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ABSTRACT 

The objective of this project is to recognize selected hand gestures and imitate the 

recognized hand gesture using a robot. A telerobotics system that relies on computer 

vision to create the human-machine interface was build. Hand tracking was used as an 

intuitive control interface, as it represents a natural interaction medium. The system 

tracks the hand of the operator and the gesture it represents, and relays the appropriate 

signal to the robot to perform the respective action, in real time. The study focuses on 

two gestures, open hand, and closed hand, as the NAO robot is not equipped with a 

dexterous hand. Numerous object recognition algorithms were compared and the 

SURF based object detector was used. The system was successfully implemented, 

and was able to recognise the two gestures in 3D space using images from a 2D video 

camera. 
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CHAPTER 1 

INTRODUCTION 

This study implements a telerobotics system that relies on computer vision to create 

the human-machine interface. 3D Hand tracking through a 2D video camera is used 

as a natural and intuitive control interface. The system tracks the hand of the operator 

in the 3D space and the gesture it represents using monocular vision, and relays the 

appropriate signal to the robot to perform the respective action, in real time.  

1.1    BACKGROUND OF STUDY 

In robotics, the subdomain that covers using a mainly wireless connection to remote 

control a robot is called telerobotics. [1] [6] [7] [8-11]. It is the marriage of two 

disciplines, teleoperation and telepresence [1] [5]. 

Teleoperation aims to give the control of a robot to an operator from a distance in 

cases where the physical presence of the person is cumbersome or hazardous and 

creating an autonomous robotic system intricate. In order for teleoperation to be a 

viable option, it has to offer a level of manipulation close to the intuitive human hand 

motion. To deal with this area, telemanipulation is needed. Telemanipulation, is the 

combination of two words tele which means remote, and manipulation. Therefore 

telemanipulation can be defined as teleoperation where a human operator remotely 

controls a mechanism manually, in order to manipulated the environment where the 

robot is present [1] [6] [7] [8-12]. In recent years, many researchers have focused on 

creating telerobotics system using robots equipped with dexterous robotic hands in 

order to allow the operator to manipulate the remote environment intuitively. 

Different strategies were followed in order to control the robotic arm, as some 

systems used joysticks or space ball to operated them [2][3], when others  used 

trackers fixed to wrist of the operator, in order to map the motion of the arm of the 

operator to the robotic arm [4] [12] [13]. Computer vision was used in other 

telerobotics systems to allow the operator to manipulate the robot without requiring a 

physical tool [6]. Often the hand gesture is mapped from the operators hand to the 

robot using a dataglove, as it is easy and robust [1] [12][13].  
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1.2    PROBLEM STATEMENT 

Hand gestures can be used as a more natural and convenient way for human robot 

control. 

The direct interface of hand gestures provides us a new way for communicating with 

the remote environment through the robotic medium. 

1.3    OBJECTIVES 

 Recognize selected hand gestures. 

 Imitate recognized hand gesture using a robot. 

1.4    SCOPE OF STUDY 

We will be considering Monocular vision only, as it is compatible with all robots with 

vision, either 2D or 3D. 

Initially only planar hand gesture and position will be studied. The study will focus 

on two gestures, open hand, and closed hand, as the NAO robot is not equipped with 

a dexterous hand. 

1.5    RELEVANCY OF THE PROJECT 

With the development of robotics, more and more focus is put on human machine 

interaction. 

Not all robots with vision use stereo vision, therefore for a broader implementation, 

monocular vision is important. 

With the increase in performance of embedded processors, and Systems-On-Chip, 

one of the main drawbacks of computer vision is being reduced. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1    A ROBOT ARM/HAND TELEOPERATION SYSTEM WITH 

TELEPRESENCE AND SHARED CONTROL [1] 

The study investigates how effective telepresence is in application by describing a 

teleoperation based on a master slave paradigm. The sensorial feedback system 

consists of  sensors mounted on the fingers of the robotic arm, that measure the forces 

of contact exerted and sends them to the force feedback device in order to reproduce 

them on the hand of the human operator. A visual feedback was also used to immerse 

the operator in the remote environment through a 3D display helmet. [1]. 

