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ABSTRACT 

Simultaneous Localization and Mapping (SLAM) is a navigation and mapping 

method used by autonomous robots and moving vehicles. SLAM is mainly concerned 

with the problem of building a map in an unknown environment and concurrently 

navigating through the environment using the map. Localization is of utmost 

importance to allow the robot to keep track of its position with respect to the 

environment and the common use of odometry proves to be unreliable. SLAM has 

been proposed as a solution by previous research to provide more accurate 

localization and mapping on robots. 

This project involves the implementation of the SLAM algorithm in the humanoid 

robot NAO by Aldebaran Robotics. The SLAM technique will be implemented using 

vision from the single camera attached to the robot to map and localize the position of 

NAO in the environment. The result details the attempt to implement specifically the 

chosen algorithm, 1-Point RANSAC Inverse Depth EKF Monocular SLAM by Dr 

Javier Civera on the robot NAO. The algorithm is shown to perform well for smooth 

motions but on the humanoid NAO, the sudden changes in motion produces 

undesirable results.This study on SLAM will be useful as this technique can be 

widely used to allow mobile robots to map and navigate in areas which are deemed 

unsafe for humans. 
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CHAPTER 1 

INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is a concept that is introduced to 

solve the question on how a robot can be navigated in an unknown environment. To 

be able to do so, the robot will need to create a map of the environment and at the 

same time, know its location and motion in the map.Many solutions have been 

proposed in this field of study and one of them for monocular vision is applied in the 

project here. 

1.1    Background of Study 

 

The use of mobile robots is becoming more prominent as the technology advances 

further thus allowing faster and heavier computation to be processed. With 

advancement in hardware for processing, robots nowadays can be utilized to perform 

heavy computations such as using vision in real-time for navigation. One of the 

important challenges in SLAM is to create a system which is efficient enough to be 

executed in real time. 

 

Incidents such as natural disasters and the nuclear plant accident in Fukushima have 

shown to the world that robots are necessary for automated navigation and mapping 

in an unknown area in cases of emergency where it is too risky for humans. However 

even for the case mentioned above, remote control is still used and that posed a 

problem if there is a loss in connectivity. Google’s driverless car on the other hand 

has showcased the amazing capability possible with the use of SLAM. SLAM is also 

widely applicable in other fields such as subsea mapping, oil and gas exploration, or 

even space exploration on other planets. 
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1.2    Problem Statement 

Although it is possible for the NAO robot to navigate by calculating its position based 

on its motor, the odometry is still prone to error especially after a longer distance. If 

motion can be modeled using visual odometry and error of the method canbe 

estimated, it can be used to correct NAO trajectory[1]. The robot will also need to 

avoid dangerous obstacles which might damage the robots. Although it can be easily 

done using sonar or laser sensors in an unknown environment, without a map, the 

robot will only perform simple obstacle avoidance without knowing its direction and 

position. 

By implementing SLAM on the robot, the robot will be consistently aware of its 

position relative to the landmarks in the environment. Thus, it will be able to navigate 

in a map accurately as SLAM allows the robot to localize effectively using the 

measured data from the camera and its predicted position based on the control input 

given.

 

Figure 1: Error from raw odometry [2] 
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1.3    Objective and Scope of study 

The main objective of the project is: 

Implementation of SLAM on NAO which consists of these side objectives which are: 

 Kinematic Modeling of the NAO Robot. 

 Landmark detection and extraction from the environment. 

 Data association. 

 Using Extended Kalman Filter (EKF) for estimation of robot position and 

landmark. 

The scope of study in this project involves first familiarization with the robot to 

program on it. It involves the use of a few programming languages which are Python, 

and MATLAB. The algorithms which are used will not be new but existing ones such 

as the Extended Kalman Filter and data association using 1-point RANSAC 

The kinematic modeling of the robot is not undertaken and has been replaced with a 

simpler model being assumed. 

1.4    Relevancy and Feasibility of Project 

The project is relevant in our studies because it is one of the major problems in 

robotics and comprises of different fields, such as probabilistic robotics, image 

processing and programming knowledge which are all certainly educational. The 

implementation of SLAM on NAO has never really been attempted and this will be 

the first few tried out. The findings here would hopefully speed up the progress of 

others when implementing SLAM on NAO in future. 

