

PID CONTROLLER TUNING OF 3-PHASE SEPARATOR IN OIL & GAS

INDUSTRY USING BACTERIA FORAGING OPTIMIZATION

ALGORITHM

By

HO JOON HENG

FINAL PROJECT REPORT

Submitted to the Department of Electrical & Electronic Engineering

in Partial Fulfillment of the Requirements

 for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2012

by

 HO JOON HENG, 2012

i

CERTIFICATION OF APPROVAL

PID CONTROLLER TUNING OF 3-PHASE SEPARATOR IN OIL & GAS

INDUSTRY USING BACTERIA FORAGING OPTIMIZATION

ALGORITHM

by

Ho Joon Heng

A project dissertation submitted to the

Department of Electrical & Electronic Engineering

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Approved:

AP Dr. Irraivan Elamvazuthi

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2012

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

HO JOON HENG

iii

ABSTRACT

In oil and gas industry, one of the most important stages in processing petroleum is

separation. It can be classified by operating configuration such as vertical, horizontal

and spherical or by its function which is 2-phase or 3-phase. In this paper, vertical 3-

phase separator will be chosen and researched. 3-phase separator is used to separate

water, oil and gas. Gas will be at the top, oil will be the middle layer and water will

be at the bottom due to gravitational force and the density of the substance. The

objective is to tune the PID controller controlling the level of the water in the

separator. Outflow rate of the water from the bottom of the separator will be used to

control the water level. Currently there are controlling methods namely PI control

using trial and error method, PI control using Butterworth filter design method and

IMC method. These methods were having quite high % overshoot and long settling

time. So, this paper will introduce Bacterial Foraging Optimization Algorithm

(BFOA) in optimizing the parameters for PI control. BFOA mimics the behaviour of

the bacteria in searching for highest food concentration which then modified to

search the best parameters for the PID controller. BFOA will be able to find the best

parameters compared with the conventional methods and show better performance

than PI control using trial and error method, PI control using Butterworth filter

design method or IMC method. BFOA will be studied and other existing

conventional methods as well. Simulation will be done based on the mathematical

model of the 3-phase separator.

iv

ACKNOWLEDGEMENT

I would like to thank my supervisor, AP. Dr. Irraivan Elamvazuthi who had been

giving me proper guidance and valuable advice in completing this research. I am

very sure that it would not be possible without his helping hand. Other than that, this

dissertation would not be possible without the constant support from my parents,

course mates and friends as well.

v

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………..… iii

LIST OF TABLES.. v

LIST OF ABBREVIATION…………………………………………………….. vi

CHAPTER 1: PROJECT BACKGROUND

1.1 Background of Study……………………..………...……….. 1

1.2 Problem Statement…………………………....……............... 2

1.3 Objective and Scope of Study………………..……………… 2

CHAPTER 2: LITERATURE REVIEW

2.1 Operation of 3-phase Separator………...…………..………… 3

2.2 Behaviour of Bacterial Foraging……………………………… 6

2.2.1 Chemotaxis………...…….…………………..…… 6

2.2.2 Swarming…..………………………………...…… 6

2.2.3 Reproduction………………………..……….…… 7

2.2.4 Elimination and Dispersal………………………… 8

2.2.5 Combination of All 4 Parts……………………..… 8

2.3 Relation with PID Controller…………………………...…….. 9

2.4 Table of Analysis of Journals………………………………..... 9

CHAPTER 3: METHODOLOGY

3.1 Research Methodology……………………………………….. 12

3.1.1 Plant with PID Controller………………….……... 12

3.1.2 Flow of BFOA……………………………………. 12

3.1.3 Mathematical Model of 3-phase Separator……..… 14

3.2 Project Activities……………………………………………… 15

3.3 Gantt Chart/Key Milestone…………………………………… 16

3.4 Tools.……………………………………………………......... 16

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Results………………..……….………………………….…… 17

4.2 Discussion and Analysis……………………………………… 22

4.3 Graphic User Interface (GUI)………………………………… 24

CHAPTER 5: CONCLUSION AND RECOMMENDATION….……….….…… 29

REFERENCES……………..……………………………………………………... 30

APPENDICES……………………………………………………………….…… 33

APPENDIX A: BACTERIA FORAGING OPTIMIZATION

ALGORITHM (BFOA) MATLAB CODES…………………..…. 34

APPENDIX B: GUI MATLAB CODES………………………….. 38

vi

LIST OF FIGURES

Figure 2.1: Schematic Diagram of a Horizontal 3-phase Separator 4

Figure 2.2: Simplified Separation Process 5

Figure 2.3: P&I Diagram of Relevant Control Loop of 3-phase Separator 6

Figure 3.1: Block Diagram of the System with PID Controller and BFOA 13

Figure 3.2: Flowchart of the Bacterial Foraging Optimization Algorithm (BFOA) 13

Figure 3.3: Block Diagram of 3-phase Separator with Disturbance, Qin 15

Figure 3.4: The major Project Activities to be done in the Project 16

Figure 4.1: Matlab Simulink of Block Diagram Comparing All Methods 18

Figure 4.2: Response of Plant using BFOA with Disturbance 19

Figure 4.3: Response of Plant using Trial & Error with Disturbance 19

Figure 4.4: Response of Plant using Butterworth Filter Design Method with

Disturbance 20

Figure 4.5: Response of Plant using IMC Method with Disturbance 20

Figure 4.6: Response of Plant using BFOA with Disturbance and

Setpoint Changes 21

Figure 4.7: Response of Plant using Trial & Error with Disturbance and

Setpoint Changes 21

Figure 4.8: Response of Plant using Butterworth Filter Design with

Disturbance and Setpoint Changes 22

Figure 4.9: Response of Plant using IMC Method with Disturbance and

Setpoint Changes 22

Figure 4.10: Comparison of Response among Conventional methods and BFOA 22

Figure 4.11: Integral Squared Error of Different Methods 23

Figure 4.12: Percentage Overshoot of Different Methods 23

Figure 4.13: Settling Time of Different Methods 23

Figure 4.14: Graphic User Interface (GUI) that I had developed in Optimizing

Parameters 24

Figure 4.15: GUI – Transfer Function of System being Input and Generated 25

vii

Figure 4.16: GUI – Optimized Parameters Kp, Ki and Kd 26

Figure 4.17: GUI – Response of System is generated using Optimized

Parameters 27

Figure 4.18: GUI – Data Cursor 27

Figure 4.19: GUI – Zoom in/out and Pan 28

viii

LIST OF TABLES

Table 2.1: Analysis of the Related Journals and Research Papers 10

Table 3.1: Gantt Chart of the Project with Key Milestones 17

Table 4.2: Percentage Improvements of BFOA compared to Conventional

Methods 23

ix

LIST OF ABBREVIATIONS

BFOA – Bacterial Foraging Optimization Algorithm

PID – Proportional-Integral-Derivative

GA – Genetic Algorithm

ACO – Ant Colony Optimization

PSO – Particle Swarm Optimization

IMC – Internal Model Control

GUI – Graphic User Interface

1

CHAPTER 1 -

INTRODUCTION

1.1 Background of Study

Proportional-Integral-Derivative (PID) control is the most commonly used control

algorithm in industry such as power plant, oil and gas as well as bio-medical like

prosthetics. The controller’s performance is decided by the control parameters of ,

 , and of the PID controller. In this project, a 3-phase separator will be focused

and discussed. There are a few methods in selecting the proper parameters which are

manual method, Zeigler Nichols, Cohen Coon and Ciancone tuning method. Manual

method is where experience personnel have to select the optimum parameters by trial

and error as well as observing the output response of the system. Zeigler Nichols

tuning method requires trial and error to obtain the ultimate gain and period. Then,

some minor calculation will be done in selecting the parameters. Cohen Coon and

Ciancone tuning method only applies to first order processes with dead time and a

series of calculation need to be done in selecting the parameters. In terms of 3-phase

separator, the conventional methods used are IMC method, PI controller using

Butterworth filter design method and PI controller using trial and error method. All

these methods require time as well as cost and the performance of the PID controller

might not be satisfying.