The components used in this system were: 

Component Usage 

CyberGrasp Force feedback device 

3D display helmet Vision feedback device 

Staubli RX60 Robot arm 

HIT/DLR Dexterous hand 

Dataglove Finger position input device 

 

The position and velocity of the joints were computed by mapping the input from the 

dataglove. The Space Mouse is used as the 3D input device to control the Staubli 

RX60 robotic arm. The results of the experimental study are that the teleoperation 

system built can be intuitively controlled in addition to being productive [1]. 

2.2    DATA FUSION FOR 3D GESTURES TRACKING USING A CAMERA 

MOUNTED ON A ROBOT [3] 

This study aims to track 3D gestures of both arms by using monocular vision 

equipped mobile robot, combined with an assisting particle filter using fused data 

from several features [3].  

The arms are modeled by geometrical shapes approximations, where degenerate 

quadratics were used. The systems projects the shape and contour of the model in 
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addition to local surface features. Based on the projection the particles of the particle 

filter are confirmed, in order to compute a better mathematical model.   [3]. 

In the case of monocular vision, 3D pose is usually estimated using geometrical 

volumes  models. The authors state that particle filtering produces suitable results in 

this situation. In addition moving edges are favored in the case of busy backgrounds 

[3]. 

Clothes of particular color distributions were considered, as they natural markers. To 

do so histogram matching was used [3]. 

2.3    GAME INTERFACE USING HAND GESTURE RECOGNITION [4] 

The authors use difference image entropy using a stereo camera to achieve real-time 

hand gesture recognition [4]. 

Existing systems use hand detection primarily with some type of marker. The system 

discussed in this study, however, uses a real-time hand image recognition system. In 

the detection step, a depth map using a sum of absolute differences was implemented 

based on the acquired right-left image using a stereo camera. This system detects a 

foreground object and perceives it as a hand. 

The hand gesture recognition system uses the difference image entropy of the input 

image and the average image. To test the performance of the system, an experiment 

using the hand gesture 240 database was conducted. The proposed method shows an 

average recognition rate of 85%. Using the proposed method, a Chinese chess game 

based on hand gesture recognition was implemented [4]. 

2.4    SOM-BASED HAND GESTURE RECOGNITION FOR VIRTUAL 

INTERACTIONS [5] 

The paper proposes a new hand gesture recognition method using self-organizing 

map (SOM) with datagloves. The SOM method is a type of machine learning 

algorithm. It deals with the raw data sampled from datagloves as input vectors, and 

builds a mapping between these uncalibrated data and gesture commands. The results 

show the average recognition rate and time efficiency when using SOM for 

dataglove-based hand gesture recognition. A series of tasks in virtual house illustrate 

the performance of our interaction method based on hand gesture recognition [5]. 

The open and close hand gestures are easily found using the SOM method. On the 

other hand, the grasp is more difficult to recognize, the system is always confused by 

the grasp and hold. Although this system does not recognize the hold with good 

precision, it is powerful enough to work as a navigation or interface for virtual 

interactions [5]. 
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2.5    REAL-TIME HAND GESTURE TELEROBOTICS SYSTEM USING 

FUZZY C-MEANS CLUSTERING [6] 

The study aims to teleoperate a remote robot through TCP/IP in order to push a block 

remotely. Hand gestures are classified using C-Means as commands. The results of 

the tests that the system was subjected to, using 20 trials of a 12-gesture set of 

commands showed an effectiveness of 99.6% of the gesture described adequately, 

and a recognition accuracy of 100% of the gesture successfully classified. [6]. 

2.6    SUMMARY 

Table 1 Comparison of reviewed systems 

 

 

 

System Key points Limitations 

A Robot Arm/Hand 

Teleoperation System 

with Telepresence and 

Shared Control 

 Mechanical input sensor to 

measure hand gesture [1] 

 Helmet is used as the stereo 

video display device [1]. 

 Requires a mechanical 

input devices in order to 

operate 

 Hand gesture mapping to 

robot is often unnatural 

Data Fusion for 3D 

Gestures Tracking 

using a Camera 

mounted on a Robot 

 Combines particle filter 

tracking with edge cues, 

motion cues and Local color 

distributions [3]. 

 Computation expensive, “a 

PentiumIV-3GHz requires 

about 1s per frame”  [3]. 

Game Interface using 

Hand Gesture 

Recognition 

 Hand detection using sum of 

absolute differences and depth 

map [4]. 

 Hand recognition using 

difference image entropy [4]. 

 Uses Stereo vision [4], 

which can be limiting as 

most robots use single 

cameras as input. 