 

The project is feasible since SLAM has already been proven to be able to localize and 

map a robot’s movement in an environment. However within the time frame for a 

beginner, it doesn’t leave much room for trial and error to test out other algorithms if 

it has been implemented but with unsatisfactory results. 
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CHAPTER 2 

LITERATURE REVIEW& THEORY 

2.1    Overview of SLAM 

Simultaneous Localization and Mapping (SLAM) is a problem in robotic navigation 

which has been explored for decades. It is not a new problem and many solutions has 

been proposed theoretically and also practically implemented on robots. Robotic 

navigation can be summarized as being concerned with the questions: “where am 

I?”,“where am I going?” and “how should I get there?”[3] In SLAM the same 

questions are posed with the focus being on the first two questions. The robot will 

need to know its position in an unknown environment and map it at the same time so 

that it will be able to head towards its destination. The question of getting there can 

be answered using path planning techniques instead such as the popular A* search 

algorithm. 

The essential SLAM problem consists of producing a simultaneous estimate of the 

robot and the landmark locations. The true locations are not provided but are inferred 

based on the observations made between the robot and the landmarks. [4] 



 

  5 

 

Figure 2: The essential SLAM problem. [4] 

SLAM can be performed by combining the use of dead-reckoning and many different 

types of sensors such as sonar [5], laser range finders[6] and also the use of active 

vision[7]. Most of the SLAM algorithm implemented has been done on wheeled 

robots[8] or vehicles[9], Unmanned Aerial Vehicles (UAVs), and Autonomous 

Underwater Vehicle[10]. Although the implementations in humanoid robots like 

NAO is rare SLAM on humanoid have actually been performed[11]. 

The implementation of SLAM consists of several main parts which are kinematic 

modeling, landmark extraction, data association; state estimation and landmark 

update[12]. SLAM which are normally performed on wheeled robots or vehicle are 

usually modeled using simpler models like the bicycle model used for Ackerman 

steered vehicles as presented by Bailey during the SLAM Summer School 2009[13]. 

However for NAO robot, it utilizes a humanoid model and so other techniques like 

the Denavit-Hartenberg (D-H) robot modeling technique is used to create the motion 

model for the robot[1][14]. Landmark extraction involves capturing images of the 

surrounding environment, detecting and extracting the easily distinguishable features 

such as walls, corners or patterned objects. Data association will be used after the 

landmarks are extracted to match the landmarks after each repeated observation. 

Visual SLAM implementation utilizes different types of feature (landmark) extractors 

such as Harris Corner Detector[15], Kanade-Lucas tracker and SIFT[16] while for 

data association, the nearest neighbor method can be implemented for feature 

matching. A more robust method is the Jointly Compatible Branch and Bound which 
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can be used for more accurate data association as shown in the comparison done by 

Temeltas[17]. These three feature extractors are compared in the report by 

Klippenstein[18] and the conclusion reached is that the choice of feature extractors is 

not critical. The estimation of states is usually performed using the most important 

methods which are EKF-SLAM and FastSLAM[4]. Landmark update will be done 

after getting the estimates for the states by repeating the observation of the 

surroundings and adding new landmarks to the map. 

The SLAM algorithm will be implemented in our project using EKF-SLAM which 

has proven to produce acceptable consistent results if the heading variance remains 

small [19]. FastSLAM is also a popular algorithm used in SLAM and is shown to 

outperform the EKF in environments with ambiguous data association[20] and can be 

scaled to be applied in larger environment[21]. Another algorithm which is used for 

SLAM is Graph-based SLAM which has undergone a renaissanceand currently 

belongs to the state-of-the-art techniques withrespect to speed and accuracy[22]. 

2.2    EKF SLAM 

The theory of the Extended Kalman Filter will be described in this section. The 

Kalmanfilter is commonly used to solve estimation problems with two main steps 

which are predict and update. In the prediction step, the probability distribution 

function p from the previous step (k-1) will be updated to the current state k based on 

the probabilistic dynamic model of the system of the system which could be the 

motion model of the robot such as the velocity and the steering angle. 

 

 

In the update step, the measurements from sensors for example will be combined with 

the probability distribution function previously obtained using Bayes’ rule. 

 

 

Although the Kalman filter is highly efficient due to it being a recursive algorithm, 

for use in SLAM, the extended Kalman Filter is used instead because of the non-

linear nature of robotics system. 
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For EKF-SLAM, the process consists of three steps which are: 

 Prediction 

 Observation / Measurement 

 Update 

 

For a basic SLAM the first step consists of predicting the next position of the robot 

using a given control input, for example, the command to move the robot to the right 

by one meter and to the front by 0.5 meter which will result in a change in the state 

position of the robot (x + 1m, y + 0.5m). In the second step which is called 

observation, the landmarks surrounding the robots are detected using sensors such as 

cameras or LIDAR devices. The landmarks which are previously observed will be 

used to update the position of the robot since the landmarks are assumed to be fixed, 

unchanging fixtures. 

