process. Each 

temperature showed different amount of weight loss. 

In the other hands, modeling for the torrefaction process of EFB was created for 

predicting torrefied product and compared with experimental data. Figure 26 represented 

both experimental and modeling curves. During modeling of torrefaction process, two 

reactions took place during the process. First process called as fast decomposition while 

second process called as slow decomposition. Since from above discussion, both two 

reactions were referred to hemicellulose decomposition. 
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Average Absolute Deviation (AAD) (equation 5) was introduced in order to identify 

error between modeling data and experimental data before verifying the model.  

Table 6: AAD for EFB 355-500 µm 

Temperature Experimental Modeling Error (%) 

200.00 1.55 1.55 0.00 

220.00 0.98 0.96 2.04 

240.00 0.72 0.75 4.17 

260.00 0.80 0.73 8.75 

280.00 0.61 0.6 1.64 

300.00 0.55 0.55 0.00 

AAD between Experimental and Modeling 2.77 

From AAD calculation (table 6) for figure 26, AAD between experimental and modeling 

data was 2.77. It was less than of 5% of error between experimental and modeling data. 

As conclusion, figure 26 showed that 300°C had completed torrefaction reaction while 

for 200, 220, 240, 260 and 280°C were incomplete reaction.  
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Figure 27: Experimental and model curves for PMF at various final torrefaction temperature (°C) and particle size 355-500 µm 

Figure 27 showed experimental and model curves at different final torrefaction 

temperature for PMF particle size between 355-500 µm. The final torrefaction 

temperature applied: 200, 220, 240, 260, 280 and 300°C. The torrefaction was carried 

out for 2 hours of reaction time. Line and symbol curves represented modeling data and 

experimental respectively. 

Figure 27 mentioned time axis was started at 17 minutes for all different final 

torrefaction temperatures. It was due to PMF intrinsic moisture removal during past 17 

minutes. Even though the PMF already had drying process but this drying process only 

managed to remove extrinsic moisture. The existence of intrinsic process was due to 

xylem structure that located inner side PMF tissues. Xylem was responsible to carried 

out water and minerals throughout the PMF and provided mechanical support as well. It 

was important to carry out this intrinsic moisture removal process before going through 

torrefaction process in order to avoid weight loss due to moisture took place during 

torrefaction process.  
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For experimental curves, the weight of PMF decreased with increasing torrefaction 

temperature. By comparing with figure 24, weight loss of PMF at figure 27 was less than 

figure 24. It was due to different of particle sizes for PMF. 250-355 µm was belonged to 

figure 24 had larger sample area compare to 355-500 µm in figure 27. As a result, larger 

area provided more space in sample to absorb heat from outside for decomposition 

rather than small area. Therefore, figure 27 resulted less weight loss. 

Figure 27 had less weight loss during temperature 200°C and more weight loss at 

temperature 280 and 300°C. It was due to decomposition either hemicellulose or 

cellulose or lignin. Since those three were the main polymeric structures inside the 

biomass and they had their own temperature decomposition. However, the hemicellulose 

decomposition was more significant compared to cellulose or lignin during the 

torrefaction of PMF since temperature decomposition of hemicellulose between 225-

325°C [5]. Chen and Kuo (2010) mentioned temperature decomposition of 

hemicellulose occurred between 150 to 350°C. Both references on hemicellulose 

temperature decomposition showed most of hemicellulose were decomposed during 

torrefaction process. Figure 27 showed the decomposition of hemicellulose started 

reactive at temperature 280°C and above. It concluded most of hemicellulose 

decomposed at 280°C rather than below 280°C.  

Besides, from experimental curves, the weight loss percent can be calculated using 

equation 4 for identifying amount of weight loss from the original sample during 

torrefaction process.For 200, 220, 240, 260, 280 and 300°C, the weight loss percent 

were 17.84, 34.82, 53.87, 64.62, 71.82 and 72.88 respectively.  It showed that, there was 

decomposition of hemicellulose for every temperature. It seemed that, decomposition of 

hemicellulose already took place at very beginning of torrefaction process. Each 

temperature showed different amount of weight loss. 

In the other hands, modeling for the torrefaction process of PMF was created for 

predicting torrefied product and compared with experimental data. Figure 27 represented 

both experimental and modeling curves. During modeling of torrefaction process, two 

reactions took place during the process. First process called as fast decomposition while 
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second process called as slow decomposition. Since from above discussion, both two 

reactions were referred to hemicellulose decomposition. 

Average Absolute Deviation (AAD) (equation 5) was introduced in order to identify 

error between modeling data and experimental data before verifying the model.  