SOM-based Hand 

Gesture Recognition 

for Virtual 

Interactions 

 Uses dataglove as input device 

[5]. 

 Uses Self-Organizing Map 

Description to detect hand 

gesture [5]. 

 Requires the operator to 

wear a dataglove [5] 

Real-time hand 

gesture telerobotics 

system using fuzzy c-

means clustering 

 Hand detection using threshold 

[6]. 

 Hand gesture recognition using 

feature vectors [6]. 

 Frame must contain only 

the hand of the operator 

[6]. 
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CHAPTER 3 

METHODOLOGY: 

3.1    RESEARCH METHODOLOGY & RESULTS 

The project is split in two major parts, the computer vision system responsible of 

recognizing and tracking a hand gesture, and the robotic control system. 

3.1.1     Gesture Recognition: 

In order to recognize a gesture the shape of the hand and the hand itself must be 

detected in the frame, to do so multiple object recognition algorithms exist. These 

algorithms generally fall in the following categories: 

 Appearance-based methods: Use example images (called templates or 

exemplars) of the objects to perform recognition 

 Feature-based methods: Interesting features in the object are extracted and 

described, then a search is used to find feasible matches between object 

features and image features. 

The algorithms tested for gesture recognition are: 

• Speeded-Up Robust Features (SURF) - (Feature based method) 

• Template matching - (Appearance based method) 
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3.1.1.1    ALTERNATIVES COMPARISON  

The results were obtained using a Core2 Quad 2.67GHz Intel processor, running 

OpenCV2.1 on Windows 7 64bits. 

a) SURF [14]: 

SURF (Speeded-Up Robust Features) is a scale- and rotation-invariant detector and 

descriptor. To extract the points of interest, the method relies on integral images in 

the summation for image convolution in order to approximate the determinant of 

hessian, in addition to 2D Haar wavelets. For describing the interest points, SURF 

uses the distribution of the intensity neighboring the point the Haar wavelet of first 

order [14]. 

Due to the texture nature of the hands, the number of features extracted from the hand 

is not always sufficient to identify it in the frame, furthermore during our testing the 

frame rate was between 7 to 0.8 FPS, depending of the Hessian threshold and the size 

of the frames. 

The surf program was tested, at different hessian thresholds, 300, 500, 1000, and on 

the two gestures that we are studying, the open hand gesture, and the closed hand 

gesture. 

To match the features extracted between the gesture template and the frame, the naïve 

nearest neighbor method based on the squared distance was used. 

Once the matched points are found, the RANSAC (RANdom SAmple Consensus) 

algorithm is used to remove the erroneous matches before computing the 3 by3 

homography matrix that describes the relation between the template and the match in 

the frame. 

Using the homography, a bounding box in drawn around the match. 
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i. Open hand gesture: 

In the figure on the left, the surf feature extraction and description was subjected to a 

hessian threshold of 300, therefore allowing more points for relatively weaker 

features to be selected. The relatively large number of features extracted and 

described requires computing power, therefore yielding a frame rate of 2pfs. 

In figure on the right, the surf feature extraction and description was subjected to a 

hessian threshold of 500, therefore dropping some points that are relatively weaker 

features. This can be seen when comparing the center of the palm, which contains 

weaker features, between the left and right figures. The resulting frame rate was 5fps. 

When using a hessian threshold of 1000, most of the feature points were dropped, 

resulting in the decrease of the number of matches, causing the gesture not to be 

recognized in the frame.  

The size of the frames taken from the camera is QVGA 320x240 @ 30 fps. 

 

 

 

  

Figure 1. Open hand gesture recognition 

using SURF, hessian threshold=300, 

QVGA@2fps 

Figure 2. Open hand gesture recognition 

using SURF, hessian threshold=500, 

QVGA@5fps 
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ii. Closed Hand Gesture: 

In the figures above, the surf feature extraction and description was subjected to a 

hessian threshold of 500, therefore allowing more points for relatively weaker 

features to be selected. The relatively large number of features extracted and 

described requires computing power, therefore yielding a frame rate of 6pfs. 

The hessian threshold of 300, caused the number of feature points extracted to be 

large, however most of the points extracted were erroneous matches.  

When using a hessian threshold of 1000, most of the feature points were dropped, 

resulting in the decrease of the number of matches, causing the gesture not to be 

recognized in the frame. 