 

The triangle represents the robot while 

the ellipses are the landmarks observed. 

The map is initialized with the position of 

the landmarks based on the initial robot 

position which is assumed to be error 

free. 

 

The robot moves and based on the 

odometry it assumes that it is now in the 

red coded position. 
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The robot measures again the landmarks 

by reobserving the previously initialized 

landmarks. New landmarks are also 

initialized. The result from the 

reobservation (measurement) from the 

sensors does not match the odometry 

results. 

 

The location of the robot is updated after 

fusing the information from the sensors 

of the robot and the odometry data. 

 

 

Figure 3: EKF SLAM flowchart for single iteration [23] 
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2.3    MonoSLAM 

For this project, the implementation of SLAM will focus on the usage of a single 

camera. For that reason, for this report, the section concerning MonoSLAM 

(monocular SLAM) will be added as it is a very crucial part of this final year project. 

The difference between MonoSLAM and the system that we are using is that 

MonoSLAM is implemented purely on a single camera which will be moved by the 

user instead of using a mobile robotics. Therefore, MonoSLAM is more complicated 

as it requires the motion of the camera to be estimated purely using vision. 

On the other hand, on the Nao robot, we will be able to get the trajectory model of the 

camera movement by using the information from the movement of the robot. 

Nevertheless, MonoSLAM and its improved variants will be extremely useful for our 

case. The concept and algorithm used in MonoSLAM can be added on to our current 

implementation for the purpose of landmark recognition and associating the 

landmarks. 

In the paper by Davison[24], point features are observed using a handheld camera. 

The system is initialized by using a known object with four initial landmarks, which 

are the corner points.  

 

Figure 4: Known target used by Davison to initialize system 

 

This initialization will allow the scale of the world to be known, and at the same time 

allow the pose of the camera to be tracked when other new landmarks are observed. 

The new landmarks are selected from the portion of the image that currently has no 

landmarks and the region where the camera is heading towards is prioritized. The 

point with the best Shi-Tomasi score[25] will then be chosen from that region so that 
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the number of points will be minimized to reduce the computational effort. An 11x11 

image patch centered at the chosen point is then saved for matching later using 

normalized cross correlation (NCC). When the camera moves, the landmarks will 

move out of the camera’s view and so new landmarks will be initialized to ensure that 

a sparse set of 10 landmarks is maintained. Landmarks with too many failed 

observations will be removed to add in newer, more reliable landmarks. However due 

to the sparse sets of landmarks, the Davison system can be further improved if more 

landmarks can be observed without affecting the needed frame rate for real-time 

operation. This system can be a good starting point for our project although it is 

limited to a small sized room due to the limitation on the total number of landmarks. 

 

Figure 5: Flow chart of the MonoSLAM implementation [23] 

 

The system is improved by Williams[26] and his thesis is taken as reference in our 

review here. In the system implemented by Williams, landmarks are represented 

using inverse depth parameterization[27] which allows multiple landmarks to be 

initialized simultaneously. This improvement eliminates the need of a known target as 

used in the Davison system to set the scale. The system utilizes the FAST corner 

detector and then it will perform the same thresholding as in the Davison system by 

using the Shi-Tomasi score. Active search and the JCBB algorithm are used for 

matching to reject false matches. 
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Figure 6: FAST Feature detection on image patch. The pixels used in the feature 

detection is highlighted[28] 

Another monocular SLAM implementation which we will review is that done by 

Civera[29]. The contribution of this paper is in the section of data association which 

previously has been confined for quite some time to the Joint Compatibility Branch 

and Bound (JCBB) method by Jose Neira in 2001[30] especially for use with the EKF 

framework. JCBB eliminates spurious measurements by choosing the hypothesis that 

has the largest number of compatible pairings. It searches through all possible 

matches the largest set thatis jointly compatible and thus proves to be a much better 

choice than the nearest neighbor approach. However the 1-point RANSAC method 

proposed by Civera serves to overcome some of the shortages faced by the widely 

used JCBB method. In terms of computational costs, the interpretation tree search that 

