Development of a Particulates Filtration System for Biomass Gas of Oil-Palm Fronds

by

Muhammad Aizuddin Bin Rusdi

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

JANUARY 2009

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Development of a Particulates Filtration System for Biomass Gas of Oil-Palm Fronds

by

Muhammad Aizuddin Bin Rusdi

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(Ir. Dr. Shaharin Anwar B Sulaiman)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MUHAMMAD AIZUDDIN BIN RUSDI

ABSTRACT

This report basically discuss about the research regarding development of gas cleaning system for Biomass Gas of Oil Palm Fronds. As for now there are no findings about biomass product of oil palm fronds, normally in biomass gases there will be some of the product that will effect the combustion engine either reducing its efficiency or shorten the life of the combustion engine. The objective of the research is to identify the product that will affect the internal combustion engine and also to develop a gas cleaning system. The studies are focused in developing the filter base on the information gain from the literature review regarding the emission of other biomass product. From that it is assume that the product of oil palm fronds will release about the same particulate as in the literature review. The study also include on deciding the type of filter to be implement for the gas cleaning system, for standard condition the filter will have many stages of filtration. The first filter usually will filter out the larger particle. The study identify that the largest product from the gasifier are ash and dust. As for the first filter the author proposes to use cyclone filter since it is widely use for biomass filtration. The study involve on designing and modelling of cyclone using AutoCAD, meshing in GAMBIT and run the simulation in FLUENT. All these method are important to simulate in actual condition. The main result that are been gauge are the flow velocity variation in the filter. The velocity variation then been match with the settling velocity of ash and dust. From the calculation the steeling velocity of ash and dust are 3.6077×10^{-4} m/s and 2.2328×10^{-7} m/s where the simulation velocity variation are from 9.84 x 10^{-8} m/s to 0.57 m/s which satisfy the condition. The study also include the testing of the fabricate filter. From the testing the effectiveness of the filter are been calculated where yields result of 81.72%.

ACKNOWLEDGEMENTS

The author wishes to take the opportunity to express his utmost gratitude to the individual and parties that have contributed their time and efforts in assisting the author in completing the project. Without their help and cooperation, no doubt the author would face some difficulties through out the project.

The highest appreciation is to ALLAH the All Mighty who gives the author the will and opportunity to complete this project. With out His guidance and blessing truly the author can not succeed on doing the project.

A very high appreciation and thanks credited to the author's supervisor, Ir Dr Shaharin Anwar B Sulaiman for his lot of guidance throughout the project. Without his guidance and patience, the author will not succeed to complete. The author would like to thanks the final year project coordinator, Prof. Vijay for his effort in ensuring the project is progressing smoothly within the given time frame.

The author also would like to appreciate the technicians in Mechanical and Chemical Engineering Departments, for their assistance during the lab testing sessions. Without all the supports and contributions from all the parties mentioned, it is impossible for the author to successfully meet the objective of the project. For those whose their name are not mentioned here, the author thanks for all of their contributions.

TABLE OF CONTENT

CERTIFICATION	OF APPF	ROVAL.	•	•	•	•	ii
CERTIFICATION	OF ORIG	GINALITY.	•	•	•	•	iii
ABSTRACT .		•	•	•	•	•	iv
ACKNOWLEDGE	MENTS.	•	•	•	•	•	v
LIST OF FIGURES		•	•	•	•	•	ix
LIST OF TABLES.	•	•	•	•	•	•	x
CHAPTER 1: INT	RODUCI	FION	•	•	•	•	1
1.1	Backgro	und	•	•	•	•	1
1.2	Problem	Statement.	•	•	•	•	2
1.3	Objectiv	e	•	•	•	•	2
1.4	Study Sc	cope	•	•	•	•	2
CHAPTER 2: LIT	ERATUR	E REVIEW.	••	•	•	•	3
2.1	Gasifica	tion Process.	•	•	•	•	3
2.2	Gasifier	Fuel Charact	teristics.	•	•	•	4
	2.2.1 N	Aoisture Con	tent.	•	•	•	5
	2.2.2 I	Oust Content.	•	•	•	•	5
	2.2.3 1	Car Content.	•	•	•	•	5
	2.2.4 A	Ash and Slagg	ging Ch	aracteris	stics.	•	6
2.3	Types of	Filter.	•	•	•	•	9
	2.3.1 I	Dry Filter, (C	yclone -	- Dynar	nic Sep	arators)	.9
	2.3.1.	1 Type of (Cyclone	Filter.	•	•	11
	2.3.1.	2 Sizing of	Cyclon	e Filter	•	•	13
	2.3.2 V	Vet Filter	•	•	•	•	15

