
 i

Building an Algorithm for Measuring C Programming Assignments Quality

by

Muhd Zulhafriz Aadel bin Marzuki

Final Report submitted in partial fulfillment of

the requirements for the

Bachelor of Technology (Hons)

(Business Information System)

JANUARY 2008

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

 ii

CERTIFICATION OF APPROVAL

Building an Algorithm for Measuring C Programming Assignments Quality

By

Muhd Zulhafriz Aadel bin Marzuki

A project dissertation submitted to the

Computer and Information Sciences Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(BUSINESS INFORMATION SYSTEM)

Approved by,

(Norshuhani bt Zamin)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2008

 iii

`

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is

my own except as specified in the references and acknowledgements, and that the original work

contained herein have not been undertaken or done by unspecified sources or persons.

MUHD ZULHAFRIZ AADEL BIN MARZUKI`

 iv

ABSTRACT

The focuses of this final report is to provide a clear idea on the development of programming

assignment’s quality measurement algorithm. The main content of the report is the discussion of

the most possible methods used to measure programming assignments quality and how it is

related to this project. The proposed algorithm was modified from an existing approach used to

measure software quality known as the cyclomatic measure [6]. Modifications were based on

observation, studies and data collected from lecturers who currently teaches programming

courses in Universiti Teknologi Petronas (UTP). The tested programming language is C

considering the problems in grading programming assignments are directly related with this

subject in UTP.

 v

TABLE OF CONTENTS
CONTENTS PAGE

ABSTRACT ii

CHAPTER 1: INTRODUCTION

1.0 Background of Studies 1

1.1 Problem Statement 2

1.2 Scope of Study 2

CHAPTER 2: LITERATURE REVIEW

 2.1 Software Quality Assessment 4

 2.2 Measuring Programming Assignments’ 5

 Quality

CHAPTER 3: MEHODOLOGY

3.1 Research Methodology and Project Activities 6

3.2 Programming Assignments’ Quality 7

Measurement Algorithm Flow chart

3.3 Testing Method Flow Chart 9

3.4 Tools 11

3.5 Screen Designs 12

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Data Gathering and Analysis 14

4.2 Functionality Analysis 22

CHAPTER 5: CONCLUSION AND RECOMMENDATION 28

 vi

REFERENCES 29

APPENDICES 31

 Appendix A- Gantt Chart 31

 Appendix B- Programming Assignments’ Quality 32

 Measurement Criterion

 Appendix C- Algorithm for Measuring C Programming 37
 Assignments Quality Soft Codes

 vii

LISTS OF FIGURES

Figure 3.20: Programming Assignments’ Quality Measurement Algorithm 7

 Flow chart

Figure 3.21: Different structure of sentences with same meaning 8

Figure 3.22: Example of lowercase and uppercase letters 8

Figure 3.30: Testing Method Flow Chart 10

Figure 3.40: VB.Net Logo 11

Figure 3.50: Programming Assignments Quality Checking Algorithm 12

Figure 4.10: Number of Variables 15

Figure 4.11: Data Types 16

Figure 4.12: Relevant Comments 17

Figure 4.13: Program Neatness 17

Figure 4.14: Output Generated 18

Figure 4.15: Logic 18

Figure 4.16: Syntax Correctness 19

Figure 4.17: Criterion’s Importance Value on Percentage 20

Figure 4.20: Prompting Student’s Answer Selection 22

Figure 4.21: Student’s Answer Selection 23

Figure 4.22: Prompting Answer Scheme Selection 24

Figure 4.23: Answer Scheme’s Selection 25

Figure 4.24: Preprocessed Students Answer & Answer Scheme 26

Figure 4.25: Analysis Screen 27

LIST OF TABLE

Table 4.1: Programming Analysis Criterion and Their weighted value (%) 15

1

CHAPTER 1

INTRODUCTION

1.0 Background of Studies

In learning programming, students must undergone intensive drills in writing codes to improve

their familiarity with the syntax. However, these training must also be evaluated continuously

to assess the standard of students and rectify how they can improve their code writing abilities.

To achieve precise and reliable assessment method, a standard accepted criterion must be

identified to be applied in the assessment process. Each semester, the number of students

enrolled for Structured Programming subject had increased massively from 100 to more than

600 students at one time [15]. This is due to the university requirement which oblige all

students to undertake Structured Programming subject during their first year of studies in UTP.

C language as one of structure programming languages was thought for Structured

Programming subject. The syllabus of this course will be covering basic programming structure

focusing on strengthening the foundation of programming among students. These basic

structures would be covering the looping control structure, selection control structure, function,

dynamic data structures and static data structures.

The main objective of this project is to identify the most appropriate software quality

measurement algorithm that can be dynamically applied to any types of programming

assignments regardless of the language. Unlike previous research and findings which focuses

on the applicability of the metrics only to large and medium size software (103 or more line-of-

codes), this project aims to provide sufficient measure for programming assignment which

relatively smaller than normal software (101 - 102) apart from identifying criteria required by

the assessor but not considered important in measuring software quality. This special

requirement is crucial due to the concern of training students for good programming practice. In

order to do so, a general accepted criterion will be collected from a group of lecturers in UTP as

the sample of the research based on the criterion suggested by Ravindran [13]. He quoted that

2

attributes such as reliability, robust, reader friendly, readable, conforming to standard and

proper documentation are essential for a good programming codes.

1.2 Problem Statement

With vast amount of students enrolling for Structured Programming course each semesters,

there had been some concerns over the time constraint faced by lecturers to assess and grade the

assignments given to students. Since the ratio of lecturers to student for the Structured

Programming subject is relatively high, each lecturers are burdened with a lot of assignments

need to be marked. To make things worst, they have very limited time to complete the

assignments’ marking. It is very important for lecturers to marks all the assignments within the

timeline as students need feedback on their weakness and further improves their skills.

Finally, as lecturers are burdened with limited timeline with vast amount of assignments, they

are prone to human error factors. It is very likely that the quality of marking will be deteriorated

as more assignments were marked. Among the possible human error factors occurring is

biasness between assignments as the manual marking is obviously not conducted anonymously.

For the past decades, several softwares had been developed to evaluate and identify the

correctness of programming assignments. These programs, such as HoGG [1], ASSYST [2] and

CAP [3], applied dynamic analysis approach which compares any software’s output with the

expected output. In recent years, there has been software measuring both the correctness and the

quality of the software known as AutoGrader [4] and Automated Marking System (AMS) [5]

which provides real-time assessment. Even though these softwares introduced improved

features of marking assignments, however, to date there is no software that was built to measure

the quality of programming assignments apart from the correctness.

1.3 Scope of Studies

Before the algorithm is constructed, researches will be conducted to determine if there is similar

project was done before and whether or not it can be referred to in completing this project.

Another factor that needs to be examined is the suitability of the criteria suggested- if there is

3

any. One alternatives that is suggested should there is no appropriate modules applicable

directly to this project is to develop our own criteria by gathering data through questionnaire

with the lecturers from Computer and CIS department as a sample.

These suggested modules were however, focuses on measuring quality of large software (104

line-of-codes). Since programming assignments were usually consisting of small sized program

(101 – 102 line-of-codes), normal software quality metrics were insufficient for marks awarding.

Hybrid approach will be identified and some modification may prove to be helpful in

constructing this algorithm. Researches will be carried out to identify the criterion stressed by

lecturers instead of models suggested such as Cyclomatic Measures, Lines-of-Codes (LOCpro)

and Volume.