Currently, there are intelligent algorithms that can select and optimize the parameters

of the plant, for example: Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Ant Colony Optimization (ACO) and Bacterial Foraging Optimization

Algorithm (BFOA) [13]. These techniques find and optimize the parameters faster

than the conventional tuning methods and very cost effective. This project will

explore and study on Bacterial Foraging Optimization Algorithm (BFOA). BFOA

applies the behavior a swarm of bacteria searching for nutrients in a manner to

maximize energy obtained per unit time.[11]

2

1.2 Problem Statement

A desired PIC controller will have a low or no percentage overshoot, integral

squared error (ISE) and settling time. The conventional tuning method such as

manual tuning, IMC method, trial & error and Butterworth filter design can help in

selecting parameters but the performance might be not satisfying. Besides, time and

cost play an important role and the conventional tuning method might need a lot of

time and cost.

Intelligent algorithm could save time and cost in selecting parameters as well as

optimizing parameters which could produce desirable results. However, there are

different values of parameters and performance for different techniques. The speed

of convergence is different as well. From some findings, the performance of

Bacterial Foraging Optimization Algorithm (BFOA) is slightly better than GA [4]

and PSO [13].

Therefore, Bacteria Foraging Optimization Algorithm (BFOA) will be explored and

studied as well as compared with other existing techniques.

1.3 Objective and Scope of Study

The main objectives of this project are:

 To study mathematical model of 3-phase separator

 To study the working principle of Bacterial Foraging Optimization

Algorithm(BFOA)

 To study the performance of other existing intelligent algorithms

 To compare the performance of BFOA with other existing techniques

Scope of study will take in consideration of the percentage overshoot, settling time

and ISE after implementing BFOA of the PID controller of different orders and

applications. Time taken in optimizing the parameters will also be studied.

3

CHAPTER 2

LITERATURE REVIEW

2.1 Operation of 3-phase Separator

3-phase separator is used to separate water, oil and gas into 3 different phases where

the water will be at the bottom, oil in the middle and the gas at the top. Then, those 3

substances will be removed accordingly. Figure 2.1 is a schematic diagram of a

horizontal 3-phase separator.

Figure 2.1: Schematic Diagram of a Horizontal 3-phase Separator

The well fluids that were collected from underground would be fed into the 3-phase

separator and hit the inlet diverter. There will be a sudden change of momentum of

the fluids and causes a gross separation of vapour and liquid. As time goes, the

gravitational force will help in pulling the water to the bottom of the separator and

pushing the oil on top of the water [19]. This process is called “water-washing”. It

will promote the water droplets that trapped in the oil continuous phase to

coalescence [19]. As for the gas, some of it flows over the inlet diverter and then

horizontally through separator and stays above the liquid. When the gas is flowing

4

across the inside of the separator, gravitational force will again pulls the small drops

of liquid that were flowing with the gas and not separated by the inlet diverter into

the liquid [19]. However, there will be an amount of small diameter drops that they

are not easily separated using gravity. Thus, a coalescing section or mist extractor is

used in order to coalesce and remove them before the gas leaves the vessel [19].

Figure 2 shows the simplified separation process. Oil-well fluid with molar flow Fin

and gas, oil, and water molar fractions Zg; Zo; Zw respectively enters the separator

[19].

Figure 2.2: Simplified Separation Process

There are 2 main parts for the hydrocarbon which are the first stream Fh1 that

separated by gravity and enters the oil phase and the second stream Fh2 that stayed

in the aqueous phase due to incomplete separation [19]. Same goes to the gas

component. The first gas stream Fg1 flashes out of the oil phase due to the pressure

drop in the separator, and the second gas stream Fg2 stays dissolved in the oil phase

[19]. The oil discharge Foout from the separator contains the oil component of the

separated hydrocarbon Fo and the dissolved gas component Fg2. The flashed gas

Fgout flows out of the separator for further processing [19].

The water and oil levels and the gas pressure inside the separator are controlled by a

number of separate control systems [18]. Figure 2 shows the control loop involved in

3-phase separator [18].

5

Figure 2.3: P&I Diagram of Relevant Control Loop of 3-phase Separator

It can be observed that a level indicator transmitter (tagged LIT-340018) is employed

to measure the water level inside the separator if we focus on the water level control

loop. The measured level signal is sent to a level controller, tagged LC-340018. The

level controller sends the control signal to a level control valve, tagged LCV-340018.

In order to control the water level inside the separator, the LCV-340018 regulates the

water outflow. It can be noticed that a flow indicator transmitter, named FIT-340012,

is used to measure the water outflow-rate for some other purpose. This measurement

is not used by the current level controller [18].

6

2.2 Behaviour of Bacterial Foraging

For the behavior of the bacteria in searching for nutrients, BFOA mimicked it by

focusing in these 4 main sections which are chemotaxis, swarming, reproduction as

well as elimination and dispersal.

2.2.1 Chemotaxis

Chemotaxis is the movement of the bacteria in searching for food or nutrients by

taking small steps. The bacteria tumble around randomly until the bacteria find

higher concentration or gradient of nutrient. Then, the bacteria will run towards that

direction until the bacteria reach the highest food concentration.

Chemotaxis simulates a cell to swim and tumble by using flagella. A bacterium can

propagate by using 2 different ways biologically. For its entire lifetime, it has 2

modes of operation that kept alternating when necessary which are swimming for a

period of time in the same direction or tumbling around randomly.

Let ()represents i-th bacterium at j-th chemotactic, k-th reproductive and

l-th elimination-dispersal step. Besides, let C (i) equals to the step size of the

tumbling in the random direction (run length unit). Then, the mathematical

representation of this behaviour is

 () () ()
 ()

√ () ()
 ()

 where represents the vector of random direction which the elements are in [-1, 1]

[11].

2.2.2 Swarming

Swarming is the behavior or the tendency of the bacteria to group together. Each

bacterium will release signals to other bacteria and to attract or to repel them.

In semisolid nutrient medium, a group of bacteria will show intricate and stable

spatio-temporal patterns (swarms). When they are placed in a semisolid matrix with

7

a nutrient chemo-effecter, they will move up the nutrient gradient by arranging

themselves in a travelling ring. When the cells are stimulated by a large amount of

succinate, they will release an attractant aspertate that attracts each other so that they

can aggregate into groups as concentric patterns of swarms with high density of

bacteria. This behaviour can be represented by using the following mathematical

equation.

 (()) ∑ (())

 ()

 ∑[(∑ (
)

)] ∑[(∑ (

)

)]

where (()) represents the objective function value that later will be

added into the actual objective function which is needed to be minimized. This is to

form a time varying objective function. Whereas S represents the population of the

bacteria, p represents the dimension or number of variables to be optimized. This p is

present in each bacterium and . On the other hand,

 are different coefficients that should be

selected properly [1, 9]. [11]

2.2.3 Reproduction

Reproduction is the behavior of bacteria where weaker half of the group of bacteria

will die and the other stronger half will split and reproduce asexually. The number of

bacteria of the group will remain unchanged.

For the given k and l, and for each i = 1, 2, ..., S , let

 ∑ ()

 ()

8

represents the health of the bacterium i. It is a measure of the amount of nutrients it

had obtained over its lifetime and the ability at avoiding noxious substances. Then,

by using the cost , the bacteria and chemotactic parameters C(i) are sorted by

ascending order. The higher the cost , the lower the health.[11]

2.2.4 Elimination and Dispersal

 Elimination and dispersal is the probability of a bacterium being eliminated in a

group and if elimination is happened, another bacterium will be dispersed to a

random location in the optimization domain.