Table 7: AAD for PMF 355-500 µm 

Temperature Experimental Modeling Error (%) 

200.00 1.72 1.73 0.58 

220.00 1.34 1.39 3.73 

240.00 0.93 0.91 2.15 

260.00 0.72 0.67 6.94 

280.00 0.57 0.51 10.53 

300.00 0.55 0.52 5.45 

AAD between Experimental and Modeling 4.90 

From AAD calculation (table 7) for figure 27, AAD between experimental and modeling 

data was 4.90. It was less than of 5% of error between experimental and modeling data. 

As conclusion, figure 27 showed that 200, 220, 240, 260 280 and 300°C had 

uncompleted torrefaction reaction.  
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Figure 28:Experimental and model curves for PKS at various final torrefaction temperature (°C) and particle size 355-500 µm 

Figure 28 showed experimental and model curves at different final torrefaction 

temperature for PKS particle size between 355-500 µm. The final torrefaction 

temperature applied: 200, 220, 240, 260, 280 and 300°C. The torrefaction was carried 

out for 2 hours of reaction time. Line and symbol curves represented modeling data and 

experimental respectively. 

Figure 28 mentioned time axis was started at 17 minutes for all different final 

torrefaction temperatures. It was due to PKS intrinsic moisture removal during past 17 

minutes. Even though the PKS already had drying process but this drying process only 

managed to remove extrinsic moisture. The existence of intrinsic process was due to 

xylem structure that located inner side PKS tissues. Xylem was responsible to carried 

out water and minerals throughout the PKS and provided mechanical support as well. It 

was important to carry out this intrinsic moisture removal process before going through 

torrefaction process in order to avoid weight loss due to moisture took place during 

torrefaction process.  
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For experimental curves, the weight of PKS decreased with increasing torrefaction 

temperature. By comparing with figure 25, weight loss of PKS at figure 28 was less than 

figure 25. It was due to different of particle sizes for PKS. 250-355 µm was belonged to 

figure 25 had larger sample area compare to 355-500 µm in figure 28. As a result, larger 

area provided more space in sample to absorb heat from outside for decomposition 

rather than small area. Therefore, figure 28 resulted less weight loss. 

Figure 28 had less weight loss during temperature 200°C and more weight loss at 

temperature 280 and 300°C. It was due to decomposition either hemicellulose or 

cellulose or lignin. Since those three were the main polymeric structures inside the 

biomass and they had their own temperature decomposition. However, the hemicellulose 

decomposition was more significant compared to cellulose or lignin during the 

torrefaction of PKS since temperature decomposition of hemicellulose between 225-

325°C [5]. Chen and Kuo (2010) mentioned temperature decomposition of 

hemicellulose occurred between 170 to 350°C. Both references on hemicellulose 

temperature decomposition showed most of hemicellulose were decomposed during 

torrefaction process. Figure 28 showed the decomposition of hemicellulose started 

reactive at temperature 280°C and above. It concluded most of hemicellulose 

decomposed at 280°C rather than below 280°C.  

Besides, from experimental curves, the weight loss percent can be calculated using 

equation 4 for identifying amount of weight loss from the original sample during 

torrefaction process.For 200, 220, 240, 260, 280 and 300°C, the weight loss percent 

were 11.44, 24.09, 41.21, 54.32, 62.13 and 64.25 respectively.  It showed that, there was 

decomposition of hemicellulose for every temperature. It seemed that, decomposition of 

hemicellulose already took place at very beginning of torrefaction process. Each 

temperature showed different amount of weight loss. 

In the other hands, modeling for the torrefaction process of PKS was created for 

predicting torrefied product and compared with experimental data. Figure 28 represented 

both experimental and modeling curves. During modeling of torrefaction process, two 

reactions took place during the process. First process called as fast decomposition while 
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second process called as slow decomposition. Since from above discussion, both two 

reactions were referred to hemicellulose decomposition. 

Average Absolute Deviation (AAD) (equation 5) was introduced in order to identify 

error between modeling data and experimental data before verifying the model.  

Table 8: AAD for PKS 355-500 µm 

Temperature Experimental Modeling Error (%) 

200.00 1.82 1.88 3.30 

220.00 1.59 1.6 0.63 

240.00 1.22 1.22 0.00 

260.00 0.95 0.95 0.00 

280.00 0.77 0.74 3.90 

300.00 0.75 0.68 9.33 

AAD between Experimental and Modeling 2.86 

From AAD calculation (table 8) for figure 28, AAD between experimental and modeling 

data was 2.86. It was less than of 5% of error between experimental and modeling data. 

As conclusion, figure 28 showed that 200, 220, 240, 260 280 and 300°C had 

uncompleted torrefaction reaction.  

Overall discussion from figure 23 until figure 28 - The weight loss curve found to be 

constant and stable during torrefaction process. Therefore, 2 hours of the process were 

enough. The torrefaction process of EFB, PMF and PKS that carried out below 2 hours 

was not recommended. It was because the time that weight needed to decompose was 

not enough. By using trial and error for 30, 60, 90 and 120 minutes of reaction time in 

TGA, it was found that 120 minutes or 2 hours of reaction time gave enough time for 

weight to decompose for all EFB, PMF and PKS. 