JCBB uses to extact the largest jointly compatibleset of matches has exponential 

complexity when spurious observations are present. This limits the number of the 

observations to around 10 to 12. On the other hand, the 1-point RANSAC is linear in 

the state and measurement size, thus having a lower costvariation with the number of 

outliers. Therefore, these papers are all essential in building the concept that we 

would like to implement in our SLAM. 
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Figure 7: 1-Point RANSAC steps for a 2D line estimation example: Compared to the standard 

RANSAC, the algorithm assumes that an a priori probability distribution over the model 

parameters is known in advance. This prior knowledge allows computation of the random 

hypotheses using only 1 data point. The computational cost is lowered by the reduction of the 

number of hypotheses. [29] 
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CHAPTER 3 

METHODOLOGY 

3.1    Flow of activities 

The flow of the methodology used for the final year project will be included in this 

section. Below, is a general overview of the activities conducted for FYP I and FYP 

II. 

 

 

 

 

Start

Overview of title

Literature Review

Learning and understanding algorithm

Coding to communicate with the robot / Partial 
codes

Testing algorithm with robots camera

Implementation of SLAM

Final report

End
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3.2     Project Activities 

Research is first done to get a grasp of the rough idea behind the implementation of 

SLAM. One will be introduced to the different methods currently used for SLAM on 

autonomous vehicles or robots. 

Literature review 

Based on the research done from reading journals, online publications, lecture notes 

and tutorials, a literature review is compiled as a summary of the previous work done 

on SLAM and the methods used.After the literature review is done, we will then 

proceed with choosing the algorithm to be used such as either EKF or FastSLAM. 

Then, we will perform the necessary reading and learning to familiarize with the 

mathematical concepts, and how it works. The use of Monocular SLAM using EKF is 

chosen because of the less complexity in implementing since the robot motion is not 

taken into account for the odometry. A motion model is instead assumed for the 

movement of the camera, an assumption which will prove costly for our 

implementation. 

Learning and understanding the algorithm 

The chosen algorithm 1-Point RANSAC Inverse Depth EKF Monocular SLAM is 

read and based on the papers and the codes, I try to understand the algorithm used. 

This part, I would say that as of now, I have an overview of the algorithm but not 

really too detailed into the mathematic behind it 

Coding to communicate with the robot /Partial codes 

The programming on the robot initially started with the use of choreographe to move 

the robot, and using NAO simulator to run and test the functions in the room. 

However, I soon realized that Choreographe (the software GUI for NAO) is 

practically not that useful for the work intended. With the switch to the use of the 

python scripts, it is easier to code and control the robot to obtain image sequence, 

videos and to move the robot. It is also in this part where I tested with partial parts of 

the necessary stuffs needed in the algorithm. A few camera calibration methods are 
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tested out to verify the accuracy of those methods. The calibrated parameters are 

important as they determine the accuracy of the SLAM later on.  

Testing algorithm with robots camera 

With the calibrated camera parameters, the algorithm is tested on video sequences 

recorded by using the camera on the robot. The corner detection algorithm is 

benchmarked using a same image to compare the performance of these algorithms.  

Using mex files, the FAST corner detector used in the earlier MATLAB codes 

performs significantly faster. Even in this stage, a few methods have been attempted 

to speed up the coding, and one was to convert the whole MATLAB coding platform 

to use C++ which was never completed due to insufficient time and some 

programming shortcomings. 

Implementation of SLAM 

For the implementation, the python code is no longer used, and instead, the 

MATLAB code is used from the libraries provided by Aldebaran Robotics to 

communicate with the robot. Images are captured from the robot while it is moving 

and the SLAM accuracy is evaluated. 

Final Report 

In this section, it comprises of the final stages whereby the report is prepared. Before 

the report is done, a presentation was also done for the Electrex and the SEDEX 

exhibition in UTP. 

 

Tools/Hardware/Softwareused: 

- NAO V3 robot with camera (OV7670 VGA) 

- Firmware 1.12.5 

- Computer running on Windows (execution of main programs) and Ubuntu 

(accessing files from memory stick) 

- Python, Visual Studio C++, and MATLAB. 
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3.3    Gantt Chart 

3.3.1    FYP I 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
Selection of Project Topic:  

Visual SLAM on NAO 
                            

2 
Preliminary Research Work:  

Research on literatures related to the topic 
                            

3 Submission of Extended Proposal       
 

                    

4 Kinematic Modeling of Robot                             

5 Familiarize and coding on NAO               
 

            

6 Preparation for Presentation               
 

            

7 Proposal Defense       
 

                    

8 Draft Report                           
 

9 Interim Report             
 

       

 - Key Milestone 
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3.3.2    FYP II 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Algorithm read and understand       
 

                    
 

2 Testing and profiling algorithm               
 

2 Progress Report                             
 

3 Implementation of SLAM               
 

            
 

4 Final results / Findings               
 

5 Pre-Edx               
 

            
 

6 SEDEX       
 

                    
 

7 Final Report                           
 

 

8 Viva             
 

       
 

 

 - Key Milestone 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1    Calibration 

The parameters of the camera are needed to initialize the camera for the algorithm. 

