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ABSTRACT 

This research project proposes the passive suspension of light rail vehicle (LRV) to 

be studied parametrically. The system is modelled as a multi-body dynamic model 

and used passive systems suspension which is the simplest and common type of 

suspensions to isolate disturbance from the track to the car-body. One model of light 

rail vehicle (LRV) will be selected and form a mathematical model for analysis 

purpose. The equation of motion will be develop from the mathematical model and 

then from the equation of motion the matrices of the LRV systems are derived, and it 

will be translated it into MATLAB language. The response of the system under 

varying parameters of suspension will be simulated computationally by using 

MATLAB. In this research, the parameters are divided in 5 cases, which is for case 0 

is using the nominal parameters, case 1 the nominal parameters is reduced by 20%, 

case 2 the nominal parameter is reduced by 50%, case 3 the nominal parameters is 

increased by 20% and for case 4 the nominal parameters is increased by 50%. For the 

results, the maximum suspension deflections and the stability of each car-body on 

random gradient track will be discussed.  
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Background of Study 

The major functions of suspension for light rail vehicles (LRV) are to support the 

car-body and bogie, to isolate the forces generated by the track unevenness at 

wheels, and to control the attitude of the car-body with respect to the track surface 

for providing ride comfort. Accordingly, the suspension influences vehicle ride 

comfort and stability, and should be designed to isolate the car-body from track 

roughness, and to maintain the suitable space between the track and car-body. 

1.2 Problem Statement 

1.2.1 Problem Identification 
 

The stability of the car-body for LRV needs to be done cautiously in order to get a 

better ride comfort. This research is to simulate whether the passive suspension 

deflection that runs onto uneven track within the clearance between the car-body and 

the track or not. 

 

1.2.2 Significance of Project 

The stability of the car-body and suspension deflections within their allowable 

clearance when light rail vehicle (LRV) runs onto the uneven track condition can be 

satisfied by selection the suitable parameters of suspension of each car-body. This 

research will be useable in order to determine the selection of the passive suspension 

parameters for the LRV. 
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1.3 Scope of Study and Objective 

Scopes of study for this project are the selection of the LRV with only three car-

bodies, uneven track is define as sinusoidal wave, and the pitching motion for the 

carboy only be study in two-dimensional (2-D) movement which is clockwise and 

counter-clockwise. The project involves the derivation of equation of motion for 

LRV, develop a MATLAB code based on the equation of motion, and computer 

simulation for the dynamics of LRV under varying parameters of its passive 

suspension. This project will cover the simulation and analysis by using MATLAB. 

 

The objectives of this project are: 

 To study the maximum displacement of each car-body. 

 To study on the car-body’s stability. 

 To identify the best parameters for the suspension of LRV. 

 

 

 
 
 



3 

CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Vibration and Vibration Systems 

Vibration is any motion that repeats itself after an interval of time is called vibration 

or oscillation. The swinging of pendulum and the motion of plucked string are type 

of examples of vibration. The theory of vibration deals with the study of oscillatory 

motions of bodies and the forces associated with them [2]. 

A vibratory system, in general, include a means for storing potential energy (spring 

or elasticity), means for storing kinetic energy (mass or inertia), and means by which 

energy is gradually lost (damper). The vibration of a system involves the transfer of 

its potential energy to kinetic energy and kinetic energy to potential energy, 

alternately [2]. 

2.2 Degree of Freedom (DOF) 

The minimum number of independent coordinate required to determine completely 

the positions of all parts of a system at any instant of time defines the degree of 

freedom of the system. In mechanics, degrees of freedom (DOF) are the set of 

independent displacements that specify completely the displaced or deformed 

position of the body or system. This is a fundamental concept relating to systems of 

moving bodies in mechanical engineering, aeronautical engineering, robotics, 

automotive engineering, locomotive engineering, structural engineering, etc. 
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2.3 D’Alembert Principle 

The equation of motion derive by Newton second law of motion 

θ&&&& JtMorxmtF == )()(  can be written as 0)( =− xmtF && or 0)( =− θ&&JtM . These 

equations can be considered equilibrium equation provided that θ&&&& Jandxm −−  are 

treated as a force and a moment. This fictitious force or moment is known as inertia 

force or inertia moment and the artificial state of equilibrium is known as dynamic 

equilibrium. This principle is called D’Alembert’s principle [2].  

2.4 Bogie 

2.4.1 Role of Bogie 

Railcar bogies are very important in safe railway operations and perform the 

following functions [5]: 

 Support railcar body firmly 

 Run stably on both straight and curved track 

 Ensure good ride comfort by absorbing vibration generated by track 

irregularities and minimizing impact of centrifugal forces when train runs 

on curves at high speed 

 Minimize generation of track irregularities and rail abrasion 

 

2.4.2 Bogie Configuration 

 

2.4.2.1 Non-Articulated and Articulated bogies 
 
Bogies can be classified into non-articulated and articulated types according to the 

suspension. Two non-articulated bogies usually support one railcar body (Figure 

2.1a), but one articulated bogie supports the back end of the forward car and the 

front end of the rear car (Figure 2.1b) as seen in the Spanish Talgo, French TGV, and 

some express trains of the Odakyu Line in suburban Tokyo. Although the articulated 
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bogie has some disadvantages, such as a complex structure, increased axle load due 

to the support of one body by one bogie, and difficult maintenance, it offers various 

advantages including a lower centre of gravity, better ride comfort because car ends 

do not overhang bogies, and less effect of running noise on passengers because seats 

are not over bogies [5]. 