Furthermore, as torrefaction temperature increased, the weight loss of each type of 

sample also increased. It was due to the decomposition of hemicellulose during 

torrefaction process. Hemicellulose was most reactive and was subjected to limited 

devolatilisation and carbonisation below 250°C. Above 250°C it was subjected to 

extensive devolatilisation and carbonisation [10].  
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Based on experimental and model curves, both EFB and PMF were resulted more 

weight loss rather than PKS. So, EFB and PMF composed higher fraction of 

hemicellulose compare to PKS. However, in order to make deeply investigation on 

torrefaction process, research on determining composition of hemicellulose, 

cellulose and lignin for raw and torrefied biomass was strongly recommended 

(refer chapter 5.2 a) for further explanation).  

In this work, two different particle sizes namely 250-355 µm and 355-500 µm were 

used. Different particle size resulted different sample area. 250-355 µm had larger area 

than 355-500 µm. The larger area provided more space in sample to absorb heat for 

hemicellulose decomposition rather than small area. Therefore, 250-355 µm absorbed 

more heat than 355-500 µm and resulted more weight loss of hemicellulose. However, 

for recommendation in industrial, 355-500 µm was recommended than 250-355 µm of 

particle sizes. It was due to power used for grindability more in 250-355 µm where it 

caused towards higher of cost. 

In addition, by calculating all AAD between experimental and modeling data, it 

concluded that the error is below than 5%. It showed that model created for all three 

types of oil palm biomass were applicable and verified since error was ±5%.  

By comparing results in figure 23 until figure 28 with literature review in figure 8, the 

trend of experimental and model curves were same. However, the reaction time, 

torrefaction temperature and type of biomass were used different. Reason for comparing 

between research project and previous literature review was to get corresponding and 

correct result with previous research even though type of biomass used different. The 

important was ideal of how the torrefaction place took place correspond to reaction time, 

torrefaction temperature and type of biomass. 
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4.2. Modeling of Torrefaction Process 

4.2.1 Kinetic  Parameters 

Two steps reaction for decomposition of oil palm biomass were found during 

torrefaction process in TGA. Based on finding, first step was fast reaction while 

second step was slow reaction and both were shown below: 

 

First step (Fast reaction)      :  ( )
  
→  ( )    ( ) 

Second step (Slow reaction): ( )
    
→  ( )    ( ) 

 

Here A(s) was feedstock in solid, B(s) was intermediate product in solid and C(s) 

was torrefied product in solid. Both G1 and G2 were by-product in gas form. k1 and 

k2 represented rate constant for both steps reaction in unit of min
-1

.  

Reaction order, n for the process was obtained using graphical method. It showed 

straight line during plotting graph  
[ ( )]

[ ( )]
            . So, it was first order for 

both steps reaction for all oil palm biomass samples.Slope of the graph was rate 

constant and it will used for next determining of activation energy and pre-

exponential factor. Meanwhile, for rate constant was obtained by plotting ln k 

versus 1/T from derivation of Arrhenius equation. 

          
   
   

             (
   
 
)
 

 
     

       

where Ea was activation energy in J mol
-1

, R was gas constant in J mol
-1 

K
-1

, T was 

temperature in K and A was pre-exponential factor in min
-1

. During the plotting, the 

slope of the graph, m showed value of activation energy over gas constant and the 

intercept c showed value of pre-exponential factor (figure 29 until figure 40). The 

expression for k1 and k2 were described as follows for all oil palm biomass samples: 
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a) For EFB (250-355 um): 

 
Figure 29: Graph ln k versus 1/T for k1 

 
Figure 30: Graph ln k versus 1/T for k2 

y = -7008.7x + 9.3168 

-7

-6

-5

-4

-3

-2

-1

0

0.00175 0.0018 0.00185 0.0019 0.00195 0.002 0.00205 0.0021 0.00215

ln
 k

 

1/T (K^-1) 

y = 4119.1x - 13.599 

-6.4

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

0.00175 0.0018 0.00185 0.0019 0.00195 0.002 0.00205

ln
 k

 

1/T (K^-1) 



61 
 

         
    (

      

  
) 

           
     (

     

  
) 

b) For EFB (355-500 um): 

 

Figure 31: Graph ln k versus 1/T for k1 
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Figure 32:  Graph ln k versus 1/T for k2 
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c) For PMF (250-355 um): 

 
Figure 33: Graph ln k versus 1/T for k1 

 
Figure 34: Graph ln k versus 1/T for k2 
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            (
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d) For PMF (355-500 um): 

 
Figure 35: Graph ln k versus 1/T for k1 
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Figure 36: Graph ln k versus 1/T for k2 
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e) For PKS (250-355 um): 

