CHAPTER 2

LITERATURE REVIEW

In this chapter, theoretical of project will be discussed further to get basic understanding

of the project.

2.1 Linear Elastic Fracture Mechanics (LEFM)

Linear Elastic Fracture Mechanics (LEFM) assumes that the material is isotropic and
linear elastic. Based on the assumption, the stress field near the crack tip is calculated
using the theory of elasticity. When the stresses near the crack tip exceed the material
fracture toughness, the crack will grow. In LEFM, most formulas are derived for either
plane stress or plane strain associated with the three basic modes of loadings on a
cracked body which are Mode | (opening), Mode Il (sliding), and Mode 11 (tearing).
LEFM is also valid only when the inelastic deformation is small compared to the size of
the crack. If large zones of plastic deformation develop before the crack grows, Elastic
Plastic Fracture Mechanics (EPFM) must be used. All of the terms mention will be detail

discuss in this chapter.

2.2 Stress Intensity Factor, K

Stress intensity factor is defined as factor of the singular stress at the crack tip. It is used
in fracture mechanics to more accurately predict the stress state or stress intensity near
the tip of a crack caused by a remote load or residual stresses. When this stress state
becomes critical, a small crack grows and the material fails. The load at which this

failure occurs is referred to as the fracture strength.



The stress intensity factor also is a function of geometry of the cracked body and
associated loading and is used to determine the fracture toughness of most materials.

The stress intensity factor presented by the following equation 2.1 [1]:

K = ovna @.1)

o = Applied stress, MPa

a = Crack size, m

2.3 Fracture Toughness, Kic

The critical stress intensity factor is referred to as fracture toughness. Empirically, it is
found that this approach works well, because the assumptions inherent with linear
elastic fracture mechanics are satisfied. In linear elastic fracture mechanics, instead of
comparing the maximum stress value with a critical stress value, the material failure is

predicted by comparing the stress intensity factor with some critical value.

Fracture toughness of a material is defined as the amount of stress required or energy
resistance of a material to propagate a preexisting flaw which can lead to material
failure. The energy required of a particular flaw to cause failure depends on the fracture
toughness of the material, the location, crack size, thickness, width, magnitude and
distribution of the loads imposed on the solid. It can be calculate by the following

equation 2.2:

K= Yovma (2.2)

Where,

Y = dimensionless parameter that depends on both the specimen and crack geometry
o = Applied stress,MPa

a = Crack size, m



If a material have a large value of fracture toughness it will probably undergo ductile
fracture while if the material have low value of fracture toughness it can be

characteristic as brittle fracture [2].

2.4 Modes
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Figure 2.1: Modes I, Modes Il and Modes 11 that applied on crack

There are three loading modes as shown in Figure 2.1 that considered can be applied to
the cracks which are Modes | (opening), Mode Il (forward shear) and Mode 11 (ant
plane shear). The anti plane shear mode plane does not occur in the plane problem of
elasticity [3]. The opening mode of deformation is by far the most important mechanism
controlling failure of homogenous and isotropic materials. For this project, the emphasis
will be on the development of linear elastic fracture mechanic for opening mode
deformation. To differentiate the stress intensity factor with respect to its mode, they
were denoted as K | for Modes | K ;; for Mode Il and K y;; for Mode I11. Most material is
more susceptible to fracture by normal tensile stresses (opening mode) than by shear
stress (shear mode).



2.5 Effect of loading modes

Critical stress intensity factor or fracture toughness for a given mode is a material

constant and it is varies with the loading mode as shown in equation 2.3:
Kic #= Kiic #Knic (2.3)

Most material is more susceptible to fracture by normal tensile stresses than by shear
stresses. Consequently, mode | loading am more important than others. Mode Il and
mode |11 loading usually do not lead to fracture. This also can be said that K;,c and K¢
is greater than Kc. This project only considers Mode | and the other Mode become

important when they are applied to a weak interface in the material [2].

2.6 Stress analysis of crack
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Figure 2.2: Distribution of stresses at the vicinity crack tip

Figure 2.2 schematically shows an element near the crack tip of a crack in an elastic
material, together with the in plane stresses on this element. Every stress components
are proportional to stress intensity factor. Stress intensity factor is a unique design

parameter which represents the magnitude of stress field severity near a crack tip and



the limit show by equation 2.4. If this constant is known, the entire stress distribution

equation show in equation 2.5 can be computed.

Besides that, stress intensity factor gives a measure of strength of singularity controlling
stresses at the crack tip. Crack tips produce a 1/~% singularity. As distance from crack,
r approach zero, equation 2.5 will approaches infinity. But the other terms will remain
finite or approach zero. The stress near crack tip will varies with 17+ | regardless of the

configuration of the cracked body [4].

The stress fields near a crack tip of an isotropic linear elastic material as shows in figure

2.2 can be expressed as a product of 174/ and a function of £ with a scaling factor K

by equation 2.3 and 2.4:
lim o4’ :ifj@ (8) (2.4)

In this study, mode I will be used and to make a clearer view that stress become singular

at the crack, Irwin had come out with this result:
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From the equation 2.5 it is clear that stresses become singular at the crack tip. K; control
the magnitude of stresses at any point in a small neighborhood around the crack

tip. Far away from the crack tip, Irwin’s equation does not apply [4].