On another aspect, the scope of this project is to implement a static analysis approach to

evaluate and assess students’ programming assignments. Thus, some criterion which is of high

importance may not be covered in this projects considering implementing dynamic analysis

approach for C would require C language compiler and ways to link this compiler to this

project.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Software Quality Assessment

Since 1976, they have been many researches working on finding the best criteria to assess the

software quality accurately. Basically, the criterion suggested can be classified into several

groups- Complexity [6], [7], [8], Operational Reliability [9], Endurance Test Time [10] and

Error Rates and Densities. Based on these suggested groups, it was found that, numerous were

done focusing on software’s complexity as the accepted approach to measure software quality.

Referring to the research done by Bowen [11], he had concluded that the complexity measure

has the highest sensitivity to the intra module’s interaction. On further research findings by

Takahashi [12], by doing some modification on the formula S1 = e – n + 2, this approach could

be applied to the smallest unit in C programming- corresponding to a function in C, to the inter-

module level of a system.

However, while this approach does measure a software quality accurately, it does not provides

sufficient and appropriate guidelines that can help achieve the goals of training students to good

programming practices. According to Ravindran [13], a good program, should exhibit these

attributes apart from correctness; reliable, robust, user-friendly, efficient, readable and portable.

Software should always function correctly, regardless over a period of time, or over ranges of

different data. Robustness deals with the ability to detect inappropriate data and handle them

properly. Other than the ease of use, it must achieve the desired result with the best way and

shortest time span.

5

2.2 Programming Assignments’ Quality Assessment

Several software are available to automatically mark the programming assignments of various

languages. Among the latest software is AMS [5] and AutoGrader [4] while some of the earliest

software are HoGG [1], ASSYST [2] and CAP [3]. However, this software were found did not

identify the quality of an assignment objectively and before awarding appropriate marks to a

particular student. An approach applied by these systems is called the dynamic analysis

approach, which executes programs built on a real or virtual processor [16]. Special libraries are

required for this analysis method and for some cases; recompilation may be needed [16].

 In 2006, the Web-based Automated Grading System (WAGS) was developed to automatically

grade programming assignments written in C, VB.Net and Java [15]. Using static analysis, this

system compares the students’ codes with the answer scheme. A feature highlighted in this

software is the ability to accept multiple answer schemes with the assumption of student’s

answer is unique and distinctive, thus multiple schemes are needed. Static analysis however,

does not require any special libraries thus; software evaluating was done by examining the

codes line-by-line.

Based on the attributes coined by Ravindran [13], some modification will be made together

with the elaboration on the important aspects focused by lecturers in awarding marks to

students. An algorithm is proposed to be developed which works as an expansion patch to the

previously developed WAGS [15] system.

6

CHAPTER 3

METHODOLOGY

3.1 Research Methodology and Project Activities

The methodology used for this development of this algorithm is known as prototyping [17].

Considering the small size of this project and the advantages provided by this method which

enables flexibility in algorithm development, it is believe that this approach could assist within

shorter period of project’s development.

Questionnaires were distributed to the lecturers to gather the criterion needed and deemed most

appropriate in assessing students’ programming assignments apart from emphasizing good

programming practices. The outcome of the questionnaires was analyzed before assigning

certain weight to each and every criterion met in the assignments according to the level of

importance accordingly.

For each of the criterion, the marks awarded will have different values. The weight of each

mark will be decided after analyzing the result of the questionnaire. The objectives is ensure

that the most crucial criteria can be stressed by giving higher value of marks while the less

important criteria plays lesser roles in contributing more marks for students.

7

3.2 The Algorithm Flow chart

The flowchart describes the flow of the algorithm. Every line of codes will be read and check

for the selected criteria. Appropriate marks will be awarded to the students if any of the

criterions was met and vice versa. The same process of evaluation will be repeated for every

line until the end of the programming assignments. Before displaying the total marks, all marks

for each criterion will be sum-up including the marks awarded for the correctness aspect

generated from WAGS [15].

Fig. 3.1: Programming Assignments’ Quality Measurement Algorithm Flow chart Figure 3.20: Programming Assignments’ Quality Measurement Algorithm Flow
h t

8

The approach taken in completing this project is to work on each individual module (function).

Marks for the selected criterion (Table 4.10) will be generated individually by each module.

Following that, each of the marks generated by these individual modules will be weighted

accordingly on their importance before obtaining the final marks. By grading based on

separated module, not only it will ease the development of the algorithm, it will also help on

displaying a student’s weaknesses and strength for each of the criteria. In addition to that,

details portion of marks earned for each criteria can be displayed separately.

A suggested by Norshuhani[15], a line-by-line comparison between students’ answer script and

the answer scheme provided by the lecturer are required in order to determine the correctness of

students’ answer. However, problems arise when there is difference in strings written by users

and evaluators which is not exactly an error (figure 3.21). In addition to that, a system would

not recognize the same letter with uppercase or lowercase (figure 3.22). Several other issues of

concern involved the difference in name of variables declared for each answer- difference of

variables name is not an error, but the system will read it as error with the comparison

approach, and

Figure 3.21: Different structure of sentences with same meaning

Figure 3.22: Example of lowercase and uppercase letters

Printf("\nEnter two numbers : "); /* The first method of asking for 2 input*/
Printf("\nPlease Key in 2 numbers : "); /*Another method of asking for 2 input*/
/*Both method is the same but with different sentences structure*/

#include<stdio.h> /* Same sentences which are unrecognizable by system due to*/
#INCLUDE<STDIO.H> /*the lowercase and the uppercase of letters*/

9

In order to ensure that the grading process will run efficiently apart from minimizing the errors

while grading, basic preprocessing will be made before each grading process. Referring from

WAGS system [15], preprocessing functions were modified to include several respective

processes:

a) Codes submitted will be converted to lower case [15].

b) All empty lines in between codes are to be removed [15].

c) Empty spaces at the beginning and starting of each line are to be trimmed while codes

are to be left justified [15].

d) In order to shorten the time consumed grading the codes, a standard text will replace all

system generated codes [15].

e) Any programmers define codes will be replaced with a standard text as following:

a. VAR will be used to all variables name declared within the codes [15].

b. FREETEXT will be used to any text generated in the interface [15].

3.3 Testing Method Flow Chart

In verifying the result generated by this algorithm to evaluate its reliability, some analysis and

comparison will be made. Conventional grading approaches by one of the lecturers are to be

compared with the grades awarded by applying the algorithm before both results’ reliability

will be determined by referring to the criterion gathered through questionnaire earlier. The

diagram presented will gives visual explanation on the test method.

10

Figure 3.30: Testing Method Flow Chart

On the aspect of consistency, a stress test will be conducted to get an output compared between

the manual grading system and automated grading system. Dispersion between marks will be

calculated to measure the consistency of marking for both approaches (manual and automated).

50 answer scripts will be assigned to a selected assessor while at the same time, the same

answer scripts will be assessed with the system. Smaller dispersion value shows higher

consistency while higher dispersion indicates higher inconsistency due to various reasons.

11

3.4 Tools

• Microsoft VB.NET

 Figure 3.40: VB.Net Logo

VB.Net was chosen as the platform of this project. As mentioned in several parts of this reports,

the scope of this project is to compliment WAGS [15] apart from focusing on evaluating the

quality of students’ programming assignments. Since WAGS [15] was also implemented in

VB.Net and it was proven a success, it is preferable that the same language will be used to

prevent any issue of compatibility and integration between different languages.