 
Figure 37: Graph ln k versus 1/T for k1 

 

Figure 38: Graph ln k versus 1/T for k2 
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f) For PKS (355-500 um): 

 

Figure 39: Graph ln k versus 1/T for k1 
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Figure 40: Graph ln k versus 1/T for k2 
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All kinetic parameters were identified through extraction data from TGA curve.For 

creating a model for EFB, PMF and PKS at different particle sizes, values of k1and 

k2 were important in order to solve unidentified rate of reaction. Rate of reaction can 

be identified using equation 1, 2 and 3. However, the model was developed only can 

be used on the particle size that range from 250 to 500 um for EFB, PMF and PKS. 
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4.2.2 Example of Calculation Kinetic Parameters through MATLAB 

For EFB with particle size of 250-355 um at temperature 280°C (553 K), MATLAB 

model will used for predicting rate constant, rate of formation and torrefied product 

produced at initial weight of 12 kg as below: 

        
    (

      

  
) 

          (
      

          
) 

              

                  
     (

     

  
) 

             (
     

          
) 

             

Rate of formation torrefied product at 12 kg, 

r = 0.0100 kg/min 

Weight of torrefied product with original weight of 12 kg, 

w = 3.9031 kg 
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4.2.3 MATLAB [17, 18] 

All kinetic parameters were identified and coded into MATLAB software. Reaction 

order, n for the torrefaction process was 1. Torrefaction model was created through 

MATLAB in order to predict amount of torrefied product from different amount of 

feedstock (EFB. PMF or PKS). Therefore, equation of rate of reaction was derived 

from chemical equation below before coding: 

  ( )
  
→  ( ) 

 ( )
    
→  ( ) 

Derivation was done from initial feedstock, WA (0) until final product, WC as shown 

below: 

   
  

      ( )(          ) 

   
  

       

Integrate from time 0 to time t1, 

∫
   
  

  

 

  ∫     

  

 

 

  
  (  )

  ( )
        

  (  )    ( ) 
(      ) 

Value of WA (t1) will be substituted into equation 7, 

   
  

     (  )      (          ) 

Integrate from time 0 to time t2, 

∫    

  

 

 ∫[(    ( ) 
(      ))  (    )]  
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Applying Laplace transform (refer appendix I), 

  (  )  
  

     
   ( )  ( 

(      )   (      )) 

Value of WB (t2) will be substituted into equation 8, 

   
  

     (  )(          ) 

Integrate from time 0 to time t3, 

∫    

  

 

 ∫[    (  )]  

  

 

 

∫    

  

 

 ∫ [  (
  

     
   ( )  ( 

(      )   (      )))]   

  

 

 

Applying Laplace transform (refer appendix I), 

  (  )  
    

        
   ( )  ( 

(      )   (      )   (     )) 

All WA (t1), WB (t2) and WC (t3) were coded into MATLAB. MATLAB was run 

and values of torrefied product (EFB, PMF and PKS) were predicted by MATLAB. 

Values were shown in table 3 until table 8 and plotted in figure 23 until figure 28 

during discussion on experimental and model curves for different types of biomass. 
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4.3. Torrefied Biomass from Tube Furnace  

Table 9 untiltable14 represented that appearances of EFB, PMF and PKS changed 

during torrefaction process. The appearances of each set of oil palm biomass sample 

(EFB, PMF and PKS) turn color from light to dark before and after torrefaction process. 

It was due to decomposition of hemicellulose that subjected to carbonisation during 

sample been heated up at different torrefaction temperature. The carbonisation (carbon 

formation) leads towards dark appearance of all samples.  

Table 9: Appearances for 250-355 µm EFB before and after torrefaction process 

Condition 

Before 

Torrefaction 

Process 

After Torrefaction Process ( °C) 

Sample Raw 200 220 240 260 280 300 

Type of 

Biomass 
Empty Fruit Bunch (EFB) 

Particle 

Size 
250-355 µm 

Appearance 

 

 
 

      

Color 

Intensity 
          Light                                                                                        Dark 

There was some confusion regarding carbonisation process during torrefaction process. 

For the last poster presentation, people claimed that carbonisation occurred at high 

temperature around 700-800°C.Regarding the confusion, actually carbonisation started 

to occur from temperature 200°C and upwards. However, during low temperature, only 

slow carbonisation process occurred. While during high temperature, it was fast 

carbonisation process. Therefore, when samples at high and low temperatures were 

compared, it showed sample at high temperature‟s appearance darker (more carbon 

formation) than sample at low temperature. Here, it can concluded that carbonisation can 

occur at any temperature starting from 200°C and upwards, only the different is amount 

of carbon formation that directly depending on rate of carbonisation process. 
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Table 10:Appearances for 355-500 µm EFB before and after torrefaction process 

