
 ii

Simultaneous Localization and Mapping (SLAM) on NAO

By

LEE YUAN HUANG

FINAL PROJECT REPORT

Submitted to the Department of Electrical & Electronic Engineering

in Partial Fulfilment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

UniversitiTeknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak DarulRidzuan

 Copyright 2012

by

 Lee Yuan Huang, 2012

 iii

CERTIFICATION OF APPROVAL

Simultaneous Localization and Mapping (SLAM) on NAO

by

Lee Yuan Huang

A project dissertation submitted to the

Department of Electrical & Electronic Engineering

UniversitiTeknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Approved:

AP Dr AamirSaeed Malik

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2012

 iv

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Lee Yuan Huang

 v

ABSTRACT

Simultaneous Localization and Mapping (SLAM) is a navigation and mapping

method used by autonomous robots and moving vehicles. SLAM is mainly concerned

with the problem of building a map in an unknown environment and concurrently

navigating through the environment using the map. Localization is of utmost

importance to allow the robot to keep track of its position with respect to the

environment and the common use of odometry proves to be unreliable. SLAM has

been proposed as a solution by previous research to provide more accurate

localization and mapping on robots.

This project involves the implementation of the SLAM algorithm in the humanoid

robot NAO by Aldebaran Robotics. The SLAM technique will be implemented using

vision from the single camera attached to the robot to map and localize the position of

NAO in the environment. The result details the attempt to implement specifically the

chosen algorithm, 1-Point RANSAC Inverse Depth EKF Monocular SLAM by Dr

Javier Civera on the robot NAO. The algorithm is shown to perform well for smooth

motions but on the humanoid NAO, the sudden changes in motion produces

undesirable results.This study on SLAM will be useful as this technique can be

widely used to allow mobile robots to map and navigate in areas which are deemed

unsafe for humans.

 vi

ACKNOWLEDGEMENTS

This project would not have been completed (or near completion) without the help

and encouragement from my supervisor, Dr.AamirSaeed Malik and YasirSalih who

has guided me by trying to explain the concepts in a simplified manner. I have indeed

wasted much time overthinking instead of starting from the small parts and working

on it in a sequential manner. Nevertheless, I would say, there is no definite end to this

project till an accurate representation of the environment and the robot’s motion is

achieved which I am unable to replicate in this project. This is indeed a regret which I

hope will be solved in a much better way one day. My greatest thanks go to my two

supervisors.

I would also like to thank Dr. Javier Civera for allowing his code to be used for this

implementation. It is great that he took the time to answer a few of my queries often

times with suggestions for other reading materials concerning the algorithm used

despite his busy schedule.

I shall also thank my family members and friends for their support during the hard

times of the project. Without which, I would probably have given up on the project a

few months ago. My thanks also to the many researchers which materials have been

helpful in helping me understand the subject of study better, and not to forget the

many contributors who have enriched the Internet with their knowledge and sample

codes/libraries, including those in the Aldebaran forums.

 vii

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1 INTRODUCTION ... 1

1.1 Background of Study ... 1

1.2 Problem Statement .. 2

1.3 Objective and Scope of study .. 3

1.4 Relevancy and Feasibility of Project .. 3

CHAPTER 2 LITERATURE REVIEW & THEORY .. 4

2.1 Overview of SLAM... 4

2.2 EKF SLAM ... 6

2.3 MonoSLAM .. 9

CHAPTER 3 METHODOLOGY .. 13

3.1 Flow of activities ..13

3.2 Project Activities ..14

3.3 Gantt Chart ..16

3.3.1 FYP I ...16

3.3.2 FYP II ..17

CHAPTER 4 RESULTS AND DISCUSSIONS .. 18

4.1 Calibration ...18

4.2 Feature detector benchmark ..21

4.3 MATLAB profiling ..22

4.4 Implementation of SLAM ..25

4.4.1 Result obtained from a smooth displacement (offline)26

4.4.2 Results obtained from a displacement from robot walk (real

time) ...28

4.4.3 Results obtained from a displacement from robot walk

(offline) ..29

CHAPTER 5 CONCLUSION & RECOMMENDATIONS 32

REFERENCES ..34

APPENDIX A Presentation Poster SEDEX 30 ...37

APPENDIX B Related Documentations ...38

 viii

LIST OF TABLES

Table 1: Comparison of detectors ...22

Table 2: Summary of results ..31

 ix

LIST OF FIGURES

Figure 1: Error from raw odometry [2] .. 2

Figure 2: The essential SLAM problem. [4] .. 5

Figure 3: EKF SLAM flowchart for single iteration [23] ... 8

Figure 4: Known target used by Davison to initialize system 9

Figure 5: Flow chart of the MonoSLAM implementation [23]..................................10

