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ABSTRACT  

Gas District Cooling (GDC) is a co-generation plant that owned by Universiti 

Teknologi PETRONAS (UTP). The plant supplies electricity and chilled water to the 

UTP campus. At present, there is no mathematical model available for GDC 

application. As a sole customer of the plant, the UTP 2011 load demand data is used 

to develop the load demand modelling using exponential smoothing methods. The 

methods produce a few mathematical models that replicate UTP 2011 load demand 

pattern. The result obtain in the analysis would address the variation of electricity 

demand in the university which is beneficial for the utility company and for 

forecasting purpose. Winter’s method is selected to characterize the mathematical 

load demand modelling for UTP since it produced the lowest MAPE as compared to 

Simple, Holt’s Fit and Holt-Winters of exponential smoothing methods. 
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CHAPTER 1 

INTRODUCTION 

1.1    Background of Study 

An electrical load forecast is crucial for efficient management of power system for a 

power station. It is necessity in order to optimize and to reduce the cost of electric 

energy consumption. Furthermore, ability to form a mathematic model of historical 

data of the forecast object is the pitch of a load forecast. It will determine the 

accuracy of the forecast load. For Universiti Teknologi PETRONAS (UTP), Gas 

District Cooling (GDC) is the main power plant. GDC is capable to generate up to 

8.4MW of electrical power [1,2]. For this project, there are two main objectives that 

would be realized in this report. The first one is to analyse and study the load demand 

behaviours of UTP while the second one is to formulate the mathematical model that 

can represent the load demand behaviours of UTP.   

1.2    Problem Statement 

1.2.1    Problem Identification 

There are various methods available to make a mathematical model of the load 

demand. In [3], there are nine methods of forecasting that have been classified which 

include exponential smoothing, stochastic time series, fuzzy logic, and neural 

networks. Thus, in order to obtain the best and accurate model for developing a 

mathematical model, studies need to be done in order to choose the best method.  

 

Due to the need for an analysis of the historical load demand data of the previous one, 

there must be enough data to conduct the required analysis. For that purpose, 

historical UTP load demand data for the year of 2011 which started on 1
st
 January 

2011 until 31 December 2011 have been gathered from GDC. This load demand 

profile has been chosen as the study period. Besides, important events throughout the 
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year of 2011 which include holiday, festivals, events in UTP and academic schedules 

of UTP are gathered for the analysis purposes. This information is collected from the 

2011 Malaysia calendar, academic calendar, tripping record of GDC, UTP Registrar 

Department and UTP Maintenance Department. 

1.2.2    Significant of Project 

Mathematical load demand model plays an important role for forecasting purposes 

and aids in the determination of load demand forecast accuracy. A more accurate 

result would save hundreds of thousands dollar to the electric utility company since 

the load forecast would be used for operation and planning, fuel allocation, system 

expansion and optimization of network development of the company [5].  

1.3    Objective and Scope of the project 

1.3.1    Main Objective 

The objectives of the project are as follows: 

1. To analyse and study the load demand behaviour of UTP. 

2. To formulate the mathematical model that can represent the load demand 

behaviour of UTP. 

1.3.2    Scope of Project 

This project will start with some literature review related to load forecasting and 

mathematical modelling. Next, there will be load demand data gathering from GDC 

UTP which is the case study. The aim is to get the best approximate equation that can 

replicate the load demand profile of the study period. Besides, there will be series of 

fine tuning process to improve the accuracy of the mathematical models develop to 

the best. Then, the project will continue with next stages of mathematical model 

development or other methods that are suitable.  
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1.4    Relevancy of Project 

This project is done from the load demand data that is available at the Gas District 

Cooling (GDC) of Universiti Teknologi PETRONAS. Currently, there is no 

mathematical model available for GDC application. The mathematical model 

developed, can be used by the GDC in assisting the forecast project to predict the 

future load demand in UTP. Besides, GDC also can use this model to analyses the 

load demand behaviours in Universiti Teknologi PETRONAS to assist in operation 

and planning purposes of their power plant. 

1.5    Feasibility of Project 

This project will be done in two semesters which include research, data gathering, 

analysing and model formulation. For research part, information regarding 

mathematical modelling are gather from related journal, conference proceeding and 

books during the first semester. MATLAB, MINITAB and Microsoft Excel software 

are available and will be used as the tools to formulate the mathematical model of the 

GDC load demand. Additionally, a preliminary mathematical model would be 

constructed in the first semester and the model would be optimized and finalized 

during the second semester. Based on the Gantt chart developed, it is confidently 

assured that this project can be carried out within the time frame given. 
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CHAPTER 2 

LITERATURE REVIEW 

Over the decade, there have been several methods varying in complexity of functional 

form and estimation procedures that have been proposed for producing a 

mathematical model and forecast result [3]. Mathematical model and forecasting have 

a mutual relationship since the mathematical model will determine the result of a 

forecasting process. There will be mathematical modelling done first before a 

forecasting process takes place for most cases. In this literature review, I will list most 

of the methods and some explanation pretending to the methods. 

2.1    Exponential Smoothing 

Exponential smoothing is a statistical method for doing a load forecasting [3,5,6]. 

