

An Intuitive Control API for Catroid

By

Hoo Pei Ying

Collaborating with

Catrobat @ MIT Scratch & App Inventor

Institute of Software Technology, TU Graz

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Technology (Honours)

(Information Communication Technology)

May 2012

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

I

CERTIFICATION OF APPROVAL

An Intuitive Control API for Catroid

By

Hoo Pei Ying

A project dissertation submitted to the

Information Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION COMMUNICATION TECHNOLOGY)

Approved by,

(Dr. Mohamed Nordin Bin Zakaria)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2012

II

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

HOO PEI YING

III

ABSTRACT

 In this research, the main objective is to develop an intuitive control API in

Catroid to enhance its usability as a graphical programming tool for children and

study the human-mobile interaction and experience made possible with this control

API. Another objective is to develop this control API in open source development

method and benchmark it with the typical software development method.

 It would greatly enrich user experience if Catroid can provide support for

implementing intuitive control concepts to enhance its usability for children. But

currently Catroid do not have control API support to develop intuitive user

interaction with the application. In brief, an intuitive control API is missing in

Catroid. Without such an API, the potential of Catroid as a programming tool cannot

be unleashed.

 This research studies the maximization programming power of Catroid and

advancement of control API in Catroid into a more intuitive form. This research

studies the Open Source Development Model used to develop the control API. The

scope of prototype will only covers locating direction, tilting, turning, and shaking

motions as the new intuitive control made possible in Catroid

 The research methodology is Open Source Development Methodology

(OSDM) and the Test-Driven Development Method with Extreme Programming is

used for code development. The objective of OSDM is to utilize the online

community who is the user and developers of Catroid to review and test source code

to improve the software quality.

 The intuitive control API where phone sensors are integrated will further

improve the user interaction and experience both in using Catroid and its application.

The intuitive control API consists of sensor variables and If-Then-Else Command

Block. The If-Then-Else Command Block acts as the control and the sensor variables

make the control become intuitive. Accelerometer and orientation sensor are

implemented in this control API where each of the sensors contributed 3 different

IV

values acted as the sensor variables: X-Sensor Acceleration, Y-Sensor Acceleration,

Z-Sensor Acceleration, Azimuth, Pitch, and Roll. These sensor variables can be

assigned to or removed from any text field in the Command Blocks using the

Formula Editor. The usage of the intuitive control API is simple and straight forward.

When a sensor variable is assigned to one of the fields in If-Then-Else Command

Blocks, the intuitive control is developed. The Command Blocks in between the If-

Statement Command Block and End of If Command Block will be executed

whenever the logic condition in the If-Statement is true.

 Various intuitive user interactions could be developed depending on the

creativity of users. The most popular intuitive user interactions are through locating

direction, tilting, turning and shaking motions.

 Open Source Development Method allows developers to redefine the user

requirements along with the software development which reduce the risk of software

failure in the end of development.

V

ACKNOWLEDGEMENT

 I would like to take this opportunity to acknowledge all parties who had

contributed to the completion of my final year project. The past one year has indeed been

an amazing experience and journey to embark on. I have learnt so many things

throughout the completion of my own proposed project.

 First and foremost, I would like to express my deepest gratitude to my

supervisor, Dr. Mohamed Nordin B Zakaria for the assistance provided for me to

complete my Final Year Project. He has been guiding me from time to time to make sure

that there are no complications during the development of my project. Ideas, opinions,

and suggestions kept pouring endlessly from him that helped me a lot in developing my

project.

 I would like to express my utmost and sincere appreciation and gratitude to my

collaborator, Catrobat @ MIT Scratch & App Inventor and Professor Wolfgang Slany

who gave me the opportunity to contribute to the enhancement of Catroid and provide

full technical support and advice to complete my dissertation.

 Last but not least, I would like to take this opportunity to thank my family

members especially my parents for always being there for me. They have been giving me

a great deal of encouragement, advice and support which have led me to the completion

of my project. On the other hand, I would also like to thank to my colleagues for the

continuous moral and emotional support that they had given me throughout the year.

Thank you.

Table of Contents

CERTIFICATION OF APPROVAL………………………………………………… I

CERTIFICATION OF ORIGINALITY…………………………………………….. II

ABSTRACT……………………………………………………………………… III

ACKNOWLEDGEMENT.………………………………………………………..... V

CHAPTER 1………………………………………………………………………….1

INTRODUCTION ... 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Objectives .. 2

1.4 Scope of Study ... 3

CHAPTER 2 .. 4

LITERATURE REVIEW... 4

2.1 Introduction ... 4

2.2 Definition of Intuitive in Control .. 4

2.3 Conceptual Elements of Catroid .. 5

2.3.1 Children Programming Tools –Control and Concept 7

2.5 Smartphone Operating Systems .. 10

2.6 Catroid Development Tools & Methods & License 11

2.6.2 Open Source Development Method ... 13

CHAPTER 3 .. 15

METHODOLOGY ... 15

3.1 Introduction ... 15

3.2 Previous Related Work .. 15

3.3 Research Methodology .. 15

3.3.1 Open Source Development Method ... 15

3.3.2 Test-Driven Development Method .. 17

3.4 Technical Specification Design ... 18

3.5 Technology Used ... 19

CHAPTER 4 .. 20

RESULT AND DISCUSSION .. 20

4.1 Deliverable’s Interface .. 20

4.1.1 Sensor variables ... 20

4.1.2 If-Then-Else Command Block ... 24

4.2 The Mechanism of Intuitive Control API .. 24

4.2.1 Sensor Coordination System .. 25

4.3 The Intuitive User Interaction & Experience .. 26

4.4 Open Source Development Method Benchmarking 30

CHAPTER 5 .. 32

CONCLUSION & RECOMMENDATION .. 32

5.1 Conclusion ... 32

5.2 Recommendation ... 34

REFERENCES ... 35

Appendix 1. Rules of Clean Code……….……….. 38

Appendix 2. Gantt Chart of Project Tracking ………………..……….……….... 40

Appendix 3. GNU AFFERO GENERAL PUBLIC LICENSE ….…….………..41

Appendix 4. Wiki Page of Control API for Catroid……... ….…….……………53

List of Figures

Figure 1: Touch Motions Command Block 5

Figure 2: Main Menu 6

Figure 3: Sprite List 6

Figure 4:Scripting Areas, Costumes, Sounds 6

Figure 5: Block Palette 6

Figure 6: Group of Blocks 6

Figure 7: Stage 6

Figure 8: Interface of Scratch 8

Figure 9: Users' Preference Ranking for the Techniques 9

Figure 10: Motion Gestures Sets by Riuz, et al. 10

Figure 11: Android Architecture 11

Figure 12: Open Source Development Model 16

Figure 13: Test-Driven Development Method 18

Figure 14: Flow Diagram of Control API Logic 18

Figure 15: Sensor Variables in Formula Editor 21

Figure 16: Warning Message to Accept Changes 22

Figure 17: Equation in Formula Editor 23

Figure 18: If-Then-Else Command Block 24

Figure 19: Intuitive Control API 24

Figure 20: Default Sensor Coordination System 25

Figure 21: Reoriented Sensor Coordination System 26

Figure 22: Shaking Motion 27

Figure 23: Locating Direction 28

Figure 24: Tilting/Turning Motion 29

1

CHAPTER 1

INTRODUCTION

1.1 Background

Catroid is a new Lego-style graphical programming system of Catrobat that

runs on Android devices which is designed for children and novice programmer

to create Android mobile application. Catroid is inspired by MIT Scratch and

Google App Inventor. (Catroid, 2011). Similar to other programming language,

there are many APIs available to build an application in Catroid. Currently,

Catroid lacks a controlling and sensor-detecting APIs like what Scratch has.

There are only seven two-dimensional surface gestures or touch screen motions

available for the control function in Catroid.

API, Application Programming Interface is a set of routines, protocols, and

tools for building software applications. With current APIs in Catroid, children

could not do higher-level programming with Catroid. A good API makes it easier

to develop a program by providing all the building blocks. The interface of API

in Catroid is referred to as Command Blocks in the Block Palette.