Figure 6: FAST Feature detection on image patch. [28]..11

Figure 7: 1-Point RANSAC steps for a 2D line estimation example [29]12

Figure 8: Mosaic of 14 pictures taken using imtool ..18

Figure 9: Reprojection on image ..19

Figure 10: Two chessboard templates used...19

Figure 11: Detection of corner points ...20

Figure 12: Grayscale image of a lab [26] ..21

Figure 13: Example of SLAM on MATLAB ..22

Figure 14: 10 frames ..23

Figure 15: 20 frames ..23

Figure 16: 60 frames ..24

Figure 17: Top view of map ...25

Figure 18: Estimated result if accurate ...25

Figure 19: Smooth displacement (offline) ..26

Figure 20: Zoomed in ...27

Figure 21: Realtime through frame skips ..28

Figure 22: Inaccurate Mapping and Localization ..28

Figure 23: With blurry frames accounted ...29

Figure 24: Blur frames above a certain threshold is removed30

Figure 25: Blur frames removed ...30

file:///C:\Users\Excal\Desktop\FYP\Dissertation(FinalReport).docx%23_Toc332789421

 x

LIST OF ABBREVIATIONS

SLAM – Simultaneous Localization and Mapping

RANSAC – RANdom Sample Consensus

EKF – Extended Kalman Filter

LIDAR – Light Detection and Ranging

 1

CHAPTER 1

INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a concept that is introduced to

solve the question on how a robot can be navigated in an unknown environment. To

be able to do so, the robot will need to create a map of the environment and at the

same time, know its location and motion in the map.Many solutions have been

proposed in this field of study and one of them for monocular vision is applied in the

project here.

1.1 Background of Study

The use of mobile robots is becoming more prominent as the technology advances

further thus allowing faster and heavier computation to be processed. With

advancement in hardware for processing, robots nowadays can be utilized to perform

heavy computations such as using vision in real-time for navigation. One of the

important challenges in SLAM is to create a system which is efficient enough to be

executed in real time.

Incidents such as natural disasters and the nuclear plant accident in Fukushima have

shown to the world that robots are necessary for automated navigation and mapping

in an unknown area in cases of emergency where it is too risky for humans. However

even for the case mentioned above, remote control is still used and that posed a

problem if there is a loss in connectivity. Google’s driverless car on the other hand

has showcased the amazing capability possible with the use of SLAM. SLAM is also

widely applicable in other fields such as subsea mapping, oil and gas exploration, or

even space exploration on other planets.

 2

1.2 Problem Statement

Although it is possible for the NAO robot to navigate by calculating its position based

on its motor, the odometry is still prone to error especially after a longer distance. If

motion can be modeled using visual odometry and error of the method canbe

estimated, it can be used to correct NAO trajectory[1]. The robot will also need to

avoid dangerous obstacles which might damage the robots. Although it can be easily

done using sonar or laser sensors in an unknown environment, without a map, the

robot will only perform simple obstacle avoidance without knowing its direction and

position.

By implementing SLAM on the robot, the robot will be consistently aware of its

position relative to the landmarks in the environment. Thus, it will be able to navigate

in a map accurately as SLAM allows the robot to localize effectively using the

measured data from the camera and its predicted position based on the control input

given.

Figure 1: Error from raw odometry [2]

 3

1.3 Objective and Scope of study

The main objective of the project is:

Implementation of SLAM on NAO which consists of these side objectives which are:

 Kinematic Modeling of the NAO Robot.

 Landmark detection and extraction from the environment.

 Data association.

 Using Extended Kalman Filter (EKF) for estimation of robot position and

landmark.

The scope of study in this project involves first familiarization with the robot to

program on it. It involves the use of a few programming languages which are Python,

and MATLAB. The algorithms which are used will not be new but existing ones such

as the Extended Kalman Filter and data association using 1-point RANSAC

The kinematic modeling of the robot is not undertaken and has been replaced with a

simpler model being assumed.

1.4 Relevancy and Feasibility of Project

The project is relevant in our studies because it is one of the major problems in

robotics and comprises of different fields, such as probabilistic robotics, image

processing and programming knowledge which are all certainly educational. The

implementation of SLAM on NAO has never really been attempted and this will be

the first few tried out. The findings here would hopefully speed up the progress of

others when implementing SLAM on NAO in future.

The project is feasible since SLAM has already been proven to be able to localize and

map a robot’s movement in an environment. However within the time frame for a

beginner, it doesn’t leave much room for trial and error to test out other algorithms if

it has been implemented but with unsatisfactory results.

 4

CHAPTER 2

LITERATURE REVIEW& THEORY

2.1 Overview of SLAM

Simultaneous Localization and Mapping (SLAM) is a problem in robotic navigation

which has been explored for decades. It is not a new problem and many solutions has

been proposed theoretically and also practically implemented on robots. Robotic

navigation can be summarized as being concerned with the questions: “where am

I?”,“where am I going?” and “how should I get there?”[3] In SLAM the same

questions are posed with the focus being on the first two questions. The robot will

need to know its position in an unknown environment and map it at the same time so

that it will be able to head towards its destination. The question of getting there can

be answered using path planning techniques instead such as the popular A* search

algorithm.

The essential SLAM problem consists of producing a simultaneous estimate of the

robot and the landmark locations. The true locations are not provided but are inferred

based on the observations made between the robot and the landmarks. [4]

 5

Figure 2: The essential SLAM problem. [4]

SLAM can be performed by combining the use of dead-reckoning and many different

types of sensors such as sonar [5], laser range finders[6] and also the use of active

vision[7]. Most of the SLAM algorithm implemented has been done on wheeled

robots[8] or vehicles[9], Unmanned Aerial Vehicles (UAVs), and Autonomous

Underwater Vehicle[10]. Although the implementations in humanoid robots like

NAO is rare SLAM on humanoid have actually been performed[11].

The implementation of SLAM consists of several main parts which are kinematic

modeling, landmark extraction, data association; state estimation and landmark

update[12]. SLAM which are normally performed on wheeled robots or vehicle are

usually modeled using simpler models like the bicycle model used for Ackerman

steered vehicles as presented by Bailey during the SLAM Summer School 2009[13].