12

3.5 Screen Designs

Figure 3.50: Programming Assignments Quality Checking Algorithm

The focus of this project is not the development of a system to evaluate students programming

assignment. Instead, it is to create an algorithm that can cater the goals and objectives as

described earlier. Thus, the development of this screen is solely to assist in monitoring the

success of the said algorithm. A shown by the figure 3.50, the top left side of screen would be

displaying students answer before preprocessing activities had taken place. On the top right

side, is where the answer scheme uploaded by the evaluator will be displayed. On the lower left

part and lower right side of the screen, the preprocessed students answer and answer scheme

will be displayed each accordingly.

13

On the lowest part of the screen, there will be 3 buttons that serve different function

respectively. The middle button is used to select both students answer and answer scheme. On

click event of this button, the preprocessing functions will be automatically executed before the

preprocessed answer will be displayed. User can compare the output of each answer after being

preprocessed before proceeding to the next function.

The start grading button will only be enabled after user is done with selecting both students

answer, answer scheme and preprocessing the codes. This button will execute the evaluating

process which includes line by line comparison and the quality checking. Following that, the

analysis button will be enabled to aid user in getting detail analysis on their weakness and

strength for each of the criteria evaluated. This way, proper action can be taken to improvise on

their weakness while maintaining their strength.

It is very important to take note that the design of the buttons may be redundant. With extended

time line, this buttons are possible to be made lesser than it is now up to only 1 or 2 buttons

only. However, as said earlier, the development of the screen would only serve the need to

prove that the algorithm built is functioning properly with addition to some test that will

compliment each other.

14

CHAPTER 4

RESULTS AND DISCUSSION

In order to obtained precise and detail marks which will be awarded to specific students, some

value of each criterion adhered to need to decided. To ensure that the value given is accepted by

assessors, a questionnaire was designed to grasp some ideas on the important criteria and its

most appropriate value.

4.1 Data Gathering and Analysis

10 out of 18 questionnaires were collected from different lecturers. These questionnaires were

made of 8 questions measuring different aspects of quality. Each of these questions is required

to be assigned with importance value ranging from 1-5 with one being the least importance and

5 being of utmost importance. An analysis will be done for each of these questions and an

average value will determine the weight of each quality. Together with this criterion, we will

add up to the marks awarded by WAGS system. The criterion covered in the questionnaire is as

follows:

Input Checking

Input checking deals with the ability to intercept and stop program from running if invalid data
types was entered by user. E.g. appropriate error handler

Importance Level Input Checking = 4 + 5 + 5 + 5 + 4 + 5 + 5 + 5 + 3 + 4
 10

 = 4.5

15

This deals with the number of variables used to derive to an answer (a student may use 4

variables (Figure 4.10(a)) while other may use 3 variables (Figure 4.10(b)) to obtain the same

result). Fundamentally, fewer variables used the speed of the program increases.

Number of Variables

Figure 4.10: Number of Variables

Importance Value Variables amount = 3 + 1 + 4 + 4 + 1 + 3 + 4 + 2 + 5 + 4
 10

 = 3.1

 a b

int A, B, C, D;

 A = 1;

 B = 1;

 C = A + B;

 D = C; /* value of D is
2*/

int A, B, D;

 A = 1;

 B = 1;

 D = A + B; /* Value of D is
2*/

16

Data Types

This emphasized the usage of specific data type used. E.g. Float or Double data type instead of
integer (The data type used should be able to hold the size of particular values (Figure 4.12(b))).

Figure 4.11: Data Types

Importance Value Data Types =

5 + 5 + 4 + 3 + 3 + 5 + 3 + 4 + 4 + 4
 10

 = 4.0

 a b

Long i, k;
Short j;

i = 15000000;
k = 25000000;

j = i + k;

/* memory for j is */
/* insufficient to */
/* store value i + k.*/

Long i, k;
Short j;

j = 15;
k = 20;

i = k + j;

17

scanf("%d", ×.hour); /* Enter hour here */

printf("Enter hour: "); /* display Enter Hour: */

scanf("%d", ×.hour); /* This is a programming assignment */

printf("Enter hour: "); /* You will get a correct answer */

printf("hour: "); scanf("%d",×.hour);

Whether the codes built by students comes with a comments that describes their program

briefly and its relevance (Figure 4.12) to the program.

Relevant Comments

 a

 b

Figure 4.12: Relevant Comments

Importance Value Comments = 5 + 5 + 3 + 2 + 2 + 4 + 4 + 5 + 4 + 5
 10

 = 3.9

Does the particular student starts the next line properly (Figure 4.13(a)) or lump all the codes

into one line (Figure 4.13(b))?

Program Neatness

 printf("Enter hour: ");

 scanf("%d", ×.hour)

 a b

Figure 4.13: Program Neatness

Importance Value Program Neatness = 3 + 3 + 3 + 3 + 5 + 5 + 5 + 2 + 5 + 5
 10

 = 3.9

18

This aspect deals with the ability to generate the expected output (Obtained the correct outcome

logically (Figure 4.14)).

Correctness- Output Generated

 Figure 4.14: Output Generated

Importance Value Output Generated = 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 4
 10

 = 4.9

Correctness - Logic

Logic criteria deal with the structure and output of a loop. The loop structure can be executed,

but it doesn’t have upper limit causing it to loop endlessly (Figure 4.15).

 Figure 4.15: Logic

Importance Value Logic = 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5
 10

 = 4.9

 int a, b, c;
 printf("/nEnter two numbers : ");
 scanf("%d%d",&a,&b);
 c = a + b;

printf("/nNow sum is now %d", &c);

for (k=2; k>0; ++k)/*This loop would not stop looping*/
{
printf ("Inner %3d%3d/n", i,k);
}

19

Figure 4.16: Syntax Correctness

Importance Value

Correctness- Syntax

Syntax error is basically dealing with the error generated by students while doing their

assignments. Students’ codes were not complying with the C language’s syntax (Fig. 4.16).

Syntax =

5 + 5 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 4
 10

 = 4.8

Table 4.1: Programming Analysis Criterion and Their weighted value (%)

Importance Value Importance Value (%)

(X/25.6) x 100

No. of Variables Used

3.1

12.1 ≈ 12

 Data Types 4.0 15.6 ≈ 16

 Neatness 3.9 15.2 ≈ 15

C
or

re
ct

ne
ss

Output 4.9 19.1 ≈ 19

Logic 4.9 19.1 ≈ 19

Syntax 4.8 18.8 ≈ 19

Total 25.6 100

Referring to the questionnaire’s analysis provided earlier on this chapter, the first criteria, input

checking and the 4th criteria, relevant comments, were not considered in this project although it

was considered crucial to the assessors. The development of this algorithm was intended to be

that complimenting the WAGS system which was built previously. Thus, it is most important

/* The ‘print’ command line should be ‘printf’*/
print("Inner %3d%3d/n", i,k);

20

that this algorithm is compatible to WAGS system. Since WAGS is implementing a static

analysis approach to evaluate the correctness of the programming assignments, this project will

be using the same method to generate any output. On the other criterion discarded, the

comments criteria, the identification of relevant comments would require new system that can

evaluate each comment written by students. Considering the scope of studies and its

complexity, this function was suggested to be built for enhancements of this algorithm.