2.2.5 Combination of All 4 Parts

For each bacterium, the cost of its movements had involved the swarming effect

from the other bacteria and the chemotaxis effect. The equations had accounted a

whole set of chemotatic steps for each swarming effect done. The equation of the

swarming effect is represented by

 () () (
 () ()) ()

Then for each swarming effect, a set of chemotatic steps will be calculated.

Previously, a chemotatic step is represented by

 () () ()
 ()

√ () ()
 ()

and the cost or () can be calculated from that equation. A series of ()

will be calculated and at the same time the new value will be compared with the

previous one. The lower value or cost will be the better one. Then, another bacterium

will be selected and the swarming effect as well as the chemotatic steps will be

recalculated and the process repeats for every other bacteria.

Besides, this bacteria movement will be repeated for times in random direction to

obtain the best results. After times of looping, the () for each bacteria will

be summed up to obtain . will be sorted and the weaker half will die

9

and the other half will reproduce asexually and the whole process will start over

again.

Elimination and Dispersal process will eliminate a bacterium and disperse another

one to its domain with a probability of after times of reproduction.

2.3 Relation with PID Controller

The bacteria undergo chemotaxis, swarming, reproduction as well as elimination and

dispersal in order to survive and maintain the population by considering the optimum

concentration of food, tendency of swarming and the health of the bacteria. Hence,

the cost needed to find the food and maintain in a group have to be low. In other

words bacteria are using the smallest amount of effort to achieve to best result. The

formulas or methods mentioned previously from are combined and shows the

behavior of the bacteria.

By implementing this survival technique in searching for the best parameters,

Integral Squared Error (ISE) which is represented by or cost of the lowest will

be chosen. BFOA will implement convergence on the parameter values to the

optimum level and produces the best result in a short time. So, the optimum

parameter of and will be chosen.

2.4 Related Studies on BFOA

The Table 1 above shows a short analysis of the journals and research papers that

had been read.

Table 2.1: Analysis of the Related Journals and Research Papers

 Journal Author(s) Date Pros & Cons Notes

1 PID Controllers

Design for a

Power Plant

Using

Bacteria Foraging

Algorithm [1]

Ahmed Bensenouci,

Electrical and

Computer Engineering

Department,

King Abdulaziz

University,

Jeddah, Kingdom of

Saudi Arabia

2011 Small % overshoot,

short settling time,

PSS not required

since there is no

oscillation

Uses BFOA

and PID on

Power Plant.

10

2 A new power

system stabilizer

design by using

Smart Bacteria

Foraging

Algorithm [6]

E. Daryabeigi, M.

Moazzami, A.

Khodabakhshian, M.H.

Mazidi, Dept. of

Electrical Engineering,

Islamic Azad

University, Iran

2011 Comparison new

SBFOA, BFOA and

conventional.

SBFOA is better than

BFOA and BFOA

better than

conventional. In

some cases, SBFOA

shows higher %

undershoots.

Uses Power

System

Stabilizer

(PSS) as

plant.

3 A novel bacterial

foraging

algorithm for

automated tuning

of PID controllers

of UAVs [7]

John Oyekan and

Huosheng Hu

School of Computer

Science and Electronic

Engineering

University of Essex,

Wivenhoe Park,

Colchester CO3 4SQ,

United Kingdom

June

10-23,

2010

Smaller % overshoot,

shorter settling time,

lesser oscillation

compared with

Zeigler Nichols

tuning method

Only use

Chemotaxis

without

swarming,

reproduction

, elimination

& dispersal).

Uses PID on

UAV.

4 Bacterial foraging

oriented by

Particle Swarm

Optimization

strategy for PID

tuning [13]

Wael M. Korani,

Hassen Taher Dorrah

and Hassan M. Emara,

Department of

Electrical Power and

Machines Engineering,

Cairo University, Giza,

Eqypt

2009 Combination of

BFOA and PSO on 6

different plants.

BFOA+PSO is better

than BFOA and

BFOA is better than

PSO.

3 plants use

PD. Another

3 plants use

PID. Plant

types are not

stated. 4 4
th

order, 2 3
rd

order, 1 2
nd

order plants.

5 A Fast Bacterial

Swarming

Algorithm For

High-dimensional

Function

Optimization [16]

Ying Chu, Hua Mi,

Huilian Liao, Zhen Ji

and Q.H. Wu

2008 Combination of

BFOA and PSO.

BFOA+PSO is faster

than PSO and PSO is

faster than BFOA.

*High- dimensional

functions only, for

low dimensional

functions not so

effective.

Compare the

speed of

convergence

by having 13

sets of

different

constant

values for

BFOA. Plant

type not

stated.

6 Optimization

Design of PID

Controller

Parameters

Based on

Improved E.Coli

Foraging

Optimization

Algorithm [10]

Liu Yijian, School of

Electrical &

Automation

Engineering, Nanjing

Normal University.

Fang Yanjun,

Department of

Automation, University

of Wuhan.

Sept,

2008

Smaller % overshoot,

shorter settling time

compared with

Zeigler Nichols

tuning method

All 3 plants

use PID.

Plant types

not stated. 2

1
st
 order and

2 2
nd

 order

plants.

7 Improved

Bacterial

Foraging Strategy

for Controller

Optimization

Applied to

Robotic

Manipulator

System [9]

Leandro dos Santos

Coelho and Camila da

Costa Silveira,

Pontifical Catholic

University of Parana,

Brazil

Oct 4-

6,

2006

Comparison of

different values of

constant C(i) (step

size of bacterium)

and Gaussian and

Cauchy probability

distribution. Best:

C(i)=0.05, Gaussian.

Uses PID in

motor of

robotic

manipulator

system. Uses

BFOA.

11

8 Optimum Design

of PID

Controllers Using

Only a Germ of

Intelligence [4]

Ben Niu,Yunlong Zhu,

Xiaoxian He and

Xiangping Zeng,

Shenyang Institute of

Automation, Chinese

Academy of Sciences,

Liaoning, China

June

21-23,

2006

Smaller % overshoot,

shorter settling time,

more robust

compared with GA

Plant type

not stated.

Uses PID

and BFOA.

9 Bacterial

Foraging

Optimization

Algorithm:

Theoretical

Foundations,

Analysis, and

Applications [11]

Swagatam Das, Arijit

Biswas, Sambarta

DAsgupta and Ajith

Abraham, Dept. of

Eelctronics and

Telecommunication

Engg, Jadavpur

University, Kolkata,

India

 Shows the

convergence using

BFOA, explain

BFOA thoroughly.

Explain

theories and

analysis. No

examples of

plants or

results.

Topics and authors as well as publication date were mentioned in Table 1. The

analysis done was the advantages and disadvantages of BFOA or related studies. The

performance and the techniques were compared and the types of plants as well as the

order of the transfer function used were mentioned to show the coverage of the

techniques.

12

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

3.1.1 Plant with PID Controller

Below is the block diagram for plant where the algorithm will take the input and find

the optimum parameters which are and . Then, PID controller will take the

parameters to control the system.

Figure 3.1: Block Diagram of the System with PID Controller and BFOA

3.1.2 Flow of BFOA

In this research, there are codes to be compiled and run in order to optimize and

obtain the best parameters. However, before the codes are to be done, a flowchart of

the steps of the codes is required.

Start

Get sample values from signal

Elimination & Dispersal counter,

Yes

No
Stop

Parameters

System

(Plant)

PID Controller
+

-

BFOA

Input

Output

Y
Z

13

Figure 3.2: Flowchart of the Bacterial Foraging Optimization Algorithm (BFOA)

Reproduction counter,

Chemotaxis counter,

Bacterium counter,

Elimination & Dispersal

for with

probability

 ∑ ()

 are sorted

with order, the

greater half will die

and the other half

will reproduce.