However for NAO robot, it utilizes a humanoid model and so other techniques like

the Denavit-Hartenberg (D-H) robot modeling technique is used to create the motion

model for the robot[1][14]. Landmark extraction involves capturing images of the

surrounding environment, detecting and extracting the easily distinguishable features

such as walls, corners or patterned objects. Data association will be used after the

landmarks are extracted to match the landmarks after each repeated observation.

Visual SLAM implementation utilizes different types of feature (landmark) extractors

such as Harris Corner Detector[15], Kanade-Lucas tracker and SIFT[16] while for

data association, the nearest neighbor method can be implemented for feature

matching. A more robust method is the Jointly Compatible Branch and Bound which

 6

can be used for more accurate data association as shown in the comparison done by

Temeltas[17]. These three feature extractors are compared in the report by

Klippenstein[18] and the conclusion reached is that the choice of feature extractors is

not critical. The estimation of states is usually performed using the most important

methods which are EKF-SLAM and FastSLAM[4]. Landmark update will be done

after getting the estimates for the states by repeating the observation of the

surroundings and adding new landmarks to the map.

The SLAM algorithm will be implemented in our project using EKF-SLAM which

has proven to produce acceptable consistent results if the heading variance remains

small [19]. FastSLAM is also a popular algorithm used in SLAM and is shown to

outperform the EKF in environments with ambiguous data association[20] and can be

scaled to be applied in larger environment[21]. Another algorithm which is used for

SLAM is Graph-based SLAM which has undergone a renaissanceand currently

belongs to the state-of-the-art techniques withrespect to speed and accuracy[22].

2.2 EKF SLAM

The theory of the Extended Kalman Filter will be described in this section. The

Kalmanfilter is commonly used to solve estimation problems with two main steps

which are predict and update. In the prediction step, the probability distribution

function p from the previous step (k-1) will be updated to the current state k based on

the probabilistic dynamic model of the system of the system which could be the

motion model of the robot such as the velocity and the steering angle.

In the update step, the measurements from sensors for example will be combined with

the probability distribution function previously obtained using Bayes’ rule.

Although the Kalman filter is highly efficient due to it being a recursive algorithm,

for use in SLAM, the extended Kalman Filter is used instead because of the non-

linear nature of robotics system.

 7

For EKF-SLAM, the process consists of three steps which are:

 Prediction

 Observation / Measurement

 Update

For a basic SLAM the first step consists of predicting the next position of the robot

using a given control input, for example, the command to move the robot to the right

by one meter and to the front by 0.5 meter which will result in a change in the state

position of the robot (x + 1m, y + 0.5m). In the second step which is called

observation, the landmarks surrounding the robots are detected using sensors such as

cameras or LIDAR devices. The landmarks which are previously observed will be

used to update the position of the robot since the landmarks are assumed to be fixed,

unchanging fixtures.

The triangle represents the robot while

the ellipses are the landmarks observed.

The map is initialized with the position of

the landmarks based on the initial robot

position which is assumed to be error

free.

The robot moves and based on the

odometry it assumes that it is now in the

red coded position.

 8

The robot measures again the landmarks

by reobserving the previously initialized

landmarks. New landmarks are also

initialized. The result from the

reobservation (measurement) from the

sensors does not match the odometry

results.

The location of the robot is updated after

fusing the information from the sensors

of the robot and the odometry data.

Figure 3: EKF SLAM flowchart for single iteration [23]

 9

2.3 MonoSLAM

For this project, the implementation of SLAM will focus on the usage of a single

camera. For that reason, for this report, the section concerning MonoSLAM

(monocular SLAM) will be added as it is a very crucial part of this final year project.

The difference between MonoSLAM and the system that we are using is that

MonoSLAM is implemented purely on a single camera which will be moved by the

user instead of using a mobile robotics. Therefore, MonoSLAM is more complicated

as it requires the motion of the camera to be estimated purely using vision.

On the other hand, on the Nao robot, we will be able to get the trajectory model of the

camera movement by using the information from the movement of the robot.

Nevertheless, MonoSLAM and its improved variants will be extremely useful for our

case. The concept and algorithm used in MonoSLAM can be added on to our current

implementation for the purpose of landmark recognition and associating the

landmarks.

In the paper by Davison[24], point features are observed using a handheld camera.

The system is initialized by using a known object with four initial landmarks, which

are the corner points.

Figure 4: Known target used by Davison to initialize system

This initialization will allow the scale of the world to be known, and at the same time

allow the pose of the camera to be tracked when other new landmarks are observed.

The new landmarks are selected from the portion of the image that currently has no

landmarks and the region where the camera is heading towards is prioritized. The

point with the best Shi-Tomasi score[25] will then be chosen from that region so that

 10

the number of points will be minimized to reduce the computational effort. An 11x11

image patch centered at the chosen point is then saved for matching later using

normalized cross correlation (NCC). When the camera moves, the landmarks will

move out of the camera’s view and so new landmarks will be initialized to ensure that

a sparse set of 10 landmarks is maintained. Landmarks with too many failed

observations will be removed to add in newer, more reliable landmarks. However due

to the sparse sets of landmarks, the Davison system can be further improved if more

landmarks can be observed without affecting the needed frame rate for real-time

operation. This system can be a good starting point for our project although it is

limited to a small sized room due to the limitation on the total number of landmarks.