The Catroid’s target users are novice programmer and children, thus, the

users of the projects created by Catroid are novice programmer and children as

well as the normal mobile application users. Due to the popularity of intuitive

control in mobile application and the concern that Catroid’s projects run on

mobile devices, it is especially important to have control function in Catroid’s

project as intuitive as possible for mobile application users. However, currently

Catroid does not have API that could help the Catroid’s users to build intuitive

control function in their project.

Given the popularity of games and animation, it is desirable to have intuitive

user interaction in application created by Catroid but currently no API has

support to develop the simple intuitive user experience as the example below in

their Catroid’s project.

2

“Imagine you are a 10 year old boy. You have a Sprite, which is an Airplane. If

you tilt the phone to the right, you have the plane to fluently move to the right

side of the screen. If you tilt it to the left, you have the plane to go to the opposite

direction.” (Catroid, 2011)

 To qualify as a higher-level programming language for children, there is a

need to enhance the Control APIs instead of just relying on the seven multi-

touch/touch motions. The researches and studies prove that sensors are widely

used in most of the mobile applications in Android devices to create the intuitive

control in application. Hence, the integration of phone sensors in Control API

could help children improve the interactivity of their application created in

Catroid.

1.2 Problem Statement

Catroid is a new programming tool for children. However, an intuitive control

API is missing in Catroid. Without such an API, the potential of Catroid as a

programming tool cannot be unleashed. In fact, it would greatly enrich user

experience if Catroid can provide support for implementing intuitive control

concepts to enhance its usability for children. But currently Catroid do not have

control API support to develop intuitive user interaction in application.

1.3 Objectives

The objectives of this project are as follows:

 To implement an intuitive control API in Catroid.

 To study the user interaction and experience made possible with this

control API.

 To develop the software using an open source development model, and to

benchmark the methodology with typical software development model.

3

1.4 Scope of Study

This research studies the maximization programming power of Catroid and

advancement of control API in Catroid into a more intuitive form. The intuitive

control API is implemented in Catroid as Command Block with integration of

different phone sensors to help children to program user interaction in Catroid

application.

This research studies the Open Source Development Model and adopts it to

develop the control API. The development method, tools and license used in

Open Source Development Model have to be studied to benchmark its pros and

cons with typical software development model in this research project. The

specification and definition of open source license have to be clear to developers

because Catroid is open source software and different open source libraries used

in the software development.

Due to expenses and duration of pilot study within 3 months, the prototype

only covers locating direction, tilting, turning, and shaking motions as the new

intuitive interaction made possible in Catroid.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This section includes research and information that is relevant and necessary

to my understanding of the subjects to be discussed in the process of creating the

intuitive control API in open source software - Catroid developed using Open

Source Development Model to run on Android platform.

2.2 Definition of Intuitive in Control

 IUUI research group in Germany defines ‘intuitive use’ as “A technical

system is intuitively usable if the users’ unconscious application of prior

knowledge leads to effective interaction” (Mohs, Hurtienne, Israel, Naumann,

Kindsmüller, Meyer & Pohlmeyer, 2006:130).

 Two primary input modalities commonly supported by smart phones

application are touch screen display and a set of motion sensors. The motion

sensors are accelerometers, gyroscopes, orientation sensors (vs. gravity), etc. The

two inputs recognized by these devices are different types of gestures. Users can

input gestures on the device in two dimensions, using the touch screen of the

smart phone as a mobile surface computer. These two-dimensional gestures are

surface gestures. Users can also input gestures by moving the device, in three

dimensions, by translating or rotating the device. These three-dimensional

gestures are motion gestures (Ruiz, et al., 2011).

 The study points out that motion gestures are more intuitive than surface

gestures in that the user interacts by using the device itself instead of interacting

on the device via a finger or hardware button. To create more intuitive sets of

motion gesture sets in a smart phone application, it is important to understand the

user’s unconscious mental model of how motion gestures are mapped onto the

device commands leading to effective interaction (Ruiz, et al., 2011).

5

2.3 Conceptual Elements of Catroid

 According to Daughtry (2008), programming is the new literacy where power

will soon belong to those who can master a variety of expressive human-machine

interactions. Thus, more programming tools have emerged to educate children

nowadays on mastering computer programming skills. Most of these tools run on

PC except Catroid. As mentioned in Section 2.1, the aim of this project is to

enhance the control API of Catroid.

Catroid is an open source (Perens, 1999) Android software that supports

Lego-type graphical programming language designed especially for children.

Children interact with software in different ways; they are easily distracted, and

they have different motivations as compared to adults. They are likely to ‘try out’

the software to see what they can do. Thus, Catroid has graphical Command

Block to represent API in other languages where it eliminates the syntax error

and runtime error in programming. In addition, programmers can trial and error

in using Catroid by instantly compile and run the project to preview the outcome

after modified the Command Blocks.

The control API in Catroid only has touch motions Command Block shown in

Figure 1. The user interactions in application are less intuitive because only

surface gestures are implemented in the Command Block to control the Sprites.

 Figure 1: Touch Motions Command Block

Figure 2 is the main menu of the Catroid, when Current Project is clicked,

Sprite List as in Figure 3 appears. After clicking on Sprite named “Catroid”,

Figure 4 which consists of Scripting Area, Costumes and Sounds tabs is shown.

Programmers can modify the project’s code in Scripting Area by dragging and

dropping the Command Block. Clicking on the “plus symbol” on top left will

show the Block Palette shown in Figure 5 while clicking on the “play symbol”

will show the Stage shown in Figure 7. On block palette, clicking on any

6

category will bring up a list of graphical Command Blocks as in Figure 6 where

the selected Command Block will add into Scripting Area whenever it is clicked.

 Figure 2: Main Menu Figure 3: Sprite List

Figure 4:Scripting Area, Costumes, Sounds Figure 5: Block Palette

 Figure 6: Group of Blocks Figure 7: Stage

7

2.3.1 Children Programming Tools –Control and Concept

 According to survey done by Kelleher and Pausch (2005) and Guzdial (2004),

Scratch is not the first programming environment and language aimed at novice

programmers. Indeed, there is a rich history of different developments for

programming tools made for children such as Alice and Greenfoot. Fincher, et al.

(2010) and Utting, et al. (2010) have compared Scratch with Alice and Greenfoot

and concluded that like Scratch, Alice and Greenfoot are intended to introduce

programming to those without prior experience and, as a result, the three systems

share many of the same design goals. While all three systems allow media to be

imported, Scratch includes tools to draw images and record sounds. According to

Maloney, et al. (2010), both Alice and Greenfoot introduce class-based object-

oriented programming, and emphasize Java or Java concepts. Greenfoot, since it

is Java, also allows students to explore high-performance computation (e.g.,

complex simulations or cryptography problems) and to extend the system. Alice

is the only one of these systems that supports 3-D graphics and it often crashes in

middle of programming. Scratch allow the children to create interactive, media-

rich projects including animated stories, games, online news shows, book reports,

greeting cards, music videos, science projects, tutorials, simulations, and sensor-

driven art very easily.

 Compared with figures in Section 2.2, Maloney, et al. (2010) claimed that the

user interface layout of Scratch (Figure 8) with its prominent command palette

and central scripting area, ease children to program. Scratch programming system

strives to help users build intuitions about computer programming as they create

projects that engage their interests by dragging Command Blocks from a palette

into the scripting pane and assembling them, like puzzle pieces, to create “stacks”

of blocks (Maloney, et al., 2010).

8

Figure 8: Interface of Scratch

 The user interaction for Scratch’s application include surface gesture and

motion gesture using keyboard, mouse, microphone, game controller and remote

sensors. The integration of smart phone sensors in Catroid can reduce short term

memory load since some researchers used objects with sensors as an interactive

mode to reduce children's cognitive burden to interact with software (Zhou ZY.,

et al., 2008).

2.4 New Concept of Human-Mobile Interaction

 To build the intuitive control API in Catroid, integration of accelerometers

with gyros, proximity sensors, or vibratory and shear/torque sensors could greatly

enrich the vocabulary motion (Hinckley and Song, 2011). There are several

touch+motion techniques that could be implemented on a smart phone which are

Tilt-to-zoom, Pivot-to-lock, Hold-and-Shake, Tip-to-select, Soft-vs-Hard-Tap,

Swipe-vs-Hard-Drag and Context of touch.