 

 

Figure 2.1  Non-articulated bogie and articulated bogie 

  

 

 

Figure 2.2  Swing hanger bogie 
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Figure 2.3  Lateral stiffness bolster bogie 

                                      
2.4.2.2 Bolster and Bolsterless Bogies 
 

Bolster and bolsterless bogies (Figure 2.4) are differentiated by their suspension 

gear. The bolster bogie was developed first. A fundamental characteristic of the 

bogie is that it must rotate relative to the body on curves, while retaining high 

rotational resistance during high-speed running on straight sections in order to 

prevent wheelset hunting (Figure 2.5) that reduces ride comfort. To achieve these 

characteristics, the bolster bogie has a centre pivot that serves as the centre of 

rotation, and side bearers that resist rotation. 

 

In the 1980s, a bolsterless bogie was commercialized to improve performance by 

reducing the number of parts and the bogie weight (the bolsterless bogie for 

Shinkansen was commercialized in the 1990s). In recent years, most narrow-gauge 

and Shinkansen cars use the bolsterless bogie, which permits rotational displacement 

on curves through the horizontal deformation of bolster springs (also known as 

secondary suspension springs) on both sides of the bogie. Rotation is resisted by 

longitudinal anti-yawing dampers on both sides of the bogie, resulting in better 

rotational resistance than conventional side bearers [5]. 
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Figure 2.4  Bolster and bolsterless bogies 

 

Figure 2.5  Wheelset hunting 

2.4.3 Basic Bogie Elements 

2.4.3.1 Suspension Gear 
 
The suspension gear (bolster spring, traction transfer device, anti-yawing damper, 

and lateral damper) plays an important role in supporting the body, allowing the 

bogie to rotate relative to the car body on curves, isolating the body from vibration 

(including high harmonics) generated by the bogie, and transmitting traction force 

from the bogie to the body. For these purposes, the bolsterless bogie (Figure 2.6) has 

air springs that permit large horizontal displacement, as well as a traction transfer 

device (classified into permanent-link type, the Z-link type and laminated-rubber 

type) at the virtual rotational centre of the bogie for transmitting the tractive force to 

the car. In addition, the bolsterless bogie used for express trains and Shinkansen has 

anti-yawing dampers (Figure 2.4) at the outer side of the side beam of the body and 
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bogie frame (parallel to the side beam) to prevent wheelset hunting that reduces ride 

comfort [5]. 

 

Coil springs were originally used as bolster springs to support the body, but in the 

1960s, air springs were commercialized for railcars in Japan and were used for high-

speed trains. Since the 1980s, they have been used for commuter and short-distance 

trains in order to take advantage of their improved ride comfort and ability to 

maintain body height [5]. 

 

 

Figure 2.6  Bolsterless bogie (model DT50) 

2.4.3.2 Axle Box Suspension 
 
This device supports the axle via the bearing from the bogie frame. It is a critical 

component determining the running performance of the bogie, ride comfort and 

bogie frame construction, due to the suspension method and support rigidity. Various 

designs are used (Figure 2.7). The pedestal swing spring design supports the axle 
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box using sliders around the pedestal on the bogie frame and was used widely in a 

variety of railcars of the former JNR. While its construction is simple, the sliders 

wear with time, creating play in the suspension and cause wheelset hunting, so it is 

not suitable for high-speed operation. The IS type was developed for Shinkansen and 

its good cushion rubber stiffness effectively eliminates play between the axle and 

bogie frame. However, it has several disadvantages, such as increased bogie frame 

length and severe maintenance requirements for leaf springs. As a result, recent 

bolsterless bogies for shinkansen use other types, including the coil spring with 

cylindrical laminated rubber type. Similarly, narrow-gauge railcars are increasingly 

using the conical laminated rubber type, the roll rubber type (serving both as the axle 

box suspension and axle spring) and axle beam type in order to simplify construction 

and reduce manufacturing costs [5]. 

 

 

Figure 2.7  Various axle box suspensions 
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2.5 Tracks  
 

 
Train operation and performance are dependent to a great extent on the track 

condition since train equipment and lading damage can result from improperly 

constructed or deteriorated track. The criteria for the use different weight of rail are 

based on maximum axle loads and tonnage moved over a particular track section. 

Typical railway gradients are considered for checking the suspension deflections due 

to the deterministic input of the track [3]. 