Figure 5: Flow chart of the MonoSLAM implementation [23]

The system is improved by Williams[26] and his thesis is taken as reference in our

review here. In the system implemented by Williams, landmarks are represented

using inverse depth parameterization[27] which allows multiple landmarks to be

initialized simultaneously. This improvement eliminates the need of a known target as

used in the Davison system to set the scale. The system utilizes the FAST corner

detector and then it will perform the same thresholding as in the Davison system by

using the Shi-Tomasi score. Active search and the JCBB algorithm are used for

matching to reject false matches.

 11

Figure 6: FAST Feature detection on image patch. The pixels used in the feature

detection is highlighted[28]

Another monocular SLAM implementation which we will review is that done by

Civera[29]. The contribution of this paper is in the section of data association which

previously has been confined for quite some time to the Joint Compatibility Branch

and Bound (JCBB) method by Jose Neira in 2001[30] especially for use with the EKF

framework. JCBB eliminates spurious measurements by choosing the hypothesis that

has the largest number of compatible pairings. It searches through all possible

matches the largest set thatis jointly compatible and thus proves to be a much better

choice than the nearest neighbor approach. However the 1-point RANSAC method

proposed by Civera serves to overcome some of the shortages faced by the widely

used JCBB method. In terms of computational costs, the interpretation tree search that

JCBB uses to extact the largest jointly compatibleset of matches has exponential

complexity when spurious observations are present. This limits the number of the

observations to around 10 to 12. On the other hand, the 1-point RANSAC is linear in

the state and measurement size, thus having a lower costvariation with the number of

outliers. Therefore, these papers are all essential in building the concept that we

would like to implement in our SLAM.

 12

Figure 7: 1-Point RANSAC steps for a 2D line estimation example: Compared to the standard

RANSAC, the algorithm assumes that an a priori probability distribution over the model

parameters is known in advance. This prior knowledge allows computation of the random

hypotheses using only 1 data point. The computational cost is lowered by the reduction of the

number of hypotheses. [29]

 13

CHAPTER 3

METHODOLOGY

3.1 Flow of activities

The flow of the methodology used for the final year project will be included in this

section. Below, is a general overview of the activities conducted for FYP I and FYP

II.

Start

Overview of title

Literature Review

Learning and understanding algorithm

Coding to communicate with the robot / Partial
codes

Testing algorithm with robots camera

Implementation of SLAM

Final report

End

 14

3.2 Project Activities

Research is first done to get a grasp of the rough idea behind the implementation of

SLAM. One will be introduced to the different methods currently used for SLAM on

autonomous vehicles or robots.

Literature review

Based on the research done from reading journals, online publications, lecture notes

and tutorials, a literature review is compiled as a summary of the previous work done

on SLAM and the methods used.After the literature review is done, we will then

proceed with choosing the algorithm to be used such as either EKF or FastSLAM.

Then, we will perform the necessary reading and learning to familiarize with the

mathematical concepts, and how it works. The use of Monocular SLAM using EKF is

chosen because of the less complexity in implementing since the robot motion is not

taken into account for the odometry. A motion model is instead assumed for the

movement of the camera, an assumption which will prove costly for our

implementation.

Learning and understanding the algorithm

The chosen algorithm 1-Point RANSAC Inverse Depth EKF Monocular SLAM is

read and based on the papers and the codes, I try to understand the algorithm used.

This part, I would say that as of now, I have an overview of the algorithm but not

really too detailed into the mathematic behind it

Coding to communicate with the robot /Partial codes

The programming on the robot initially started with the use of choreographe to move

the robot, and using NAO simulator to run and test the functions in the room.

However, I soon realized that Choreographe (the software GUI for NAO) is

practically not that useful for the work intended. With the switch to the use of the

python scripts, it is easier to code and control the robot to obtain image sequence,

videos and to move the robot. It is also in this part where I tested with partial parts of

the necessary stuffs needed in the algorithm. A few camera calibration methods are

 15

tested out to verify the accuracy of those methods. The calibrated parameters are

important as they determine the accuracy of the SLAM later on.

Testing algorithm with robots camera

With the calibrated camera parameters, the algorithm is tested on video sequences

recorded by using the camera on the robot. The corner detection algorithm is

benchmarked using a same image to compare the performance of these algorithms.

Using mex files, the FAST corner detector used in the earlier MATLAB codes

performs significantly faster. Even in this stage, a few methods have been attempted

to speed up the coding, and one was to convert the whole MATLAB coding platform

to use C++ which was never completed due to insufficient time and some

programming shortcomings.

Implementation of SLAM

For the implementation, the python code is no longer used, and instead, the

MATLAB code is used from the libraries provided by Aldebaran Robotics to

communicate with the robot. Images are captured from the robot while it is moving

and the SLAM accuracy is evaluated.

Final Report

In this section, it comprises of the final stages whereby the report is prepared. Before

the report is done, a presentation was also done for the Electrex and the SEDEX

exhibition in UTP.

Tools/Hardware/Softwareused:

- NAO V3 robot with camera (OV7670 VGA)

- Firmware 1.12.5

- Computer running on Windows (execution of main programs) and Ubuntu

(accessing files from memory stick)

- Python, Visual Studio C++, and MATLAB.