2.7  Plane stress versus plane strain
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Figure 2.3: effect of thickness in fracture toughness

The definition of plane strain is a condition in a body in which the displacements of all
points in the body are parallel to a given plane, and the values of this displacement do
not depend on the distance perpendicular to the plane. While, plane stress can be define
as a condition of a body in which the state of stress is such that two of the principle

stresses are always parallel to a given plane and are constant in the normal direction [5].

When a material with a crack is loaded in tension, the materials develop plastic strains
as the yield stress is exceeded in the region near the crack tip. Material within the crack
tip stress field, situated close to a free surface, can deform laterally (in the z-direction of
the specimen) because there can be no stresses normal to the free surface. This
condition is called plane-stress and it occurs in relatively thin bodies where the stress

through the thickness cannot vary appreciably due to the thin section.

However, material away from the free surfaces of a relatively thick component is not
free to deform laterally as it is constrained by the surrounding material. The stress state
under these conditions tends to triaxial and there is zero strain perpendicular to both the
stress axis and the direction of crack propagation when a material is loaded in tension
[2]. This condition is called plane-strain and is found in thick plates. These assumptions
had been shown in figure 2.3.Under plane-strain conditions, materials behave

essentially elastic until the fracture stress is reached and then rapid fracture occurs.



2.8 Numerical method

Numerical method based on finite element method requires a careful choice of elements

to model the geometry. The final goal of such method is to extract the singular field

near the crack tip. If the stress, oy is extracted ahead of the crack tip then stress

intensity factor can be calculated by the limit in equation 2.6:

K= lrl_%l o/ 2Tr

(2.6)

K, can also be extracted by examining displacement behind the crack tip as equation 2.7 [6]:

2G . 2m
limv [—
a+ 1r-0 r

Where,

v = displacement at Y-direction
G = strain energy changes
r = the distance from the crack tip to the first node

2.9  Compact tension specimen (CTS)

2.7)

For this project, compact tension specimen had been chosen as the test piece. This is

because this specimen is commonly used in fracture toughness evaluation related to

Modes I. The configuration and specification of CTS is as mentioned in ASTM
E-399-90 (Approved 1997): Standard Test Method for Plane — Strain Fracture

Toughness of Metallic Material. Figure 2.4 indicate the fix dimension of CTS.

10



t 2
) 2 holes diameter
=1 I % 0.25W+0.005W
3 - "
=3
ol N g
ol N 9
b Sy L——— >
+
+ 2 s 3
ol £ g -
S| o S ]
g ° \ """
> <
)
S
v
© . :
B W+0.005W
DEE— 1.25W+0.010W
[ W=005W —™
y 125W=0.010W >

Figure 2.4: Compact Tension Specimen (CTS) adapted from ASTM E-399-90

Note that, dimension W is not the actual width of the specimen. The actual width of the
specimen is 1.25W. Stress intensity factor can be determined by applying empirical
expression. The empirical expression of CTS was included in ASTM E-399-90
(Approved 1997) testing procedure as in equation 2.8 and 2.9 [7]:

P a
K=—o .f(—
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P =Load, N

B = specimen thickness, m
W = specimen width, m

a = crack length, m

The main specimen dimensions are the crack length,a and the width,W. Other

dimensions are automatically fixed as indicated in the figure. The specimen thickness,B
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is sufficiently large in comparison with the plastic zone size to ensure plane strain

testing conditions.

2.10 Limits to the validity of LEFM

Because of strict size requirement, ASTM E399-90 recommends that the author perform
preliminary validity check to determine the appropriate specimen dimension. The size

requirement for valid fracture toughness is represent by equations 2.10, 2.11 and 2.12

[7]:

Kic\2
a,B > 2.5 (7) (2.10)
a 2.11)
. <—<0.
0.45 < <055
25 <4 (2.12)

In order to determine the required specimen dimensions, rough estimation of anticipated
fracture toughness should be done. Such an estimate can come from data from similar

material.

All equations give requirement for plane strain and linear elastic fracture mechanics. A
valid fracture toughness result is a material property that does not depend on the size or
geometry of the cracked body. Plain strain condition are use to measure a valid fracture
toughness and the lack of plain strain does not necessarily invalidate linear elastic
fracture mechanics. As long as the in plane dimensions are sufficiently large to confine
the plastic zone to the singularity dominated zone, the stress intensity factor is a valid

crack tip characterizing parameter.

12



2.11 PROPERTIES OF MATERIAL

To meet the above requirement, it is necessary to estimate critical stress intensity factor
and also to know the yield strength of the material. So in this study, Aluminum 7075-T6

had been chosen. Table 2.1 shown the material properties for Aluminum7075-T6 [8]:

Table 2.1: Material properties for Aluminum 7075-T6

Properties Value
Modulus of Elasticity 69GPa
Poisson’s Ratio 0.33

Yield Strength 495MPa
Critical Stress Intensity Factor 24MPa.m 2
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