2.6 Mathematical Modeling 
 

The purpose of mathematical modeling is to represent all the important features of 

the system for the purpose of deriving the mathematical (or analytical) equation 

governing the system’s behavior. The mathematical model should include enough 

detail to be able to describe the system in terms of equation without making too 

complex. The mathematical model may be linear or non-linear, depending on the 

behavior of the system’s component [2].  

2.7 Runge-Kutta 

 

Runge-Kutta method is used in order to solve the multi-degree of freedom system 

beside the method is more accurate than Euler’s method. For this project, the fourth 

order Runge-Kutta method is used. The fourth-order Runge-Kutta method requires 

four evaluations of the right-hand side per step h. This will be superior to the 

midpoint method if at least twice as large a step is possible with for the same 

accuracy. 
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2.8 MATLAB 

MATLAB (Matrix Laboratory) is a high-performance interacting data-intensive 

software environment for high-efficiency engineering and scientific numerical 

calculation. Application include heterogenous simulations and data-intensive 

analysis of very complex systems and signals, comprehensive matrix and array 

manipulations in numerical analysis, finding roots of polynomial, two and three-

dimensional plotting and graphic different coordinate systems, integration and 

differentiation, signal processing, control, identification, symbolic calculus, 

optimization, etc. the goal of Matlab is to enable the user to solve a wide spectrum of 

analytical and numerical problem using matrix-based methods, attain excellent 

interfacing and interactive capabilities, compile with high-level programming 

languages, ensure robustness in data-intensive analysis and heterogenous 

simulations, provide easy access to and straightforward implementation of state-of-

the-art numerical algorithms, guarantee graphic features, etc [4].   
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CHAPTER 3 

METHODOLOGY / PROJECT WORK 

3.1 Procedure Identification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Information gathering and literature review 

Selecting the LRV model 

Derive equation of motion from 
mathematical modelling 

Simulate computationally the dynamics of 
LRV under varying parameters of its 

passive suspension 

Develop and writing MATLAB code for 
LRV’s dynamics 

Analysing result and data interpretation 
 

Documentation of report and presentation 
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3.2 Analysis 

3.2.1 LRV Configuration  
 
 
The LRV considered is composed of two power-car-bodies with two power-bogies 

(each equipped with two traction motors), one trailer-car-body with one trailer-bogie, 

as shown in Figure 12. Each end car-body is connected with one power-bogie by the 

use of a bolster, while the middle car-body is directly connected with one bolsterless 

trailer-bogie. An articulation is used to connect the power-car-body and the trailer-

carbody. The low floor area is about 70% of the total floor area. The track gauge is 

1067 mm. The primary suspension consists of rubber chevrons and the secondary 

suspension comprises coil springs and dampers. Full load mass for power car-body 

and trailer car-body is 10820 kg and 4470 kg respectively.  

 
 

 

Figure 3.1  Layout of LRV [1] 
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3.2.2 LRV Mathematical Modeling  
 

Based on LRV configuration in section 3.2.1, Figure 3.2 below is the mathematical 

model for the LRV: (see the Appendix 1 for the unknown variables reference) 

 

 

Figure 3.2  Multi-body dynamic model of LRV [1] 

3.2.3 LRV Equation of Motion  

From the mathematical model in figure 3.2, there are 2 degree of freedoms for each 

car-body which is bounce and pitch motions, and 1 degree of freedom for each bogie 

which is bounce motion only. Overall, 9 degree of freedoms will be developed in this 

mathematical model. The force in secondary suspension between car-body and bogie 

is due to the relative displacement of suspension mounting. Also the force in 

articulation between car-bodies is due to relative displacement of articulation. The 

articulation is modelled as a spring with vertical deflection capacity. Using the d’ 

Alembert force method [2], the equation of motion derived as follows from each of 

free body diagrams: 
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The free-body-diagram of car-body 1 is shown in figure 3.3. 

 

Figure 3.3  FBD for car-body 1 

 

By seeing this figure, the equation for bounce motion (Figure 3.3) cab be written as 

folows: 

0)()( 4223111221141111111 =−+−+−++−−+ ykkddkkdkyykkycdcycymp θθθ &&&&&            (3.1) 

 

and equation for the pitch motion (Figure 3.3), its equation is: 

0)()( 4112321
2
2

2
112211124111

2
111111 =++++−−+++− ydkdkdkddkykdydkkdydcdcydcIp θθθθ &&&&&            (3.2) 

 

Figure 3.4  FBD for car-body 2 
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Figure 3.4 shows the FBD of car-body 2. Based on this figure, the equation for 

bounce motion is as follows: 

0)2( 523212312252222 =−+−−−++−+ ykkdkdkykyykkycycymt θθ&&&&                     (3.3) 

 

and the equation for pitch motion (Figure 3.4) can be expressed as: 

02 3321
2
313223132 =+++−+ θθθθ dkdkddkdykdykdIt

&&                       (3.4) 

 

Figure 3.5  FBD for car-body 3 

 

The FBD od car-body 3 can be seen in figure 3.5. Then, the equation for bounce 

motion can be written as: 

0)()( 6123321123161311313 =−−−+−++−++ ykkdkddkkyykkycdcycymp θθθ &&&&&                   (3.5) 