  

Figure 3. Closed hand gesture recognition, hessian threshold=500, 

QVGA@6fps 
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b) Template matching: 

 

Template matching works by sliding the template over the searched image and 

computing the error between the shifted template and the image. This method can be 

computing expensive, and suffers from lighting variance, scale variance, rotation 

variance. 

Template matching works by sliding through image, comparing the overlapped 

patches of size     against the gesture template, using the normalized squared 

difference method, and storing the comparison results to a result matrix. 

 

Here is the formula for the different normalized squared difference method: 

 (   )  
∑ ( (      )   (         ))      

√∑  (     )       ∑  (         )      

 

Where: 

                       

                          

  (   )              

  (   )                 

   (       )               

The matches are the minimums of the result matrix, which denotes the location of the 

smallest difference between the template and the image. 

  

The sizes of the frames taken from the camera are VGA 640x480 and QVGA 

320x240 @ 30 fps. 
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i. Open hand gesture: 

 

 

In the figure above, template matching was used to locate the gesture template inside 

the video frame. Only the results with a normalized squared difference less the 0.2 

were considered to indicate a positive match. 

At QVGA resolution, the resulting frame rate was 30fps, which is the maximum 

frame rate of the camera used, which means that the frame rate of the camera is the 

bottle neck of system. 

The average execution time of the matching routine is 14ms, which translates in 

theoretical maximum frame rate of 71.4 fps. 

At VGA resolution, the resulting frame rate was 14.7fps. 

  

Figure 5 Open hand gesture recognition using template 

matching, threshold=0.2, VGA @14.7fps 

Figure 4 Open hand gesture 

recognition using template matching, 

threshold=0.2, QVGA@30fps 
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ii. Closed hand gesture: 

 

 

In the figure above, template matching was used to locate the gesture template inside 

the video frame. Only the results with a normalized squared difference less the 0.2 

were considered to indicate a positive match. 

At QVGA resolution, the resulting frame rate was 30fps, which is the maximum 

frame rate of the camera used, which means that the frame rate of the camera is the 

bottle neck of system. 

The average execution time of the matching routine is 12.1ms, which translates in 

theoretical maximum frame rate of 82.6 fps. 

At VGA resolution, the resulting frame rate was 17.1fps. 

The higher frame rate of the closed hand recognition compared to the closed hand is 

largely due to the smaller size of the template. 

  

Figure 7. Open hand gesture recognition using template 

matching, threshold=0.2, VGA @17.1fps 

Figure 6 Closed hand gesture 

recognition using template matching, 

threshold=0.2, QVGA@30fps 
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d) Template matching stabilized using optical flow tracking: 

 

The aim in stabilizing the image before using template matching is to attempt 

eliminate the effect of size rotation and perspective change which considerably 

reduce the performance of the template matching method performance. 

 

 

 

 

 

 

 

 

 

     Original                Tracked                      Stabilized 

 

 

The figure above shows the original image with the points tracked on the right and 

the corresponding stabilized image on the left. The stabilization was used to correct 

the scale and orientation change. 

Initially the template is selected and matched in the frame using template matching. 

Once a match is found, four points are selected in a rectangular pattern inside the 

match area. The position of the points is fine tuned using iterates to find the sub-pixel 

accurate location of corners, or radial saddle points, as shown in on the picture below. 

 

The optical flow of the four tracked points is calculated using the Lucas-Kanade 

iterative method [17]. 

Figure 8. Stabilized closed hand 
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Once the new position of the tracked points is determined, a homography matrix, 

between the original points and the new tracked points is computed. 

  [
  

  

 
]    [

  

  

 
] 

Using the homography matrix, the frame is transformed in order to recover the 

original matched template and therefore get an image where the area to be matched in 

of the same size, and orientation of the originally matched area. 

Using the stabilized image, template matching is performed. In case of a match, the 

location of the match is confirmed. On the other hand if the template is not located, 

the original frame is used to try to find a match until the template is located. 

i. Tracking with corrections 

Using the stabilized image, template matching is performed. In case of a match, the 

location of the match is confirmed, and the tracked points are corrected and placed 

following the same pattern used to place the initial points.   

During experimentation, the points were found to converge in a single point quickly, 

and therefore throwing the tracker off course. This is suspected to be due to the 

tracked points fine tuning needed each time the points are updated after a successful. 

ii. Tracking without corrections 

On the other hand if the template is not located, the original frame is used to try to 

find a match until the template is located. And the whole process is repeated again. 