 The study shows the users’ preference rankings for the techniques in Figure 9.

Acording to Hinckley and Song (2011), five of the ten users explicitly mentioned

“one-handed” interaction as the best thing about Tilt-to-zoom. Users liked how

9

they could combine wrist, finger, and device motion to articulate lightweight

interactions with less “friction” in the user interface. Users commented that the

techniques were “intuitive and easy to transition to different modes,” “easy and

magical,” or that “the icons are alive!”

Figure 9: Users' Preference Ranking for the Techniques

 Combining motion gestures with touch is a simple idea that has been

explored. Hassan (2009)’s “Chucking” technique uses a simultaneous

touch+motion gesture to toss a file from a mobile device to a wall display. The

user holds a finger on the file’s icon, while indicating where to place the file via a

motion gesture. Rahman (2009) also uses touch+motion to measure wrist

deflection angles. Motion has also been used as a cue for grip-sensing mobile

devices. For example, an accelerometer can trigger implicit grip sensing when a

mobile device is held still (Kim, et al., 2006). Graspables use accelerometers to

sense the orientation of objects and to trigger grip sensing at the right moment

(Taylor, 2009).

 However, the touch+motion techniques mentioned above might confuse

children as the study of surface gestures for children shows that children tend to

make mistakes when doing complex gestures (McKnight and Fitton, 2010).

Druin (1999) concludes that children aged 5 –7 want interface interaction that

they can easily control but not too simple. The user-defined motion gestures

without touch proposed by Riuz, et al. (2011) shown in Figure 10 are more

desirable way for children compared to touch+motion techniques.

0 2 4 6 8

Rotate-to-lock

Tilt-to-zoom

Tilt-to-select

Hold-and-Shake

Click-hard

Hard-Drag

10

Figure 10: Motion Gestures Sets by Riuz, et al.

 Both the studies above concluded that the integration of phone sensors in

Catroid could create an intuitive control API for children in a way that reduces

children’s conscious application of prior knowledge to program an intuitive user

interaction.

2.5 Smartphone Operating Systems

 Lin and Ye (2009) listed several leading smart phone operating systems in the

market which include Apple’s iOS, Google’s Android, Microsoft’s Window

Mobile, Nokia’s Symbian, RIM’s BlackBerry OS and embedded Linux

distribution such as MeeGO. Catroid runs on Android operating system.

However according to Hall and Anderson (2009), Android is not the only smart

phone that has the potential to solve the dissatisfaction that users have with their

devices. Hence, Catroid could be possible developed in other smart phone OS as

listed above to have intuitive control API.

 According to Gartner (2011), by the end of 2011, Android will move to

become the most popular operating system worldwide and will build on its

strength to account for 49 percent of the smart phone market by 2012 with

Apple’s iOS remaining as the second biggest platform. Apple’s iOS and

11

Google’s Android are the preferred platforms to go to. But Lin and Ye (2009)

said the iPhone is a closed smart phone running a closed OS, which means Apple

has the full control on its hardware and software. Hence, the open-platform

nature in Android is more desirable for Catroid. Android runs on a Linux-based

architecture with Java applications running on top of it is illustrated in Figure 11.

Android has free Android Software Development Kit provides the tools, APIs

libraries, tutorials and demo source codes necessary to develop applications

unlike Apple iOS required registration fees to use the development tools and the

forum.

Figure 11: Android Architecture

2.6 Catroid Development Tools & Methods & License

 According to writer Martin, et al. (2009), writing clean code is what a

developer must do to be called as a professional. To eliminate flawless codes, the

whole Catriod development is using 100% test-driven development method

where it uses automated tests and Robotium test to reduce resources usage in

debugging. For code quality assurance and code refactoring flexibility, writing

high quality code is the only documentation for Catroid developers across

worldwide, with a bunch of other practises from extreme programming and

usability engineering. Catroid team created rules of coding as shown in Appendix

1 based on the book written by Martin, et al. (2009) which results in more

efficiency in maintaining the codes without breaking anything.

12

2.6.1 Development Tools

Catroid is an Android application. Any Java IDE tool can be used to develop

open source Android applications. One of the most popular Android application

development platforms is Eclipse IDE because it can run on any OS platform and

supports many plugins including Android ADT, Open GL ES, Mercurial, Mylyn,

Oracle, Apache, UMLet, JSP and etc. Android Development Tools (ADT) can be

installed in Eclipse IDE to extends the capabilities of Eclipse to quickly set up

new Android projects, create an application UI, debug applications using the

Android SDK tools, and even export signed (or unsigned) APKs in order to

distribute the application. In general, developing in Eclipse with ADT is a highly

recommended approach by Google’s Android and is the fastest way to get started

with Android.

In Open Source Software development, the participants, who are mostly

volunteers, are distributed among different geographic regions. Tools are needed

to aid participants to collaborate in the development of source code. In this case,

Concurrent Versions System (CVS), Subversion revision control system (SVN)

and distributed revision control systems such as Git and Mercurial are useful.

These revision control systems help manage the files and codes of a project when

several people are working on the project at the same time. This is done by

moving the file into the users’ directories and then merging the files when users

have committed the changes. Revision control systems also enable one to easily

retrieve a previous version of a file which is very useful in collaborative

programming environment. (Open source software development, 2011). Catroid

implemented Mercurial in the beginning then moved to Git recently because Git

provides more features and functions such as revert and track of progress in

branches.

Most of open source software is stored and made publicly available on code

sharing and hosting platforms such as Google Code Hosting, Github.com,

Sourceforge.net, Codeplex, and Bitbucker which enable designers and developers

to share their code with the web community. The platform also serves as backup

for the codes. Github.com is used in this research.

13

2.6.2 Open Source Development Method

Software or application is developed based on a single or combined software

development process model. There are many software process models in

software engineering; the most popular models are V model, Prototyping Model,

Increments and Iterations Model, and Agile Model (Pfleeger & Atlee, 2010).

Open Source Development methodology is not the newest but the most popular

method adopted in smart phone application development.

Most of the software developed in Open Source Development Model

(OSDM) is open source. Many mobile applications are open source and the

mobile application developers prefer to adopt OSDM in their application

development. The source code of open source may be freely modified and

redistributed without charge or limitations on modifications to encourage

collaborative development such as Linux OS, Apache Server and Mozilla

Browser. OSDM emphasizes faster development and lower overhead, as well as

closer user relationship and exposure to a broader market. In OSDM, when the

software is developed under a model of systematic peer-review, it can be

incrementally improved and more easily tested, leads to innovation and rapid

advancement resulting in a highly reliable product (LONCHAMP) because more

people looking at the code will results in more “bugs” found (Raymond, 2001).

Typically, OSDM adopts the Hybrid process models. All of the Agile

methods are in essence applicable to OSDM, because of their iterative and

incremental character (Open source software development, 2011). Catroid is an

open source that adopts OSDM, thus this project will adopts OSDM with

extreme programming development methodology.

2.6.3 Open Source License

A license defines the rights and obligations that a licensor grants to a

licensee. There are several licenses compatible for open source software such as

GNU General Public License, Creative Common Attribution License, GNU

14

Lesser General Public License and etc. This project adopts GNU AFFERO

GENERAL PUBLIC LICENSE as published by the Free Software Foundation,

either in version 3 of the license or any later version in future. The complete copy

of the original License can be referred to Appendix 3. The benefit of using this

license is that it acknowledges the hard work of the contributors while leaving

the source free for modification and redistribution.

15

CHAPTER 3

METHODOLOGY

3.1 Introduction

This project applies Extreme Programming Process Model in Agile

Development method and licensed as open source software. The timeline and key

milestones for this project are shown in Tracking Gantt Chart in Appendix 2.

3.2 Previous Related Work

Several published works contain different sensor design and framework to

develop application or software in different devices. The architectures of their

framework were illustrated in diagrams and pictures as a guideline to help the

developers smoothly implemented codes and traced back the relationship

between the classes and function calls.

 In Android Development Reference Library, the APIs that are needed to

develop intuitive control API in Catroid are in Package android.hardware.