CHAPTER 3:	MET	THODO	OLOGY	ζ.	•	•	•	•	16
	3.1	Overvi	iew.	•	•	•	•	•	16
	3.2	Gantt	Chart .	•	•	•	•	•	17
	3.3	Selecti	on of F	ilter.	•	•	•	•	18
	3.4	Design	the Fil	ter.	•	•	•	•	19
	3.5	Softwa	are Para	meters.	•	•	•	•	22
	3.6	Materi	al Selec	ctions	•	•	•	•	23
	3.7	Proced	lure of 7	Festing	•	•	•	•	25
CHAPTER 4:	RES	ULTS A	AND C	ALCUI	LATIO	NS	•	•	26
	4.1	Identif	ying Ty	pe of F	low.	•	•	•	26
	4.2	Verify	ing Des	ign usin	ıg Calcı	ulation.	•	•	26
		4.2.1	Diame	ter Cut.	•	•	•	•	27
		4.2.2	Inlet H	leight.	•	•	•	•	27
		4.2.3	Cylind	ler Leng	th.	•	•	•	27
		4.2.4	Cone I	Length.	•	•	•	•	28
	4.3	Dust S	Settling	Velocit	у.	•	•	•	29
CHAPTER 5:	DISC	CUSSIC	ONS	•	•	•	•	•	30
	5.1	Simula	ation of	Flow in	Cyclor	ne Filter	•		30
		5.1.1	Top Se	ection.	•	•	•	•	31
		5.1.2	Middle	e Section	n.	•	•	•	33
		5.1.3	Botton	n Sectio	n.	•	•	•	35
		5.1.4	Veloci	ty Vecto	or withi	n the C	yclone	•	37
		5.1.5	Veloci	ty Conte	ours	•	•	•	38
		5.1.6	Flow F	Path Lin	e.	•	•	•	39
	5.2	Testing	g.	•	•	•	•	•	40

CHAPTER	6: CON	ICLUS	IONS A	AND RI	ECOM	MEND	ATION	IS.	44
REFERENC	CES.	•		•	•	•	•	•	45
APPENDIC	ES.	•	•	•	•	•	•	•	46
А	-1 Mate	rial proj	perties.	•	•	•	•	•	46
А	-2 Cyclo	one desi	gn tool	1.	•	•	•	•	47
А	-3 Cyclo	one desi	gn tool	2.	•	•	•	•	48
А	-4 Cyclo	one desi	gn usin	g AutoO	CAD.	•	•	•	49
А	-5 Settli	ng tank	design	using A	utoCAI	D.	•	•	50
А	-5 Veloc	ity Col	ored by	Velocit	y Magr	nitude (I	Front vi	ew).	51
А	-6 Veloc	ity Col	ored by	Velocit	y Magr	nitude (7	Гор vie	w) .	52
А	-7 Veloc	city Col	ored by	Veloci	ty Magi	nitude			
	(Cros	s sectio	onal).	•	•	•	•	•	53
А	-8: Flow	Path L	ine in tl	he Cyclo	one Filt	er.	•	•	54

LIST OF FIGURES

Figure 2.1:	Chart on tar emission vs. type of product	6
Figure 2.2:	Chart on percentage of ash emission vs. type of product	7
Figure 2.3:	Cyclone – Dynamic separators	9
Figure 2.4:	Types of cyclone filter	11
Figure 2.5:	Cyclone filter and dimension	14
Figure 2.6:	Wet filter	15
Figure 3.1:	Work flow	16
Figure 3.2:	Front view of the cyclone filter settling tank been detach	19
Figure 3.3:	The sequence of conducting the software	21
Figure 5.1:	Section that been divided in three sections	30
Figure 5.2:	Horizontal top cross sectional cutting of cyclone filter	31
Figure 5.3:	Velocity profile of top horizontal cross sectional of cyclone filter	32
Figure 5.4:	Horizontal middle cross sectional cutting of cyclone filter	33
Figure 5.5:	Velocity profile of middle horizontal cross sectional	
	of cyclone filter	34
Figure 5.6:	Horizontal bottom cross sectional cutting of cyclone filter	35
Figure 5.7:	Velocity profile of bottom horizontal cross sectional	
	of cyclone filter	36
Figure 5.8:	Velocity Vector of fluid in the cyclone filter.	37
Figure 5.9:	Contours of the velocity magnitude of horizontal cut in cyclone filter	38
Figure 5.10:	Flow path line in the cyclone filter	39
Figure 5.11:	Testing of filter	40
Figure 5.12:	Settling tank and particulate collected	41

LIST OF TABLES

Table 2.1:	Data on product and its emission	8
Table 3.2:	Gantt Chart for FYP1	17
Table 3.3:	Gantt Chart for FYP2	18
Table 3.4:	Meshing parameters for Cyclone Filter	22
Table 3.5:	Parameters for the Flow inside the Cyclone	23
Table 3.6:	List of properties of the material	24
Table 5.1:	Result from Filter testing	42