During experimentation, this version was found to be more stable; tracking lasted 

longer and was more reliable. 

By using the optical flow data we were able to limit the effect of rotation, scale and 

perspective change on the performance of the template matcher while maintaining a 

frame rate similar to the original frame rate obtained when using the template 

matching alone. 
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e) Summary 

 

The results were obtained using a Core2 Quad 2.67Ghz Intel processor, running 

OpenCV2.4.2 on Windows 7 64bits. 

 

 

 

 

Algorithm Resolution Parameters 
Frame rate (fps) 

Open Hand Closed Hand Average 

SURF 
QVGA 

@30fps 

hessian threshold = 300 9.08 9.17 9.125 

hessian threshold = 500 10.2 10.5 10.35 

Template 

matching 

QVGA 

@30fps Uniform squared 

distance threshold = 0.2 

30 (71.4)* 30 (82.6)* 30(77)* 

VGA 

@30fps 
14.7 17.1 15.9 

Stabilized 

template 

matching 

VGA 

@30fps 
Corrected 13.2 15.3 14.25 

VGA 

@30fps 
Uncorrected 13.4 15.4 14.4 

* [actual ( theoretical )] where the theoretical is the result of the matching alone, independently from the camera 

frame rate which limits the frame rate of the system 
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3.1.2    Robot control 

The control of the NAO robot is facilitated by the Naoqi library, in this project we are 

mainly focused on controlling the arm and grip of NAO. 

This can be done in manual mode by sending the updated joints angles to NAO. This 

method is very low level and does not take into account the balancing and the physics 

involved. 

Another way to implement the motion control of NAO, is by enabling the whole body 

effector control, which basically takes the absolute Cartesian coordinates of the 

effector (in our case the arm) and controls the whole body to balance it and be able to 

perform the action needed. 

During experimentation, an initial single threaded program was developed, where the 

match was found and the motion was sent to the robot to be executed. Due to the 

Blocking nature of the whole body effector control of NAO, the performance dropped 

considerably and the frame rate dropped to 0.4fps. This was caused by the fact that 

the program waits for the motion to finish before processing the new frame. 

To solve this problem a new multithreaded version was implemented where the 

gesture recognition and the robot telecontrol were implemented in separate threads 

that communicate through queues. The results were improved as the frame rate 

returned to normal, however the update speed of the robot motion was still slow, as 

the robot has to finish the motion before being able to execute a new one, even if the 

motion that is being performed is obsolete. 

To counter this problem, the whole body effector control of NAO will be replaced by 

a manual version that is non-blocking and will therefore remove the lag created by the 

whole body effector control of NAO. 
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3.3    PROJECT ACTIVITIES 

 

3.4    TOOLS USED 

 Monocular camera 

 NAO Robot – See appendix 

 The Open Computer Vision library (OpenCV) 

 The Naoqi Framework – NAO’s programing API 

Python programming language – to implement the computer vision algorithm and 

control the NAO robot 

  

Final Year Project I Final Year Project II 

Documentation: 

• Perform research and study 

• Literature review 

• Prepare extended proposal 

Documentation 

• Progress report and technical report 

• Final report 

Practical work: 

• Select multiple alternatives of hand 

gesture recognition algorithm 

• Analyse performance and fitness of 

algorithms 

• Implement initial prototype 

Practical work: 

• Improve recognition and telecontrol 

algorithms. 

• Finalize prototype 

• Conduct experiments to test the 

performance of the system 
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CHAPTER 4 

IMPLEMETATION AND TESTING 

During initial experimentation, and alternatives comparison, the focus was to 

implement each alternative and to be able to choose the fittest alternative for our 

system. The NAO documentation recommends sending motion commands to the 

robot every 0.2 seconds at least, due to the mechanical inertia of the robots limbs and 

the transient response of the joints’ actuators. Furthermore sending motion data to the 

robot at rate equivalent to 0.2 seconds between each command caused the robot’s 

motion to jitter and the whole robot to shake. To insure a smooth motion of the robot 

multiple rates of motion data sending were tested and a rate of a command every 0.3 

seconds was chosen, as it represented a good compromise between performance and 

smoothness of motion. 

Based on a motion data sending rate of a command every 0.3 seconds, a minimum 

frame rate of 3.33 frames per second must be achieved by the computer vision 

system. 