 

and for the pitch motion , its equation is as follows: 

0)()( 6112323
2
2

2
112212116113

2
113113 =−++++−+−++ ydkdkdkddkykdykddkydcdcydcIp θθθθ &&&&&      (3.6) 
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Figure 3.6  FBD for bogies; from left bogie 1, bogie 2 and bogie 3 

 

The FBD for the three bogies are shown in figure 3.6, the equations for bounce 

motion are as follows: 

737343111111431111114 )()()1 ycykykkdkykyccdcycympb &&&&&& +=+++−+++− θϑ     (3.7) 

848454222542225 )()()2 ycykykkykyccycymtb &&&&& +=++−++−                             (3.8) 

939363131131631311316 )()()3 ycykykkdkykyccdcycympb &&&&&& +=++−−++−− θϑ  (3.9) 
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Below are overall equations of motion in LRV passive suspension system.  

939363131131631311316

848454222542225

737343111111431111114

6112323
2
2

2
112212116113

2
113113

3321
2
313223132

4112321
2
2

2
112211124111

2
111111

6123321123161311313

523212312252222

4223111221141111111

)()()9

)()()8

)()()7

0)()()6

02)5

0)()()4

0)()()3

0)2()2

0)()()1

ycykykkdkykyccdcycym

ycykykkykyccycym

ycykykkdkykyccdcycym

ydkdkdkddkykdykddkydcdcydcI

dkdkddkdykdykdI

ydkdkdkddkykdydkkdydcdcydcI

ykkdkddkkyykkycdcycym

ykkdkdkykyykkycycym

ykkddkkdkyykkycdcycym

pb

tb

pb

p

t

p

p

t

p

&&&&&&

&&&&&

&&&&&&

&&&&&

&&

&&&&&

&&&&&

&&&&

&&&&&

+=++−−++−−

+=++−++−

+=+++−+++−

=−++++−+−++

=+++−+

=++++−−+++−

=−−−+−++−++

=−+−−−++−+

=−+−+−++−−+

θϑ

θϑ

θθθθ

θθθθ

θθθθ

θθθ

θθ

θθθ

 

The equations show that the motion of the each mass will influence the motion of 

mass next to it. Therefore the equations can be written in matrix form as: 

 

                              [ ] [ ] [ ] }{}{}{}{ Fykycym =++ &&&                                       (3.10) 
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where [m], [c], [k], and {F} are called the mass, damping, stiffness, and force 

vectors matrices respectively, and {y} is generalized coordinate vector define as 

follows: 
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3.2.4 Runge-Kutta Form 

 

In order to solve the second order linear differential equations of the system 

observed, the fourth Runge-Kutta methods is selected. Based on these 

equations of motion, the acceleration vector can be written as 

                              [ ] [ ] [ ] ))()()(()( 1 tyktyctFmty rr
&

rr
&& −−= −                           (3.11) 

Assuming the displacements and velocities as unknowns, a new vector is 

defined as 
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Rearrange the equation above to obtain 
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That is, 
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With this, the recurrence formula to evaluate )(tY&
r

at different grid points ti 

according to the fourth order Runge-kutta method becomes 

                                      ]22[
6
1

43211 KKKKYY ii

rrrrr
++++=+                    (3.16) 

 

 

 

 



21 

 

where,  
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MATLAB program in order to solve the differential equation of motion of 

the system can be seen in Appendix 2. 

3.3 Tools / Equipment Required 
 

• MATLAB – For programming, simulation and plotting the result and 

outcome.  

• AutoCAD – For drawing the free body diagram (FBD) of the LRV.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Case 0 

In this study, it will be simulated the dynamics of the LRV in several cases of 

configuration. In case 0, the nominal parameters of the suspension are used as shown 

in Table 4.1. The duration of MATLAB simulation is set to be 10 second. The 

distance between the centre of mass of sequence of car-bodies is, l = 9 m. The 

external force working on the system is the result of the uneven track. In this study, 

the track is assumed to be sinusoidal with amplitude 5 cm and wavelength 10 m. The 

velocity of LRV travel is 72 km/h (or 20 m/s), therefore the period of the sinusoidal 

track will be 0.5 s. The track can be expresses as  

    λ = 10 m, v = 20 m/s 

    λ = vT                                                                      (4.1) 

then,   

    T = 10/20 

       = 0.5 s 

where,             

             ωn = 2π/T                                                                   (4.2) 

             ωn = 2(3.1416)/0.5 

       = 12.57 rad/s 

therefore,  

          y7 (t) = 0.05 sin ωnt                                                      (4.3) 

          y8 (t) = 0.05 sin ωn (t – l/v)                                           (4.4) 

          y9 (t) = 0.05 sin ωn (t – 2l/v)                                         (4.5) 

 

The results show in figure 4.1 to 4.3. 
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Table 4.1  Suspension parameters for case 0 