12%

16%

15%
19%

19%

19% No. of Variables' Used
Data Types
Neatness
Output
Logic
Syntax

 Figure 4.17: Importance level of criterion

The figure shown (Figure 4.17) is the total of the entire criterion displayed on a pie chart which

consists of different criteria and their value of weight respectively. In awarding marks to the

student, there some underlying assumption made. Initially, all students are allocated full marks.

As the algorithm was executed, any errors detected would result in deduction of marks based on

the value assigned. In turn, this approach is encouraging students to write shorter codes, that

can derived to the desired output than longer and more complex codes. Shorter codes can

promote higher efficiency and smaller probability or syntax error and other arising issues.

From the shown pie chart, the calculation method proposed is based on the total marks of

specific question. To give and easy explanation, consider the following scenario:

21

Total marks for each question = 20.

Marks which will be deducted for each error made:

i. No. of Variables Used = 19% of total marks

 = 0.19 x 20

 = 3.8 marks will be deducted for each error.

 ii. Data Types = 16% of total marks

 = 0.16 x 20

 = 3.2 marks will be deducted for each error

 iii. Program neatness = 15% of total marks

 = 0.15 x 20

 = 3 marks will be deducted for each error

 iv. Output Correctness = 19% of total marks

 = 0.19 x 20

 = 3.8 marks will be deducted for each error

 v. Logic Correctness = 19% of total marks

 = 0.19 x 20

 = 3.8 marks will be deducted for each error

 vi. Syntax Correctness = 19% of total marks

 = 0.19 x 20

 = 3.8 marks will be deducted for each error

22

4.2 Functionality Analysis

Figure 4.20: Prompting Student’s Answer Selection

23

Figure 4.21: Student’s Answer Selection

24

Figure 4.22: Prompting Answer Scheme Selection

25

Figure 4.23: Answer Scheme’s Selection

26

Figure 4.24: Preprocessed Students Answer & Answer Scheme

 Users can initiate the grading process by simply clicking the Select Answer/Scheme button. A

dialog box will appear prompting user to select a student answer (Figure 4.20). Following that,

user can chose the file from the select file dialog box (Figure 4.21). The same process will be

repeated for the selection of answer scheme (Figure 4.22) (Figure 4.23). Figured 4.24 indicate

the output expected after the preprocessing function had been executed. Both the processed and

raw answer was published at the same screen in order to ease users to compare the difference

between both answers (raw and preprocessed).

27

Figure 4.25: Analysis Screen

Upon completion of evaluation event, analysis button will be enabled. Once the analysis button

was clicked, user will be redirected to another form displaying all the portion of marks deducted

for each criterion (Figure 4.21). The OK button will closed the form and redirect user to the

previous screen.

28

CHAPTER 5

CONCLUSION AND RECOMMENDATION

Until recent years, researchers had been studying and developing new software that can

improve programming assignments grading process. Most of them had opted for dynamic

analysis approach rather than static analysis approach. However, realizing the advantages of

static analysis as discussed above, WAGS [15] were developed to cater the needs of evaluating

programming assignments of various languages without any requirement for specific language

compiler. By focusing on the quality aspect, this expansion project would enable marking

process to be more detail, precise and accurate. It is hoped that this project will be a stepping

stone for future projects that can shift the burden of marking programming assignments away

from lecturers thus, benefiting students indirectly.

It is recommended that this project to be further enhanced and reviewed from time to time to

cater the needs of the lecturers in evaluating programming assignments. Serious efforts are

required in implementing this algorithm together with WAGS [15] system although some issues

may arise from the implementation of this project. As time goes on, provided that this algorithm

is enhanced on regular basis, it will reach its maturity stage where the algorithm is stable and

reliable.

29

References

[1] Morris, D.S 2003. Automatic Grading of Students’ Programming Assignments: An

 Interactive Process and Suite of Programs. Proceedings of 33rd ASEE/IEEE Frontiers

 In Education Conference.
[2] Jackson, D. 1997. A Software System for Grading Student Computer Program. Proceedings

of the 28th SIGCSE Technical Symposium on Computer Science Education. 28:335-339.

ACM Press

[3] Schorsch, T. 1995. CAP: An Automated Self-Assessment to Check PASCAL Programs for

Syntax, Logic and Style Errors. Proceedings of the 26th

[13] Ravindran C. Basic and Criteria for Good Software Programming.

 SIGCSE Technical Symposium on

Computer Science Education. ACM Press.

[4] Helmick, M.T. 2007. Interface-Based Programming Assignments and Automatic Grading of

Java Programs. Proceedings of ITiCSE ’07. ACM Press.

[5] Koike, H., Morita, H., Akama, K., Miura, K., 2006. Using an Automatic Marking System

for Programming Course. Proceedings of SIGUCSS’06. ACM Press

[6] McCabe, T.J. A Complexity Measure. 1976. IEEE Transaction on Software Engineering,

SE-2(4), pp 308-320.

[7] Halstead, M.H. 1977. Elements of Software Science. Elsevier Computer Science Library.

[8] Zolnowski, J.M, and Simmons, D.B. 1977. A Complexity Measure Applied to FORTRAN.

Proceedings of COMPSAC, pg 133-141.

[9] Littlewood, B. 1978. How to Measure Software Reliability, and How Not To.. Proceeding

of Third International Conference on Software Engineering. Pg 37-45.

[10] DeMarco, I.J. 1977. Managing the Acquisition of Quality Computer Software. Proceedings

of Sixth Annual Technical Symposium. ACM and National Bureau of Standards,

Gaithersburg.

[11] Bowen, J.B and Hugh-Fullerton. Are Current Approaches Sufficient for Measuring

Software Quality?

[12] Takahashi, R. 1997. Software Quality Classification Model Based on McCabe’s

Complexity Measure. Elsevier Science Inc.

Http://Ezinea.com

http://ezinea.com/�

30

[15] Norshuhani, Z., Emy Elyanee, M., Savita, K.S., Mazlina, M., Ellia, A. (2006) “Development of A

Web-Based Automated Grading System for programming Assignments using Static Analysis

Approach”, International Conference on Technology and Operations Management, ICTOM 2006,

Institut Technologi Bandung, Indonesia, 1- 2 December 2006.

[16] http://en.wikipedia.org/wiki/Dynamic_program_analysis

[17]http://www.umsl.edu/~sauterv/analysis/prototyping/proto.html

31

APPENDIX A- Gantt Chart

Gantt Chart & Milestone

No Activity JULY AUGUST SEPTEMBER OCTOBER NOVEMBER
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 Algorithm Development
 User Interface Development
 Algorithm Testing
 Seminar
 Final Report Submission (First Draft)
 Pre-EDX
 Oral Presentation
 Submission of Dissertation

 LEGEND
 Completed
 To be completed

 Fig. 4.14: Progress Gantt Chart

32

Appendix B- Programming Assignments’ Quality Measurement Criterion

Programming Assignments’ Quality Measurement Criterion

I am Muhd Zulhafriz Aadel bin Marzuki (6788), currently doing my Final Year Project I for
semester Jan08. This is a questionnaire on choosing the relevant criterion for assessing
programming code in C language which objectives is to verify the right attributes used in manual
assessment. The outcome expected from this questionnaire will help me to create an algorithm to
automatically evaluate the quality of programming assignments by awarding marks to the
particular codes. Hence, my project is hoped to significantly reduce marking workload for CIS
lecturers who handling TAB1013 Structured Programming course in UTP.