SURF was chosen as the method to use for the hand gesture recognition, as it 

achieves frames rates higher than 3.33 frames per second, in addition to being scale 

invariant, rotation invariant, and robust against lighting changes compared to template 

matching and stabilized template matching. 

Furthermore the scale invariance of SURF features allows extracting more 

information from the frames, and moving the motion for the 2D plane to a 3D space. 
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4.1    THE RESULTING ALGORITHM 

The results of the experiments conducted were used to create the algorithm and the 

structure of the system that will be used to detect and recognize hand gestures in the 

3D space.  

The system consists of two threads running in parallel, the first thread runs the 

computer vision program while the second controls the NAO robot. 

The computer vision thread starts by loading the hand gestures’ templates from the 

respective folders. The templates are easily created a program written specifically for 

that purpose, which automates capturing, creating, configuring, and managing the 

gestures’ templates database. 

Once the templates are loaded, the extraction of the SURF features of each template 

begins, and all SURF features are categorized by the gesture they indicate. 

This concludes the initialization of the computer vision thread and initiates the 

recognition routine. 

The system grabs a frame from the video camera, and then searches for a face inside 

it by using a frontal face Haar classifier. If a match is found, its size and location on 

the frame is stored. 

Next the SURF features of the frame are extracted and stored. The hessian threshold 

for the SURF extraction was selected after testing a range of values, as will be shown 

in tests results. 
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4.2    FLOWCHART 

The System proposed is described in the following flowchart: 

  

START

Load Templates 

and extract SURF 

points and 

descriptors

Get 3D relative 

location

Get new frame

Detect face

Extract SURF 

points and 

descriptors

Find nearest 

neighbors and 

average distance 

for each template

Determine best 

match

Is Homography 

acceptable?

No

Confirm match 

and determine 

hand to face ratio

Yes

Determine 3D 

relative location 

and gesture of the 

hand

Map the 3D match 

location to NAO 

arm coordinates

Send motion 

command to NAO
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4.3    SPEEDED-UP ROBUST FEATURES EXTRACTION 

SURF (Speeded-Up Robust Features) [14] is a scale- and rotation-invariant detector 

and descriptor. To extract the points of interest, the method relies on integral images 

in the summation for image convolution in order to approximate the determinant of 

hessian, in addition to 2D Haar wavelets. For describing the interest points, SURF 

uses the distribution of the intensity neighboring the point [14]. The OpenCV 

implementation of the SURF algorithm was used in this system. 

4.3.1    Hessian Threshold 

The hessian value represents the local curvature of the image intensity, which 

describes the strength of the feature extracted and therefore is a good indicator on its 

robustness. The surf extraction was tested at different hessian thresholds, 50, 100, 

200, 300, 500, and 1000. In other words the higher the hessian threshold the fewer 

and the stronger the features are.  

The tests showed a direct relation between the hessian threshold and the frame rate 

achieved by the system. 

Due to the fact that extraction of the SURF feature descriptors from the templates is 

only done during the initialization of the system, a hessian threshold of 100, with  an 

octave value of 2 (with each next octave the feature size is doubled), and using 2 

layers per octave was chosen, in order to extract a larger number of points. 

On the other hand for the extraction of the surf points from the camera frames, a 

hessian threshold of 300 was selected as a compromise between the number of points 

extracted and the time needed for extraction. 

4.4    HOMOGRAPHY EXTRACTION 

4.4.1    Nearest Neighbor Matching 

In order to determine the location of the match between the gesture template and the 

frame, a 2NN (2 nearest neighbor) search was used determine the two closest points 

to each point of the gestures templates. The FLANN library was used to perform the 

nearest neighbor search, and compute the respective distances [15]. 

During the 2NN search, all points with different Laplacians were ignored in order to 

speed up the search. 

Using the 2NN points, the nearest neighbor was confirmed as a plausible match if the 

distance from it is smaller than 60% of the distance from the second nearest neighbor. 

The value of 60% was determined by trial and error. 

The matched gesture is determined by the least average distance of the confirmed 

points. 
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4.4.2    Finding the Homography 

Relying on the matched points using the nearest neighbor search, the RANSAC 

(RANdom SAmple Consensus) algorithm is used to remove the erroneous matches 

while computing the 3 by 3 homography matrix H that describes the affine 

transformation between the gesture’s template and the match in the frame. 