Condition 

Before 

Torrefaction 

Process 

After Torrefaction Process ( °C) 

Sample Raw 200 220 240 260 280 300 

Type of 

Biomass 
Empty Fruit Bunch (EFB) 

Particle 

Size 
355-500 µm 

Appearance 

 

 
 

      

Color 

Intensity 
          Light                                                                                        Dark 

Table 11: Appearances for 250-355 µm PMF before and after torrefaction process 

Condition 

Before 

Torrefaction 

Process 

After Torrefaction Process ( °C) 

Sample Raw 200 220 240 260 280 300 

Type of 

Biomass 
Palm Mesocarp Fiber (PMF) 

Particle 

Size 
250-355 µm 

Appearance 

 

 
 

      

Color 

Intensity 
          Light                                                                                        Dark 
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Table 12: Appearances for 355-500 µm PMF before and after torrefaction process 

Condition 

Before 

Torrefaction 

Process 

After Torrefaction Process ( °C) 

Sample Raw 200 220 240 260 280 300 

Type of 

Biomass 
Palm Mesocarp Fiber (PMF) 

Particle 

Size 
355-500 µm 

Appearance 

 

 
 

      

Color 

Intensity 
          Light                                                                                        Dark 

Table 13: Appearances for 250-355 µm PKS before and after torrefaction process 

Condition 

Before 

Torrefaction 

Process 

After Torrefaction Process ( °C) 

Sample Raw 200 220 240 260 280 300 

Type of 

Biomass 
Palm Kernel Shell (PKS) 

Particle 

Size 
250-355 µm 

Appearance 

 

 
 

      

Color 

Intensity 
          Light                                                                                        Dark 
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Table 14: Appearances for 355-500 µm PKS before and after torrefaction process 

Condition 

Before 

Torrefaction 

Process 

After Torrefaction Process ( °C) 

Sample Raw 200 220 240 260 280 300 

Type of 

Biomass 
Palm Kernel Shell (PKS) 

Particle 

Size 
355-500 µm 

Appearance 

 

 
 

      

Color 

Intensity 
          Light                                                                                        Dark 

However, table 9 until table 14 were not preferable for identify the weight loss during 

the torrefaction process since, the TGA managed to analyze weight loss of sample 

accurately during the torrefaction process. Purposed for produced torrefied product 

through tube furnace was for sample analyses. It was due to limited amount produced by 

TGA that not enough for sample analyses. Sample loaded into TGA only around 2-10 

mg where resulted very little amount only in milligram. 
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4.4. Ultimate Analyses for Raw and Torrefied Biomass 

 

Figure41: ■ Carbon content for raw and torrefied biomass 

Figure 41 to figure 45 displayed ultimate analyses for raw and torrefied samples for 

EFB, PMF and PKS. Theses ultimate analyses revealed the alteration that occurred in 

the chemical composition of oil palm biomass when it was exposed to torrefaction 

process.(Refer Appendix II for detail result of carbon, hydrogen, nitrogen, sulphur and 

oxygen contents) 

The carbon content was increased with increasing torrefaction temperature for EFB, 

PMF and PKS. It caused by devolatilisation and carbonisation that subjected to the 

decomposition of hemicellulose. Both EFB and PMF had higher amount of carbon 

content than PKS. It was related with previous discussion on weight loss of EFB, PMF 

and PKS in part 4.1. Therefore, more weight loss was resulted higher carbon content.  

Besides that, figure 41 showed the carbon content was different particle sizes. 250-355 

µm of particle size had higher carbon content than 355-500 µm of particle size for each 
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type of biomass. It was due to 250-355 µm particle size had larger sample area than 355-

500 µm. As a result, it caused carbonisation to react faster. 

 

Figure42:♦ Hydrogen content for raw and torrefied biomass 
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Figure43: x Oxygen content for raw and torrefied biomass 

 

Figure44: ▲ Nitrogen content for raw and torrefied biomass 

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

48.00

50.00

37.00 87.00 137.00 187.00 237.00 287.00

O
xy

ge
n

  C
o

n
te

n
t 

(w
t 

%
) 

Temperature (° C) 

EFB (250-355 um)

EFB (355-500 um)

PMF (250-355 um)

PMF (355-500 um)

PKS (250-355 um)

PKS (355-500 um)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

37.00 87.00 137.00 187.00 237.00 287.00

N
it

ro
ge

n
  C

o
n

te
n

t 
(w

t 
%

) 

Temperature (° C) 

EFB (250-355 um)

EFB (355-500 um)

PMF (250-355 um)

PMF (355-500 um)

PKS (250-355 um)

PKS (355-500 um)



79 
 

Furthermore, figure 42 to figure 43showed hydrogen and oxygen contents were changed 

due to release of methane (CH4), ethane (C2H6), carbon dioxide (CO2) and carbon 

monoxide (CO) during torrefaction process. The exception was nitrogen content while it 

was remained unchanged from figure 44. 