Compute fitness function, ()

which ()

Swim counter,

 ()

Yes

Yes

Yes

Yes

Yes

Set () . Let the bacterium to proceed

with the swim due to better result.

No

No

No

No

No

Y

X

X

Z

14

Figure 5 shows the flow of BFOA by combining all 4 parts which are chemotaxis,

swarming, reproduction as well as elimination and dispersal. with the smallest

value will be produced and chosen since it represents the Integral Squared Error

(ISE) or also known as cost.

Please refer to Appendix A for BACTERIA FORAGING OPTIMIZATION

ALGORITHM (BFOA) MATLAB CODES.

3.1.3 Mathematical Model of 3-phase Separator

A 3-phase separator can be modeled and represented by using a transfer function to

show its characteristic.

Figure 3.3: Block Diagram of 3-phase Separator with Disturbance, Qin [18]

The figure above shows the block diagram of 3-phase separator with disturbance, Qin

included. BFOA is used and implemented as shown in Figure 1 on top of C(s). The

input, R(s) and output, H(s) are the desired level and actual level of the water in the

separator.

The above equations show the transfer function of the plant and the disturbance [18].

(5)

(6)

15

3.2 Project activities

The Figure below shows the guidelines of the steps needed in completing this project.

It shows the project activities that should be conducted in this project.

Figure 3.4: The major Project Activities to be done in the Project

Understand comprehensively the fundamental concept of
Bacteria Foraging Optimization Algorithm

Study the Operation of 3-phase Separator

Read and study the journals and research papers
regarding BFOA and 3-phase separator.

Conduct Literature Review on publish
journals and research papers

Obtain mathematical model of 3-phase separator

Compare the advantages and disadvantages of
the techniques involved.

Identify the applications suitable for BFOA by
comparing with other techniques

Simulate the applications using BFOA and
observe the results

Improve the performance of BFOA

Prepare technical papers

16

3.3 Gantt Chart/Key milestone

The Table 2 below shows the tasks that need to be completed and the dates of

completing them. It is a Gantt Chart of the project with the key milestones included

to show the progress and schedule of the project.

Table 3.1: Gantt Chart of the Project with Key Milestones

 Key Milestone

3.4 Tools

The main software required in this project is:

 MATLAB

17

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

For each of the method, the parameters used were:

Table 4.1: Values of Parameters for each Method

 Kp Ki

BFOA -33.898 -0.1065

Trial & Error[18] -0.7391 -1.582

Butterworth [18] -1.05 -1.76

And for IMC method [1]:

 ()

By using Matlab Simulink, the following system was constructed as shown in Figure

2.1.

Figure 4.1: Matlab Simulink of Block Diagram Comparing All Methods

18

From the simulation, the following are the results obtained for each of the methods.

Figure 4.2: Response of Plant using BFOA with Disturbance

Figure 4.3: Response of Plant using Trial & Error with Disturbance

19

Figure 4.4: Response of Plant using Butterworth Filter Design Method with

Disturbance

Figure 4.5: Response of Plant using IMC Method with Disturbance

20

Figure 4.6: Response of Plant using BFOA with Disturbance and Setpoint Changes

Figure 4.7: Response of Plant using Trial & Error with Disturbance and Setpoint

Changes

21

Figure 4.8: Response of Plant using Butterworth Filter Design with Disturbance and

Setpoint Changes

Figure 4.9: Response of Plant using IMC Method with Disturbance and Setpoint

Changes

22

4.2 Discussion and Analysis

Figure 4.2 to Figure 4.5 show the initial set point change then followed by the

disturbance due to the input well fluids of the 3-phase separator. Figure 4.6 to Figure

4.9 show the responses which include the input disturbance and the set point changes

as well. Both Figure 4.2 and Figure 4.6 show that the responses of using BFOA

tuning method produce the best results which are almost the same as the desired

results. Trial and error method and Butterworth filter design method produces results

that have high overshoots and undershoots. IMC method produces slow responses

which have long rise time. IMC method, trial & error and Butterworth filter design

method have large settling time or very slow responses compared to BFOA tuning

method. The figure below shows the comparison of the conventional methods with

the intelligent method.

Figure 4.10: Comparison of Response among Conventional methods and BFOA

From the comparison, the response from using BFOA had shown that it copied the

value of setpoint very closely while the conventional methods had overshoots and

larger settling time. The following figures were obtained by analyzing the responses

from various methods and calculated.

23

Figure 4.13: Settling Time of Different Methods

Table 4.2: Percentage Improvements of BFOA compared to Conventional Methods

Method ISE %OS Ts (s) % Improvements

BFOA 0.0663 0% 2 -

IMC 2.125 0% 20 96.88%

Trial and Error 2.434 60% 41 97.27%

Butterworth Filter Design 1.8116 52% 28 96.34%

Figure 4.11, 4.12 and 4.13 had shown the ISE, percentage overshoot and

settling time respective for all methods. The lower the values, the better the response

is. For these 3 figures, BFOA shows the lowest values. This has proven that BFOA

Figure 4.11: Integral Squared Error of

Different Methods

Figure 4.12: Percentage Overshoot of

Different Methods

24

optimize better parameters compare with these conventional methods. From all of

the 4 methods used, BFOA have the most significant improvements by having the

least or almost zero % overshoot and the shortest settling time. This had shown that

BFOA performs the best of all the methods tested. Table 4.2 was tabulated by

calculating the percentage performance improvement based on ISE, percentage

overshoot and settling time. It had shown that the overall improvements are more

than 90%.

4.3 Graphic User Interface (GUI)

Other than comparing the results of BFOA and the conventional methods, a GUI was

developed to ease the user in optimizing the parameters using BFOA. The software

developed can optimize parameters for PID, PI or PD controllers with up to 3
rd

 order

system.

Please refer to Appendix B for GUI MATLAB CODES

The following Figure 4.14 is a screen shot of the GUI.

Figure 4.14: Graphic User Interface (GUI) that I had developed in Optimizing

Parameters.

25

Transfer function can be input into the GUI in the first box and then generate the

equation to initialize the required parameters. Then, optimization can be done. After

that, values of Kp, Ki and Kd will be displayed and a step response of the system can

be plotted. There are only 3 push buttons that can be used in the GUI that I had

developed. There will be 3 colours for the buttons which are green, red and grey. The

push button can only be pushed when it is green in colour. When the button is in

grey or red colour, it cannot be pushed. The difference between the grey and red is

that if any mistake or wrong data had been keyed into the GUI and the user wanted

to change the values, the information with the grey or green button can be changed.

Red means that the algorithm is running or the data required is insufficient. The

following Figure 4.15 show the transfer function of the system is being input.

Figure 4.15: GUI – Transfer Function of System being Input and Generated

From Figure 4.15, it can be observed that the push button “Generate” turned from

green to grey and push button “Optimize” turned from red to green. It shows that the

transfer function is accepted and generated. The transfer function of system can be

checked from the “Transfer Function Generated” box. By then, it is ready to

26

optimize the required parameters. The following Figure 4.16 will show the next

process.

Figure 4.16: GUI – Optimized Parameters Kp, Ki and Kd

The above Figure 4.16 shows that the parameters are being optimized after

approximately 20 seconds. Then, the “Optimized” push button will change from

green to grey and the “Plot” push button is enabled. After the “Plot” push button is

push, Figure 4.17 will show the further results.

27

Figure 4.17: GUI – Response of System is generated using Optimized Parameters

The response of the system using the optimized parameters will be plotted after the

push button “Plot” is pushed. The user can analyse the error or the performance of

the optimized parameters. Other than that, there are a few tools that had been added

to help in analysing the plot. This can be observed the Figure 4.18 and 4.19.