Discrepancies were noticed when the calibration method is repeated using the 

OpenCV libraries with python using the webcam on my laptop.  

With the open CV function, FindChessboardCorners, the script automatically detects 

the chessboard image and search for the corners. The script automatically calculates 

the calibration parameters when a set amount of frames have been captured and 

redisplay two windows, one with the actual view and the other after undistorting. 

Basically the intrinsics and distortion obtained through this method fluctuates and 

changes by a lot in the subsequent tries. Therefore, I decided to try out a few other 

methods to validate the results. 

Using the MATLAB Camera Calibration Tool Box done by Jean-Yves Bouguet. 

 

The first method was by using the MATLAB Calibration Tool Box which is 

considered a classic in camera calibration. 

 

Figure 8: Mosaic of 14 pictures taken using imtool 
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Figure 9: Reprojection on image 

Calibration results after optimization (with uncertainties): 

Focal Length:           fc = [ 286.95150   287.46227 ] ± [ 3.49466   3.43038 ] 

Principal point:        cc = [ 155.31871   115.93520 ] ± [ 1.91445   2.23545 ] 

Skew:               alpha_c = [ 0.00000 ] ± [ 0.00000  ]    

Distortion:            kc = [ 0.33039   -1.08948   -0.00347   -0.00541  0.00000 ] ± [ 

0.03168   0.19624   0.00288   0.00353  0.00000 ] 

Pixel error:           err = [ 0.15615   0.12837 ] 

 

 

GML C++ Camera Calibration Toolbox[29] 

The GML Calibration toolbox utilizes multiple calibration patterns and for this try, 

two templates are used, 6x5 and 6x9 is used with the squares at 30mm apart. 

 

Figure 10: Two chessboard templates used 

 

 

 

 



 

 

 

 

20 

 

 

 

 

 

 

 

 

 

Focal Length:        fc = [ 286.697   286.336 ] ± [ 5.682   6.080 ] 

Principal point:       cc = [ 164.604   100.874 ] ± [ 4.200   6.767 ] 

Distortion:            [ 0.196733  -0.410724  -0.014089  0.009308 ] ± [ 0.074513  0.469068  

0.008955 0.00571]  

Pixel error:           err = [ 0.34   0.63 ] 

 

The two results are slightly different but in comparison with the inaccuracy from the 

python script, the two methods, the Matlab Toolbox and the GML toolbox are 

feasible methods. 

The inaccurate result from the python open cv implementation might me due to the 

fact that the board moves when the capture is taking place, thus causing blurry 

motions to be captured. 

 

Finally the MATLAB Calibration ToolBox is the chosen method to calibrate the 

camera on the robot NAO. 

Obtained OV7670 camera calibration parameters from Bouguet’s toolbox: 

 

Calibration results after optimization (with uncertainties): 

 

Focal Length:           fc = [ 382.05271   380.50844 ] ± [ 2.18708   2.15287 ] 

Principal point:       cc = [ 159.59442   110.47495 ] ± [ 2.28538   2.10549 ] 

Skew:               alpha_c = [ 0.00000 ] ± [ 0.00000  ]    

Distortion:             kc = [ 0.27363   -0.99625   0.00047   -0.00523  0.00000 ] ± [ 

0.02088   0.11953   0.00276   0.00280  0.00000 ] 

Pixel error:           err = [ 0.19699   0.18773 ] 

 

 

Figure 11: Detection of corner points 
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4.2    Feature detector benchmark 

In a vision based SLAM system, feature detectors are needed to search for easily 

traceable points in the images captured. In comparison to edges and lines, corner 

points are small and so require less memory and computation to maintain. A few 

methods were taken to the test with the same image. The importance of this part is 

learning to implement and to use the codes and also to test the speed of the algorithm.  

The test image is grayscale with a dimension of 768 x 288. 