This method is based on the time series and would take into consideration of 

historical data in order to establish a pattern in the past that resembles or similar to 

current load curve [7]. Exponential smoothing also would be used for generating 

smoothed values of the data and later obtain the best estimation [8]. This exponential 

smoothing method would perform best when the time series is stationary and the 

consumption is similar to recent past. If this condition is not achieved, exponential 

smoothing would give poor forecast result compare to the fitting techniques such as 

linear regression, fuzzy and neural network [3,9]. Despite the statement made by [3,9] 

of the performance of exponential smoothing method a conclusion must not be made 

directly since currently this method has been improved and put into some variation 

onward. The types of exponential smoothing that currently use are listed below: 

i. Simple Exponential Smoothing 

ii. Exponential Smoothing with Trend (Holt’s Fit) 

iii. Exponential Smoothing with Seasonality (Winter’s method) 

iv. Holt-Winters Exponential Smoothing 
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A newer research [10] has compare three methods of forecasting which are Seasonal 

ARMA Modelling, Periodic AR Models and Double Seasonal Holt-Winters 

Exponential Smoothing based on European data has found that the methods that 

consistently performed best is Holt-Winters Exponential Smoothing.  Furthermore, in 

[11] a comparative study has been done to compare ARIMA model, Neural Network 

Model and Exponential Smoothing with Double Seasonality has found that the result 

achieve by ARIMA model are more satisfactory compare to neural network but the 

best was exponential smoothing model with double seasonality. Besides, in [12], it is 

states that exponential smoothing has produce a satisfactory result at a very 

reasonable cost and therefore it is use by lots of company.  

2.1.1    Simple exponential smoothing 

Simple exponential smoothing or first-order exponential smoothing is usually used 

for short-range forecasting, usually just for a month into the future. This model is use 

when the data fluctuates around a reasonably stable means with no trend or consistent 

pattern found [13]. However, if the data does shows pattern or trend in the load 

profile, simple exponential smoothing will also be develop and it will be the base 

model for the next stages of exponential smoothing likes Holt’s Fit and Winter’s 

Method. Simple exponential smoothing uses a recursive equation which can be 

translate as a linear combination of the current observation and smoothed observation 

of the previous time unit [8]. The specific formula for simple exponential smoothing 

is given in equation 1 as: 

                  (1) 

Where; 

     is the estimated value for moment t+1 

    is the real value for moment t 

α discount factor of range from 0 to 1 

 

From the equation, the discount factor alpha (α) represents the weight to put into the 

previous observation while (1-α) is the weight put on the smoothed value of the 

previous observations. Alpha (α) is the most important issues for the exponential 

smoothing method [8]. The initial value of       plays an important role in computing 

all the subsequent values. There are two ways to apply. The first one is to use the first 



 

 6 

observation data while the second one is to take average of the first four or five 

observation. The smaller the value of alpha    , the more important the selection of 

initial value of      would be [13]. 

2.1.2    Exponential Smoothing with Trend (Holt’s Fit) 

This method is use when the data shows a trend [8,6,14]. It work just like the first-

order exponential smoothing only that there are two component that need to be 

updated in each period which are level and trend. Level represent the smoothed 

estimate of the value of the data at the end of each period while trend is the trend 

estimate of average growth at the end of each period [13]. The specific formula for 

Holt’s Fit is given in equation 2 and 3: 

 

Where; 

  β [0,1] are the discount factors (constant) 

    is the real value for moment t 

   is the forecast value  

   value of trend 

 

The current value in the series would be used to calculate its smoothed value 

replacement in double exponential smoothing. The initial value for    is set to be the 

value of first observation data while for    there are three suggestions for    [13] : 

2.1.3    Exponential Smoothing with Seasonality (Winter’s method) 

Winter’s Method is use when the load demand data have seasonality, but no trend 

[13,15]. It works just like the first-order exponential smoothing only that there are 

seasonal index to be included. The number of seasons and seasonal indices vary from 

case to case and is depending on the load demand data pattern. The total of all 

                                          (2) 

                                     (3) 

          (4) 

          /(n-1) (5) 

                                  (6) 
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seasonality should be equal to the number of seasons [15]. The specific formula for 

Winter’s Method is given in equation 7 as: 

                     (7) 

Where; 

     is the estimated value for moment t+1 

    is the real value for moment t 

α discount factor of range from 0 to 1 

  Seasonal index 

2.1.4    The Holt Winters (HW) Exponential Smoothing. 

Holt Winters exponential smoothing is named after its inventor. This method is use 

when the data shows trend and seasonality [13,15]. There are three estimates for Holt- 

Winters exponential smoothing method; one for the smoothed value, the second for 

trend and the third for seasonality. The specific formulas for second order exponential 

smoothing are given in equation 8 and 9 as: 

 

Where 

  β [0,1] are the discount factors (constant) 

    is the real value for moment t 

   is the forecast value  

   value of trend 

  seasonal index 

2.2    Stochastic Time Series 

This method is use when a unique pattern of energy and demand pertaining to fast 

growing areas are difficult to be analysed by direct application of time series method. 

Thus, stochastic time series approach is introduced. This method would first develop 

a pioneer model based on previous data then based on this model a future load is 

predicted. This approach is the most popular approach for a short term load forecast 

[3]. 