 

Figure45:● Sulphur content for raw and torrefied biomass 

Besides, sulphur content for figure 45 was below than 0.6 wt%. As a result, it showed 

that oil palm biomass released less sulphur during combustion into atmosphere. Besides, 

it reduced health problem caused by sulphur.  
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Figure46: O/C ratio for different type of biomass 

In the order hand, figure 46 showed O/C ratio for all samples. It decreased over 

torrefaction temperature and resulted improvement of gasification properties of torrefied 

biomass [2].The decreasing of O/C ratio was due to removal of water and carbon dioxide 

during torrefaction process [7]. During the torrefaction process oxygen content was 

reducing while carbon content was increasing. Increasing of carbon content caused high 

calorific value during the burning. It resulted less smoke and water vapor were formed. 

As a result, torrefied products were improved in combustion view. 
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4.5. Calorific Value fromRaw and TorrefiedBiomass 

 

Figure47: Energy yield for different types of oil palm biomass 

Figure 47 result represented three types of oil palm biomass (EFB, PMF and PKS) 

energy variation for raw and torrefied samples. The energy yield was referred to higher 

heating value (HHV) for both raw and torrefied samples. The graph was plotted at 

different particle size, torrefaction temperature and type of oil palm biomass. 

The energy yield for EFB, PMF and PKS were increased with increasing torrefaction 

temperature. For all samples, practically all chemical energy was retained in the 

torrefied product and the energy yield was depended on that torrefied product. It seems 

torrefied product contained different amount of carbon content that resulted different 

energy yield.  

The influence of biomass type on the energy yield was the best observed in figure 47. It 

showed PMF had highest energy yield followed by EFB and PKS. It was because of 

increased carbon content that leads towards high calorific value during burning. PMF 

had highest increasing of carbon content followed by EFB and PKS. Besides,   figure 47 
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emphasized that particle size gave small influence in energy yield with showing similar 

trends. Figure 47 most clearly revealed the increase of the energy yield with increasing 

torrefaction temperature. As proved, torrefaction improved energy density of raw oil 

palm biomass. (Refer Appendix III for detail result of calorific value for raw and 

torrefied biomass) 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The kinetic study from TGA weight loss curve for EFB, PMF and PKS described two 

steps of reaction involve during torrefaction process. First step was fast hemicellulose 

decomposition reaction while second step was slow hemicellulose decomposition 

reaction. Both steps represented hemicellulose decomposition whereas no decomposition 

of cellulose and lignin. Kinetic model can be used for predicting amount of torrefied 

product of oil palm biomass from torrefaction process. However, this model limited to 

EFB, PMF and PKS only with particle size between 250-500 µm. 

Torrefaction temperature - Six of torrefaction temperature were applied, i.e. 200, 220, 

240, 260, 280 and 300°C for EFB, PMF and PKS. When temperature increased, more 

weight loss was obtained. From TGA observation, weight loss was resulted from 

decomposition of hemicellulose only. No cellulose and lignin decompositions were 

involved. Besides, the hemicellulose decomposition is more significant compare to 

cellulose and lignin during torrefaction of oil palm biomass since temperature 

decomposition of hemicellulose between 225-325°C [5].   

Type of biomass - Different type of biomass composed different composition of 

hemicellulose and resulted different weight loss. EFB and PMF composed higher 

amount of hemicellulose than PKS where both of EFB and PMF torrefied products were 

resulted more weight loss than PKS.   

Particle size - Two particle sizes were used during torrefaction process: 250-355 µm and 

355-500 µm. 250-355 µm was resulted higher more weight loss and higher energy 

density rather than 355-500 µm. It was because of larger sample area of 250-355 µm 

lead decomposition that subjected to carbonisation, devolatilisation and hemicellulose to 

react faster than 355-500 µm. EFB, PMF and PKS with 250-355 µm had more weight 

loss and higher energy density. 

 



84 
 

Reaction time - During torrefaction process for EFB, PMF and PKS, 2 hours of reaction 

time was applied for each torrefaction temperature (200, 220, 240, 260, 280 and 300°C). 

2 hours of reaction time was enough for EFB, PMF and PKS where there was no more 

weight loss of sample (weight loss constant). However, reaction time below 2 hours was 

not suitable for EFB, PMF and PKS. It was due to unfinished reaction showed by TGA 

for those samples since there was a weight loss (weight loss not constant).  It can be 

concluded that four main parameters give significant to torrefaction process which were 

torrefaction temperature, type of biomass, particle size, torrefied temperature and 

reaction time.  

Furthermore, applying torrefaction process had resulted towards energy densification for 

EFB, PMF and PKS. PMF contained highest energy followed by EFB and PKS. Other 

than that, ultimate analyses for EFB, PMF and PKS showed different carbon, hydrogen, 

nitrogen, sulphur and oxygen contents before and after torrefaction process.  