Figure 4.18: GUI – Data Cursor

28

Figure 4.19: GUI – Zoom in/out and Pan

Figure 4.18 had shown that the user can use the Data Cursor tool to obtain the data at

certain point on the line. Besides, Figure 4.19 had shown that the user can zoom in

and out of the plot to analyse the plot clearly. A Pan tool is added the move the plot

around to observe the desired part of the plot.

29

CHAPTER 5

CONCLUSION AND RECOMMENDATION

A mathematical model of the 3-phase separator was formed. From the mathematical

model, trial & error method, Butterworth filter design method, IMC method and

BFOA tuning method were tested using Matlab Simulink simulation. A set of

parameters were used and the results were obtained. The results have shown that the

BFOA method produces the best results and far better that the other 3 conventional

methods. BFOA has more than 90% improvements compared to the conventional

methods. BFOA can improve the performance of the system thus increases

productivity, decrease cost and saves time. A GUI is developed in order to ease the

optimization process. This is a promising technique to be used in oil and gas industry

other than 3-phase separator. Further studies can be carried out on an actual plant

and plants with higher order. Besides, BFOA can be used to compare with other

intelligent techniques. Then, more research could be done integrating more than one

intelligent technique together to produce even better results.

30

REFERENCES:

[1] Ahmed Bensenouci, “PID Controllers Design for a Power Plant Using

Bacteria Foraging Algorithm”, Electrical and Computer Engineering

Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,

2011.

[2] Amir Esmaeili Abharian, Mehdi Alizera, “Hybrid GA-BF Based Intelligent

PID active queue management control design for TCP network”,

Engineeering Department, Islamic Azad University, Adiban-Higher

Education Institute, Garmsar, Iran, 2011

[3] Anguluri Rajasekhar, Ravi Kumar Jatoth, Ajith Abraham, Vaclav Snasel, “A

Novel Hybrid ABF-PSO Algorithm Based Tuning of Optimal FOPI Speed

Controller for PMSM Drive”, National Institute of Technology- Warangal,

India, Technical University of Ostrava, Czech Republic, 2011

[4] Ben Niu,Yunlong Zhu, Xiaoxian He and Xiangping Zeng, “Optimum Design

of PID Controllers Using Only a Germ of Intelligence”, Shenyang Institute of

Automation, Chinese Academy of Sciences, Liaoning, China, June 21-23,

2006.

[5] Dong Hwa Kim, Ajith Abraham, Jae Hoon Cho, “A hybrid genetic algorithm

and bacterial foraging approach for global optimization”, Department of

Instrumentation and Control Engineering, Hanbat National University,

Republic of Korea, 2 April 2007

[6] E. Daryabeigi, M. Moazzami, A. Khodabakhshian, M.H. Mazidi, “A new

power system stabilizer design by using Smart Bacteria Foraging Algorithm”,

Dept. of Electrical Engineering, Islamic Azad University, Iran, 2011.

[7] John Oyekan and Huosheng Hu, “A novel bacterial foraging algorithm for

automated tuning of PID controllers of UAVs”, School of Computer Science

and Electronic Engineering University of Essex, Wivenhoe Park, Colchester

CO3 4SQ, United Kingdom, June 10-23, 2010

[8] K.R. Mahmoud, “Design Optimization of a Bow-tie Antenna for 2.45GHz

RFID Readers using a Hybrid BSO-NM Algorithm” Electronics &

Communications Department, Faculty of Engineering Helwan University,

Egypt, 2010

[9] Leandro dos Santos Coelho and Camila da Costa Silveira, “Improved

Bacterial Foraging Strategy for Controller Optimization Applied to Robotic

Manipulator System”, Pontifical Catholic University of Parana, Brazil, Oct 4-

6, 2006.

31

[10] Liu Yijian, Fang Yanjun, “Optimization Design of PID Controller Parameters

Based on Improved E.Coli Foraging Optimization Algorithm”, School of

Electrical & Automation Engineering, Nanjing Normal University,

Department of Automation, University of Wuhan, Sept 2008.

[11] Swagatam Das, Arijit Biswas, Sambarta DAsgupta and Ajith Abraham,

“Bacterial Foraging Optimization Algorithm: Theoretical Foundations,

Analysis, and Applications”, Dept. of Eelctronics and Telecommunication

Engg, Jadavpur University, Kolkata, India

[12] T. Datta, I.S. Misra, B.B. Mangaraj, S.Imtiaj, “Improved Adaptive Bacteria

Foraging Algorithm in Optimization of Antenna Array for Faster

Convergence”, Electronics and Telecommunication Engineering Jadavpur

University, University College of Engineering, India, 2008

[13] Wael M. Korani, Hassen Taher Dorrah and Hassan M. Emara, “Bacterial

foraging oriented by Particle Swarm Optimization strategy for PID tuning”,

Department of Electrical Power and Machines Engineering, Cairo University,

Giza, Eqypt

[14] W.J. Tang, Q. H. Wu, Senior Member, IEEE and J.R. Saunders, “Bacterial

Foraging Algorithm for Dynamic Environments”, 2006

[15] XiuJuan Lei, Shuang Wu, Liang GE, Aidong Zhang, “Clustering PPI Data

Based on Bacteria Foraging Optimization Algorithm”, College of Computer

Science, China, Department of Computer Science and Engineering, USA,

2011

[16] Ying Chu, Hua Mi, Huilian Liao, Zhen Ji and Q.H. Wu, “A Fast Bacterial

Swarming Algorithm For High-dimensional Function Optimization”, 2008

[17] Y. Mishra, S. Mishra and Fangxing Li, “Coordinated Tuning of DFIG-Based

Wind Turbines and Batteries Using Bacteria Foraging Technique for

Maintaining Constant Grid Power Output”, 2011

[18] Zhenyu Yang, Michael Juhl and Bo Lohndorf, “On the Innovation of Level

Control of an Offshore Three-Phase Separator” Dept of Electronic Systems,

Aalborg University, Ramboll Oil and Gas A/S, Denmark, 2010

[19] Atalla F. Sayda and James H. Taylor, “Modeling and Control of Three-Phase

Gravity Separators in Oil Production Facilities”

[20] D.M. Mary Synthia Regis Prabha, Dr. S. Pushpa Kumar and G. Glan

Devadhas, “An Optimum Setting of Controller for a dc-dc Converter Using

Bacterial Intelligence Technique” Noorul Islam University, Kumaracoil and

Heera College of Engg & Tech, Tricandrum, 2011

[21] G.C. Nunes, A.A. Rodrigues Coelho, R. Rodrigues Sumar and R.I. Goytia

Mejia, “A Practical Strategy for Controlling Flow Oscillation in Surge

32

Tanks”, Department of Automation and Systems, Federal Universityof Santa

Catarina, 2007

[22] Hoang Thanh Nguyen, Bir Bhanu, “Tracking Pedestrians with Bacterial

Foraging Optimization Swarms”, Center for Research in Intelligent Systems,

University of California, Riverside, 2011

[23] IBG Manuaba, M Abdillah, A Soeprijanto, Maruridhi Hery P, “Coordination

of PID Based Power System Stabilizer and AVR Using Cobination Bacterial

Foraging Technique – Particle Swarm Optimization”, Department of

Electrical Engineering Institut Teknologi Sepuluh Nopember Surabaya 6011,

Department of Electrical Engineering Universitas Udayana Denpasar, Bali,

Indonesia.