                                    (8) 

                               (9) 
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2.2.1    Autoregressive (AR) Model 

Autoregressive (AR) model is used when the load is to be a linear combination of 

previous load. The equation given by [15] for autoregressive AR model is given in 

equation 10: 

    ∑       

 

   

    
    

(10) 

Where; 

     predicted load at time k (min) 

       random load disturbance 

          unknown coefficient 

  

The unknown coefficient can be tune using least means square (LMS) algorithm of 

[16]. 

2.2.2    Autoregressive moving average (ARMA) model 

In ARMA model, the current value of time series y(t) is expressed linearly in terms of 

its values at previous period and previous white noise [3]. For ARMA of order (p,q), 

the model is written as in equation 11 which is: 

                                        

          

(11) 

 

Where; 

       value of previous period 

       value of previous white noise 

 

By using non-linear regression algorithm, the parameter for ARMA model can be 

determined.  
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2.2.3    Autoregressive Integrated Moving-Average (ARIMA) model 

ARIMA model utilize a stationary form of a series. Thus, for a non-stationary 

process, a transformation to stationary form is needed. A process called differencing 

process can be used [3]. Then, the autocorrelation and partial autocorrelation function 

and the application of the Augmented Dickey-Fuller test are used to confirm the 

obtained differenced series is a stationary one [12]. 

2.3    Multiple Regression  

This method uses the technique of weighted least-squares estimation. From this 

estimation, a statistical relationship between the parameter involves such as load, 

weather condition and the day type influences will be made. The regression 

coefficients are computed by an equally or exponentially weighted least squares 

estimation using the available data [3] [17,1]. The multiple regression model as in 

[19] is given in equation 12 which is: 

             (12) 

Where; 

   measured system total load 

   vector of adapted variables such as time, temperature, light intensity, wind 

speed, humidity, day type, etc. 

   trasport factor of regression coefficient 

   model error at time t. 

 

The number of parameter involve for the multiple regression analysis is depending on 

availability of data. For example, in order to precisely improve the forecasting in Irish 

electricity, [19] has presented the weather-load model. In order to do so, regression 

analysis is done for historical load and weather data. From the data, the components 

that are influence and not sensitive to the weather are determined. These two 

parameters then are added to the model as parameters involved. The examples of 

parameter that can be included are holiday, day type, season, weather, solar radiation, 

population, income per capita and size of neighbourhoods [3] [20] [21] [9]. 
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2.4    Iterative Reweighted Least-Squares 

The model order and parameter for iterative reweighted least squares is determined by 

a method that utilizes autocorrelation and partial autocorrelation function which is 

based on resulting differenced past load data. It is done so to identify a sub-optimal 

model of the dynamic load [3]. In others word, this method would control one 

variable at a time, then the model order and its parameter would be determined. The 

iterative reweighted least squares equation based on [3] is given in equation 13: 

 

        (13) 

Where; 

Y n x 1 vector of observation 

X n x p matrix of known coefficients based on previous load data 

B p x 1 vector of unknown parameter 

   n x 1 vector of random error 

 

The initial value of B can be determined by using the Newton law or Beaton-

Turkey iterative reweighted least squares algorithm (IRLS). Based on [22] the 

result would be more accurate if the error obtains is not Gaussian. 

2.5    Adaptive Load Forecasting 

This method is called adaptive since the model is auto correct to cope with changing 

load condition. Adaptive load forecasting would require an online software package 

in the utility control system. Based on Kalman filter theory, a regression analysis is 

done to estimate the next state vector. Usually Kalman filter would use current 

prediction error as well as current weather data acquisition in order to estimate the 

next state vector. The total historical data set is analyzed to determine the next state 

vector without rely only to the most recent measured load and weather data. This 

model would use the same equation as multiple regressions as in 2.3 sections which 

is: 

             (14) 
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2.6    ARMAX model based on genetic algorithm 

In identifying the ARMAX model, a genetic algorithm (GA) or evolution 

programming (EP) would be used. Then, a simulation of natural evolutionary process 

is done and the algorithm will be able to bring the data towards the global extremum 

of a complex error surface. GA simulation would evaluates many points in the search 

space and need not assume the search space is differential able or unimodel thus 

would improve the fitting accuracy of the model later [3]. 

2.7    Fuzzy Logic 

Fuzzy logic system with centroid defuzzification can identify and approximate any 

unknown dynamic system (load) on the compact set to arbitrary accuracy [3]. It has 

the capability in drawing the similarity of a huge data [15]. Fuzzy logic forecast 

works in two stages which are training and on line forecasting [1]. During the training 

phase, the historical load data are used to 2m-input, 2n-output fuzzy logic based 

forecaster to generate a pattern database by using first and second order differences of 

data. After the training, it will be linked to a controller which then would predict the 

most probably matching pattern with the highest possibility that are found. Then, an 

output pattern would be generated by centroid defuzzifier.  