Please rank the importance of these criterion individually in the boxes provided (1 for lowest, 5 for
highest).

Criterion

Ranks

1. Input checking

Notes: This deals with the ability to intercept and stop program from running if invalid

data types was entered by user. e.g. appropriate error handler.

2. Number of variables used

Notes: This deals with the number of variables used to derive to an answer (a student may use
4 variables (Fig. 1) while other may use 3 variables (Fig. 2) to obtain the same result).
Fundamentally, fewer variables used the speed of the program increases.

1 2 3 4 5

1 2 3 4 5

33

 Fig. 1 Fig. 2

3. Data types

Notes: This emphasized the usage of specific data type used. E.g. Float or Double data

type instead of integer (e.g. the data type used should be able to accommodate the
size of particular values (fig. 4)).

 Fig. 3 Fig. 4

1 2 3 4 5

Long i, k;
Short j;

i = 15000000;
k = 25000000;

j = i + k;

/* memory for j is */
/* insufficient to */
/* store value i + k.*/

Long i, k;
Short j;

j = 15;
k = 20;

i = k + j;

int A, B, C, D;

 A = 1;

 B = 1;

 C = A + B;

 D = C; /* value of D is 2*/

int A, B, D;

 A = 1;

 B = 1;

 D = A + B; /* Value of D is 2*/

34

printf("Enter hour: "); scanf("%d",&hour);

scanf("%d", ×.hour); /* Enter hour here */

printf("Enter hour: "); /* display Enter Hour: */

scanf("%d", ×.hour); /* This is a programming assignment */

printf("Enter hour: "); /* You will get a correct answer */

Criterion

Ranks

4. Comments

 Notes: Whether the codes built by students comes with a comments that describes their

program briefly and its relevance (Fig. 5) to the program.

Fig. 5

Fig. 6: Unrelated comments

5. Program Neatness

Notes: Does the particular student starts the next line properly (Fig. 7) or lump all the
codes into one line (Fig. 8)?

printf("Enter hour: ");

scanf("%d", ×.hour);

fig. 7 fig. 8

1 2 3 4 5

1 2 3 4 5

35

 Criterion

Ranks

6. Correctness- Output generated

Notes: This aspect deals with the ability to generate the expected output (Obtained the

correct outcome logically (Fig.9)).

 Fig. 9

7. Correctness- Logic

Notes: Logic criteria deal with the structure and output of a loop. The loop structure can

be executed, but it doesn’t have upper limit causing it to loop endlessly (Fig. 10).

Fig. 10

1 2 3 4 5

1 2 3 4 5

 int a, b, c;
 printf("/nEnter two numbers : ");
 scanf("%d%d",&a,&b);
 c = a + b;

printf("/nNow sum is now %d", &c);

for (k=2; k>0; ++k)/*This loop would not stop looping*/
{
printf ("Inner %3d%3d/n", i,k);
}

36

Criterion

1

Ranks

2 3 4 5

8. Correctness- Syntax Error

Notes: Syntax error is basically dealing with the error generated by students while doing

their assignments. Students’ codes were not complying with the C language’s
syntax (Fig. 11).

Fig. 11

Notes:

Distribution date: 14th April 2008
Collection Date: 21st

 April 2008

For all your of your cooperation, I would like to express my heartiest gratitude.
Hopefully, all the time spent on completing this question will aid on the completion of
my project for the benefit of all. Thank you.

/* The ‘print’ command line should be ‘printf’*/
print("Inner %3d%3d/n", i,k);

37

Appendix C- Algorithm for Measuring C Programming Assignments Quality Soft Codes

Imports System
Imports System.IO
Imports System.Text
Imports System.Threading
Imports System.Threading.Thread
Imports System.IO.Directory
Imports System.IO.File

Public Class Form1
 Private input As FileStream
 Private filereader As StreamReader
 Private output As FileStream
 Private filewriter As StreamWriter

 Dim input1 As String
 Dim input2 As String
 Dim counterror As Integer
 Dim flagStudAns As Integer
 Dim flagAnsSch As Integer
 Dim lineCount1 As Integer
 Dim lineCount2 As Integer
 Dim funcCompare As Integer

 Dim tempdataSplit() As String = {}
 Dim tempDataSplit2() As String = {}
 Dim linesfunc1() As String = {}
 Dim linesfunc2() As String = {}
 Dim tempFunc() As String = {}
 Dim commentArray() As String = {}
 Private Sub OpenFileDialog1_FileOk(ByVal sender As System.Object,
ByVal e As System.ComponentModel.CancelEventArgs)

 End Sub
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 btnGradNow.Enabled = False
 btnAnalysis.Enabled = False

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 End Sub
 '---------------------------------Preprocessing Function-----------
----------------------'
 '-----------Subfunction - To set to lowercase all codes at
students' answer------
 Sub ToLowerCase(ByVal sender As System.Object, ByVal e As
System.EventArgs)

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)

38

 Dim i As Integer

 Dim schoutput As System.IO.FileStream
 Dim SchfileCreate = "SchAnsalter.txt"
 schoutput = New FileStream(SchfileCreate, FileMode.Create)
 Dim Schfilewriter As New StreamWriter(schoutput)
 Dim x As Integer

 For Each line As String In tempDataSplit2
 If tempDataSplit2(i).Length > 0 Then
 filewriter.WriteLine(tempDataSplit2(i).ToLower)
 Dim testdisp As String = tempDataSplit2(i).ToLower
 End If
 i += 1
 Next
 filewriter.Close()
 output.Close()

 For Each Schline As String In tempdataSplit
 If tempdataSplit(x).Length > 0 Then
 Schfilewriter.WriteLine(tempdataSplit(x).ToLower)
 Dim testdisp As String = tempdataSplit(x).ToLower
 End If
 x += 1
 Next
 Schfilewriter.Close()
 schoutput.Close()

 End Sub
 '-----------Subfunction - Replace all strings at students' answer--

 Sub ReplaceString(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim Studtempdatasplit() As String = {}
 Dim Schtempdatasplit() As String = {}
 Dim pos_1, pos_2 As Integer
 Dim place1, place2 As String
 Dim key As String
 Dim keyword As String
 Dim keywordcount() As String = {}
 Dim keywordcount2() As String = {}

 '------------------------------------Open Stud Answer File-----
-------------------------------'
 Dim filenameRead = "StudAnsalter.txt"
 input = New FileStream(filenameRead, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 Studtempdatasplit = Split(tempData, vbCrLf)
 filereader.Close()
 input.Close()

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)
 Dim i As Integer

39

 '----------------------close student Answer file/ Open Answer
Scheme File---------------------'

 Dim SchfilenameRead = "SchAnsalter.txt"
 Dim schinput As System.IO.FileStream
 Dim schfilereader As System.IO.StreamReader
 schinput = New FileStream(SchfilenameRead, FileMode.Open,
FileAccess.Read)
 schfilereader = New StreamReader(schinput)
 Dim schtempData = schfilereader.ReadToEnd()
 Schtempdatasplit = Split(schtempData, vbCrLf)

 schfilereader.Close()
 schinput.Close()

 Dim schoutput As System.IO.FileStream
 Dim SchfileCreate = "SchAnsalter.txt"
 schoutput = New FileStream(SchfileCreate, FileMode.Create)
 Dim Schfilewriter As New StreamWriter(schoutput)
 Dim x As Integer