  

 (1) 

 

4.4.3    Homography testing 

Once the homography between the template points and the frame points is computed, 

four points that represent a square of length 100, are projected using the homography 

matrix. 

Due to the fact that the appearance of the hand gesture changes significantly with its 

orientation, due to shadows and luminance variance, a practical match orientation 

range of ±30º was found to be acceptable in this situation. Based on that, the 

homography is tested by projecting four points that represent a square of side length 

100, and testing the projected square.  

An acceptable transformation is expected to keep the general form of the square; 

hence, the acceptable maximum ratio between the lengths of opposite sides of the 

projected square was set to 3.Furthermore the acceptable angle of rotation of the 

square was limited to the range ±30º.  

Finally if any criteria is not satisfied the homography is not accepted, and no match is 

declared to be found. 

4.4.4    Relative 2D Location 

Using the confirmed homography, the center point of the matched gesture template is 

projected over the frame, giving therefore the absolute location of the match. 

In order to send a location that will be easily translated to a motion that uses the full 

range of motion of NAO, a normalized location is computed and then sent. 

 

(2) 
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4.5    DEPTH EXTRACTION 

Using a 2D camera, the distance between an object and the camera can be easily 

determined if the size of the object and characteristics of the camera are available. 

However in our system the location of the hand relatively to the camera is invaluable. 

In order to extract the 3
rd

 spatial coordinate of the hand, the location of the hand must 

be determined relatively to the body of the operator. 

4.5.1    Face Detection 

To determine the location of the hand relatively to the body, the location of the later 

must be determined. In this system the face was chosen as an approximated reference 

to the body. 

In order to detect the face in the frame, Haar classifiers were used. We relied on the 

“haarcascade_frontalface_alt.xml” Haar cascade provided with the OpenCV library, 

to detect the frontal side of the face of the operator. Once the face is detected, its size 

is saved for later use. 

4.5.2    Hand to Face Distance 

 In order to determine the hand to face distance, some approximations and 

assumptions have to be made. Numerous studies were conducted in the field of 

human body proportions, for centuries artists relied on approximation and calculated 

proportions, to describe the human body. 

One of them is the fact that the actual length of the hand can be approximated with 

the length of the face. 

Figure 1 shows the size difference of the hand and face in the frame due to the 

distance between them relatively to the camera lens.  

 

The distance between the hand and the face can be calculated as follows: 

 

(3) 

 

Where: 

θ: angle of view of the camera occupied by the hand 

h: actual height of the hand 

h’: apparent height of the hand 

D: distance face to camera 

d: distance hand to face 
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Figure 9. Optical Projection of the Hand 

 

Equation 3 describes the absolute distance from hand to face, however in our system, 

the ratio of the hand to face distance to the maximum hand to face distance, in order 

to use the full range of motion of NAO even if the operator’s size changes. By setting 

the operator at twice his arms’ length from the camera, the normalized hand to face 

distance (depth) becomes: 

 

 (4) 
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4.6    PERFORMANCE OF THE SYSTEM 

 

 

In order to test the performance of the system created, two aspects were taken into 

consideration. First the objective performance of the system, which consist of the 

gathering the data about the system’s frame rate performance, positive matches rate, 

the robotic system’s lag compared to the motion of the operator and others. 

Finally the subjective performance of the system was tested which consists of the 

perceived responsiveness of the system, the ease of operation, the learning curve 

faced while using the system for the first time, and how intuitive is it to perform a 

practical task. 

In order to measure the objective and subjective performance of the system two types 

of tests were conducted: 

a. Synthetic tests to get the processing performance of the system. 

b. Task oriented tests where the robot had to successfully perform a practical 

task. 

The results were obtained using a Core2 Quad 2.67Ghz Intel processor, running 

OpenCV2.4.2 on Windows 7 64bits. 
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4.6.1    Synthetic test results 

Table 2 shows the frame rates achievable by the system for different hessian 

thresholds. It can be clearly seen that the frame rate increase with the increase of the 

hessian threshold 

Table 2 Effect of the hessian threshold on the frame rate performance 

Algorithm Resolution 

Hessian 

threshold 

Frame rate (fps) 

Open Hand Closed Hand Average 

SURF 

VGA 

@30fps 

100 6.15 6.05 6.10 

300 9.17 9.08 9.125 

500 13.35 13.20 13.275 

1000 16.10 16.24 16.17 

 

 

 

Figure 10 Effect of the Hessian Threshold on the Frame Rate Preformance 
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Table 3 shows the repeatability rates achievable by the system for different hessian 

thresholds. It can be clearly seen that the repeatability rate decrease with the increase 

of the hessian threshold. 