 16

3.3 Gantt Chart

3.3.1 FYP I

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
Selection of Project Topic:

Visual SLAM on NAO

2
Preliminary Research Work:

Research on literatures related to the topic

3 Submission of Extended Proposal

4 Kinematic Modeling of Robot

5 Familiarize and coding on NAO

6 Preparation for Presentation

7 Proposal Defense

8 Draft Report

9 Interim Report

 - Key Milestone

 17

3.3.2 FYP II

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Algorithm read and understand

2 Testing and profiling algorithm

2 Progress Report

3 Implementation of SLAM

4 Final results / Findings

5 Pre-Edx

6 SEDEX

7 Final Report

8 Viva

 - Key Milestone

18

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Calibration

The parameters of the camera are needed to initialize the camera for the algorithm.

Discrepancies were noticed when the calibration method is repeated using the

OpenCV libraries with python using the webcam on my laptop.

With the open CV function, FindChessboardCorners, the script automatically detects

the chessboard image and search for the corners. The script automatically calculates

the calibration parameters when a set amount of frames have been captured and

redisplay two windows, one with the actual view and the other after undistorting.

Basically the intrinsics and distortion obtained through this method fluctuates and

changes by a lot in the subsequent tries. Therefore, I decided to try out a few other

methods to validate the results.

Using the MATLAB Camera Calibration Tool Box done by Jean-Yves Bouguet.

The first method was by using the MATLAB Calibration Tool Box which is

considered a classic in camera calibration.

Figure 8: Mosaic of 14 pictures taken using imtool

19

Figure 9: Reprojection on image

Calibration results after optimization (with uncertainties):

Focal Length: fc = [286.95150 287.46227] ± [3.49466 3.43038]

Principal point: cc = [155.31871 115.93520] ± [1.91445 2.23545]

Skew: alpha_c = [0.00000] ± [0.00000]

Distortion: kc = [0.33039 -1.08948 -0.00347 -0.00541 0.00000] ± [

0.03168 0.19624 0.00288 0.00353 0.00000]

Pixel error: err = [0.15615 0.12837]

GML C++ Camera Calibration Toolbox[29]

The GML Calibration toolbox utilizes multiple calibration patterns and for this try,

two templates are used, 6x5 and 6x9 is used with the squares at 30mm apart.

Figure 10: Two chessboard templates used

20

Focal Length: fc = [286.697 286.336] ± [5.682 6.080]

Principal point: cc = [164.604 100.874] ± [4.200 6.767]

Distortion: [0.196733 -0.410724 -0.014089 0.009308] ± [0.074513 0.469068

0.008955 0.00571]

Pixel error: err = [0.34 0.63]

The two results are slightly different but in comparison with the inaccuracy from the

python script, the two methods, the Matlab Toolbox and the GML toolbox are

feasible methods.

The inaccurate result from the python open cv implementation might me due to the

fact that the board moves when the capture is taking place, thus causing blurry

motions to be captured.

Finally the MATLAB Calibration ToolBox is the chosen method to calibrate the

camera on the robot NAO.

Obtained OV7670 camera calibration parameters from Bouguet’s toolbox:

Calibration results after optimization (with uncertainties):

Focal Length: fc = [382.05271 380.50844] ± [2.18708 2.15287]

Principal point: cc = [159.59442 110.47495] ± [2.28538 2.10549]

Skew: alpha_c = [0.00000] ± [0.00000]

Distortion: kc = [0.27363 -0.99625 0.00047 -0.00523 0.00000] ± [

0.02088 0.11953 0.00276 0.00280 0.00000]

Pixel error: err = [0.19699 0.18773]

Figure 11: Detection of corner points

21

4.2 Feature detector benchmark

In a vision based SLAM system, feature detectors are needed to search for easily

traceable points in the images captured. In comparison to edges and lines, corner

points are small and so require less memory and computation to maintain. A few

methods were taken to the test with the same image. The importance of this part is

learning to implement and to use the codes and also to test the speed of the algorithm.

The test image is grayscale with a dimension of 768 x 288.

Figure 12: Grayscale image of a lab[26]

FAST corner detector

Test 1: MATLAB (m-file)

Elapsed time: 4.90 seconds

Test 2: Python

Elapsed time: 7.36 seconds

Test 3: MATLAB (mex-file)

Elapsed time: 0.032seconds

SURF

Test 1: MATLAB (mex-file)

Elapsed time is 0.11 seconds.

Harris Corner Detector

Test1: Python/OpenCV

Elapsed time: 0.225 seconds

Test 2: MATLAB (mex-file)

22

Elapsed time is 0.119475 seconds.

Corner detector m-file Python Mex file

SURF - - 0.11 s

Harris - 0.225 s 0.12 s

FAST 4.90 s 7.36 s 0.032 s

Table 1: Comparison of detectors

4.3 MATLAB profiling

By first profiling the MATLAB code given online, I am able to identify the functions

where the program requires the most time in. Here, the top 12 functions arranged

based on total time is shown for 10 frames, 20 frames and 60 frames runtime

respectively.

Figure 13: Example of SLAM on MATLAB

23

Figure 14: 10 frames

Figure 15: 20 frames

24

Figure 16: 60 frames

The results above were before the implementation of the MEX-files for the corner

detection. However, after the MEX implementation, the algorithm is still slow

although the fast_corner_detect_9 time lag is now negligible. This is due to the

computational cost spent on matrix multiplications mostly in the EKF update step. It

is suggested that a better library is used for the multiplication process.

25

4.4 Implementation of SLAM

The SLAM algorithm is then tested in a controlled environment. The figure below

shows the top view of the arrangement for the environment in the lab.