2.8    Neural Network 

Neural networks are highly interconnected simple processing units designed in a way 

to model how the human brain performs a particular task [23]. It has a very wide 

application because of its ability to learn [3,2,5]. ANN traces previous load data 

pattern and extrapolates a load pattern using recent load data [24]. This method would 

not need a load model but incorporate of load historical into training process that 

consume lots of time. Their basic unit is the artificial neuron. The neuron receives 

(numerical) information through a number of input nodes processes it internally, and 

puts out a response [25].Before getting the output response, the information will be 

passed through a transfer function which is linear, sigmoid or hyperbolic tangent. The 

basic building blocks of the ANN are such as Network Architecture (connection 

between neurons), Training or Learning (determining weights on the connections) 

and Activation function. 
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2.9    Knowledge-based expert system 

This is a new method that emerges as a result of advances in the field of artificial 

intelligence. This method has the ability to reason, explain, and have its knowledge 

base expanded as new information become available to it. In building the model, the 

knowledge engineer would extract load forecasting knowledge from the expert in 

forecasting field. This is called as the knowledge base component of the expert 

system. This knowledge is represent as a set of IF-THEN rules and consist of a 

relationships between the changes in the system load and changes in natural and 

forced condition factor that affect the use of electricity. This rule base is use daily to 

generate the load forecast. There are rule that need constant update while some will 

just remain unchanged [3].  
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CHAPTER 3 

METHODOLOGY 

3.1    Research Methodology 

In order to successfully complete this project and achieve the objectives that have 

been planned, a thorough research and has been conduct in the early phase of this 

project. This research is done in order to obtain a strong foundation about this 

mathematical modelling, realise the difficulties, learn from the expert and learn lots 

more other important aspects needed to make sure that this project would be 

successful.   

 

Literature reviews and brief research about mathematical modelling and forecasting 

are carried through sources such as journals, books, and the internet. However, the 

main source of this project comes from journals that obtain from a reputable source 

such as IEEE Journal and International Journal of System Science. Besides, a 

comparative studies among the journal collected also has been done in order to make 

sure the information obtain is supported by the others and latest journal is given 

higher priority during the process. 

 

Then, data from Gas District Cooling (GDC) would be gathered and be analysed. The 

analysis is done according to the research in the literature and important information 

such as the holiday break and GDC tripping occurrence that have been collected 

earlier. This information is collected from the 2011 Malaysia Calendar, UTP 2011 

Academic Calendar, tripping record of GDC, UTP Registrar Department and UTP 

Maintenance Department. Finally, based on the analysis, the mathematical models for 

the load demand profile in Universiti Teknologi PETRONAS will be developed.   

 

 

 

 



 

 14 

3.2    Flow Chart 

The methodology in executing this project can also be described using the flow chart 

as shown in Figure 1: 

START

UTP Load Demand Data 

Gathering

UTP Load Demand Data 

Analysis

Parameter Finding and 

Estimation

Mathematical Model 

Development

Error Calculation

END

YES

NO

Fine Tune

 

Figure 1    Flow Chart 
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3.2.1    Literature Review 

An in deep research and literature review is done in order to gain knowledge and 

information regarding mathematical modelling. This research would enable us to 

determine the feasibility of the method available and finalize the method for 

developing the mathematical model. Literature reviews are obtained from a reputable 

source such as IEEE Journal and International Journal of System Science. Besides, a 

comparative studies among the journal collected also has been done in order to make 

sure the information obtain is supported by the others and latest journal is given 

higher priority during the process. 

3.2.2    GDC Load Demand Data Gathering 

The load demand data for year 2011 was collected from the Gas District Cooling 

(GDC). This load demand data is the representations of maximum load that occur for 

each day in a year. This load demand data then sorted in weekly basis to see the 

pattern of load demand for each day.  Then, by referring to the 2011 Malaysian 

calendar, UTP 2011 academic calendar the holiday is highlighted to differentiate 

between lecture days, holiday load demand and special event such as study week, 

examination week and trip. A copy of this load demand data table can be found in 

Appendix A. 

3.2.3    Mathematical Model Selection  

Currently there are nine method of mathematical modelling to be chose from which 

are exponential smoothing, stochastic time series, multiple regression, iterative 

reweighted least squares, adaptive load forecasting, ARMAX model based on genetic 

algorithm, fuzzy logic, neural network and knowledge based expert system. These 

methods vary from their complexity of functional form and estimation procedures 

that have been proposed for producing a mathematical model. Based on the literatures 

that have been done, the exponential smoothing has a credibility to give a good 

equation for the load demand data as discussed before in literature review section. 

Thus, this method will be the chosen method in our mathematical model 

development. 
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3.2.4    Parameters Finding and Estimation 

After the method is chosen, the parameters for developing the mathematical model is 

determine. There are four types of exponential smoothing that would be used for 

developing the GDC load demand mathematical models which are Simple Method, 

Holt’s Fit, Winter’s Method and Holt-Winter Method. First step to develop a 

mathematical model is to initially guess some of initial parameters. Ones example of 

them is the initial value of forecast. According to [13] there are two methods to set 

the initial load demand forecast     . First is by setting the initial load demand 

forecast      value equal to the exact initial load demand (   . While, the second 

ones is by taking average of five consecutive readings of load demand for the initial 

load forecast. Then, in term of mathematical equation, the equation for the 

preliminary mathematical model would follow the simple method equation which is 

given in the equation (1). Then, later it would be extended for Holt’s Fit, Winter’s 

Method and Holt-Winter Method. 

3.2.5    Mathematical Model Development 

Firstly, the exact load demand data would be plotted to figure out its graph outline. 