 

Figure 12: Grayscale image of a lab[26] 

 

FAST corner detector 

Test 1: MATLAB (m-file) 

Elapsed time: 4.90 seconds 

Test 2: Python 

Elapsed time: 7.36 seconds 

Test 3: MATLAB (mex-file) 

Elapsed time: 0.032seconds 

 

SURF 

Test 1: MATLAB (mex-file) 

Elapsed time is 0.11 seconds. 

 

Harris Corner Detector 

Test1: Python/OpenCV 

Elapsed time: 0.225 seconds 

Test 2: MATLAB (mex-file) 
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Elapsed time is 0.119475 seconds. 

Corner detector m-file Python Mex file 

SURF  -   -  0.11 s 

Harris  - 0.225 s  0.12 s 

FAST  4.90 s 7.36 s 0.032 s 

Table 1: Comparison of detectors 

 

4.3    MATLAB profiling 

By first profiling the MATLAB code given online, I am able to identify the functions 

where the program requires the most time in. Here, the top 12 functions arranged 

based on total time is shown for 10 frames, 20 frames and 60 frames runtime 

respectively. 

 

Figure 13: Example of SLAM on MATLAB 
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Figure 14: 10 frames 

 

Figure 15: 20 frames 
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Figure 16: 60 frames 

 

The results above were before the implementation of the MEX-files for the corner 

detection. However, after the MEX implementation, the algorithm is still slow 

although the fast_corner_detect_9 time lag is now negligible. This is due to the 

computational cost spent on matrix multiplications mostly in the EKF update step. It 

is suggested that a better library is used for the multiplication process. 
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4.4    Implementation of SLAM 

The SLAM algorithm is then tested in a controlled environment. The figure below 

shows the top view of the arrangement for the environment in the lab.

 

Figure 17: Top view of map 

 

Having a controlled environment will provide us with a ground truth to compare our 

obtained results with. 

 

Figure 18: Estimated result if accurate 
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4.4.1    Result obtained from a smooth displacement (offline) 

The robot is manually moved to the right for 1.5 meters. Throughout the movement, 

the head of the robot is facing towards the feature filled environment. 

 

 

Figure 19: Smooth displacement (offline) 

 

As seen in the figure, the linear motion is accurately estimated. The landmarks are 

also correctly plotted since there is a section with landmarks which are situated 

further in and the objects that are placed closer to the robot’s path (the box with three 

bowling pins) are correctly positioned. Due to the use of a monocular camera, the 

scene and the camera motion can only be recovered up to a scale factor and here, the 

appropriate scale factor is around 1.5x since the 1.5 meters displacement have been 

taken as a 1 meter displacement. This applies also to the distance to the landmarks. 
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Figure 20: Zoomed in 
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4.4.2    Results obtained from a displacement from robot walk (real time) 

Real time capability is obtained not through the speed of the computation but by 

setting the robot to take frames on each footstep. This results in large frame skips and 

cause difficulties in matching the points in subsequent frames. The result from this is 

unsatisfactory and since it is impossible to reduce the speed of NAO’s footstep any 

further, it is not possible for the results to be improved unless the computation speed 

is increased to allow in between frames to be captured. 

 

 

Figure 21: Realtime through frame skips 

 

Figure 22: Inaccurate Mapping and Localization 

 

The algorithm has a good approximation on the direction of the landmarks but the 

scaling factor and the motion estimation is really bad. Structure from motion might be 

a better solution for a condition with large frame skips. 



 

 

 

 

29 

 

4.4.3    Results obtained from a displacement from robot walk (offline) 

 

In this third test, the robot is programmed to walk straight, but during the walking 

sequence, with NAO’s terrible motion control, the motion was actually not that 

straight. The video sequence recorded during the walk is tested to simulate the 

resulting SLAM if the algorithm can be implemented in a real time 30Hz 

environment. 

From a same video sequence of 1300 frames: 

Without discarding the blur images: 

 

Figure 23: With blurry frames accounted 

 

The results show that the robot has moved all over the area and the landmarks 

observed are scattered around the robot when in fact the landmarks should only be in 

front of NAO. 

The blue ellipse represents the detected features/landmarks which are not able to be 

matched with any previous detection. As a result, many landmarks and initialized and 

more points are added to the map although they might be the same observed points 

from previous frames. 

 

No valuable information could be interpreted from this trial when the blurred images 

are not removed. 
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With the blur images discarded: 

 

 

Figure 24: Blur frames above a certain threshold is removed 

 

The blur metric is utilized to set a certain threshold for the frames so that blurry 

images are discarded. The threshold used here is 0.45. 