Figure 17: Top view of map

Having a controlled environment will provide us with a ground truth to compare our

obtained results with.

Figure 18: Estimated result if accurate

26

4.4.1 Result obtained from a smooth displacement (offline)

The robot is manually moved to the right for 1.5 meters. Throughout the movement,

the head of the robot is facing towards the feature filled environment.

Figure 19: Smooth displacement (offline)

As seen in the figure, the linear motion is accurately estimated. The landmarks are

also correctly plotted since there is a section with landmarks which are situated

further in and the objects that are placed closer to the robot’s path (the box with three

bowling pins) are correctly positioned. Due to the use of a monocular camera, the

scene and the camera motion can only be recovered up to a scale factor and here, the

appropriate scale factor is around 1.5x since the 1.5 meters displacement have been

taken as a 1 meter displacement. This applies also to the distance to the landmarks.

27

Figure 20: Zoomed in

28

4.4.2 Results obtained from a displacement from robot walk (real time)

Real time capability is obtained not through the speed of the computation but by

setting the robot to take frames on each footstep. This results in large frame skips and

cause difficulties in matching the points in subsequent frames. The result from this is

unsatisfactory and since it is impossible to reduce the speed of NAO’s footstep any

further, it is not possible for the results to be improved unless the computation speed

is increased to allow in between frames to be captured.

Figure 21: Realtime through frame skips

Figure 22: Inaccurate Mapping and Localization

The algorithm has a good approximation on the direction of the landmarks but the

scaling factor and the motion estimation is really bad. Structure from motion might be

a better solution for a condition with large frame skips.

29

4.4.3 Results obtained from a displacement from robot walk (offline)

In this third test, the robot is programmed to walk straight, but during the walking

sequence, with NAO’s terrible motion control, the motion was actually not that

straight. The video sequence recorded during the walk is tested to simulate the

resulting SLAM if the algorithm can be implemented in a real time 30Hz

environment.

From a same video sequence of 1300 frames:

Without discarding the blur images:

Figure 23: With blurry frames accounted

The results show that the robot has moved all over the area and the landmarks

observed are scattered around the robot when in fact the landmarks should only be in

front of NAO.

The blue ellipse represents the detected features/landmarks which are not able to be

matched with any previous detection. As a result, many landmarks and initialized and

more points are added to the map although they might be the same observed points

from previous frames.

No valuable information could be interpreted from this trial when the blurred images

are not removed.

30

With the blur images discarded:

Figure 24: Blur frames above a certain threshold is removed

The blur metric is utilized to set a certain threshold for the frames so that blurry

images are discarded. The threshold used here is 0.45.

Figure 25: Blur frames removed

The results are better when the blurred frames are removed but still insufficiently

accurate for the landmarks and the motion estimation.

31

Summary of results:

Situation Verdict

Smooth displacement of the robot

through a horizontal motion.

Accurate representation of motion and

landmarks to a certain scale

Real time online processing with frame

skips (robot walk).

Inaccurate motion and insufficient

landmarks but with a little resemblance to

the motion and map.

Offline processing of video recorded for

all frames (robot walk)

Inaccurate motion and landmarks

scattered. Total loss of any direction or

localization for the robot.

Offline processing of video recorded with

blurred frames discarded (robot walk)

Better than processing of all frames but

the motion is inaccurately represented in

the opposite direction. The landmarks are

in the right direction but inaccurately

placed in terms of distance.

Table 2: Summary of results

Note: The processing time remains slow at an average rate of around 0.5 frames per

second.

32

CHAPTER 5

CONCLUSION & RECOMMENDATIONS

From the early findings, it is proven that the best and fastest feature detector to be

used is the FAST corner detector as long as it is in the form of a compiled MEX file

and not in a python script or a MATLAB file. The use of different calibration

methods also proves that the calibration method in Bouguet’s toolbox is accurate and

reliable. Although, not mentioned, the calibration parameters used for the algorithm

in MATLAB needs to be converted to the Tsai model.

The algorithm itself works great for handheld cameras and motions which are smooth

as shown but using the biped movement of the robot, the results were unfortunately

not favorable.

The implementation of the algorithm on a humanoid robot proves to be more

complicated than expected. The sudden jerks and unreliable motion from the

footsteps of the robot creates a sequence of frame which are blurry if the motion is

too quick and also sudden changes in the direction of the movement. The head

(camera) attached on the robot tend to sway drastically back and forth while it is

walking. With huge frame skips, the SLAM estimation will be badly affected for the

EKF monocular SLAM using 1-P RANSAC. It is the wrong choice of algorithm to be

used but due to the shortage of time, this is the only algorithm which was tried. For

the case of frame separation EKF relies on first order linearization that will have big

errors if the predicted values are far from the actual matched ones. In this particular

case where it is not possible to grab close, sequential frames, perhaps Structure from

Motion will be a better technique to be used.

Nevertheless, if we take into assumption that real time processing at 30fps is possible

once the coding is ported into the more efficient C++ language; further tests are

conducted on the videos recorded from the camera on NAO which is set to record at

33

30 fps. Testing with the algorithm and the recorded video from the robot, the results

were at first extremely bad due to the blurry frames captured. These frames cause the

data association between frames to be inaccurate which then results in greater errors.