 

 

 

 

 

 

 

 

 

 

 



85 
 

5.2 Recommendation 

During carried out this torrefaction project, there are a few recommendation from my 

side in order to make improvement and variety focus on torrefaction research, so that it 

becomes completed with deeply investigation. There are: 

a) carried out research on determining composition of hemicellulose, cellulose and 

lignin for raw and torrefied biomass. Significant on doing this research is to know 

exact composition of hemicellulose, cellulose and lignin after and before torrefaction 

process. By doing this, we can know exactly which structure decompose during 

torrefaction process. It might be hemicellulose, cellulose or lignin. Besides, we can 

know the starting decomposition of hemicellulose, cellulose and lignin during the 

torrefaction process. 

 

b) carried out at different particle sizes such as 100-250 µm and 100-200 mm. The 

important is to identify its affect onto weight loss, energy content and ultimate 

analysis. By doing that, kinetic model that already created can be modified and 

applied with different range of particle size. 
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APPENDICES 

Appendix I: Laplace Transform 
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Appendix II: Ultimate Analyses for Raw and Torrefied Biomass (EFB, PMF, PKS) 

Experiment 

Content (%) 

C  H  N S O O/C 

EFB_250-355_Raw Sample 45.81 5.74 0.43 0.48 47.55 1.04 

EFB_250-355_200 46.69 5.12 1.45 0.18 46.56 1.00 

EFB_250-355_220 46.77 4.94 1.52 0.07 46.70 1.00 

EFB_250-355_240 49.22 4.75 1.64 0.10 44.29 0.90 

EFB_250-355_260 51.70 4.09 1.76 0.22 42.23 0.82 

EFB_250-355_280 57.17 4.44 1.80 0.12 36.48 0.64 

EFB_250-355_300 58.75 3.87 1.24 0.04 36.11 0.61 

EFB_355-500_Raw Sample 45.00 5.60 0.37 0.46 48.57 1.08 

EFB_355-500_200 44.60 5.99 1.16 0.15 48.11 1.08 

EFB_355-500_220 45.06 6.21 1.25 0.08 47.41 1.05 

EFB_355-500_240 46.82 5.63 1.27 0.08 46.20 0.99 

EFB_355-500_260 48.24 5.06 1.27 0.07 45.36 0.94 

EFB_355-500_280 55.16 4.91 1.52 0.10 38.31 0.69 

EFB_355-500_300 55.55 4.71 1.43 0.11 38.20 0.69 

PMF_250-355_Raw Sample 45.82 5.26 0.57 0.45 47.90 1.05 

PMF_250-355_200 47.60 4.03 1.45 0.04 46.88 0.98 

PMF_250-355_220 48.12 4.02 0.97 0.06 46.83 0.97 

PMF_250-355_240 50.92 4.47 1.33 0.04 43.24 0.85 
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PMF_250-355_260 51.73 5.09 1.45 0.41 41.33 0.80 

PMF_250-355_280 52.72 4.53 0.85 0.08 41.82 0.79 

PMF_250-355_300 56.61 4.30 0.99 0.04 38.05 0.67 

PMF_355-500_Raw Sample 47.89 5.74 0.63 0.51 45.23 0.94 

PMF_355-500_200 46.91 5.06 1.23 0.07 46.75 1.00 

PMF_355-500_220 47.65 4.73 1.34 0.06 46.22 0.97 

PMF_355-500_240 47.87 4.68 1.43 0.07 45.96 0.96 

PMF_355-500_260 50.50 4.53 1.56 0.09 43.32 0.86 

PMF_355-500_280 51.09 4.27 1.62 0.07 42.96 0.84 

PMF_355-500_300 51.50 3.78 1.65 0.07 42.99 0.83 

PKS_250-355_Raw Sample 50.18 5.55 0.49 0.42 43.36 0.86 

PKS_250-355_200 46.76 4.78 0.88 0.03 47.56 1.02 

PKS_250-355_220 47.08 4.56 0.88 0.08 47.40 1.01 

PKS_250-355_240 47.20 4.63 0.85 0.06 47.26 1.00 

PKS_250-355_260 47.68 4.47 0.48 0.03 47.35 0.99 

PKS_250-355_280 47.91 4.25 0.99 0.03 46.83 0.98 

PKS_250-355_300 51.31 4.04 1.03 0.03 43.60 0.85 

PKS_355-500_Raw Sample 49.27 5.46 0.42 0.38 44.47 0.90 

PKS_355-500_200 46.84 5.21 0.87 0.03 47.04 1.00 

PKS_355-500_220 47.49 4.72 0.91 0.02 46.85 0.99 

PKS_355-500_240 48.33 4.66 0.89 0.04 46.08 0.95 
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PKS_355-500_260 49.63 4.51 0.97 0.03 44.88 0.90 