 '-------------------------------Close Answer Scheme File-------
---------------------'
 Dim foundKey As Boolean
 Dim foundkey2 As Boolean

 For Each line As String In Studtempdatasplit

 keywordcount2 = Split(Studtempdatasplit(i), "%")
 keyword = Studtempdatasplit(i).IndexOf("%")
 pos_1 = line.IndexOf("""")
 place1 = line.Substring(0, pos_1 + 1)
 place2 = Mid(line, pos_1 + 2)
 pos_2 = place2.IndexOf("""")

 If pos_2 > 0 Then
 key = place2.Substring(0, pos_2)
 keyword = Studtempdatasplit(i).Substring(0, keyword +
1)
 foundKey = True
 Else
 foundKey = False
 End If

 If foundKey = True Then
 filewriter.WriteLine(line.Replace(key, "freetext"))
 Else
 filewriter.WriteLine(line)
 End If
 i += 1
 Next

 For Each line As String In Schtempdatasplit

 keywordcount = Split(Schtempdatasplit(x), "%")
 keyword = Schtempdatasplit(x).IndexOf("%")

40

 pos_1 = line.IndexOf("""")
 place1 = line.Substring(0, pos_1 + 1)
 place2 = Mid(line, pos_1 + 2)
 pos_2 = place2.IndexOf("""")

 If pos_2 > 0 Then
 key = place2.Substring(0, pos_2)
 keyword = Schtempdatasplit(x).Substring(0, keyword + 1)
 foundkey2 = True
 Else
 foundkey2 = False
 End If

 If foundkey2 = True Then
 Schfilewriter.WriteLine(line.Replace(key, "freetext"))
 Else
 Schfilewriter.WriteLine(line)
 End If
 x += 1
 Next

 filewriter.Close()
 output.Close()

 Schfilewriter.Close()
 schoutput.Close()

 End Sub
 Sub DeleteComment(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 '----------------------------Open Stud Answer Start------------
-----------------------'
 Dim Studtempdatasplit() As String = {}
 Dim schtempdatasplit() As String = {}

 Dim filenameRead = "StudAnsalter.txt"
 input = New FileStream(filenameRead, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 Studtempdatasplit = Split(tempData, vbCrLf)
 filereader.Close()
 input.Close()

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)
 Dim i As Integer
 '----------------------close student Answer file/ Open Answer
Scheme File---------------------'

 Dim SchfilenameRead = "SchAnsalter.txt"
 Dim schinput As System.IO.FileStream
 Dim schfilereader As System.IO.StreamReader
 schinput = New FileStream(SchfilenameRead, FileMode.Open,
FileAccess.Read)

41

 schfilereader = New StreamReader(schinput)
 Dim schtempData = schfilereader.ReadToEnd()
 Schtempdatasplit = Split(schtempData, vbCrLf)

 schfilereader.Close()
 schinput.Close()

 Dim schoutput As System.IO.FileStream
 Dim SchfileCreate = "SchAnsalter.txt"
 schoutput = New FileStream(SchfileCreate, FileMode.Create)
 Dim Schfilewriter As New StreamWriter(schoutput)
 Dim x As Integer

 '-----------------------------close Answer Scheme File---------
-------------------'

 For Each lineComment As String In Studtempdatasplit
 Studtempdatasplit(i) = Trim(Studtempdatasplit(i))
 If Studtempdatasplit(i).StartsWith("/*") And
Studtempdatasplit(i).EndsWith("*/") Then

'filewriter.Write(Studtempdatasplit(i).Replace(Studtempdatasplit(i),
""))

 ElseIf Not Studtempdatasplit(i).StartsWith("/*") And
Studtempdatasplit(i).EndsWith("*/") And _
 (Studtempdatasplit(i).Contains("/") And
Studtempdatasplit(i).StartsWith("")) Then
 commentArray = Split(Studtempdatasplit(i), "/")
 filewriter.WriteLine(commentArray(0))
 ElseIf Studtempdatasplit(i).Contains("/*") And Not
Studtempdatasplit(i).EndsWith("/") Then
 commentArray = Split(Studtempdatasplit(i), "/")
 filewriter.Write(commentArray(0))
 filewriter.Write("")
 filewriter.WriteLine(commentArray(2))
 Else
 filewriter.WriteLine(Studtempdatasplit(i))
 End If
 i += 1
 Next

 For Each lineComment As String In schtempdatasplit
 schtempdatasplit(x) = Trim(schtempdatasplit(x))
 If schtempdatasplit(x).StartsWith("/*") And
schtempdatasplit(x).EndsWith("*/") Then

 ElseIf Not schtempdatasplit(x).StartsWith("/*") And
schtempdatasplit(x).EndsWith("*/") And _
 (schtempdatasplit(x).Contains("/") And
schtempdatasplit(x).StartsWith("")) Then
 commentArray = Split(schtempdatasplit(x), "/")
 Schfilewriter.WriteLine(commentArray(0))
 ElseIf schtempdatasplit(x).Contains("/*") And Not
schtempdatasplit(x).EndsWith("/") Then
 commentArray = Split(schtempdatasplit(x), "/")
 Schfilewriter.Write(commentArray(0))

42

 Schfilewriter.Write("")
 Schfilewriter.WriteLine(commentArray(2))
 Else
 Schfilewriter.WriteLine(schtempdatasplit(x))
 End If
 x += 1
 Next
 filewriter.Close()
 output.Close()

 Schfilewriter.Close()
 schoutput.Close()

 End Sub
 '-----------Subfunction - Delete the empty lines at students'
answer----------
 Sub DeleteEmptyLine(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim i As Integer = 0
 Dim x As Integer = 0
 Dim Studtempdatasplit() As String = {}
 Dim schtempdatasplit() As String = {}

 '----------------------------Open Stud Answer Start------------
-----------------------'
 Dim filenameRead = "StudAnsalter.txt"
 input = New FileStream(filenameRead, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 Studtempdatasplit = Split(tempData, vbCrLf)
 filereader.Close()
 input.Close()

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)

 '----------------------Open file student Ans End/ Answer Scheme
Start--------------------'
 Dim schinput As System.IO.FileStream
 Dim schfilereader As System.IO.StreamReader
 Dim SchfilenameRead = "SchAnsalter.txt"
 schinput = New FileStream(SchfilenameRead, FileMode.Open,
FileAccess.Read)
 schfilereader = New StreamReader(schinput)

 Dim schtempData = schfilereader.ReadToEnd()
 schtempdatasplit = Split(schtempData, vbCrLf)

 schfilereader.Close()
 schinput.Close()

 Dim schoutput As System.IO.FileStream
 Dim SchfileCreate = "SchAnsalter.txt"
 schoutput = New FileStream(SchfileCreate, FileMode.Create)
 Dim Schfilewriter As New StreamWriter(schoutput)

43

 '-----------------------------Open Answer Scheme End-----------
----------------------'

 For Each deleteLine As String In Studtempdatasplit
 If Studtempdatasplit(i).Length > 0 Or Studtempdatasplit(i)
<> "" Then
 filewriter.WriteLine(Studtempdatasplit(i))
 Else
 End If
 i += 1
 Next deleteLine

 For Each deleteLine As String In schtempdatasplit
 If schtempdatasplit(x).Length > 0 Or schtempdatasplit(x) <>
"" Then
 Schfilewriter.WriteLine(schtempdatasplit(x))
 Else
 End If
 x += 1
 Next deleteLine

 filewriter.Close()
 output.Close()