Motion deblurring methods have been recommended to solve this issue and will be

look into. However, before implementing motion deblur algorithm, one will need to

know which frames are sharp and which are blur. To do so, the perceptual blur metric

[32] is used to detect blur frames and for now, the frames will be discarded instead of

corrected using filters such as Wiener or Inverse filtering.

The results after the blurry frames are discarded were better than when all frames are

used in the process, but still inaccurate if compared with the results obtained from the

smooth camera motion on the robot. The algorithm will be better if used with other

robots such as the wheeled wifibot as the movements of the robot will be smooth and

predictable.

Recommendations

 The algorithm used is suitable only for smooth robot motion so the use of

wheeled robots or vehicle is highly recommended or perhaps the motion

model will need to be changed to a more complicated one based on the

movement and joints of the robot.

 The MATLAB codes will need optimization to make it less computational

intensive or by having itrecoded in a faster language.

 Motion deblur techniques could be implemented to recover the bad frames

instead of simply discarding the frames resulting in some gaps in the image

sequence.

34

REFERENCES

[1] T. González Sánchez, "Artificial Vision in the Nao Humanoid Robot,"

Universitat Politècnica de Catalunya, 2009.

[2] "Bachelor Artificial Intelligence – Probabilistic Robotics," [Online]. Available:

http://staff.science.uva.nl/~arnoud/education/ProbabilisticRobotics. [Accessed

18 March 2012].

[3] J. J. Leonard and H. F. Durrant-Whyte, "Mobile Robot Localization by Tracking

Geometric," IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION,

VOL. I, NO. 3, pp. 376-382, June 1991.

[4] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part

I," Robotics & Automation Magazine, IEEE , pp. 99 - 110, June 2006.

[5] L. Kleeman, "Advanced sonar and odometry error modeling for simultaneous

localisation and map building," in Intelligent Robots and Systems, 2003. (IROS

2003). Proceedings. 2003 IEEE/RSJ International Conference on, 2003.

[6] A. Diosi and L. Kleeman, "Advanced sonar and laser range finder fusion for

simultaneous localization and mapping," in Intelligent Robots and Systems,

2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on ,

2004.

[7] A. Davison and D. Murray, "Simultaneous localization and map-building using

active vision," Pattern Analysis and Machine Intelligence, IEEE Transactions,

vol. 24, no. 7, pp. 865 - 880 , 2002.

[8] A. Davison and D. Murray, "Simultaneous localization and map-building using

active vision," Pattern Analysis and Machine Intelligence, IEEE Transactions,

vol. 24, no. 7, pp. 865-880, 2002.

[9] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte and M. Csorba, "A

solution to the simultaneous localization and map building (SLAM) problem,"

Robotics and Automation, IEEE Transactions, vol. 17, no. 3, pp. 229-241, 2001.

[10] P. Newman and J. Leonard, "Pure range-only sub-sea SLAM," in Robotics and

Automation, 2003. Proceedings. ICRA '03. IEEE International Conference ,

2003.

[11] O. Stasse, A. J. Davison, R. Sellaouti and K. Yokoi, "Real-time 3D SLAM for

Humanoid Robot considering Pattern Generator Information," in Intelligent

Robots and Systems, 2006 IEEE/RSJ International Conference, 2006.

[12] S. Riisgaard and M. R. Blas, "MIT OpenCourseWare," 2005. [Online].

Available: http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-

cognitive-robotics-spring-2005/. [Accessed 23 February 2012].

[13] T. Bailey, "SLAM Summer School 2009," January 2009. [Online]. Available:

35

http://www.acfr.usyd.edu.au/education/summerschool.shtml. [Accessed 3 March

2012].

[14] J. Denavit and R. Hartenberg, "A kinematic notation for lower-pair mechanisms

based on matrices.," Trans. of the ASME. Journal of Applied Mechanics, vol. 22,

pp. 215-221, 1955.

[15] C.Harris and M.Stephens, "A combined corner and edge detector," in Proc. of

Fourth Alvey Vision Conference, Manchester, United Kingdom, 1988.

[16] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[17] H. Temeltas and D. Kayak, "SLAM for robot navigation," Aerospace and

Electronic Systems Magazine, IEEE, vol. 23, no. 12, pp. 16 - 19, 2008.

[18] J. Klippenstein and H. Zhang, "Performance evaluation of visual SLAM using

several feature extractors," in Intelligent Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference, 2009.

[19] T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot, "Consistency of the

EKF-SLAM Algorithm," in Intelligent Robots and Systems, 2006 IEEE/RSJ

International Conference, 2006.

[20] M. Montemerlo and S. Thrun, "Simultaneous localization and mapping with

unknown data association using FastSLAM," in Robotics and Automation, 2003.

Proceedings. ICRA '03. IEEE International Conference, 2003.

[21] M. Montemerlo, "FastSLAM: A Factored Solution to the Simultaneous

Localization and Mapping Problem with Unknown Data Association," Robotics

Institute, Carnegie Mellon University, 2003.

[22] mmerle, C. Stachniss and W. Burgard, "A Tutorial on Graph-

Based SLAM," Intelligent Transportation Systems Magazine, IEEE , vol. 2, no.

4, pp. 31 - 43 , 2010.

[23] "Monocular SLAM," [Online]. Available:

http://vision.ia.ac.cn/Students/gzp/monocularslam.html. [Accessed 14 August

2012].

[24] A. Davison, "MonoSLAM: Real-Time Single Camera SLAM," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp.

1052 - 1067 , 2007.