[24] Nima Amjady, Hamzeh Fatemi and Hamidreza Zareipour, “Solution of

Optimal Power Flow Subject to Security Costraints by a New Improved

Bacterial Foraging Method”, 2012

[25] Sachin Singh, T. Ghose and S. K. Goswami, Optimal Feeder Routing Based

on the Bacterial Foraging Technique”, Jan 2012

[26] S. S. Patnaik and Prof. A. K. Panda, “Comparative Evaluation of Harmonic

Compensation Capability of Active Power Filter with Conventional and

Bacterial Foraging Based Control”, Department of Electrical Engineering,

National Institute of Technology, Rourkela, India

33

APPENDICES

34

APPENDIX A

BACTERIA FORAGING OPTIMIZATION ALGORITHM

(BFOA) MATLAB CODES

%BG.m (MAIN)

% Tunning of PID controller using Bacterial foraging

%

%

% Author: Ho Joon Heng (joonheng89@gmail.com)

% Electrical & Electronics Enginering Dept,

% Universiti Teknologi Petronas, Malaysia

%

% Reference from Wael Mansour (wael192@yahoo.com)

% MSc Student, Electrical Enginering Dept,

% Faculty of Engineering Cairo University, Egypt

%%

%Initialization

%clear all

clc

%Obtain Variables from GUI

Num3 = getappdata(0,'GUI_Num3');

Num2 = getappdata(0,'GUI_Num2');

Num1 = getappdata(0,'GUI_Num1');

Num0 = getappdata(0,'GUI_Num0');

Den3 = getappdata(0,'GUI_Den3');

Den2 = getappdata(0,'GUI_Den2');

Den1 = getappdata(0,'GUI_Den1');

Den0 = getappdata(0,'GUI_Den0');

setappdata(0,'BG_Num3',Num3);

setappdata(0,'BG_Num2',Num2);

setappdata(0,'BG_Num1',Num1);

setappdata(0,'BG_Num0',Num0);

setappdata(0,'BG_Den3',Den3);

setappdata(0,'BG_Den2',Den2);

setappdata(0,'BG_Den1',Den1);

setappdata(0,'BG_Den0',Den0);

p=2;

s=6;

Nc=5;

Ns=4;

Nre=4;

Ned=2;

Sr=s/2;

Ped=0.25;

c(:,1)=0.05*ones(s,1);

for m=1:s

 P(1,:,1,1,1)= 50*rand(s,1)';

 P(2,:,1,1,1)= .2*rand(s,1)';

 %P(3,:,1,1,1)= .2*rand(s,1)';

end

%%

35

%Main loop

%Elimination and dispersal loop

for ell=1:Ned

%Reprodution loop

 for K=1:Nre

% swim/tumble(chemotaxis)loop

 for j=1:Nc

 for i=1:s

 J(i,j,K,ell)=tracklsq_PI(P(:,i,j,K,ell));

% Tumble

 Jlast=J(i,j,K,ell);

 Delta(:,i)=(2*round(rand(p,1))-1).*rand(p,1);

P(:,i,j+1,K,ell)=P(:,i,j,K,ell)+c(i,K)*Delta(:,i)/sqrt(Delta(:,i)'*D

elta(:,i)); % This adds a unit vector in the random direction

 J(i,j+1,K,ell)=tracklsq_PI(P(:,i,j+1,K,ell));

 m=0; % Initialize counter for swim length

 while m<Ns

 m=m+1;

 if J(i,j+1,K,ell)<Jlast

 Jlast=J(i,j+1,K,ell);

P(:,i,j+1,K,ell)=P(:,i,j+1,K,ell)+c(i,K)*Delta(:,i)/sqrt(Delta(:,i)'

*Delta(:,i)) ;

J(i,j+1,K,ell)=tracklsq_PI(P(:,i,j+1,K,ell));

 else

 m=Ns ;

 end

 end

 J(i,j,K,ell)=Jlast;

 sprintf('The value of interation i %3.0f ,j

= %3.0f , K= %3.0f, ell= %3.0f' , i, j, K ,ell);

 end

 end

%Reprodution

 Jhealth=sum(J(:,:,K,ell),2);

 [Jhealth,sortind]=sort(Jhealth);

 P(:,:,1,K+1,ell)=P(:,sortind,Nc+1,K,ell);

 c(:,K+1)=c(sortind,K);

36

%Split the bacteria (reproduction)

 for i=1:Sr

 %Sr2=2*Sr;

 %Sr3=2*Sr;

 P(:,i+Sr,1,K+1,ell)=P(:,i,1,K+1,ell); % The least

fit do not reproduce, the most fit ones split into two identical

copies

 %P(:,i+Sr2,1,K+1,ell)=P(:,i,1,K+1,ell);

 %P(:,i+Sr3,1,K+1,ell)=P(:,i,1,K+1,ell);

 c(i+Sr,K+1)=c(i,K+1);

 %c(i+Sr2,K+1)=c(i,K+1);

 %c(i+Sr3,K+1)=c(i,K+1);

 end

 end % Go to next reproduction

%Eliminatoin and dispersal

 for m=1:s

 if Ped>rand % % Generate random number

 P(1,:,1,1,1)= 50*rand(s,1)';

 P(2,:,1,1,1)= .2*rand(s,1)';

 %P(3,:,1,1,1)= .2*rand(s,1)';

 else

 P(:,m,1,1,ell+1)=P(:,m,1,Nre+1,ell);

 end

 end

end

%Report

 reproduction = J(:,1:Nc,Nre,Ned);

 [jlastreproduction,O] = min(reproduction,[],2); % min

cost function for each bacterial

 [Y,I] = min(jlastreproduction);

 pbest=P(:,I,O(I,:),K,ell);

 Kp= abs(pbest(1,:))

 Ki= abs(pbest(2,:))

 Kd= 0%abs(pbest(3,:))

 assignin('base','Kp',Kp);

 assignin('base','Ki',Ki);

 assignin('base','Kd',Kd);

 setappdata(0,'BG_Opt_Kp',Kp);

 setappdata(0,'BG_Opt_Ki',Ki);

 setappdata(0,'BG_Opt_Kd',Kd);

37

%tracklsq (function)

function F = tracklsq(pid)

 Num3 = getappdata(0,'BG_Num3');

 Num2 = getappdata(0,'BG_Num2');

 Num1 = getappdata(0,'BG_Num1');

 Num0 = getappdata(0,'BG_Num0');

 Den3 = getappdata(0,'BG_Den3');

 Den2 = getappdata(0,'BG_Den2');

 Den1 = getappdata(0,'BG_Den1');

 Den0 = getappdata(0,'BG_Den0');

 Kp = pid(1);

 Ki = pid(2);

 Kd = pid(3);

 sprintf('The value of interation Kp= %3.0f, Ki= %3.0f,

Kd= %3.0f', pid(1), pid(2), pid(3));

 %Compute function value

 simopt =

simset('solver','ode5','SrcWorkspace','Current','DstWorkspace','Curr

ent'); % Initialize sim options

 [tout,xout,yout] = sim('optsim2',[0 50],simopt);

 %Compute the error

 e=yout(1)-1 ;

 %Compute the overshoot

 sys_overshoot = max(yout(1))-1;

 sys_shoot = abs(sys_overshoot);

 alpha = 10;

 beta = 10;

 F = e2*beta+sys_shoot*alpha;

 end

38

APPENDIX B

GUI MATLAB CODES

% GUI (MAIN)

function varargout = GUI(varargin)

% GUI M-file for GUI.fig

% GUI, by itself, creates a new GUI or raises the existing

% singleton*.

%

% H = GUI returns the handle to a new GUI or the handle to

% the existing singleton*.

%

% GUI('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in GUI.M with the given input

arguments.

%

% GUI('Property','Value',...) creates a new GUI or raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before GUI_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to GUI_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% View the above text to modify the response to help GUI

% Last Modified by GUIDE v2.5 26-Jul-2012 16:55:39

% Begin initialization code - DO NOT VIEW

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @GUI_OpeningFcn, ...