3.3 Research Methodology

3.3.1 Open Source Development Method

The Figure 12 (M.Abbing, 2006) below shows the development process cycle

that this project is going to apply based on Extreme Programming. The existing

project that will be further enhanced is Catroid.

16

Initiation

Problem Discovery

Finding Volunteers

Solution Identification

PROBLEM DESCRIPTION

DEVELOPMENT TEAM

WORKPLAN

Execution

Code Development

and Testing

Code Change

Review

Code Commit and

Documentation

CODE

CODE DOCUMENTATION

Releasing

Release

Management
RELEASE

[continue development]
[else]

[else]

[existing project]

has

Figure 12: Open Source Development Model

In open source development model, first phase is initiation started by

identifying existing projects to be further improved and the problem in existing

projects. It is discovered that intuitive control features is missing in Catroid. The

identified problems and ideas are being posted online in Google Code Hosting

(Appendix 4) and Android community website to find volunteers to form the

development team. This project managed to get Software Technology

Department in TU Graz, Austria who is the founder of Catroid to support and

provide remote assistance. Solution is found after several times of discussion and

ideas refining. A work plan which is this proposal is made for outlining the

important elements in developing this project.

The next phase is execution which is the development and testing of codes.

Any java class that contained core functionality of the project must have its own

test class to ensure consistency and continuation of codes. The code is released

17

when it passes the code review phase. This review phase is very important to

eliminate flaw in code and for benchmark evaluation. The accepted code is

committed and documented properly before deploy to the world.

The last phase is software release. The first software deployment is the first

prototype. The first prototype in this project is given to a selected target group to

conduct project evaluation and redefine the user requirements. After tested by

targeted user, bugs and errors are identified and the project development phase is

iterated back to either initiation for planning or execution for coding. Open

source software is long term sustainable developing software, there is no end for

the development because the software is developed together with the users.

Development is stopped only when the software is no longer used by the public.

3.3.2 Test-Driven Development Method

 Figure 13 is the flow diagram of Test-Driven Development Method. The

Test-Driven Development Method is used in code development phase to ensure

that the application is written for testability.

Figure 13: Test-Driven Development Method

 Test-Driven Development Method relies on the repetition of a very short

development cycle: to add a new functionality, first the developer writes the

failing automated test cases which are the Junit Test and Robotium Test that

defines a desired improvement or new function, then produces code to pass that

test and finally refactors the new code to acceptable standards.

http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Code_refactoring

18

3.4 Technical Specification Design

In the Figure 14 below shown the flow of logics how the control API works.

Firstly, block of control API which implements the sensor is added into script

and a condition is set. Then the accelerometer and digital value changes when the

Android device is tilted or manipulated. Sensor is triggered and immediately the

respective script is executed after the condition is checked. The effect and

respond are the outputs in the display screen for the view of user. After the sensor

event is cleared, it is ready to intercept any input event.

Within the scope, only tilting, turning, shaking motions and locating direction

will be designed and implemented with integration of phone sensor in Command

Blocks. These motions will be feasible to conduct with “one-handed” interaction.

Figure 14: Flow Diagram of Control API Logic

 In the designing process of intuitive control API, interface design rules by

Schneiderman’s Eight Golden Rules can be referred: Strive for consistency,

Enable frequent users to use shortcuts, Offer informative feedback, Design

dialogues to yield closure, Offer error prevention and simple error handling,

Permit easy reversal of actions, Support internal locus of control and Reduce

19

short term memory load. These rules will guide the designers to design the

intuitive control API that is consistence, easily understand, no syntax error, easy

handling and user-friendly.

3.5 Technology Used

List of technology for this project:

 Android SDK 1.6 r1

 Android Development Tools v9

 Eclipse Helios Sr2

 GitHub.com/ Google Code Project Hosting

Below is the knowledge required for this project:

 Object-Oriented Programming (Java)

 Android Development Framework

The development environment is Eclipse Helios IDE for Java EE developers.

Integrating the SDK with Eclipse simply required a download of the Android

Development Tools (ADT) Plugin (Android SDK).

The Android platform is specifically designed for Java as it is available on

many different platforms. This project used Object-Oriented Programming style

of development for easier code maintenance. Google’s Android has provided

comprehensive documentation to assist in the development process. To get

started, the Android SDK and Eclipse ADT plug-in were required (Android

SDK). The Android SDK comes with an emulator that simulates a clean install of

an Android device. Multiple screen resolutions are available for testing layouts,

as well as an interface to connect actual Android devices. For this project, a real

Android device is needed for testing because the emulator does not support

sensors. GitHub.com and Google Code Project Hosting are used to store the

prototype source code for source code sharing and as a backup.

20

CHAPTER 4

RESULT AND DISCUSSION

4.1 Deliverable’s Interface

 The intuitive control API is the combination of sensor variables and If-Then-

Else Command Block. The If-Then-Else Command Block acts as the control and

the sensor variables make the control become intuitive.

4.1.1 Sensor Variables

 Two sensors are being integrated into Catroid: The Accelerometer and The

Orientation Sensor. The Accelerometer senses the Android device's

accelerometer, which detects measures acceleration in three dimensions.

Acceleration is measured in SI units (m/s
2

). If the device is at rest lying flat on

its back, the Z acceleration will be about 9.8. When it is being lifted, it produces

three values:

 X-Sensor Acceleration: Positive when the device is tilted to the right (that

is, its left side is raised), and negative when the device is tilted to the left

(its right size is raised).

 Y-Sensor Acceleration: Positive when its bottom is raised and negative

when its top is raised.

 Z-Sensor Acceleration: Positive when the display is facing up, and

negative when the display is facing down.

 The orientation sensor determines the phone's spatial orientation. An

orientation sensor is a non-visible component that reports the following three

values, in degrees assume that the device itself is not moving:

 Azimuth: 0 degree when the top of the device is pointing north, 90 degrees

when it is pointing east, 180 degrees when it is pointing south, 270 degrees

when it is pointing west, etc.

 Pitch: 0 degree when the device is level, increasing to 90 degrees as the

device is tilted so its top is pointing down, then decreasing to 0 degree as it

gets turned over. Similarly, as the device is tilted so its bottom points

21

down, pitch decreases to −90 degrees, and then increases to 0 degree as it

gets turned all the way over.

 Roll: 0 degree when the device is level, increasing to 90 degrees as the

device is tilted up onto its left side, and decreasing to −90 degrees when

the device is tilted up onto its right side.

 The values of the two sensors are implemented as the variable/parameter

named X-Sensor, Y-Sensor, Z-Sensor, Azimuth, Pitch and Roll These variables

can be assigned to or removed from any text field in the Command Blocks using

the Formula Editor as in Figure 15. The Formula Editor has the current editing

Command Block and an editor textbox on top, 3 buttons at the centre and the

keypad at the bottom.

Figure 15: Sensor Variables in Formula Editor

22

 By clicking on the text field of any Command Blocks in Scripting Area, the

Formula Editor appears. In the Formula Editor, clicking on one of the 6 sensor

variables will append the respective variable identifier in the text field and edit

text box. Then, either “Save” button must be clicked to confirm the changes

made to the text field or “Discard” button is clicked to discard the changes before

clicking on “Return” button. Otherwise, the warning message will be popping out

to remind the user as in Figure 16.

Figure 16: Warning Message to Accept Changes

 The layout of Formula Editor and its operation are implemented according to

6 rules in the Schneiderman’s Eight Golden Rules: The showing of the Command

23

Block on top reduces short term memory load and the instant changing of text

field value offers informative feedback. The 3 buttons offers error prevention and

simple error handling, permits easy reversal of actions and has design dialogues

to yield closure. The whole layout design supports internal locus of control of

the user.

 In addition, the sensor variables can be included in an equation and calculated

in the Formula Editor as in Figure 17. Besides mathematic operator, there are

also basic mathematic functions to be used in the equation.

Figure 17: Equation in Formula Editor

24

4.1.2 If-Then-Else Command Block

The Figure 18 is the interface of the If-Then-Else Command Block to be used

together with sensor variables to create intuitive control. The layout of the If-

Then-Else Command Block is following the outlook of Control Categories to

strive for consistency and it has 2 text fields and a logic operator.

