TABLE OF CONTENT

CERTIFICATION				•	•	٠		i
ABSTRACT .								iii
ACKNOWLEDGE	MENT .	•	•	•	•	•		iv
CHAPTER 1: INTE	RODUCTION	J .	•			•	•	1
1.1	$\boldsymbol{\mathcal{C}}$			•				1
1.2	Problem Sta	tement			•	•	•	3
1.3	Objectives a	nd Scop	e of Stu	ıdy.	•	•	•	4
CHAPTER 2: LITE	ERATURE R	EVIEW						5
2.1	Intumescent	Coating						5
2.2	Beams .		•		•	•	•	6
2.3	ANSYS	•	•	•	•	•	•	11
CHAPTER 3: MET								12
3.1	Preliminary	1- and 2	-Dimer	nsional	Calcula	ation	•	12
3.2	Pre-Processi							12
3.3	3D Modelin	g And M	leshing		•	•	•	13
3.4	Apply Boun				oads		•	14
3.5	Simulation a							15
3.6	ANSYS	•	•					15
CHAPTER 4: RESU	ULTS AND I	DISCUS	SION				•	17
4.1	Preliminary	Analytic	al Calc					17
4.2	-					•		18
4.3								23
4.4	Discussion					•	•	27
CHAPTER 5: CON	CLUSIONS	AND RI	ECOM	MEND	ATIO	NS.		29
REFERENCES								30
A DDENDICES								21

APPENDIX

- 3-1: Defining element type
- 3-2: Defining material properties
- 3-3: Defining element size
- 3-4: Creating key points
- 3-5: Created key points
- 3-6: Creating lines
- 3-7: Created lines
- 3-8: Create area
- 3-9: Created areas
- 3-10: Create volume
- 3-11: Created volume
- 3-12: Meshing
- 3-13: Meshed
- 3-14: The stress from side view
- 3-15: The stress from front view
- 3-16: To run the simulation
- 3-17: First semester Gantt Chart
- 3-18: Second semester Gantt Chart

LIST OF FIGURES

Figure 1	The char before and after the expansion	3
Figure 2	The timeline of the expansion of the coating (Duquesne, 2004)	4
Figure 3	An off-shore steel platform	5
Figure 4	I-beam cross sectional dimension	6
Figure 5	I-beam in structure	6
Figure 6	C-channel cross sectional dimension	7
Figure 7	Steel angle (L-shape) cross sectional dimension	7
Figure 8	Rectangular HSS	9
Figure 9	Elliptical HSS	9
Figure 10	Symmetrical planes for I-beam	13
Figure 11	Flow chart of the project	15
Figure 12	A beam subjected to shear stress, V	16
Figure 13	The force body diagram at the interface of the beam and the	
	force diagram	17
Figure 14	Dimension of char sticking on beam	18
Figure 15	3-D model of the I-beam in ANSYS	20
Figure 16	3-D model of the C-channel in ANSYS	20
Figure 17	3-D model of the steel angle in ANSYS	21
Figure 18	Meshed model of I-beam in ANSYS	21
Figure 19	Meshed model of C-channel in ANSYS	22
Figure 20	Meshed model of steel angle in ANSYS	22
Figure 21	I-beam simulation result 1	23
Figure 22	I-beam simulation result 2	24
Figure 23	C-channel simulation result 1	25
Figure 24	C-channel simulation result 2	25
Figure 25	Steel angle simulation result 1	26
Figure 26	Steel angle simulation result 2	27
Figure 27	Carbon-fiber mat wrap on the stress concentration area	28

LIST OF TABLES

Table 1	The beam dimension modeled in ANSYS	9
Table 2	Mechanical properties of the beam	13

NOMENCLATURE

 t_f flange thickness

 t_w web thickness

d depth

bf flange width

 τ_{avg} average shear stress

V shear load

A surface area

 P_{cr} critical compression load

E Young's Modulus

I moment of inertia

L length