 'gui_OutputFcn', @GUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT VIEW

% --- Executes just before GUI is made visible.

function GUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

39

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI

handles.output = hObject;

set(handles.Gen,'BackgroundColor','green');

set(handles.pushbutton_Opt,'BackgroundColor','red');

set(handles.pushbutton_Plot,'BackgroundColor','red');

axes(handles.logo_in);

imshow('UTP_logo.jpg');

axes(handles.logo_in2);

imshow('matlab_logo3.jpg')

opengl software

axes(handles.Background);

imshow('3PS.jpg');

alpha (0.4);

axes(handles.graph);

axis ([0 100 0 2.5]);

grid on;

xlabel('Time');

ylabel('Response');

title('Response vs Time');

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = GUI_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1

as a double

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

40

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Num3_Callback(hObject, eventdata, handles)

% hObject handle to Num3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Num3_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Num3 as text

% str2double(get(hObject,'String')) returns contents of Num3

as a

% double

% --- Executes during object creation, after setting all properties.

function Num3_CreateFcn(hObject, eventdata, handles)

% hObject handle to Num3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit5_Callback(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text

% str2double(get(hObject,'String')) returns contents of edit5

as a double

% --- Executes during object creation, after setting all properties.

function edit5_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

41

function Num2_Callback(hObject, eventdata, handles)

% hObject handle to Num2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Num2_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Num2 as text

% str2double(get(hObject,'String')) returns contents of Num2

as a double

% --- Executes during object creation, after setting all properties.

function Num2_CreateFcn(hObject, eventdata, handles)

% hObject handle to Num2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Num1_Callback(hObject, eventdata, handles)

% hObject handle to Num1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Num1_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Num1 as text

% str2double(get(hObject,'String')) returns contents of Num1

as a double

% --- Executes during object creation, after setting all properties.

function Num1_CreateFcn(hObject, eventdata, handles)

% hObject handle to Num1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- If Enable == 'on', executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over

edit5.

42

function edit5_ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function Menu_Callback(hObject, eventdata, handles)

% hObject handle to File (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton_Opt.

function pushbutton_Opt_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_Opt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

BG;

BG_Opt_Kp = getappdata(0,'BG_Opt_Kp');

BG_Opt_Ki = getappdata(0,'BG_Opt_Ki');

BG_Opt_Kd = getappdata(0,'BG_Opt_Kd');

set(handles.Opt_Kp,'String',BG_Opt_Kp);

set(handles.Opt_Ki,'String',BG_Opt_Ki);

set(handles.Opt_Kd,'String',BG_Opt_Kd);

setappdata(0,'BG_Opt_Kp',BG_Opt_Kp);

setappdata(0,'BG_Opt_Ki',BG_Opt_Ki);

setappdata(0,'BG_Opt_Kd',BG_Opt_Kd);

set(handles.Gen,'BackgroundColor','default');

set(handles.pushbutton_Opt,'BackgroundColor','default');

set(handles.pushbutton_Plot,'BackgroundColor','green');

guidata(hObject,handles);

% --- Executes on button press in pushbutton_Plot.

function pushbutton_Plot_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton_Plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

BG_Opt_Kp = getappdata(0,'BG_Opt_Kp');

BG_Opt_Ki = getappdata(0,'BG_Opt_Ki');

BG_Opt_Kd = getappdata(0,'BG_Opt_Kd');

graph(1) = handles.Num3_value;

graph(2) = handles.Num2_value;

graph(3) = handles.Num1_value;

graph(4) = handles.Num0_value;

graph(5) = handles.Den3_value;

graph(6) = handles.Den2_value;

graph(7) = handles.Den1_value;

graph(8) = handles.Den0_value;

graph(9) = BG_Opt_Kp;

graph(10) = BG_Opt_Ki;

graph(11) = BG_Opt_Kd;

[tout yout]= graph_simout(graph);

axes(handles.graph);

plot(tout,yout(:,2),tout,yout(:,1),'LineWidth',(1.5));

axis([0 100 0 2.5]);

grid on;

%xlabel('Time');

%ylabel('Response');

%title('Response vs Time');

43

set(handles.Gen,'BackgroundColor','green');

set(handles.pushbutton_Opt,'BackgroundColor','default');

set(handles.pushbutton_Plot,'BackgroundColor','default');

guidata(hObject,handles);

function Num0_Callback(hObject, eventdata, handles)

% hObject handle to Num0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Num0_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Num0 as text

% str2double(get(hObject,'String')) returns contents of Num0

as a double

% --- Executes during object creation, after setting all properties.

function Num0_CreateFcn(hObject, eventdata, handles)

% hObject handle to Num0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Den3_Callback(hObject, eventdata, handles)

% hObject handle to Den3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Den3_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Den3 as text

% str2double(get(hObject,'String')) returns contents of Den3

as a double

% --- Executes during object creation, after setting all properties.

function Den3_CreateFcn(hObject, eventdata, handles)

% hObject handle to Den3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

44

function Den2_Callback(hObject, eventdata, handles)

% hObject handle to Den2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Den2_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Den2 as text

% str2double(get(hObject,'String')) returns contents of Den2

as a double

% --- Executes during object creation, after setting all properties.

function Den2_CreateFcn(hObject, eventdata, handles)

% hObject handle to Den2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Den1_Callback(hObject, eventdata, handles)

% hObject handle to Den1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.Den1_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Den1 as text

% str2double(get(hObject,'String')) returns contents of Den1

as a double

% --- Executes during object creation, after setting all properties.

function Den1_CreateFcn(hObject, eventdata, handles)

% hObject handle to Den1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Den0_Callback(hObject, eventdata, handles)

% hObject handle to Den0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

45

% handles structure with handles and user data (see GUIDATA)

handles.Den0_value = str2double(get(hObject,'String'));

guidata(hObject, handles);

% Hints: get(hObject,'String') returns contents of Den0 as text

% str2double(get(hObject,'String')) returns contents of Den0

as a double

% --- Executes during object creation, after setting all properties.

function Den0_CreateFcn(hObject, eventdata, handles)

% hObject handle to Den0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Opt_Kp_Callback(hObject, eventdata, handles)

% hObject handle to Opt_Kp (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Opt_Kp as text

% str2double(get(hObject,'String')) returns contents of

Opt_Kp as a double

% --- Executes during object creation, after setting all properties.

function Opt_Kp_CreateFcn(hObject, eventdata, handles)

% hObject handle to Opt_Kp (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Opt_Ki_Callback(hObject, eventdata, handles)

% hObject handle to Opt_Ki (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Opt_Ki as text

% str2double(get(hObject,'String')) returns contents of

Opt_Ki as a double

46

% --- Executes during object creation, after setting all properties.

function Opt_Ki_CreateFcn(hObject, eventdata, handles)

% hObject handle to Opt_Ki (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Opt_Kd_Callback(hObject, eventdata, handles)

% hObject handle to Opt_Kd (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Opt_Kd as text

% str2double(get(hObject,'String')) returns contents of

Opt_Kd as a double

% --- Executes during object creation, after setting all properties.

function Opt_Kd_CreateFcn(hObject, eventdata, handles)

% hObject handle to Opt_Kd (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in Gen.

function Gen_Callback(hObject, eventdata, handles)

% hObject handle to Gen (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

Trans_Num3 = handles.Num3_value;

Trans_Num2 = handles.Num2_value;

Trans_Num1 = handles.Num1_value;

Trans_Num0 = handles.Num0_value;

Trans_Den3 = handles.Den3_value;

Trans_Den2 = handles.Den2_value;

Trans_Den1 = handles.Den1_value;

Trans_Den0 = handles.Den0_value;

assignin('base','Num3',Trans_Num3);

assignin('base','Num2',Trans_Num2);

assignin('base','Num1',Trans_Num1);

assignin('base','Num0',Trans_Num0);

assignin('base','Den3',Trans_Den3);

assignin('base','Den2',Trans_Den2);

assignin('base','Den1',Trans_Den1);