Figure 18: If-Then-Else Command Block

4.2 The Mechanism of Intuitive Control API

 The usage of the intuitive control API is simple and straight forward. When a

sensor variable is assigned to one of the fields in If-Then-Else Command Blocks,

the intuitive control is developed as in Figure 19. The Command Blocks in

between the If-Statement Command Block and End of If Command Block will be

executed whenever the logic condition in the If-Statement is true.

Figure 19: Intuitive Control API

25

4.2.1 Sensor Coordination System

 In general, the sensor framework uses a standard 3-axis coordinate system to

express data values as shown in Figure 20. For most sensors, the coordinate

system is defined relative to the device's screen when the device is held in its

default orientation. When a device is held in its default orientation, the X axis is

horizontal and points to the right, the Y axis is vertical and points up, and the Z

axis points toward the outside of the screen face. In this system, coordinates

behind the screen have negative Z values.

Figure 20: Default Sensor Coordination System

 The most important point to understand about this coordinate system is that

the axes are not swapped when the device's screen orientation changes—that is,

the sensor's coordinate system never changes as the device moves. The Android

sensor APIs define the sensor coordinate space to be relative to the top and side

of the device — not the short and long sides. When the system reorients the

screen in response to holding the phone sideways, the sensor coordinate system

no longer lines up with the screen’s coordinate system as in Figure 21,

unexpected errors are generated in the intuitive control Command Blocks.

Originally, X axis refers to Sensor X and Y axis refers to Sensor Y. But, it

changes to X axis refers to Sensor Y and Y axis refers to Sensor X after the

coordination system reoriented.

26

Figure 21: Reoriented Sensor Coordination System

 When the sensor variable is used in a Catroid project, the value of Sensor X

and Y will be inverted if the orientation of phone changed, thus creating

unexpected error. This reduces the usability of the intuitive control Command

Blocks and the users will need to take into account this complicated coordination

issue whenever they do programming in Catroid. Therefore, the orientation check

is implemented to check and swap the reference of the sensors automatically

behind the codes to reduce the memory load of users and create usability.

4.3 The Intuitive User Interaction & Experience

 The limitation of the current control API in Catroid is eliminated where

different phone sensors are integrated to support children to develop new

intuitive human-mobile interaction in Catroid. The intuitive control API can

program various intuitive user interactions in Catroid depending on the creativity

of the programmer. The intuitive user interactions which in common use are

shaking, locating direction, titling and turning motion. These four user

interactions can be developed according to the script examples below.

27

 The Figure 22 below is the script example to detect shaking motion using X-

sensor Acceleration value. The script tells that the particular Sprite will keep

rotating anti-clockwise if a user do a shaking motion with the device.

Figure 22: Shaking Motion

28

 The Figure 23 below is the script example to detect direction using Azimuth

angle value. The script tells that the particular Sprite will speak out the direction

which the top of the device is pointing.

Figure 23: Locating Direction

29

 The Figure 24 below is the script example to detect tilting/ turning/ rotating

motion using Roll angle value. The script tells that the particular Sprite will move

to the left if the right side of the device is raised and vice versa.

Figure 24: Titling/Turning/Rotating Motion

30

4.4 Open Source Development Method Benchmarking

 The open source development method (OSDM) is different than typical

software development method. Its characteristics and good practises can improve

code quality, communication, effectiveness, and performance that typical

software development method could not achieve.

 The OSDM maintains a source code tree that is open and available for all to

see and access. This allows full transparency and extensive peer review where all

members of the community can comment and offer suggestions and bug fixes.

Making the code public without having a fully working version helps the project

to redefine user requirements even in the middle of development. Subsequently,

the risk of project failure is reduced.

 In addition, the OSDM allows this project to make a release available early to

be used by the user community and then update the release as the software is

modified The “release early release often” practice in OSDM gives a good

estimate of the progress and help catch bugs early. It applies small incremental

changes in release to make the source code easier to understand and test. Since

this project is collaborating with 50 developers, the source code must be easy to

understand and test after changes are made.

 Usually, the OSDM promotes developers to use open source software and

build on top of it to improve efficiency and increases cost savings. The OSDM

even foster code reuse practice since it encourages developers to build reusable

software components if there is a need to develop from scratch.

 The OSDM uses Bottom-up-development approach where project members

who done the most work get the most say when it comes to making design and

implementation decisions while the typical software development method uses

Top-down-development where project management makes the decision and

pushes it down to the implements. This approach helps to motivate the

developers to contribute more.

31

 The open source development team primarily works together in a

decentralized fashion with little hierarchy thus it is essential to have Bug tracking

system, Automated test cases, Patch tracking system, and Revision Control

System to help monitoring the progress of the team. OSDM welcomes code

contributions written by volunteers, however the open source community takes

security very seriously and any development or capability that jeopardizes the

security of the software is flagged and not included in the software until the

security concern is dealt with. In this project, Github is used as the patch tracking

system and revision control system. Github is very useful to revert back to the

unbroken state and discard all the changes made in the code. This saves time

because debugging is time-consuming.

 Although there is no formal documentation, the open source community

follows a strict coding style to make it easier to understand the code, review it,

and revise it quickly. Unclear and messy codes would not be accepted and

pushed into the code tree by the community. Furthermore, test projects are

created for large open source projects to create test suites and automate testing

such as Junit Test and Robotium Test. The strict coding style and test projects

can help to enhance the security of the software and ensure the compatibility of

the new feature implementation.

32

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

 This project eliminates the limitation of the current control API in Catroid to

become a higher-level programming language for children. Currently, children

can only program the user interaction in application with lower-level

programming due to the limited functions of the current Catroid control API.

With the intuitive control API where phone sensors integrated, children can

develop an interactive application easily in Catroid.

 The new intuitive control API not only benefits the children as a programmer

but also the users who use the application programmed by them. The Catroid has

a huge potential to become the next premier graphical programming tool not only

for children and novice users of all ages but a new powerful programming tool

for academic usage in computer science education.

 An intuitive control API consists of sensor variables and If-Then-Else

Command Block. The If-Then-Else Command Block acts as the control and the

sensor variables make the control become intuitive. The sensor variables are

implemented with the integration of Accelerometer and Orientation sensor. The

accelerometer has 3 values: X-Sensor Acceleration, Y-Sensor Acceleration and

Z-Sensor Acceleration while Orientation sensor has another 3 values: Azimuth,

Pitch and Roll. The sensor variables can be assigned to and removed from

Command Blocks using the Formula Editor. The intuitive control is created when

the sensor variable is assigned to one of the text fields in If-Then-Else Command

Blocks. In addition, the value of the sensor variables can be used in equation and

calculation.

 The interfaces of sensor variables, If-Then-Else Command Block and

Formula Editor are designed referring to the interface design rules by

Schneiderman’s Eight Golden Rules.

33

 The usage of the intuitive control API is simple and straight forward. When a

sensor variable is assigned to one of the fields in If-Then-Else Command Blocks,

the intuitive control is developed. The Command Blocks in between the If-

Statement Command Block and End of If Command Block will be executed

whenever the logic condition in the If-Statement is true. There are various

intuitive user interactions in Catroid can be programmed using the intuitive

control API depending on the creativity of the programmer. The intuitive user

interactions which in common use are shaking, locating direction, titling and

turning motion.

 This project chose to adopt open source development method to benchmark it

with the typical software development method. The open source development

method helps to produce higher-quality software with lower cost. Its

characteristics and good practises can improve code quality, communication,

effectiveness, and performance that typical software development method could

not achieve. Besides, the open source development method reduces the risk of the

software failed meet the user requirement.

 Overall, this project has a significant impact to the programming power of

Catroid and its user experience. It makes intuitive user interaction applicable for

children to use in their application. This project will bring the programming

language for children into the next higher level, subsequently improving usability

to novice programmers, both children and adults.

34

5.2 Recommendation

 There are several recommendations that could be considered to make this

project better.

 The first recommendation is the naming of the sensor variables. The selection

of words and language are important for children to understand how the control

API works. It will be better if icons or pictures are used to illustrate the functions

of control API.