Then, by using the simple method, a forecast graph is plotted. This forecast graph 

would replicate the same graph outline of the exact load demand data. From this 

forecast graph, an exponential smoothing equation representing the exact load 

demand would be formulated. The formulation of the exponential smoothing equation 

is the objective of this final year project. Both graphs then would be plotted on the 

same plane to show its similarities and the replication. Then, after mathematical 

model of the simple method successfully be develop, the current model would be 

improved or extended by using Holt’s Fit, Winter’s Method and Holt-Winter Method. 
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3.2.6    Model Validation and Error Calculation 

In this step, the mathematical model developed will be validated with the exact data 

to determine the percentage of error deviation. In this project, we use means absolute 

percentage error (MAPE) as our guidance for model performance. A lower MAPE 

would means a better model compares to a higher MAPE. The formulation to 

calculate MAPE is given in the equation (15) which is: 

                 
|                           |

           
         

(15) 

Finally, the load demand model that has the lowest MAPE would be chosen as the 

best model. This model would be invaluable for a forecaster in making a good 

forecast of load demand and for GDC in their operation and planning. 
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3.3    Project Schedule and Milestone  

In order to effectively conduct the project and complete it within the timeframe, the 

Gantt chart and Milestones for two semester duration has been conducted. The Gantt 

chart for final year project 1 is shown in Table 1 while the milestone for final year 

project 1 is shown in Table 2. 

 

Table 1    Gantt Chart for Final Year Project I 

 

ACTIVITIES 

FINAL YEAR PROJECT 1 

WEEK NO. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

LITERATURE REVIEW AND 

BACKGROUND STUDY 

              

GDC LOAD DEMAND DATA 

GATHERING 

              

ANALYSE THE DATA               

PRELIMINARY MODELLING               

REPORT WRITING               

 

 

Table 2    Milestone for Final Year Project I 

ACTIVITIES DUE DATE (WEEK) 

COMPLETION OF LITERATURE REVIEW 6 

COMPLETION OF GDC LOAD DEMAND DATA 

GATHERING 

8 

COMPLETION OF ANALYSING THE DATA 11 

PRELIMINARY MODELLING 14 

DOCUMENTATION OF REPORT 14 
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For final year project 2, the Gantt chart is shown in Table 3 while the milestone for 

final year project 2 is shown in Table 4. 

 

 

Table 3    Gantt Chart for Final Year Project II 

 

ACTIVITIES 

FINAL YEAR PROJECT 2 

WEEK NO. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

PRELIMINARY MODEL 

IMPROVEMENT 

              

FINAL MATHEMATICAL 

MODEL FORMULATION 

              

UTP LOAD DEMAND 

BEHAVIOUR ANALYSIS 

              

REPORT WRITING               

 

 

Table 4    Milestone for Final Year Project II 

ACTIVITIES DUE DATE (WEEK) 

Completion of Preliminary Model Improvement  8 

Completion of Mathematical Model Formulation 10 

Completion Load Demand Behaviours Analysis 12 

Documentation of report 14 
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3.4    Tools 

The main software use in order to complete this project is Microsoft Excel 2010 since 

it is highly efficient in performing mathematical calculation and analysis. Besides, a 

Microsoft Excel plugin namely solver would be used to assist in calculating the 

variable estimation. This plugin must enable for that purpose.  

3.5    Project Schedule 

The schedule for Final Year Project I and II are depicted in Table 5 and Table 6. 

 

Table 5    Project schedule for Final Year Project I 

Component Submission Time (Week) 

Title Selection Week 1 

Extended Proposal Week 6 

Proposal Defence Week 9 

Draft Report Week 13 

Final Report Week 14 

 

Table 6    Project schedule for Final Year Project II 

Component Submission Time (Week) 

Pre-EDX Week 8 

Draft Report Week 13 

Final Report Week 14 

VIVA Week 15 
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CHAPTER 4 

RESULT AND DISCUSSION 

The load demand data for year 2011 was collected from the Gas District Cooling 

(GDC). Then, this load demand data is sorted in weekly basis to see the pattern of 

load demand for each day.  Then, by referring to the 2011 calendar, the holiday is 

highlighted to differentiate between lecture days, holiday load demand and special 

event such as study week, examination week and trip.  

 

For the information, this load demand data is the representations of maximum load 

that occur for each day in a year. Thus, from this load demand data, ones cannot 

differentiate between load demands at UTP before and after tripping occur since the 

load seems to be similar. Logically, the load demand from GDC would be dropped in 

tripping day however since the data is about the recorded maximum load, the load 

would just be similar. The examples of this happen on week 11 and week 27. 

 

The load demand data of year 2011 for the actual load demand and forecast load 

demand has been plotted on the same X-Y plane in Microsoft Excel 2010. There are 

four types of exponential smoothing that have been investigated which are:- 

1. Simple Exponential Smoothing 

2. Exponential Smoothing with Trend (Holt’s Fit) 

3. Exponential Smoothing with Seasonality (Winter’s method) 

4. Holt-Winters Exponential Smoothing 

 

A model that has the lowest MAPE would be chosen as the final model for 

representing the load demand of UTP. 
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4.1    The Simple Method 

The simple method is based on equation (1). Firstly, value of the first estimation    

need to be determined. Based on [13] the initial value of    is chosen to be equal to 

initial value of load demand   . Then, based on equation (1), a model of this equation 

is constructed on Microsoft Excel 2010. The value of alpha coefficient   for the first 

try is set as 0.35. The means absolute percentage error (MAPE) for this model is 

calculated then.  