[25] J. Shi and C. Tomasi, "Good features to track," in IEEE Conference on

Computer Vision and Pattern Recognition, 1994.

[26] B. Williams, "Simultaneous Localisation and Mapping Using a Single Camera,"

University of Oxford, 2009.

[27] a. A. J. D. J. Civera, "Unified inverse depth parametrization for monocular

36

SLAM," in Proc. Robotics Science and Systems, 2006.

[28] E. Rosten and T. Drummond, "Fusing points and lines for high performance

tracking.," in IEEE International Conference on Computer Vision, 2005.

[29] J. Civera, O. Grasa, A. Davison and J. Montiel, "1-point RANSAC for EKF-

based Structure from Motion," in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2009. IROS 2009. , 2009.

[30] J. Neira and J. Tardos, "Data association in stochastic mapping using the joint

compatibility test," IEEE Transactions on Robotics and Automation, vol. 17, no.

6, pp. 890 - 897 , 2001.

[31] A. N. A. V.Vezhnevets, GML C++ Camera Calibration Toolbox, 2011.

[32] F. Crete, T. Dolmiere, P. Ladret and M. Nicolas, "The Blur Effect: Perception

and Estimation with a New No-Reference," in SPIE Electronic Imaging

Symposium Conf Human Vision and Electronic Imaging, San Jose, 2007.

37

APPENDIX A

Presentation Poster SEDEX 30

38

APPENDIX B

Related Documentations& Code Snippets

NAO V. 3.x

 x86 AMD GEODE 500MHz CPU

 256 MB SDRAM / 2 GB flash memory

39

40

Main mono_slam.m (modified)

initIm = 1;
lastIm = 850;
vidName = '15m.avi';

robot = 0;

%switch to capture from robot if robot == 1
if (robot == 1)
robotIP = '192.168.0.103';
motion = ALMotionProxy(robotIP,9559);
Nao_head(robotIP);
motion.setStiffnesses('Body',1.0);
motion.walkInit();
pause(5)
im = takeImageNao(robotIP);
else
im = takeImageFromVideo(vidName,initIm);
end

tic;
% Camera calibration
cam = initialize_cam;
% Set plot windows
set_plots;

% Initialize state vector and covariance
[x_k_k, p_k_k] = initialize_x_and_p;

% Initialize EKF filter
sigma_a = 0.007; % standar deviation for linear acceleration noise
sigma_alpha = 0.007; % standar deviation for angular acceleration

noise
sigma_image_noise = 1.0; % standar deviation for measurement noise
filter = ekf_filter(x_k_k, p_k_k, sigma_a, sigma_alpha,

sigma_image_noise, 'constant_velocity');

% variables initialization
features_info = [];
trajectory = zeros(7, lastIm - initIm);
% other
min_number_of_features_in_image = 25; %25
generate_random_6D_sphere;
measurements = []; predicted_measurements = [];

%---
% Main loop
%---

%im = takeImage(sequencePath, initIm);
step2 = 2;
siz = -0.05;

for step=initIm+1:1:lastIm

41

% Map management (adding and deleting features; and converting

inverse depth to Euclidean)
[filter, features_info] = map_management(filter, features_info,

cam, im, min_number_of_features_in_image, step);

% EKF prediction (state and measurement prediction)
[filter, features_info] = ekf_prediction(filter, features_info);

if (robot ==1)

if (step > 4)
if mod(step,4)
 step2 = Walk_noblockNao(motion,robotIP,step2,siz);
end
end
pause(1)
im = takeImageNao(robotIP);

else
im = takeImageFromVideo(vidName,step);

end

% Search for individually compatible matches
features_info = search_IC_matches(filter, features_info, cam, im);

% 1-Point RANSAC hypothesis and selection of low-innovation inliers
features_info = ransac_hypotheses(filter, features_info, cam);

% Partial update using low-innovation inliers
filter = ekf_update_li_inliers(filter, features_info);

% "Rescue" high-innovation inliers
features_info = rescue_hi_inliers(filter, features_info, cam);

% Partial update using high-innovation inliers
filter = ekf_update_hi_inliers(filter, features_info);

% Plots,
plots;
%stepcount = step;

% Save images
saveas(figure_all, sprintf('%s/3image%04d.fig', 'figures/', step),

'fig');

end
toc;
if (robot==1)
motion.stopWalk();
end

TakeImageNao

functionim = takeImageNao(robotIP)

42

camProxy = ALVideoDeviceProxy(robotIP,9559);

resolution = 1; % kQVGA
colorSpace = 11; % RGB

camProxy.subscribe('matlab',int16(resolution), int16(colorSpace),

int16(30));

naoImage = camProxy.getImageRemote('matlab');

camProxy.unsubscribe('matlab');

IMarray = naoImage{7};

length_n = size(IMarray);

imredstring = IMarray(1:3:length_n);
imgreenstring = IMarray(2:3:length_n);
imbluestring = IMarray(3:3:length_n);

imred = reshape(imredstring,320,240);
red_im = imred';
imgreen = reshape(imgreenstring,320,240);
green_im = imgreen';
imblue = reshape(imbluestring,320,240);
blue_im = imblue';

%imgray = reshape(imgraystring,320,240);
%gray_im = imgray';

rgbimage = uint8(rand(240,320,3));
rgbimage(:,:,1) = red_im;
rgbimage(:,:,2) = green_im;
rgbimage(:,:,3) = blue_im;

im=rgb2gray(rgbimage);

end