 Schfilewriter.Close()
 schoutput.Close()

 End Sub
 '-----------Subfunction - Left justified all lines at students'
answer------
 Sub LeftJustified(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim Studtempdatasplit() As String = {}
 Dim schtempdatasplit() As String = {}
 Dim i As Integer
 Dim x As Integer

 '----------------------------Open Stud Answer Start------------
-----------------------'
 Dim filenameRead = "StudAnsalter.txt"
 input = New FileStream(filenameRead, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 Studtempdatasplit = Split(tempData, vbCrLf)

 filereader.Close()
 input.Close()

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)

 '----------------------Open file student Ans End/ Answer Scheme
Start--------------------'

44

 Dim SchfilenameRead = "SchAnsalter.txt"
 Dim schinput As System.IO.FileStream
 Dim schfilereader As System.IO.StreamReader
 schinput = New FileStream(SchfilenameRead, FileMode.Open,
FileAccess.Read)
 schfilereader = New StreamReader(schinput)
 Dim schtempData = schfilereader.ReadToEnd()
 schtempdatasplit = Split(schtempData, vbCrLf)

 schfilereader.Close()
 schinput.Close()

 Dim schoutput As System.IO.FileStream
 Dim SchfileCreate = "SchAnsalter.txt"
 schoutput = New FileStream(SchfileCreate, FileMode.Create)
 Dim Schfilewriter As New StreamWriter(schoutput)

 '-----------------------------Open Answer Scheme End-----------
----------------------'

 Dim foundBlank As Boolean
 For Each line As String In Studtempdatasplit
 If Studtempdatasplit(i).Length > 0 Then
 filewriter.WriteLine(Studtempdatasplit(i).TrimStart)
 foundBlank = False
 Else
 If Not foundBlank Then
 foundBlank = True
 End If
 End If
 i += 1
 Next

 Dim foundBlank2 As Boolean
 For Each line As String In schtempdatasplit
 If schtempdatasplit(x).Length > 0 Then
 Schfilewriter.WriteLine(schtempdatasplit(x).TrimStart)
 foundBlank2 = False
 Else
 If Not foundBlank2 Then
 foundBlank2 = True
 End If
 End If
 x += 1
 Next

 filewriter.Close()
 output.Close()

 Schfilewriter.Close()
 schoutput.Close()

 End Sub
 '-----------Subfunction - Replace all variables at students'
answer------

45

 Sub ReplaceVariable(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim Studtempdatasplit() As String = {}
 Dim lines() As String = {}
 Dim posv_1, posv_2 As Integer
 Dim strvTemp As String
 Dim place1, place2, place3 As String
 Dim innerloop() As String = {}

 Dim filenameRead = "StudAnsalter.txt"
 input = New FileStream(filenameRead, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 Studtempdatasplit = Split(tempData, vbCrLf)
 filereader.Close()
 input.Close()

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)
 Dim i As Integer
 Dim j As Integer

 For Each line As String In Studtempdatasplit
 If Studtempdatasplit(i).Contains("(") And
Studtempdatasplit(i).Contains(")") And _
 Studtempdatasplit(i).Contains("scanf") Then
 innerloop = Split(Studtempdatasplit(i), ",")
 Dim arrUbound As Integer = UBound(innerloop)
 If innerloop(arrUbound).StartsWith("&") Then
 Dim tempstore As Integer =
innerloop(arrUbound).IndexOf(")")
 Dim storebal As String = Mid(innerloop(arrUbound),
tempstore + 1)

 End If
 End If
 Next

 filewriter.Close()
 output.Close()

 End Sub
 '-----------compare the amount of variables declare by students
answer-------------------'
 Sub VarQuantityCheck(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim lines1() As String = {}
 Dim lines2() As String = {}
 'Dim i As Integer
 Dim y As Integer
 Dim flag As Integer = 0
 Dim varNum As Integer
 Dim varNumsc As Integer
 Dim FileName1 As String = input1
 Dim FileName2 As String = input2

46

 For Each filetext1 As String In tempDataSplit2
 If tempDataSplit2(y).Contains("dim") Or
tempDataSplit2(y).Contains("int") Or _
 tempDataSplit2(y).Contains("float") Or
tempDataSplit2(y).Contains("short") Or _
 tempDataSplit2(y).Contains("long") Or
tempDataSplit2(y).Contains("char") Or _
 tempDataSplit2(y).Contains("double") And Not
(tempDataSplit2(y).Contains("(") And _
 tempDataSplit2(y).Contains(")")) Then
 varNum += 1
 End If
 y += 1
 Next filetext1
 y = 0
 For Each line2 As String In tempdataSplit
 If tempdataSplit(y).Contains("dim") Or
tempdataSplit(y).Contains("int") Or _
 tempdataSplit(y).Contains("float") Or
tempdataSplit(y).Contains("short") Or _
 tempdataSplit(y).Contains("long") Or
tempdataSplit(y).Contains("char") Or _
 tempdataSplit(y).Contains("double") And Not
(tempdataSplit(y).Contains("(") And _
 tempdataSplit(y).Contains(")")) Then
 varNumsc += 1
 End If
 y += 1
 Next line2

 End Sub

 '-----------Subfunction - Do the comparison process------
 Sub modComparisonApproach(ByVal sender, ByVal e)

 counterror = 0

 Dim x As Integer = 0
 Dim y As Integer = 0

 counterror = 0
 For Each line2 As String In tempdataSplit
 For Each line1 As String In tempDataSplit2

 If tempDataSplit2(x).ToString =
tempdataSplit(y).ToString Then
 Else
 MessageBox.Show(tempDataSplit2(x).ToString)
 End If
 x += 1
 Next line1
 y += 1
 Next line2

 End Sub

47

 Sub functionSearch(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim x As Integer = 0
 Dim y As Integer = 0
 Dim funcCount() As String = {}

 counterror = 0
 For Each line1 As String In tempDataSplit2

 If (tempDataSplit2(x).StartsWith("int") Or
tempDataSplit2(x).StartsWith("char") Or _
 tempDataSplit2(x).StartsWith("float") Or
tempDataSplit2(x).StartsWith("double") Or _
 tempDataSplit2(x).StartsWith("long") Or
tempDataSplit2(x).StartsWith("short") Or _
 tempDataSplit2(x).StartsWith("void")) And
(tempDataSplit2(x).Contains("(") And tempDataSplit2(x).Contains(")"))
Then
 Dim tempfunc = Split(tempDataSplit2(x), " ")
 Dim elementCount As String = funcCount.Length
 If elementCount = 0 Then
 funcCount(0) = tempfunc(1)
 Else
 funcCompare = StrComp(funcCount(x - 1),
tempfunc(1))
 If funcCompare <> 0 Then
 funcCount(x) = tempfunc(1)
 End If
 End If
 End If
 x += 1
 Next line1
 For Each funcloop As String In funcCount

 funcloop = funcloop + 1
 Next funcloop

 End Sub
 Private Sub syntaxCheck(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim lines1() As String = {}

 Dim FileName1 As String = input1

 If File.Exists(FileName1) Then

 Dim sr1 As New StreamReader(FileName1)
 Dim fileText1 As String = sr1.ReadToEnd()
 sr1.Close()
 lines1 = Split(fileText1, vbCrLf)

 Dim fs1 As New FileStream(input1, FileMode.Create)
 Dim sw1 As New StreamWriter(fs1)