 

 

Figure 25: Blur frames removed 

 

The results are better when the blurred frames are removed but still insufficiently 

accurate for the landmarks and the motion estimation. 
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Summary of results: 

 

Situation Verdict 

Smooth displacement of the robot 

through a horizontal motion. 

Accurate representation of motion and 

landmarks to a certain scale 

Real time online processing with frame 

skips (robot walk). 

Inaccurate motion and insufficient 

landmarks but with a little resemblance to 

the motion and map. 

Offline processing of video recorded for 

all frames (robot walk) 

Inaccurate motion and landmarks 

scattered. Total loss of any direction or 

localization for the robot. 

Offline processing of video recorded with 

blurred frames discarded (robot walk) 

Better than processing of all frames but 

the motion is inaccurately represented in 

the opposite direction. The landmarks are 

in the right direction but inaccurately 

placed in terms of distance. 

Table 2: Summary of results 

 

Note: The processing time remains slow at an average rate of around 0.5 frames per 

second.  
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CHAPTER 5 

CONCLUSION & RECOMMENDATIONS 

From the early findings, it is proven that the best and fastest feature detector to be 

used is the FAST corner detector as long as it is in the form of a compiled MEX file 

and not in a python script or a MATLAB file. The use of different calibration 

methods also proves that the calibration method in Bouguet’s toolbox is accurate and 

reliable. Although, not mentioned, the calibration parameters used for the algorithm 

in MATLAB needs to be converted to the Tsai model. 

 

The algorithm itself works great for handheld cameras and motions which are smooth 

as shown but using the biped movement of the robot, the results were unfortunately 

not favorable. 

 

The implementation of the algorithm on a humanoid robot proves to be more 

complicated than expected. The sudden jerks and unreliable motion from the 

footsteps of the robot creates a sequence of frame which are blurry if the motion is 

too quick and also sudden changes in the direction of the movement. The head 

(camera) attached on the robot tend to sway drastically back and forth while it is 

walking. With huge frame skips, the SLAM estimation will be badly affected for the 

EKF monocular SLAM using 1-P RANSAC. It is the wrong choice of algorithm to be 

used but due to the shortage of time, this is the only algorithm which was tried. For 

the case of frame separation EKF relies on first order linearization that will have big 

errors if the predicted values are far from the actual matched ones. In this particular 

case where it is not possible to grab close, sequential frames, perhaps Structure from 

Motion will be a better technique to be used. 

 

Nevertheless, if we take into assumption that real time processing at 30fps is possible 

once the coding is ported into the more efficient C++ language; further tests are 

conducted on the videos recorded from the camera on NAO which is set to record at 
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30 fps. Testing with the algorithm and the recorded video from the robot, the results 

were at first extremely bad due to the blurry frames captured. These frames cause the 

data association between frames to be inaccurate which then results in greater errors. 

 

Motion deblurring methods have been recommended to solve this issue and will be 

look into. However, before implementing motion deblur algorithm, one will need to 

know which frames are sharp and which are blur. To do so, the perceptual blur metric 

[32] is used to detect blur frames and for now, the frames will be discarded instead of 

corrected using filters such as Wiener or Inverse filtering. 

 

The results after the blurry frames are discarded were better than when all frames are 

used in the process, but still inaccurate if compared with the results obtained from the 

smooth camera motion on the robot. The algorithm will be better if used with other 

robots such as the wheeled wifibot as the movements of the robot will be smooth and 

predictable. 

 

Recommendations 

 The algorithm used is suitable only for smooth robot motion so the use of 

wheeled robots or vehicle is highly recommended or perhaps the motion 

model will need to be changed to a more complicated one based on the 

movement and joints of the robot. 

 The MATLAB codes will need optimization to make it less computational 

intensive or by having itrecoded in a faster language. 