 The second recommendation is to create a tutorial or video to demonstrate the

usage of the intuitive control API. Besides, some sample Catroid projects that

contain different intuitive control should be included in Catroid setup.

 The third recommendation is to develop more sensor variables such as Light

Sensor to detect ambient light, Temperature Sensor to detect surrounding

temperature and Pressure Sensor to detect pressure.

35

REFERENCES

 Android SDK | android developers Retrieved 11/16/2011, 2011, from

http://developer.android.com/sdk/index.html

Catroid - an on-device visual programming language for android inspired by scratch

- google project hosting Retrieved 11/16/2011, 2011, from

http://code.google.com/p/catroid/

Daughtry III, J. M. Programming, kids, collaborating, and communities.

Druin, A., Ed. (1999). The Design of Children's technology, Morgan Kaufmann

Publishers, Inc.

Fincher, S., Cooper, S., Kölling, M., & Maloney, J. (2010). Comparing alice,

greenfoot & scratch. Proceedings of the 41st ACM Technical Symposium on

Computer Science Education, pp. 192-193.

GNU affero general public license - GNU project - free software foundation (FSF)

Retrieved 11/16/2011, 2011, from http://www.gnu.org/licenses/agpl.html

Gartner says android to command nearly half of worldwide smartphone operating

system market by year-end 2012 Retrieved 12/5/2011, 2011, from

http://www.gartner.com/it/page.jsp?id=1622614

Guzdial, M. (2004). Programming environments for novices.

 In S. Fincher and M. Petre (Eds.), Computer Science Education Research

 (pp. 127-154). Lisse, The Netherlands: Taylor & Francis.

Hall, S. P., & Anderson, E. (2009). Operating systems for mobile computing.

Journal of Computing Sciences in Colleges, 25(2), 64-71.

 Hassan, N., Rahman, M., Irani, P., Graham, P. Chucking:

 A One-Handed Document Sharing Technique. INTERACT'09.

Hinckley, K., & Song, H.,Y. 2011. Sensor synaesthesia: touch in motion,

 and motion in touch. In Proceedings of the 2011 annual conference on Human

 factors in computing systems (CHI '11). ACM, New York, NY, USA, 801-810.

 DOI=10.1145/1978942.1979059 http://doi.acm.org/10.1145/1978942.1979059

Kelleher, C. & Pausch, R. (2005). Lowering the barriers to programming: a

 taxonomy of programming environments and languages for novice programmers.

 ACM Computing Surveys, 37(2), 88-137.

Kim, K.-E., et al. Hand Grip Pattern Recognition for Mobile User Interfaces.

Proceedings of AAAI/IAAI-2006: Innovative Applications of Artificial

Intelligence. 2006.

http://developer.android.com/sdk/index.html
http://code.google.com/p/catroid/
http://www.gnu.org/licenses/agpl.html
http://www.gartner.com/it/page.jsp?id=1622614

36

Lin, F., & Ye, W. (2009). Operating system battle in the ecosystem of smartphone

industry. Information Engineering and Electronic Commerce, 2009. IEEC'09.

International Symposium on, pp. 617-621.

Lonchamp, J. (2005). Open source software development process modeling.

Software Process Modeling, , 29-64.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The

scratch programming language and environment. ACM Transactions on

Computing Education (TOCE), 10(4), 16.

Martin, R. C., Feathers, M. C., Ottinger, T. R., Langr, J. J., Schuchert , B. L.,

Grenning, J. W., et al. (2009). Clean code A handbook of agile software

craftsmanship. United States: Pearson Education, Inc.

M.Abbing. (12 April, 2006). Process-data diagram of Open source software

 development.

McKnight, L. and Fitton, D.. 2010. Touch-screen technology for children:

 giving the right instructions and getting the right responses. In Proceedings of the

 9th International Conference on Interaction Design and Children (IDC '10).

 ACM, New York, NY, USA, 238-241. DOI=10.1145/1810543.1810580

 http://doi.acm.org/10.1145/1810543.1810580

Mohs, C., Hurtienne, J., Israel, J. H., Naumann, A., Kindsmüller, M. C., Meyer, H.

A., et al. (2006). IUUI–intuitive use of user interfaces. Usability Professionals,

6, 130-133.

 Open source software development Retrieved 11/16/2011, 2011, from

 http://chinese-school.netfirms.com/computer-article-open-source.html

OSI Community. (1998). The Open Source Definition. Retrieved 26 October, 2011,

 from Open Source Initiative: http://opensource.org/docs/osd

Perens, B. (1999). The open source definition. Open Sources: Voices from the Open

Source Revolution, 171, 188.

Pfleeger, S. L., & Atlee, J. M. (2010). Software engineering, theory and practice (4th

ed.). New Jersey: Pearson Higher Education.

Rahman, M., Gustafson, S., Irani, P., Subramanian, S.

Tilt Techniques: Investigating the Dexterity of Wrist Based Input. CHI'09

Raymond, 2001 Raymond, E.S., 2001. The Cathedral and the Bazaar: Musings on

 Linux and Open Source by an Accidental Revolutionary, revised ed. O’Reilly.

Ruiz, J. , Yang Li, and Lank, E.. 2011. User-defined motion gestures for

 mobile interaction. In Proceedings of the 2011 annual conference on Human

 factors in computing systems (CHI '11). ACM, New York, NY, USA, 197-206.

 DOI=10.1145/1978942.1978971 http://doi.acm.org/10.1145/1978942.1978971

http://chinese-school.netfirms.com/computer-article-open-source.html
http://www.sciencedirect.com/science/article/pii/S016412120200064X#bBIB21

37

Taylor, B., Bove Jr., V. Graspables: Grasp-Recognition as a User Interface. CHI'09.

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice,

greenfoot, and scratch--a discussion. ACM Transactions on Computing

Education (TOCE), 10(4), 17.

Xiajian, C., Danli, W., & Hongan, W. (2011). Design and implementation of a

graphical programming tool for children. Computer Science and Automation

Engineering (CSAE), 2011 IEEE International Conference on, , 4. pp. 572-576.

Zhou ZY, Cheok AD, Tedjokusumo H, Orner GS (2008)

 wIzQubesTM-A novel tangible interface for interactive storytelling in mixed

 reality. Int J Virtual Real 7(4):9-15.

38

APPENDICES

Appendix 1

Rules of Clean Coding for Code Quality Assurance:

 Refactor & clean up the code for readability and understandable by itself

 Use no abbreviations

 Use as much as possible no comments

 Use good, pertinent names of variables, methods , objects & etc

 The code should be crystal-clear, self-explaining, and we should be

annoyingly thorough in making this sure

 Eliminate duplicate code

 Leave no compiler warnings

 Cleanly use known design patterns

 All of above not only for the main code but also for the test code

 Add unit-, regression-, and functional-tests so that the code and

functionality is 100% covered.

 Have all the code (include test code) reviewed by independent team

members

The Criteria of Open Source Definition (OSI Community, 1998) :

1. Free Redistribution – Copies of the software can be made at no cost.

2. Source Code – The source code must be distributed with the original work,

as well as all derived works.

3. Derived Works – Modifications are allowed, however it is not required that

the derived work be subject to the same license terms as the original work.

4. Integrity of the Author’s Source Code – Modifications to the original work

may be restricted only if the distribution of patches is allowed. Derived

works may be required to carry a different name or version number from

the original software.

5. No Discrimination Against Persons or Groups – Discrimination against

any person or groups is not allowed.

39

6. No Discrimination Against Fields of Endeavour – Restriction preventing

use of the software by a certain business or area of research are not

allowed.

7. Distribution of License – Any terms should apply automatically without

written authorization.

8. License Must Not Be Specific to a Product - Rights attached to a program

must not depend on that program being part of a specific software

distribution.

9. License Must Not Restrict Other Software - The license must not place

restrictions on other software that is distributed along with the licensed

software.

10. License Must Be Technology-Neutral – No provision of the license may be

predicated on any individual technology or style or interface.

40

Appendix 2

Gantt chart of Project Tracking

41

Appendix 3

GNU AFFERO GENERAL PUBLIC LICENSE

Version 3, 19 November 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and

other kinds of works, specifically designed to ensure cooperation with the

community in the case of network server software.