Items Parameters 

Secondary spring of car 1 and 3 (k1) 560000 N/m 

Secondary damper of car 1 and 3 (c1) 29584 Ns/m 

Secondary spring of car 2 (k2) 1092000 N/m 

Secondary damper of car 2 (c2) 50205 Ns/m 

Primary spring of car 1 and 3 (k3) 2400000 N/m 

Primary damper of car 1 and 3 (c3) 11883 Ns/m 

Primary spring of car 2 (k4) 3864000 N/m 

Primary damper of car 2 (c4) 176673 Ns/m 

 

 

Figure 4.1  Car-body 1 in case 0 

Figure 4.1 shows the maximum displacement that the car-body 1 experienced is 0.18 

mm and the time taken for the car-body to stable is about 2.6 second before it run 

below 0.1 mm of displacement. 
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Figure 4.2  Car-body 2 in case 0 

Figure 4.2 shows the maximum displacement that the car-body 2 experienced is 0.18 

mm and the time taken for the car-body to stable is about 1.9 second before it run 

below 0.14 mm of displacement. 

 

Figure 4.3  Car-body 3 in case 0 

Figure 4.3 shows the maximum displacement that the car-body 3 experienced is 0.13 

mm and the time taken for the car-body to stable is about 2.5 second before it run 

below 0.05 mm of displacement. 
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4.2 Case 1 

In case 1, the parameters of the suspension are reduced to 80% of its nominal 

parameter as shown in Table 4.2. The duration of MATLAB simulation is set to be 

10 second. The parameters of the uneven track are the same as in the case 0. The 

results show in figure 4.4 to 4.6. 

. 

Table 4.2  Suspension parameters for case 1 

Items Parameters 

Secondary spring of car 1 and 3 (k1) 448000 N/m 

Secondary damper of car 1 and 3 (c1) 23667 Ns/m 

Secondary spring of car 2 (k2) 873600 N/m 

Secondary damper of car 2 (c2) 40164 Ns/m 

Primary spring of car 1 and 3 (k3) 1920000 N/m 

Primary damper of car 1 and 3 (c3) 9506 Ns/m 

Primary spring of car 2 (k4) 3091200 N/m 

Primary damper of car 2 (c4) 141338 Ns/m 

 

 

Figure 4.4  Car-body 1 in case 1 
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Figure 4.4 shows the maximum displacement that the car-body 1 experienced is 0.14 

mm and the time taken for the car-body to stable is about 3 second before it run 

below 0.1 mm of displacement. 
 

 

Figure 4.5  Car-body 2 in case 1 

Figure 4.5 shows the maximum displacement that the car-body 2 experienced is 0.16 

mm and the time taken for the car-body to stable is about 2.2 second before it run 

below 0.15 mm of displacement. 
 

 

Figure 4.6  Car-body 3 in case 1 
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Figure 4.6 shows the maximum displacement that the car-body 3 experienced is 0.12 

mm and the time taken for the car-body to stable is about 3.5 second before it run 

below 0.1 mm of displacement. 
 

4.3 Case 2 

In case 2, the parameters of the suspension are reduced to 50% of its nominal 

parameter as shown in Table 4.3. The duration of MATLAB simulation is set to be 

10 second. The parameters of the uneven track are the same as in the case 0. The 

results show in figure 4.7 to 4.9. 

Table 4.3  Suspension parameters for case 2 

Items Parameters 

Secondary spring of car 1 and 3 (k1) 280000 N/m 

Secondary damper of car 1 and 3 (c1) 14792 Ns/m 

Secondary spring of car 2 (k2) 546000 N/m 

Secondary damper of car 2 (c2) 25103 Ns/m 

Primary spring of car 1 and 3 (k3) 1200000 N/m 

Primary damper of car 1 and 3 (c3) 5942 Ns/m 

Primary spring of car 2 (k4) 1932000 N/m 

Primary damper of car 2 (c4) 88337 Ns/m 

 

 

Figure 4.7  Car-body 1 in case 2 
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Figure 4.7 shows the maximum displacement that the car-body 1 experienced is 0.12 

mm and the time taken for the car-body to stable is about 4.8 second before it run 

below 0.06 mm of displacement. 
 

 

Figure 4.8  Car-body 2 in case 2 

Figure 4.8 shows the maximum displacement that the car-body 2 experienced is 0.13 

mm and the time taken for the car-body to stable is about 4.2 second before it run 

below 0.1 mm of displacement. 
 

 

Figure 4.9  Car-body 3 in case 2 

Figure 4.9 shows the maximum displacement that the car-body 3 experienced is 0.10 

mm and the time taken for the car-body to stable is about 5 second before it run 

below 0.04 mm of displacement. 
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4.4 Case 3 

In case 3, the parameters of the suspension are increased to 120% of its nominal 

parameter as shown in Table 4.4. The duration of MATLAB simulation is set to be 

10 second. The parameters of the uneven track are the same as in the case 0. The 

results show in figure 4.10 to 4.12. 