 Dim x As Integer = 0
 Dim y As Integer = 0

48

 If Not lines1(0).StartsWith("#include <stdio.h>") Then
 countError += 1
 End If

 x = 2
 For Each line1 As String In lines1
 If lines1(x).Contains("main") Then
 If Not lines1(x).StartsWith("int") Then
 countError += 1
 End If
 If Not lines1(x).EndsWith("()") Then
 countError += 1
 End If
 End If
 x += 1
 Next line1
 End If

 End Sub
 Private Sub btnMark_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSelAns.Click
 Dim Studtempdatasplit() As String = {}
 Dim schtempdatasplit() As String = {}

 MessageBox.Show("Please Select a Student's Answer")
 Dim filechooser As New OpenFileDialog()
 Dim result2 As DialogResult = filechooser.ShowDialog()
 Dim filenameStudAns As String

 MessageBox.Show("Please Select an Answer Scheme")
 Dim filechooserAnsSch As New OpenFileDialog()
 Dim result As DialogResult = filechooserAnsSch.ShowDialog()
 Dim filenameAnsSch As String

 '-------------------------------Upload Students Answer---------
------------------------------'
 If result2 = Windows.Forms.DialogResult.Cancel Then
 Return
 End If

 filenameStudAns = filechooser.FileName

 If filenameStudAns = "" Or filenameStudAns Is Nothing Then
 MessageBox.Show("Invalid file name", "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 flagStudAns = 0

 Else
 input = New FileStream(filenameStudAns, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData2 = filereader.ReadToEnd()
 txtStudAns.Text = tempData2
 tempDataSplit2 = Split(tempData2, vbCrLf)
 filereader.Close()
 input.Close()

49

 End If
 '-------------------------------------Upload Students Answer
End----------------------------'

 '-------------------------------------Upload Answer Scheme
File-----------------------------'
 If result = Windows.Forms.DialogResult.Cancel Then
 Return
 End If

 filenameAnsSch = filechooserAnsSch.FileName

 If filenameAnsSch = "" Or filenameAnsSch Is Nothing Then
 MessageBox.Show("Invalid file name", "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 flagAnsSch = 0

 Else
 input = New FileStream(filenameAnsSch, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 txtAnsSch.Text = tempData
 tempdataSplit = Split(tempData, vbCrLf)
 flagAnsSch = 1
 filereader.Close()

 End If
 '---------------------------Upload Answer Scheme File end------
------------------------------'

 ToLowerCase(sender, e)
 ReplaceString(sender, e)
 DeleteComment(sender, e)
 DeleteEmptyLine(sender, e)
 LeftJustified(sender, e)
 ReplaceVariable(sender, e)

 Dim studinput As System.IO.FileStream
 Dim studfilereader As System.IO.StreamReader
 Dim studfilenameRead = "StudAnsalter.txt"
 studinput = New FileStream(studfilenameRead, FileMode.Open,
FileAccess.Read)
 studfilereader = New StreamReader(studinput)
 txtStudAnsAlt.Text = studfilereader.ReadToEnd()
 studinput.Close()
 studfilereader.Close()

 Dim SchfilenameRead = "SchAnsalter.txt"
 Dim schinput As System.IO.FileStream
 Dim schfilereader As System.IO.StreamReader
 schinput = New FileStream(SchfilenameRead, FileMode.Open,
FileAccess.Read)
 schfilereader = New StreamReader(schinput)
 txtAnsSchAlt.Text = schfilereader.ReadToEnd()

50

 schinput.Close()
 schfilereader.Close()

 btnGradNow.Enabled = True

 End Sub

 ' -----------SubFunction- To evaluate the codes' neatness---------
 Sub CodesNeatness(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Dim lines1() As String = {}
 Dim flag As Integer = 0
 Dim FileName1 As String = input1
 Dim filenameNeat As String = input2
 Dim i As Integer

 Dim sr2 As New StreamReader(filenameNeat)
 Dim sr1 As New StreamReader(FileName1)

 Dim wholefile = sr2.ReadToEnd
 Dim fileLine As Integer = wholefile.count

 For i = 0 To i = fileLine
 If File.Exists(FileName1) Then

 Dim fileText1 = sr1.ReadLine
 '-------------check for loop statement neatness--------
-----'
 If fileText1.contains(" for ") Then
 If fileText1.startswith("for ") Then
 flag = flag + 1
 Else
 flag = 0
 End If
 End If

 If fileText1.contains("next") Then
 If fileText1.startswith("next ") And
fileText1.endswith("next") Then '<--- advice
 flag = flag + 1
 Else
 flag = flag
 End If
 End If

 '-----------------For loop statement check ends--------
--------'

 '-------check the do while loop statement's neatness---
--------'
 If fileText1.contains(" do ") Then
 If fileText1.startswith("do ") Then
 flag = flag + 1
 Else
 flag = flag
 End If

51

 End If

 If fileText1.contains(" loop ") Then
 If fileText1.startswith("loop ") And
fileText1.endswith("loop") Then
 flag = flag + 1
 Else
 flag = flag - 1
 End If
 Else
 flag = flag
 End If
 '---------------do while loop ends---------------------
--'

 If fileText1.contains(";") Then
 If fileText1.endswith(";") Then
 flag = flag + 1
 ElseIf Not fileText1.endswith(";") Then
 flag = flag
 End If
 End If

 sr1.Close()

 End If
 Next

 End Sub
 Private Sub btnAnsScheme_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs)
 End Sub

 Private Sub btnSave_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles btnGradNow.Click

 Dim Studtempdatasplit() As String = {}
 Dim schtempdatasplit() As String = {}
 Dim i As Integer
 Dim x As Integer

 '----------------------------Open Stud Answer Start------------
-----------------------'
 Dim filenameRead = "StudAnsalter.txt"
 input = New FileStream(filenameRead, FileMode.Open,
FileAccess.Read)
 filereader = New StreamReader(input)
 Dim tempData = filereader.ReadToEnd()
 Studtempdatasplit = Split(tempData, vbCrLf)

 filereader.Close()
 input.Close()

 Dim filenameCreate = "StudAnsalter.txt"
 output = New FileStream(filenameCreate, FileMode.Create)
 Dim filewriter As New StreamWriter(output)

52

 '----------------------Open file student Ans End/ Answer Scheme
Start--------------------'
 Dim SchfilenameRead = "SchAnsalter.txt"
 Dim schinput As System.IO.FileStream
 Dim schfilereader As System.IO.StreamReader
 schinput = New FileStream(SchfilenameRead, FileMode.Open,
FileAccess.Read)
 schfilereader = New StreamReader(schinput)
 Dim schtempData = schfilereader.ReadToEnd()
 schtempdatasplit = Split(schtempData, vbCrLf)

 schfilereader.Close()
 schinput.Close()

 Dim schoutput As System.IO.FileStream
 Dim SchfileCreate = "SchAnsalter.txt"
 schoutput = New FileStream(SchfileCreate, FileMode.Create)
 Dim Schfilewriter As New StreamWriter(schoutput)

 '-----------------------------Open Answer Scheme End-----------
----------------------'

 VarQuantityCheck(sender, e)
 functionSearch(sender, e)
 modComparisonApproach(sender, e)
 syntaxCheck(sender, e)

 btnAnalysis.Enabled = True

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TextBox1.TextChanged

 End Sub
End Class

	TABLE OF CONTENTS
	CONTENTS PAGE
	ABSTRACT ii