The licenses for most software and other practical works are designed to take away

your freedom to share and change the works. By contrast, our General Public

Licenses are intended to guarantee your freedom to share and change all versions of

a program--to make sure it remains free software for all its users.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute

copies of free software (and charge for them if you wish), that you receive source

code or can get it if you want it, that you can change the software or use pieces of it

in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License which gives you

legal permission to copy, distribute and/or modify the software.

A secondary benefit of defending all users' freedom is that improvements made in

alternate versions of the program, if they receive widespread use, become available

for other developers to incorporate. Many developers of free software are heartened

and encouraged by the resulting cooperation. However, in the case of software used

on network servers, this result may fail to come about. The GNU General Public

License permits making a modified version and letting the public access it on a

server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in

such cases, the modified source code becomes available to the community. It

requires the operator of a network server to provide the source code of the modified

version running there to the users of that server. Therefore, public use of a modified

version, on a publicly accessible server, gives the public access to the source code of

the modified version.

An older license, called the Affero General Public License and published by Affero,

was designed to accomplish similar goals. This is a different license, not a version of

the Affero GPL, but Affero has released a new version of the Affero GPL which

permits relicensing under this license.

http://fsf.org/

42

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU Affero General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such

as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each

licensee is addressed as "you". "Licensees" and "recipients" may be individuals or

organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion

requiring copyright permission, other than the making of an exact copy. The

resulting work is called a "modified version" of the earlier work or a work "based

on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the

Program.

To "propagate" a work means to do anything with it that, without permission, would

make you directly or secondarily liable for infringement under applicable copyright

law, except executing it on a computer or modifying a private copy. Propagation

includes copying, distribution (with or without modification), making available to the

public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to

make or receive copies. Mere interaction with a user through a computer network,

with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that

it includes a convenient and prominently visible feature that (1) displays an

appropriate copyright notice, and (2) tells the user that there is no warranty for the

work (except to the extent that warranties are provided), that licensees may convey

the work under this License, and how to view a copy of this License. If the interface

presents a list of user commands or options, such as a menu, a prominent item in the

list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work for making

modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined

by a recognized standards body, or, in the case of interfaces specified for a particular

programming language, one that is widely used among developers working in that

language.

43

The "System Libraries" of an executable work include anything, other than the work

as a whole, that (a) is included in the normal form of packaging a Major Component,

but which is not part of that Major Component, and (b) serves only to enable use of

the work with that Major Component, or to implement a Standard Interface for which

an implementation is available to the public in source code form. A "Major

Component", in this context, means a major essential component (kernel, window

system, and so on) of the specific operating system (if any) on which the executable

work runs, or a compiler used to produce the work, or an object code interpreter used

to run it.

The "Corresponding Source" for a work in object code form means all the source

code needed to generate, install, and (for an executable work) run the object code and

to modify the work, including scripts to control those activities. However, it does not

include the work's System Libraries, or general-purpose tools or generally available

free programs which are used unmodified in performing those activities but which

are not part of the work. For example, Corresponding Source includes interface

definition files associated with source files for the work, and the source code for

shared libraries and dynamically linked subprograms that the work is specifically

designed to require, such as by intimate data communication or control flow between

those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate

automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the

Program, and are irrevocable provided the stated conditions are met. This License

explicitly affirms your unlimited permission to run the unmodified Program. The

output from running a covered work is covered by this License only if the output,

given its content, constitutes a covered work. This License acknowledges your rights

of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without

conditions so long as your license otherwise remains in force. You may convey

covered works to others for the sole purpose of having them make modifications

exclusively for you, or provide you with facilities for running those works, provided

that you comply with the terms of this License in conveying all material for which

you do not control copyright. Those thus making or running the covered works for

you must do so exclusively on your behalf, under your direction and control, on

terms that prohibit them from making any copies of your copyrighted material

outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions

stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

44

No covered work shall be deemed part of an effective technological measure under

any applicable law fulfilling obligations under article 11 of the WIPO copyright

treaty adopted on 20 December 1996, or similar laws prohibiting or restricting

circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention is effected

by exercising rights under this License with respect to the covered work, and you

disclaim any intention to limit operation or modification of the work as a means of

enforcing, against the work's users, your or third parties' legal rights to forbid

circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in

any medium, provided that you conspicuously and appropriately publish on each

copy an appropriate copyright notice; keep intact all notices stating that this License

and any non-permissive terms added in accord with section 7 apply to the code; keep

intact all notices of the absence of any warranty; and give all recipients a copy of this

License along with the Program.

You may charge any price or no price for each copy that you convey, and you may

offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it

from the Program, in the form of source code under the terms of section 4, provided

that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified it, and

giving a relevant date.

 b) The work must carry prominent notices stating that it is released under this

License and any conditions added under section 7. This requirement modifies

the requirement in section 4 to "keep intact all notices".

 c) You must license the entire work, as a whole, under this License to anyone

who comes into possession of a copy. This License will therefore apply,

along with any applicable section 7 additional terms, to the whole of the

work, and all its parts, regardless of how they are packaged. This License

gives no permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display Appropriate

Legal Notices; however, if the Program has interactive interfaces that do not

display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which

are not by their nature extensions of the covered work, and which are not combined

with it such as to form a larger program, in or on a volume of a storage or

distribution medium, is called an "aggregate" if the compilation and its resulting

copyright are not used to limit the access or legal rights of the compilation's users

45

beyond what the individual works permit. Inclusion of a covered work in an

aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4

and 5, provided that you also convey the machine-readable Corresponding Source

under the terms of this License, in one of these ways:

 a) Convey the object code in, or embodied in, a physical product (including a

physical distribution medium), accompanied by the Corresponding Source

fixed on a durable physical medium customarily used for software

interchange.

 b) Convey the object code in, or embodied in, a physical product (including a

physical distribution medium), accompanied by a written offer, valid for at

least three years and valid for as long as you offer spare parts or customer

support for that product model, to give anyone who possesses the object code

either (1) a copy of the Corresponding Source for all the software in the

product that is covered by this License, on a durable physical medium

customarily used for software interchange, for a price no more than your

reasonable cost of physically performing this conveying of source, or (2)

access to copy the Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the written

offer to provide the Corresponding Source. This alternative is allowed only

occasionally and noncommercially, and only if you received the object code

with such an offer, in accord with subsection 6b.

 d) Convey the object code by offering access from a designated place (gratis

or for a charge), and offer equivalent access to the Corresponding Source in

the same way through the same place at no further charge. You need not

require recipients to copy the Corresponding Source along with the object

code. If the place to copy the object code is a network server, the

Corresponding Source may be on a different server (operated by you or a

third party) that supports equivalent copying facilities, provided you maintain

clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the Corresponding

Source, you remain obligated to ensure that it is available for as long as

needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided you

inform other peers where the object code and Corresponding Source of the

work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the

Corresponding Source as a System Library, need not be included in conveying the

object code work.

A "User Product" is either (1) a "consumer product", which means any tangible

personal property which is normally used for personal, family, or household

purposes, or (2) anything designed or sold for incorporation into a dwelling. In

determining whether a product is a consumer product, doubtful cases shall be

resolved in favor of coverage. For a particular product received by a particular user,

46

"normally used" refers to a typical or common use of that class of product, regardless

of the status of the particular user or of the way in which the particular user actually

uses, or expects or is expected to use, the product. A product is a consumer product

regardless of whether the product has substantial commercial, industrial or non-

consumer uses, unless such uses represent the only significant mode of use of the

product.