 

Table 4.4  Suspension parameters for case 3 

Items Parameters 

Secondary spring of car 1 and 3 (k1) 672000 N/m 

Secondary damper of car 1 and 3 (c1) 35501 Ns/m 

Secondary spring of car 2 (k2) 1310400 N/m 

Secondary damper of car 2 (c2) 60246 Ns/m 

Primary spring of car 1 and 3 (k3) 2880000 N/m 

Primary damper of car 1 and 3 (c3) 14260 Ns/m 

Primary spring of car 2 (k4) 4636800 N/m 

Primary damper of car 2 (c4) 212008 Ns/m 

 

 

Figure 4.10  Car-body 1 in case 3 

Figure 4.10 shows the maximum displacement that the car-body 1 experienced is 

0.23 mm and the time taken for the car-body to stable is about 2 second before it run 

below 0.15 mm of displacement. 
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Figure 4.11  Car-body 2 in case 3 

Figure 4.11 shows the maximum displacement that the car-body 2 experienced is 

0.18 mm and the time taken for the car-body to stable is about 1.5 second before it 

run below 0.13 mm of displacement. 
 

 

Figure 4.12  Car-body 3 in case 3 

Figure 4.12 shows the maximum displacement that the car-body 3 experienced is 

0.15 mm and the time taken for the car-body to stable is about 1.9 second before it 

run below 0.08 mm of displacement. 
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4.5 Case 4 

In case 4, the parameters of the suspension are increased to 150% of its nominal 

parameter as shown in Table 4.5. The duration of MATLAB simulation is set to be 

10 second. The parameters of the uneven track are the same as in the case 0. The 

results show in figure 4.13 to 4.15. 

 

Table 4.5  Suspension parameters for case 4 

Items Parameters 

Secondary spring of car 1 and 3 (k1) 840000 N/m 

Secondary damper of car 1 and 3 (c1) 44376 Ns/m 

Secondary spring of car 2 (k2) 1638000 N/m 

Secondary damper of car 2 (c2) 75308 Ns/m 

Primary spring of car 1 and 3 (k3) 3600000 N/m 

Primary damper of car 1 and 3 (c3) 17825 Ns/m 

Primary spring of car 2 (k4) 5796000 N/m 

Primary damper of car 2 (c4) 265010 Ns/m 

 

 

Figure 4.13  Car-body 1 in case 4 
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Figure 4.13 shows the maximum displacement that the car-body 1 experienced is 

0.28 mm and the time taken for the car-body to stable is about 1.4 second before it 

run below 0.22 mm of displacement. 

 

Figure 4.14  Car-body 2 in case 4 

Figure 4.14 shows the maximum displacement that the car-body 2 experienced is 0.2 

mm and the time taken for the car-body to stable is about 0.9 second before it run 

below 0.17 mm of displacement. 
 

 

Figure 4.15  Car-body 3 in case 4 

Figure 4.15 shows the maximum displacement that the car-body 3 experienced is 

0.17 mm and the time taken for the car-body to stable is about 1.9 second before it 

run below 0.14 mm of displacement. 
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4.6 Summary of the Results 

Figure 4.16and 4.17 shows the summary of the results obtained to compared between 

each cases. For figure 4.16 is the summary of the maximum displacement of each 

car-bodies experienced, from the figure shows that the least of displacement 

experienced by the car-bodies occur in case 2 where the parameters is reduce to 50% 

from its nominal parameters. In figure 4.17 shows the time taken for the car-bodies 

to stabilize from the impact of the uneven track condition. 

 

Figure 4.16  Summary of car-bodies’ maximum displacement 

 

Figure 4.17  Summary of time taken for car-bodies to stabilize 
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The relationship between the maximum displacement and time taken for the car-

bodies to stable are shown in figure 4.18. 

 

 

Figure 4.18  Maximum displacement vs. time to stabilize 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 
 

5.1 Conclusion 
 

From the result obtained shows that there is a relationship between the maximum 

displacement and the time taken for the car-body to stabilize. In this research there 

are 5 cases been studied which are case 0 to case 4. If these cases are rearrange back 

in terms of maximum displacement that the car-bodies experienced, it would be case 

2, case 1, case 0, case 3 and case 4, where case 2 is the least and case 4 is the highest 

of the displacement. All the parameters are met the clearance between the track and 

car-body. In terms of time taken for the car-body to stable, the arrangement is the 

same as the maximum displacement but it is opposite in the value, where case 2 is 

the highest and case 4 is the lowest value of the time. This relationship between the 

maximum displacement and the time taken for car-body to stable can be represented 

in the graph shown in figure 4.18. The figure shows that the maximum displacement 

is inversely proportional to the time taken for the car-bodies to stabilize.  
 

In order to identify the best parameters for the selected LRV, the most important key 

factor here is the comfortable of the passenger of LRV. Comfort in this case is how 

the passenger can adapt the shock caused by the uneven track condition. All human 

body will not feel uneasy with any forces toward their bodies in very short time. 