PKS_355-500_280 49.84 4.53 0.89 0.03 44.71 0.90 

PKS_355-500_300 51.56 4.19 0.93 0.03 43.29 0.84 

*Notation for CHNS Experiment: Sample Name_Particle Size_Torrefaction Temperature 
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Appendix III: Calorific Value for Raw and Torrefied Biomass (EFB, PMF, PKS) 

Experiment 
Sample Weight 

(g) 

Calorific Value 

(J/g) 

Energy 

Yield (J) 

EFB_250-355_Raw Sample 0.5 17377.00 8.69E+03 

EFB_250-355_200 0.5 17534.00 8.77E+03 

EFB_250-355_220 0.5 17844.00 8.92E+03 

EFB_250-355_240 0.5 18847.00 9.42E+03 

EFB_250-355_260 0.5 19761.00 9.88E+03 

EFB_250-355_280 0.5 21669.00 1.08E+04 

EFB_250-355_300 0.5 22592.00 1.13E+04 

EFB_355-500_Raw Sample 0.5 18035.00 9.02E+03 

EFB_355-500_200 0.5 18443.00 9.22E+03 

EFB_355-500_220 0.5 18897.00 9.45E+03 

EFB_355-500_240 0.5 19377.00 9.69E+03 

EFB_355-500_260 0.5 19893.00 9.95E+03 

EFB_355-500_280 0.5 22180.00 1.11E+04 

EFB_355-500_300 0.5 22415.00 1.12E+04 

PMF_250-355_Raw Sample 0.5 18093.00 9.05E+03 

PMF_250-355_200 0.5 19129.00 9.56E+03 

PMF_250-355_220 0.5 19671.00 9.84E+03 

PMF_250-355_240 0.5 19986.00 9.99E+03 

PMF_250-355_260 0.5 20214.00 1.01E+04 

PMF_250-355_280 0.5 21914.00 1.10E+04 

PMF_250-355_300 0.5 23102.00 1.16E+04 

PMF_355-500_Raw Sample 0.5 18161.00 9.08E+03 

PMF_355-500_200 0.5 19341.00 9.67E+03 

PMF_355-500_220 0.5 19667.00 9.83E+03 

PMF_355-500_240 0.5 20092.00 1.00E+04 

PMF_355-500_260 0.5 20751.00 1.04E+04 

PMF_355-500_280 0.5 22046.00 1.10E+04 

PMF_355-500_300 0.5 23732.00 1.19E+04 
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PKS_250-355_Raw Sample 0.5 19191.00 9.60E+03 

PKS_250-355_200 0.5 19702.00 9.85E+03 

PKS_250-355_220 0.5 19715.00 9.86E+03 

PKS_250-355_240 0.5 19856.00 9.93E+03 

PKS_250-355_260 0.5 20351.00 1.02E+04 

PKS_250-355_280 0.5 21085.00 1.05E+04 

PKS_250-355_300 0.5 21542.00 1.08E+04 

PKS_355-500_Raw Sample 0.5 19160.00 9.58E+03 

PKS_355-500_200 0.5 19481.00 9.74E+03 

PKS_355-500_220 0.5 19581.00 9.79E+03 

PKS_355-500_240 0.5 20026.00 1.00E+04 

PKS_355-500_260 0.5 20833.00 1.04E+04 

PKS_355-500_280 0.5 20913.00 1.05E+04 

PKS_355-500_300 0.5 21856.00 1.09E+04 

                        *Notation for Bomb Calorimeter Experiment: Sample Name_Particle Size_Torrefaction Temperature 
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Appendix IV: Raw Data for TGA 

a) -Type of biomass: EFB 

-Particle size       : 250 – 355 µm 

-Reaction time    : 2 hours 

-Temperature      : 200, 220, 240, 260, 280 and 300°C 
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b) -Type of biomass: EFB 

-Particle size       : 355 – 500 µm 

-Reaction time    : 2 hours 

-Temperature      : 200, 220, 240, 260, 280 and 300°C 
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c) -Type of biomass: PMF 

-Particle size       : 250 – 355 µm 

-Reaction time    : 2 hours 

-Temperature      : 200, 220, 240, 260, 280 and 300°C 
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d) -Type of biomass: PMF 

-Particle size       : 355 – 500 µm 

-Reaction time    : 2 hours 

-Temperature      : 200, 220, 240, 260, 280 and 300°C 
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e) -Type of biomass: PKS 

-Particle size       : 250 – 355 µm 

-Reaction time    : 2 hours 

-Temperature      : 200, 220, 240, 260, 280 and 300°C 
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f) -Type of biomass: PKS 

-Particle size       : 355 – 500 µm 

-Reaction time    : 2 hours 

-Temperature      : 200, 220, 240, 260, 280 and 300°C 
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