 

Next, to visually compare the performance of the exponential smoothing model, both 

graph of the exact load and the modelled load is plotted on the same X-Y plane as 

shown in Figure 2. The blue coloured plot is represent the actual load demand data of 

2011 while the red coloured plot represents the load demand based on simple 

exponential equation.  

 

 

 

Figure 2    Simple Method Exponentially Smoothing Alpha = 0.35 

 

From the above figure, it can be seen that the forecast load demand and the actual 

load demand have the same graph outline pattern but with a big gap. The MAPE 

recorded for this test is 26.51.  
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Then, the next test with value of alpha coefficient equal to 0.85 shows a big 

improvement in term of MAPE. The MAPE for 0.85 value of lambda is 23.05. This 

graph is shown in Figure 3. 

 

 

Figure 3    Simple Method Exponentially Smoothing Alpha Alpha = 0.85 

 

For the determination of the best value of alpha coefficient for the first order 

exponential smoothing, the Microsoft Excel 2010 plugin namely solver parameter is 

used. The setting for this plugin is to calculate the value of alpha   that would result 

in the lowest MAPE.  The procedures to use this plugin are as follows: 

 

1. Open solver parameter plugin in excel data menu interface 

2. For set objective, choose the MAPE cell in excel 

3. For to, choose Min 

4. For By Changing Variable Cells,  choose alpha coefficient cell 

5. Add constraint, alpha coefficient cell less than or equal to 1 
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The interface of this plugin is shown in Figure 4. 

 

Figure 4    Solver Parameter Plugin 

Then, the result for the best value of alpha that would give lowest MAPE based on 

this plugin is 0.9846527. This plugin has automatically done the iteration process for 

determination of the lowest MAPE that can be obtained in the first order exponential 

smoothing method. The MAPE for this case is 22.56 and the graph outline is shown 

in Figure 5. 

Choose MAPE cell in 

excel, target to get MAPE 

minimum 

By changing the alpha values, 

choose alpha cell in excel 

Add the constraint, Alpha 

must less than 1 
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Figure 5    Simple Method Exponentially Smoothing Alpha 0.98465 

 

From several tests that have been conducted, a table of coefficient α and the result of 

MAPE is constructed to see the effect of coefficient to the MAPE as shown in Table 

7. 

Table 7    Coefficient α vs MAPE 

Coefficient, α MAPE (%) 

0.25 26.78 

0.35 26.51 

0.45 25.99 

0.85 23.05 

0.985 22.56 

0.986 22.57 

0.95 22.61 

 

From Figure 5, it can be noticed that both actual load graph outline and forecast load 

graph outline have the identical graph pattern. Then, on Table 7 it is shown that, as 

alpha coefficient increases from 0.25 to 0.985 the MAPE is reduced. However, 

MAPE start to increase when the coefficient α, is above 0.985. So, this means that the 

best value for the coefficient, α is 0.985. Thus, the best equation for the simple 

method as in equation (16) is:  
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                       (16) 

Where; 

     is the next load demand 

    is the previous load demand at moment t 

   is the smoothed value of previous load demand at moment t 

 

The means absolute percentage error (MAPE) of this model is 22.56. Although the 

value of MAPE is high, this model would be improved later on by applying the next 

stages of exponential smoothing. 

4.2    The Holt’s Fit 

The Holt’s Fit is based on equation (2) and (3). In this method, the equation of      is 

modified by inserting the trend.  The initial value of    is chosen to be equal to initial 

value of load demand   . Meanwhile, the first value of trend is calculated by using 

equation (6). Then, by using solver plugin, the best value of α and β are determined. 

From the calculation obtain, the best value of α is equal to 0.9 and β is equal to 0.1. 

The MAPE obtained for this Holt’s Fit exponential smoothing is 19.65% slightly 

better from the simple method which has MAPE of 22.56%.Figure 6 shows the 

screenshot of the performance of the Holt’s Fit. 

 

From several tests that have been conducted, a table of coefficient α, β and the result 

of MAPE is constructed to see the effect of coefficients to the MAPE as shown in 

Table 8. 

Table 8    Coefficient α ,β vs MAPE 

Coefficient, α Coefficient, β MAPE (%) 

0.70 0.40 22.73 

0.80 0.15 20.64 

0.90 0.30 19.84 

0.90 0.10 19.65 

0.95 0.10 19.66 
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Figure 6    Holt’s Fit Exponential Smoothing  

 

The best equation for second order of exponential smoothing: 

4.3    Winters Method 

The Winter’s method is based on equations (7). For this type of exponential 

smoothing, the load demand data is grouped into their identical load pattern. For load 

demand of 2011, 7 clusters of load demand has been grouped and tabulated in Table 

9: 

Table 9    Seasonality 

No Seasonality,   

1 Celebration,    

2 Weekend,    

3 Holiday,    

4 Jan Sem,    

5 May Sem,    

6 Sept Sem,    

7 Sem Break,    

 

                                              (17) 

                                           (18) 
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The seasonality for each load is unique. The Celebration seasonality represents key 

celebrations in Malaysia which are Chinese New Year (CNY) and Eid-Fitri. Then, 

Holiday seasonality represents other celebration in Malaysia except CNY and Eid-

Fitri. The examples are Thaipusam, Deepavali and Christmas.  Weekend seasonality 

represents Saturday and Sunday excluded Saturday and Sunday in the festival, 

celebration and semester break period. Jan Sem, May Sem and Sept Sem represent 

the January semester, May semester and September semester weekdays. Finally, the 

Sem Break seasonality represents semester break based on UTP academic calendar 

and it is including the weekend.  