Human body need some times to adapt the forces so that the human body will feel 

comfortable enough to neglect the forces that react with their bodies. But the time is 

also must not be too long, that can cause the human bodies to feel uncomfortable 

again. So by understanding the relationship between the maximum displacement and 

time taken to stabilize the car-bodies as shown in figure 4.18, the selection of the 
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parameter can be done easily. For this research the most acceptable parameters for 

the selected LRV is in case 2, where the maximum displacement is the lowest 

compared to other cases and also the time for the car-bodies to stable is not too short. 

5.2 Recommendation 
 

• Identify the parameters of the suspension by using numerous inputs of tracks. 

• Using the real track equation to define the uneven track condition (this 

research is using sinusoidal wave as the uneven track condition). 

• Select the LRV with different number of the car-body. 
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APPENDICES 

Appendix 1 

Unknown variables reference for the mathematical model (boundary condition for 

the equation of motion): 
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Appendix 2 

 

Main program:  
clear all; 
mp=10820;mt=4470;mpb=2940;mtb=1150;Ip=71000;It=6000; 
d1=2.825;d2=6;d3=1.965; 
c1=44376;c2=75308;c3=17825;c4=265010; 
k0=1630000;k1=840000;k2=1638000;k3=3600000;k4=5796000; 
  
m=zeros(9,9); 
m(1,1)=mp;m(2,2)=mt;m(3,3)=m(1,1);m(4,4)=Ip;m(5,5)=It; 
m(6,6)=m(4,4);m(7,7)=mpb;m(8,8)=mtb;m(9,9)=m(7,7); 
  
c=zeros(9,9); 
c(1,1)=c1;c(1,4)=-c1*d1;c(1,7)=-c1;c(2,2)=c2;c(2,8)=c2; 
c(3,3)=c1;c(3,6)=c1*d1;c(3,9)=-c1;c(4,1)=-c1*d1;c(4,4)=c1*d1*d1; 
c(4,7)=c1*d1;c(6,3)=c1*d1;c(6,6)=c1*d1*d1;c(6,9)=-c1*d1; 
c(7,1)=-c1;c(7,4)=c1*d1;c(7,7)=c1+c3;c(8,2)=-c2;c(8,8)=c2+c4; 
c(9,3)=-c1;c(9,6)=-c1*d1;c(9,9)=c1+c3; 
  
k=zeros(9,9); 
k(1,1)=k0+k1;k(1,2)=-k0;k(1,4)=-k1*d1+k0*d2;k(1,5)=k0*d3; 
k(1,7)=-k1;k(2,1)=-k0;k(2,2)=k2+2*k0;k(2,3)=-k0;k(2,4)=-k0*d2; 
k(2,6)=k0*d2;k(2,8)=-k2;k(3,2)=-k0;k(3,3)=k1+k0;k(3,5)=-k0*d3; 
k(3,6)=k1*d1-k0*d2;k(3,9)=-k1;k(4,1)=-k1*d1+k0*d2;k(4,2)=-k0*d2; 
k(4,4)=k1*d1*d1+k0*d2*d2;k(4,5)=k0*d2*d3;k(4,7)=k1*d1; 
k(5,1)=k0*d3;k(5,3)=-k0*d3;k(5,4)=k0*d2*d3;k(5,5)=2*k0*d3*d3; 
k(5,6)=k0*d2*d3;k(6,2)=k0*d2;k(6,3)=k1*d1-k0*d2;k(6,5)=k0*d2*d3; 
k(6,6)=k1*d1*d1+k0*d2*d2;k(6,9)=-k1*d1;k(7,1)=-k1;k(7,4)=k1*d1; 
k(7,7)=k1+k3;k(8,2)=-k2;k(8,8)=k2+k4;k(9,3)=-k1;k(9,6)=-k1*d1; 
k(9,9)=k1+k3; 
  
tstart=0; 
tend=10; 
h=0.01; 
nloop=(tend-tstart)/h; 
n=1; 
t=tstart; 
y1=0;y2=0;y3=0;y4=0;y5=0;y6=0; 
teta1=0;teta2=0;teta3=0; 
y1dot=0;y2dot=0;y3dot=0;y4dot=0;y5dot=0;y6dot=0; 
teta1dot=0;teta2dot=0;teta3dot=0; 
  
Y0(1:18,1:1)=0; 
Y1(1:18,1:1)=0; 
Y2(1:18,1:1)=0; 
Y3(1:18,1:1)=0; 
Y4(1:18,1:1)=0; 
  