Is this experiment, repeatability refers to the ability to repeat  the procedure of 

extraction and matching on different frames and still get the same results, in other 

words it represents the robustness of the system. 

 

Table 3 Effect of the hessian threshold on the matching repeatability 

*Tests conducted at VGA@30fps over 1000 frames 

 

 

Gesture 
Hessian 

threshold 

Number of 

frames with 

positive match 

Repeatability 

(%) 

Average 

frame rate 

(fps) 

Open hand 

100 725 72.5 6.15 

300 678 67.8 9.17 

500 586 58.6 13.35 

1000 385 38.5 16.10 

Closed 

hand 

100 705 70.5 6.05 

300 667 66.7 9.08 

500 529 52.9 13.20 

1000 332 33.2 16.24 

Hessian threshold 
Average Repeatability 

(%) 

100 71.5 

300 67.25 

500 55.75 

1000 35.85 

Figure 11 Repeatability results summary 
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Figure 12 Effect of the hessian threshold on the matching repeatability 

 

 

 

Figure 13 Open hand Gesture Recognized 
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Figure 14 Closed hand Gesture Recognized 

4.6.2    Task Oriented Tests 

Multiple tasks were conducted in order to test the telerobotics system created. 

Tasks included picking up an object that was handed to the robot, grasping it, and 

placing it in a boxed.  

The test was conducted by an untrained operator over multiple trial runs in order to 

investigate: the performance of the system in a real world application, the 

intuitiveness of the system to an untrained operator, and the ease of learning and 

familiarizing with the system. 

Five trial runs were conducted and were timed until the object was successfully 

transported to the box. 

The chart in Figure 15 clearly shows a decrease in the time required to accomplish the 

task by an untrained operator.  

The time required to grab the object and put it in the box took on the fourth trial a 

fifth of the time it took for the first trial. This clearly shows a very quick 

familiarization with the system.  

These results demonstrate the ease and intuitiveness of the system developed, in 

addition to a good responsiveness. 
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Figure 15 Successive trials durations 

  

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

D
U

ra
ti

o
n

(s
) 

Trial number 

Figure 16 NAO 

grabbing and object 

and placing it in a 

box 



32 

 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

The system was implemented using SURF (Speeded-Up Robust Features), the feature 

points of the template and the frames were matched using squared difference nearest 

neighbor, and unwanted points were removed using RANSAC during the 

homography computation. This resulted in a 9.125fps and a repeatability of 67.25%, 

using a hessian threshold of 300 on a VGA sized frame. 

The SURF point were extracted using the OpenCV implementation of the surf 

algorithm. The FLANN library was used to perform the nearest neighbor search, and 

compute the respective distances [15]. 

Once the points were matched, points were selected based on their distances.  

Next a 3x3 homography matrix was computed while ignoring outliers using the 

RANSAC algorithm. Further testing of the homography matrix was set up to check 

that the homography describes a direct affine transformation. Once the homography is 

confirmed to be correct, the matches are projected using the homography and the 

location of the matche is identified within the 2D plane. 

Using Haar classfiers for the frontal face, the face is detected in the frame and, the 

approximate actual hand size is found. By using the relation between the actual hand 

size and the apparent hand size, the distance between the face and the hand is 

estimated. And therefore the depth data is extracted. 

By combining the depth data with the 2D location, the hand gesture is recognized and 

located in the 3D space 

The NAO robot was teleoperated using a TCP connection over Wi-Fi, and its body 

motion was set to self-balance during the arm motion in order to maximize the arm 

motion range. Due to the blocking nature of the whole body effector control of NAO, 

it will be replaced by a manual non-blocking method to remove the lag and improve 

the performance. 

The program was implanted in a single thread fashion initially, but was later made 

into a multithreaded version in order to improve the performance. 

As a recommendation regarding the methods used to recognize the gestures we note 

the following; due to the high computation requirement of the SURF algorithm it 

would be recommended to use a GPU implementation of the algorithm as the SURF 

algorithm is highly parallelizable [16], as the frame rate can reach 105fps [16]. In 

addition a new feature extractor/descriptor called FREAK (Fast Retina Keypoint), can 

provide better results [30] compared to SURF.  
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