 Motion deblur techniques could be implemented to recover the bad frames 

instead of simply discarding the frames resulting in some gaps in the image 

sequence. 
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APPENDIX A 

Presentation Poster SEDEX 30 
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APPENDIX B 

Related Documentations& Code Snippets 

 

 

 

NAO V. 3.x 

 x86 AMD GEODE 500MHz CPU 

 256 MB SDRAM / 2 GB flash memory 
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Main mono_slam.m (modified) 

initIm = 1; 
lastIm = 850; 
vidName = '15m.avi'; 

 
robot = 0; 

 
%switch to capture from robot if robot == 1 
if (robot == 1) 
robotIP = '192.168.0.103'; 
motion = ALMotionProxy(robotIP,9559); 
Nao_head(robotIP ); 
motion.setStiffnesses('Body',1.0); 
motion.walkInit(); 
pause(5) 
im = takeImageNao(robotIP); 
else 
im = takeImageFromVideo(vidName,initIm); 
end 

 
tic; 
% Camera calibration 
cam = initialize_cam; 
% Set plot windows 
set_plots; 

 
% Initialize state vector and covariance 
[x_k_k, p_k_k] = initialize_x_and_p; 

 
% Initialize EKF filter 
sigma_a = 0.007; % standar deviation for linear acceleration noise 
sigma_alpha = 0.007; % standar deviation for angular acceleration 

noise 
sigma_image_noise = 1.0; % standar deviation for measurement noise 
filter = ekf_filter( x_k_k, p_k_k, sigma_a, sigma_alpha, 

sigma_image_noise, 'constant_velocity' ); 

 
% variables initialization 
features_info = []; 
trajectory = zeros( 7, lastIm - initIm ); 
% other 
min_number_of_features_in_image = 25; %25 
generate_random_6D_sphere; 
measurements = []; predicted_measurements = []; 

 

 

 
%--------------------------------------------------------------- 
% Main loop 
%--------------------------------------------------------------- 

 
%im = takeImage( sequencePath, initIm ); 
step2 = 2; 
siz = -0.05; 

 
for step=initIm+1:1:lastIm 
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% Map management (adding and deleting features; and converting 

inverse depth to Euclidean) 
[ filter, features_info ] = map_management( filter, features_info, 

cam, im, min_number_of_features_in_image, step ); 

 

% EKF prediction (state and measurement prediction) 
[ filter, features_info ] = ekf_prediction( filter, features_info ); 

 
if (robot ==1) 

 
if (step > 4 ) 
if mod(step,4) 
    step2 = Walk_noblockNao(motion,robotIP,step2,siz); 
end 
end 
pause(1) 
im = takeImageNao(robotIP); 

 
else 
im = takeImageFromVideo(vidName,step); 

 
end 

 

 
% Search for individually compatible matches 
features_info = search_IC_matches( filter, features_info, cam, im ); 

 
% 1-Point RANSAC hypothesis and selection of low-innovation inliers 
features_info = ransac_hypotheses( filter, features_info, cam ); 

 
% Partial update using low-innovation inliers 
filter = ekf_update_li_inliers( filter, features_info ); 

 
% "Rescue" high-innovation inliers 
features_info = rescue_hi_inliers( filter, features_info, cam ); 

 
% Partial update using high-innovation inliers 
filter = ekf_update_hi_inliers( filter, features_info ); 

 
% Plots, 
plots;  
%stepcount = step; 

 
% Save images 
saveas(figure_all, sprintf( '%s/3image%04d.fig', 'figures/', step ), 

'fig' ); 

 

 
end 
toc; 
if (robot==1) 
motion.stopWalk(); 
end 

 

TakeImageNao 

 

functionim = takeImageNao(robotIP) 
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camProxy = ALVideoDeviceProxy(robotIP,9559); 

 
resolution = 1;    % kQVGA 
colorSpace = 11;   % RGB 

 
camProxy.subscribe('matlab',int16(resolution), int16(colorSpace), 

int16(30)); 

 
naoImage = camProxy.getImageRemote('matlab'); 

 

camProxy.unsubscribe('matlab'); 

 
IMarray = naoImage{7}; 

 
length_n = size(IMarray); 

 
imredstring = IMarray(1:3:length_n); 
imgreenstring = IMarray(2:3:length_n); 
imbluestring = IMarray(3:3:length_n); 

 
imred = reshape(imredstring,320,240); 
red_im = imred'; 
imgreen = reshape(imgreenstring,320,240); 
green_im = imgreen'; 
imblue = reshape(imbluestring,320,240); 
blue_im = imblue'; 

 
%imgray = reshape(imgraystring,320,240); 
%gray_im = imgray'; 

 
rgbimage = uint8(rand(240,320,3)); 
rgbimage(:,:,1) = red_im; 
rgbimage(:,:,2) = green_im; 
rgbimage(:,:,3) = blue_im; 

 
im=rgb2gray(rgbimage); 

 
end 

 

 

 

 

 

 

 