"Installation Information" for a User Product means any methods, procedures,

authorization keys, or other information required to install and execute modified

versions of a covered work in that User Product from a modified version of its

Corresponding Source. The information must suffice to ensure that the continued

functioning of the modified object code is in no case prevented or interfered with

solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for

use in, a User Product, and the conveying occurs as part of a transaction in which the

right of possession and use of the User Product is transferred to the recipient in

perpetuity or for a fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied by the

Installation Information. But this requirement does not apply if neither you nor any

third party retains the ability to install modified object code on the User Product (for

example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement

to continue to provide support service, warranty, or updates for a work that has been

modified or installed by the recipient, or for the User Product in which it has been

modified or installed. Access to a network may be denied when the modification

itself materially and adversely affects the operation of the network or violates the

rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord

with this section must be in a format that is publicly documented (and with an

implementation available to the public in source code form), and must require no

special password or key for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this License by

making exceptions from one or more of its conditions. Additional permissions that

are applicable to the entire Program shall be treated as though they were included in

this License, to the extent that they are valid under applicable law. If additional

permissions apply only to part of the Program, that part may be used separately under

those permissions, but the entire Program remains governed by this License without

regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any

additional permissions from that copy, or from any part of it. (Additional permissions

may be written to require their own removal in certain cases when you modify the

work.) You may place additional permissions on material, added by you to a covered

work, for which you have or can give appropriate copyright permission.

47

Notwithstanding any other provision of this License, for material you add to a

covered work, you may (if authorized by the copyright holders of that material)

supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the terms of

sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or author

attributions in that material or in the Appropriate Legal Notices displayed by

works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or requiring

that modified versions of such material be marked in reasonable ways as

different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or authors of

the material; or

 e) Declining to grant rights under trademark law for use of some trade names,

trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that material by

anyone who conveys the material (or modified versions of it) with contractual

assumptions of liability to the recipient, for any liability that these contractual

assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within

the meaning of section 10. If the Program as you received it, or any part of it,

contains a notice stating that it is governed by this License along with a term that is a

further restriction, you may remove that term. If a license document contains a

further restriction but permits relicensing or conveying under this License, you may

add to a covered work material governed by the terms of that license document,

provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the

relevant source files, a statement of the additional terms that apply to those files, or a

notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a

separately written license, or stated as exceptions; the above requirements apply

either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided

under this License. Any attempt otherwise to propagate or modify it is void, and will

automatically terminate your rights under this License (including any patent licenses

granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a

particular copyright holder is reinstated (a) provisionally, unless and until the

copyright holder explicitly and finally terminates your license, and (b) permanently,

if the copyright holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

48

Moreover, your license from a particular copyright holder is reinstated permanently

if the copyright holder notifies you of the violation by some reasonable means, this is

the first time you have received notice of violation of this License (for any work)

from that copyright holder, and you cure the violation prior to 30 days after your

receipt of the notice.

Termination of your rights under this section does not terminate the licenses of

parties who have received copies or rights from you under this License. If your rights

have been terminated and not permanently reinstated, you do not qualify to receive

new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the

Program. Ancillary propagation of a covered work occurring solely as a consequence

of using peer-to-peer transmission to receive a copy likewise does not require

acceptance. However, nothing other than this License grants you permission to

propagate or modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a covered work, you

indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license

from the original licensors, to run, modify and propagate that work, subject to this

License. You are not responsible for enforcing compliance by third parties with this

License.

An "entity transaction" is a transaction transferring control of an organization, or

substantially all assets of one, or subdividing an organization, or merging

organizations. If propagation of a covered work results from an entity transaction,

each party to that transaction who receives a copy of the work also receives whatever

licenses to the work the party's predecessor in interest had or could give under the

previous paragraph, plus a right to possession of the Corresponding Source of the

work from the predecessor in interest, if the predecessor has it or can get it with

reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or

affirmed under this License. For example, you may not impose a license fee, royalty,

or other charge for exercise of rights granted under this License, and you may not

initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for sale, or importing

the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this License of the

Program or a work on which the Program is based. The work thus licensed is called

the contributor's "contributor version".

49

A contributor's "essential patent claims" are all patent claims owned or controlled by

the contributor, whether already acquired or hereafter acquired, that would be

infringed by some manner, permitted by this License, of making, using, or selling its

contributor version, but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For purposes of this

definition, "control" includes the right to grant patent sublicenses in a manner

consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license

under the contributor's essential patent claims, to make, use, sell, offer for sale,

import and otherwise run, modify and propagate the contents of its contributor

version.

In the following three paragraphs, a "patent license" is any express agreement or

commitment, however denominated, not to enforce a patent (such as an express

permission to practice a patent or covenant not to sue for patent infringement). To

"grant" such a patent license to a party means to make such an agreement or

commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the

Corresponding Source of the work is not available for anyone to copy, free of charge

and under the terms of this License, through a publicly available network server or

other readily accessible means, then you must either (1) cause the Corresponding

Source to be so available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner consistent with the

requirements of this License, to extend the patent license to downstream recipients.

"Knowingly relying" means you have actual knowledge that, but for the patent

license, your conveying the covered work in a country, or your recipient's use of the

covered work in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,

or propagate by procuring conveyance of, a covered work, and grant a patent license

to some of the parties receiving the covered work authorizing them to use, propagate,

modify or convey a specific copy of the covered work, then the patent license you

grant is automatically extended to all recipients of the covered work and works based

on it.

A patent license is "discriminatory" if it does not include within the scope of its

coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or

more of the rights that are specifically granted under this License. You may not

convey a covered work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment to the third

party based on the extent of your activity of conveying the work, and under which

the third party grants, to any of the parties who would receive the covered work from

you, a discriminatory patent license (a) in connection with copies of the covered

work conveyed by you (or copies made from those copies), or (b) primarily for and

in connection with specific products or compilations that contain the covered work,

unless you entered into that arrangement, or that patent license was granted, prior to

28 March 2007.

50

Nothing in this License shall be construed as excluding or limiting any implied

license or other defenses to infringement that may otherwise be available to you

under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise)

that contradict the conditions of this License, they do not excuse you from the

conditions of this License. If you cannot convey a covered work so as to satisfy

simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not convey it at all. For example, if you

agree to terms that obligate you to collect a royalty for further conveying from those

to whom you convey the Program, the only way you could satisfy both those terms

and this License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program,

your modified version must prominently offer all users interacting with it remotely

through a computer network (if your version supports such interaction) an

opportunity to receive the Corresponding Source of your version by providing access

to the Corresponding Source from a network server at no charge, through some

standard or customary means of facilitating copying of software. This Corresponding

Source shall include the Corresponding Source for any work covered by version 3 of

the GNU General Public License that is incorporated pursuant to the following

paragraph.

Notwithstanding any other provision of this License, you have permission to link or

combine any covered work with a work licensed under version 3 of the GNU

General Public License into a single combined work, and to convey the resulting

work. The terms of this License will continue to apply to the part which is the

covered work, but the work with which it is combined will remain governed by

version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU

Affero General Public License from time to time. Such new versions will be similar

in spirit to the present version, but may differ in detail to address new problems or

concerns.

Each version is given a distinguishing version number. If the Program specifies that a

certain numbered version of the GNU Affero General Public License "or any later

version" applies to it, you have the option of following the terms and conditions

either of that numbered version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of the GNU

Affero General Public License, you may choose any version ever published by the

Free Software Foundation.

51

If the Program specifies that a proxy can decide which future versions of the GNU

Affero General Public License can be used, that proxy's public statement of

acceptance of a version permanently authorizes you to choose that version for the

Program.

Later license versions may give you additional or different permissions. However, no

additional obligations are imposed on any author or copyright holder as a result of

your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT

PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED

IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND

PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL

NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY

WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE

OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF

THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be

given local legal effect according to their terms, reviewing courts shall apply local

law that most closely approximates an absolute waiver of all civil liability in

connection with the Program, unless a warranty or assumption of liability

accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

52

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone

can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source file to most effectively state the exclusion of warranty; and each

file should have at least the "copyright" line and a pointer to where the full notice is

found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU Affero General Public License as

 published by the Free Software Foundation, either version 3 of the

 License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License

 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer network, you

should also make sure that it provides a way for users to get its source. For example,

if your program is a web application, its interface could display a "Source" link that

leads users to an archive of the code. There are many ways you could offer source,

and different solutions will be better for different programs; see section 13 for the

specific requirements.

You should also get your employer (if you work as a programmer) or school, if any,

to sign a "copyright disclaimer" for the program, if necessary. For more information

on this, and how to apply and follow the GNU AGPL, see

<http://www.gnu.org/licenses/>.

http://www.gnu.org/licenses/

53

Appendix 4

Wiki Page of Control API for Catroid