Y0(1,1)=y1;Y0(2,1)=y2;Y0(3,1)=y3;Y0(4,1)=teta1;Y0(5,1)=teta2; 
Y0(6,1)=teta3;Y0(7,1)=y4;Y0(8,1)=y5;Y0(9,1)=y6; 
Y0(10,1)=y1dot;Y0(11,1)=y2dot;Y0(12,1)=y3dot;Y0(13,1)=teta1dot;Y0(14
,1)=teta2dot; 
Y0(15,1)=teta3dot;Y0(16,1)=y4dot;Y0(17,1)=y5dot;Y0(18,1)=y6dot; 
  
 
tn(1:nloop)=0; 
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y1n(1:nloop)=0;y2n(1:nloop)=0;y3n(1:nloop)=0;teta1n(1:nloop)=0; 
teta2n(1:nloop)=0;teta3n(1:nloop)=0;y4n(1:nloop)=0;y5n(1:nloop)=0; 
y6n(1:nloop)=0; 
y1dotn(1:nloop)=0;y2dotn(1:nloop)=0;y3dotn(1:nloop)=0;teta1dotn(1:nl
oop)=0; 
teta2dotn(1:nloop)=0;teta3dotn(1:nloop)=0;y4dotn(1:nloop)=0;y5dotn(1
:nloop)=0; 
y6dotn(1:nloop)=0; 
  
itime=1; 
tn(itime)=t; 
y1n(itime)=y1;y2n(itime)=y2;y3n(itime)=y3;teta1n(itime)=teta1; 
teta2n(itime)=teta2;teta3n(itime)=teta3;y4n(itime)=y4; 
y5n(itime)=y5;y6n(itime)=y6; 
y1dotn(itime)=y1dot;y2dotn(itime)=y2dot;y3dotn(itime)=y3dot;teta1dot
n(itime)=teta1dot; 
teta2dotn(itime)=teta2dot;teta3dotn(itime)=teta3dot;y4dotn(itime)=y4
dot; 
y5dotn(itime)=y5dot;y6dotn(itime)=y6dot; 
  
%integration 
for n = 1:1:nloop 
Y1=Y0; 
[Ft]=F1(t,k3,k4,c3,c4,m); 
[FYT]=fy(t,Y1,Ft,k,m,c); 
K1=h*FYT; 
  
t2=t+h/2; 
Y2=Y0+0.5*K1; 
[Ft]=F1(t2,k3,k4,c3,c4,m); 
[FYT]=fy(t2,Y2,Ft,k,m,c); 
K2=h*FYT; 
  
t3=t+h/2; 
Y3=Y0+0.5*K2; 
[Ft]=F1(t3,k3,k4,c3,c4,m); 
[FYT]=fy(t3,Y3,Ft,k,m,c); 
K3=h*FYT; 
  
t4=t+h; 
Y4=Y0+K3; 
[Ft]=F1(t4,k3,k4,c3,c4,m); 
[FYT]=fy(t4,Y4,Ft,k,m,c); 
K4=h*FYT; 
  
t=t+h; 
Y0=Y0+(K1+2*K2+2*K3+K4)/6; 
  
itime=itime+1; 
tn(itime)=t; 
y1n(itime)=Y0(1,1);y2n(itime)=Y0(2,1);y3n(itime)=Y0(3,1); 
teta1n(itime)=Y0(4,1);teta2n(itime)=Y0(5,1);teta3n(itime)=Y0(6,1); 
y4n(itime)=Y0(7,1);y5n(itime)=Y0(8,1);y6n(itime)=Y0(9,1); 
y1dotn(itime)=Y0(10,1);y2dotn(itime)=Y0(11,1);y3dotn(itime)=Y0(12,1)
;teta1dotn(itime)=Y0(13,1); 
teta2dotn(itime)=Y0(14,1);teta3dotn(itime)=Y0(15,1);y4dotn(itime)=Y0
(16,1); 
y5dotn(itime)=Y0(17,1);y6dotn(itime)=Y0(18,1); 
n=n+1; 
end 
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plot(tn,y1n) 
%plot(tn,y2n) 
%plot(tn,y3n) 
 

 

Function program: 
function [FYT]=fy(t,Y,Ft,k,m,c) 
FYT(1:18,1:1)=0; 
A(1:18,1:18)=0; 
A(1:9,1:9)=zeros(9,9); 
A(1:9,10:18)=eye(9,9); 
A(10:18,1:9)=-k/m; 
A(10:18,10:18)=-c/m; 
B(1:18,1:18)=0; 
B(10:18,10:18)=inv(m); 
Ft1=Ft; 
FYT=A*Y+B*Ft1; 
 

Input program: 
function [Ft]=F1(tt,k3,k4,c3,c4,m) 
YA=0.05;l=9; 
v=20;lambda=10; 
t=lambda/v; 
wn=2*3.1416/t; 
y7=YA*cos(wn*tt)  ;                %input 
y7dot=-wn*YA*sin(wn*tt);           %input 
y8=YA*cos(wn*(tt-(l/v))) ;         %input 
y8dot=-wn*YA*sin(wn*(tt-(l/v)));   %input 
y9=YA*cos(wn*(tt-(2*l/v))) ;       %input 
y9dot=-wn*YA*sin(wn*(tt-(2*l/v))); %input 
C(1:18,1:18)=0; 
C(10:18,10:18)=inv(m); 
D(1:18,1:1)=0; 
D(16,1)=k3*y7+c3*y7dot; 
D(17,1)=k4*y8+c4*y8dot; 
D(18,1)=k3*y9+c3*y9dot; 
Ft=C*D; 
 

 

 



42 

Appendix 3 

 

Gantt Chart – First Semester 
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Gantt Chart – Second Semester 
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