Then for each cluster, we need to compute their weight of occurrences to the whole 

load demand of 2011. The total of seasonality should equal to the number of 

seasonality [15]. To compute this, once again we use excel plugin name solver to give 

the best probability for each cluster that would result in the lowest means absolute 

percentage error (MAPE).  The equation for the Winter’s method is given in equation: 

                      x   (19) 

Where; 

 The weight for the seasonality is stated in Table 10. 

Table 10    Winter Method Seasonality Weight 

Seasonality,   Weight 

Celebration,    0.57 

Weekend,    0.72 

Holiday,    0.75 

Jan Sem,    1.19 

May Sem,    1.16 

Sept Sem,    1.18 

Sem Break,    1.43 

Total 7 

  

The total seasonality is equal to 7 since there are 7 attributes. The example of 

seasonality factors calculation for Winter’s Method is shown in equation 20. In this 

example, the weekend seasonality is chosen. Only the selected seasonality would 

have weightage value, other seasonality would have zero weightage. 
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                      x   

Where; 

                            

(20) 

 

For this Winter’s exponentially method, the MAPE obtained is 9.89.The graphical 

performance of Winter’s Method is shown in Figure 7. 

 

Figure 7    Winter’s Method Exponential Smoothing 

4.4    The Holt Winter Method 

The Holt Winter method is based on equation (8) and (9).For this method, there are 

three estimates included in the equation which are smoothed value, trend and 

seasonality. The seasonality of Holt Winter method follow the same seasonality 

attributes of Winter’s method in Table 9. However, the values or weightage for each 

attributes are not the same as calculated by solver plugin of Microsoft Excel. The 

weight of each attributes for Holt Winter method is shown in Table 11 while the 

equation for Holt Winter method is shown in equation 21. 
 

                                 

                            

Where; 

(21) 
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Table 11    Holt Winter Seasonality Weight 

Seasonality,   Weight 

Celebration,    
1.11 

Weekend,    0.70 

Holiday,    0.75 

Jan Sem,    1.17 

May Sem,    1.19 

Sept Sem,    1.20 

Sem Break,    0.89 

Total 7 

 

For this Holt Winter exponentially method, the MAPE obtained is 14.07%.  

The graphical performance of Holt Winter method is shown in Figure 8. 

 

 

Figure 8    Holt Winter Exponential Smoothing 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1    Conclusion 

Mathematical model for load demand can be achieved by using various methods 

available. For this model, exponential smoothing is chosen since it is simple yet gives 

satisfactory result in term of graph outline and MAPE. A good and reliable 

mathematical model will produce better forecast result with lower percentage of 

means absolute percentage error (MAPE). However, as we use the times series 

technique, it cannot be compared to the result of the artificial intelligence such as 

artificial neural network and fuzzy logic.  

 

In this paper, four types of exponential smoothing method have been tested which are 

Simple method, Holt’s Fit, Winter’s method and Holt Winter method. The 

performance of each model is summarized in Table 12. Based on the table, Winter’s 

method obtain the lowest percentage of MAPE which is 9.89 followed by Holt-

Winter, Holt’s Fit and Simple method.  

 

Table 12    Mathematical Model Performance 

Mathematical Model MAPE % 

Simple Method 22.56 

Holt’s Fit 19.65 

Winter’s Method 9.89 

Holt-Winter Method 14.07 

 

Since Winter’s method obtained the lowest percentage of MAPE, the method is 

selected as the best model to replicate the 2011 GDC load demand data. Ability of 

exponential smoothing method to achieve MAPE of value below 10% is satisfactory.  
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Lastly, it is hope that the mathematical model developed would be beneficial for Gas 

District Power (GDC) Plant in their forecast, operation and planning purposes. The 

objectives of this project which are to analyses and study the load demand behavior of 

UTP and then formulate the mathematical model has been successfully met. 

5.2    Recommendation 

As a pioneer project of developing mathematical model for Gas District Cooling 

(GDC) plant, it is recommended if the model can be tested for another period of case 

study. The suggestion is for period of four month which according to UTP tri-

semester system. Since, a shorter period of forecasting would result in a more 

accurate result. Thus, it will be able to reduce the MAPE percentage lower that 9.89 

that have been obtain in Winter’s Method. 