47

assignin('base','Den0',Trans_Den0);

setappdata(0,'GUI_Num3',Trans_Num3);

setappdata(0,'GUI_Num2',Trans_Num2);

setappdata(0,'GUI_Num1',Trans_Num1);

setappdata(0,'GUI_Num0',Trans_Num0);

setappdata(0,'GUI_Den3',Trans_Den3);

setappdata(0,'GUI_Den2',Trans_Den2);

setappdata(0,'GUI_Den1',Trans_Den1);

setappdata(0,'GUI_Den0',Trans_Den0);

% To display generated transfer function - Numerator

if Trans_Num3== 0

 if Trans_Num2== 0

 if Trans_Num1== 0

 if Trans_Num0== 0

 display_Num = 'Error!';

 else

 display_Num = num2str(Trans_Num0);

 end

 else

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num1),'s

',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num1),'s

+',num2str(Trans_Num0)];

 end

 end

 else

 if Trans_Num1== 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num2),'s^2'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num2),'s^2

',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num2),'s^2

+',num2str(Trans_Num0)];

 end

 elseif Trans_Num1 < 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num2),'s^2

',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num2),'s^2

',num2str(Trans_Num1),'s ',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num2),'s^2

',num2str(Trans_Num1),'s +',num2str(Trans_Num0)];

 end

 else

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num2),'s^2

+',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num2),'s^2

+',num2str(Trans_Num1),'s ',num2str(Trans_Num0)];

 else

48

 display_Num = [num2str(Trans_Num2),'s^2

+',num2str(Trans_Num1),'s +',num2str(Trans_Num0)];

 end

 end

 end

else

 if Trans_Num2== 0

 if Trans_Num1== 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3 +'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num0)];

 end

 elseif Trans_Num1 < 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num1),'s ',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num1),'s +',num2str(Trans_Num0)];

 end

 else

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num1),'s ',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num1),'s +',num2str(Trans_Num0)];

 end

 end

 elseif Trans_Num2 < 0

 if Trans_Num1== 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num0)];

 end

 elseif Trans_Num1 < 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num1),'s

',num2str(Trans_Num0)];

 else

49

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num1),'s

+',num2str(Trans_Num0)];

 end

 else

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num1),'s

',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num1),'s

+',num2str(Trans_Num0)];

 end

 end

 else

 if Trans_Num1== 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num0)];

 end

 elseif Trans_Num1 < 0

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num1),'s

',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 ',num2str(Trans_Num1),'s

+',num2str(Trans_Num0)];

 end

 else

 if Trans_Num0== 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num1),'s'];

 elseif Trans_Num0 < 0

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num1),'s

',num2str(Trans_Num0)];

 else

 display_Num = [num2str(Trans_Num3),'s^3

+',num2str(Trans_Num2),'s^2 +',num2str(Trans_Num1),'s

+',num2str(Trans_Num0)];

 end

 end

 end

end

%To display generated transfer function - Denominator

50

if Trans_Den3== 0

 if Trans_Den2== 0

 if Trans_Den1== 0

 if Trans_Den0== 0

 display_Den = 'Error!';

 else

 display_Den = num2str(Trans_Den0);

 end

 else

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den1),'s

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den1),'s

+',num2str(Trans_Den0)];

 end

 end

 else

 if Trans_Den1== 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den2),'s^2'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den2),'s^2

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den2),'s^2

+',num2str(Trans_Den0)];

 end

 elseif Trans_Den1 < 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den2),'s^2

',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den2),'s^2

',num2str(Trans_Den1),'s ',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den2),'s^2

',num2str(Trans_Den1),'s +',num2str(Trans_Den0)];

 end

 else

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den2),'s^2

+',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den2),'s^2

+',num2str(Trans_Den1),'s ',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den2),'s^2

+',num2str(Trans_Den1),'s +',num2str(Trans_Den0)];

 end

 end

 end

else

 if Trans_Den2== 0

 if Trans_Den1== 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3 +'];

 elseif Trans_Den0 < 0

51

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den0)];

 end

 elseif Trans_Den1 < 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den1),'s ',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den1),'s +',num2str(Trans_Den0)];

 end

 else

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den1),'s ',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den1),'s +',num2str(Trans_Den0)];

 end

 end

 elseif Trans_Den2 < 0

 if Trans_Den1== 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den0)];

 end

 elseif Trans_Den1 < 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den1),'s

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den1),'s

+',num2str(Trans_Den0)];

 end

 else

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

52

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den1),'s

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den1),'s

+',num2str(Trans_Den0)];

 end

 end

 else

 if Trans_Den1== 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den0)];

 end

 elseif Trans_Den1 < 0

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den1),'s

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 ',num2str(Trans_Den1),'s

+',num2str(Trans_Den0)];

 end

 else

 if Trans_Den0== 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den1),'s'];

 elseif Trans_Den0 < 0

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den1),'s

',num2str(Trans_Den0)];

 else

 display_Den = [num2str(Trans_Den3),'s^3

+',num2str(Trans_Den2),'s^2 +',num2str(Trans_Den1),'s

+',num2str(Trans_Den0)];

 end

 end

 end

end

axes(handles.graph);

cla;

set(handles.Gen_Num,'String',display_Num);

set(handles.Gen_Den,'String',display_Den);

set(handles.Gen,'BackgroundColor','default');

set(handles.pushbutton_Opt,'BackgroundColor','green');

set(handles.pushbutton_Plot,'BackgroundColor','red');

guidata(hObject,handles);

function Gen_Num_Callback(hObject, eventdata, handles)

% hObject handle to Gen_Num (see GCBO)

53

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Gen_Num as text

% str2double(get(hObject,'String')) returns contents of

Gen_Num as a double

% --- Executes during object creation, after setting all properties.

function Gen_Num_CreateFcn(hObject, eventdata, handles)

% hObject handle to Gen_Num (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function Gen_Den_Callback(hObject, eventdata, handles)

% hObject handle to Gen_Den (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Gen_Den as text

% str2double(get(hObject,'String')) returns contents of

Gen_Den as a double

% --- Executes during object creation, after setting all properties.

function Gen_Den_CreateFcn(hObject, eventdata, handles)

% hObject handle to Gen_Den (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: view controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --

--

function File_Callback(hObject, eventdata, handles)

% hObject handle to File (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function View_Callback(hObject, eventdata, handles)

% hObject handle to View (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

54

% --

--

function View_Zoomin_Callback(hObject, eventdata, handles)

% hObject handle to View_Zoomin (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function View_Zoomout_Callback(hObject, eventdata, handles)

% hObject handle to View_Zoomout (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function View_Pan_Callback(hObject, eventdata, handles)

% hObject handle to View_Pan (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function View_Cursor_Callback(hObject, eventdata, handles)

% hObject handle to View_Cursor (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function File_Save_Callback(hObject, eventdata, handles)

% hObject handle to File_Save (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function File_Saveas_Callback(hObject, eventdata, handles)

% hObject handle to File_Saveas (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

--

function File_Close_Callback(hObject, eventdata, handles)

% hObject handle to File_Close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

55

% graph_simout (function)

function [F G] = graph_simout(const_graph)

 % Variables

 Num3 = const_graph(1);

 Num2 = const_graph(2);

 Num1 = const_graph(3);

 Num0 = const_graph(4);

 Den3 = const_graph(5);

 Den2 = const_graph(6);

 Den1 = const_graph(7);

 Den0 = const_graph(8);

 Kp = const_graph(9);

 Ki = const_graph(10);

 Kd = const_graph(11);

 %sprintf('The value of interation Kp= %3.0f, Ki= %3.0f,

Kd= %3.0f', const_graph(9), const_graph(10), const_graph(11));

 %Compute function value

 simopt3 =

simset('SrcWorkspace','Current','DstWorkspace','Current'); %

Initialize sim options

 [tout3,xout3,yout3] = sim('optsim2',[0 100],simopt3);

 F = tout3;

 G = yout3;

 end