 

Besides, it is also recommended that other method is used to develop the 

mathematical model of GDC for the same period of case study. By doing so, the 

performance of Winter’s method mathematical model can be compared. This 

comparative study can benefit the GDC plant in obtaining the best mathematical 

model for their purposes. For the researcher, such comparative study will enable them 

to know which method that has better performance. 
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APPENDIX A 

INTRA-WEEK LOAD DEMAND DATA FOR 2011 

COLOR REPRESENTATION 

 SEM OFF 

 MID SEMESTER BREAK 

 HOLIDAY 

 TRIP 

 STUDY WEEK 

 EXAM WEEK 

 WEEKEND 

 WEEKDAY 

 

 

DAY MON TUES WED THURS FRI SAT SUN INFO 

WEEK 1           2152 1992 SEM OFF/TRIP 

WEEK 2 2684 4112 4288 4136 3972 2488 2532 SEM OFF 

WEEK 3 4124 4272 4468 4328 4128 3024 2596 SEM OFF 

WEEK 4 4696 4520 4428 3020 4568 2888 3156 THAIPUSAM 

WEEK 5 4728 4604 4792 4680 4756 3044 3028   

WEEK 6 4612 4748 1508 1892 1460 1488 3020 CNY/ TRIP 

WEEK 7 4804 2204 4492 4328 5232 3320 3268   

WEEK 8 5196 3140 5396 3260 3152 3376 3240 MAULIDUR RASUL 

WEEK 9 5132 5048 5416 5328 5232 3276 3336   

WEEK 10 5112 5224 5288 5244 5480 3568 3364   

WEEK 11 5032 5140 5244 4612 4600 3296 3124 MIDSEM BREAK/TRIP 

WEEK 12 5212 5180 5164 5172 5000 3328 3156   

WEEK 13 4776 5000 5204 4784 4672 3256 3296   

WEEK 14 5244 4968 5296 5324 5322 3952 3332   

WEEK 15 5348 5524 5372 5352 5148 3504 3304   

WEEK 16 5320 5320 3892 5244 5196 3356 3264   

WEEK 17 5268 3444 5712 4936 5216 3408 3180 SULATN PERAK/ TRIP 

WEEK 18 5228 5328 5516 5400 5012 3224 3112 STUDY WEEK/ LABOUR DAY 

WEEK 19 3220 5152 4956 5260 5228 4028 4056 EXAM WEEK 

WEEK 20 5560 5676 5276 5112 4968 3688 2736 EXAM WEEK/TRIP 

WEEK 21 4604 3064 4776 5104 4796 3152 3576 SEM OFF/TRIP 

WEEK 22 5188 4916 5292 5336 5352 3544 3464 SEM MAY/TRIP 

WEEK 23 5660 5460 1624 5448 2988 3140 3132 AGONG 
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APPENDIX B 

PART OF LOAD DEMAND DATA IN EXCEL  

Day Load Smoothed Forecast Error Relative Error Absolute Error 

1 2152 2152.00 2152.00 0.00 0.00 0.00 

2 1992 2016.00 2152.00 -160.00 -8.03 8.03 

3 2684 2583.80 2016.00 668.00 24.89 24.89 

4 4112 3882.77 2583.80 1528.20 37.16 37.16 

5 4288 4227.22 3882.77 405.23 9.45 9.45 

6 4136 4149.68 4227.22 -91.22 -2.21 2.21 

7 3972 3998.65 4149.68 -177.68 -4.47 4.47 

8 2488 2714.60 3998.65 -1510.65 -60.72 60.72 

9 2532 2559.39 2714.60 -182.60 -7.21 7.21 

10 4124 3889.31 2559.39 1564.61 37.94 37.94 

11 4272 4214.60 3889.31 382.69 8.96 8.96 

12 4468 4429.99 4214.60 253.40 5.67 5.67 

13 4328 4343.30 4429.99 -101.99 -2.36 2.36 

14 4128 4160.29 4343.30 -215.30 -5.22 5.22 

15 3024 3194.44 4160.29 -1136.29 -37.58 37.58 

16 2596 2685.77 3194.44 -598.44 -23.05 23.05 

17 4696 4394.46 2685.77 2010.23 42.81 42.81 

18 4520 4501.17 4394.46 125.54 2.78 2.78 

19 4428 4438.98 4501.17 -73.17 -1.65 1.65 

20 3020 3232.85 4438.98 -1418.98 -46.99 46.99 

21 4568 4367.73 3232.85 1335.15 29.23 29.23 

22 2888 3109.96 4367.73 -1479.73 -51.24 51.24 

23 3156 3149.09 3109.96 46.04 1.46 1.46 

24 4728 4491.16 3149.09 1578.91 33.39 33.39 

25 4604 4587.07 4491.16 112.84 2.45 2.45 

26 4792 4761.26 4587.07 204.93 4.28 4.28 

27 4680 4692.19 4761.26 -81.26 -1.74 1.74 

28 4756 4746.43 4692.19 63.81 1.34 1.34 

29 3044 3299.36 4746.43 -1702.43 -55.93 55.93 

30 3028 3068.70 3299.36 -271.36 -8.96 8.96 

31 4612 4380.51 3068.70 1543.30 33.46 33.46 

32 4748 4692.88 4380.51 367.49 7.74 7.74 

33 1508 1985.73 4692.88 -3184.88 -211.20 211.20 

34 1892 1906.06 1985.73 -93.73 -4.95 4.95 

35 1460 1526.91 1906.06 -446.06 -30.55 30.55 

36 1488 1493.84 1526.91 -38.91 -2.61 2.61 

37 3020 2791.08 1493.84 1526.16 50.54 50.54 

38 4804 4502.06 2791.08 2012.92 41.90 41.90 

39 2204 2548.71 4502.06 -2298.06 -104.27 104.27 
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APPENDIX C 

UTP 2011 ACADEMIC CALENDAR 
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