
 ii

PREDICTING FLOW RATE AND LEVEL OF CUSTOM TANK USING PARTICLE

FILTER

By

HUZAIFA TAWFEIG AHMED IZZELDIN

FINAL REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfilment of the Requirements

 for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2009

by

 Huzaifa Tawfeig Ahmed Izzeldin, 2009

 iii

CERTIFICATION OF APPROVAL

PREDICTING FLOW RATE AND LEVEL OF CUSTOM TANK USING PARTICLE

FILTER

by

Huzaifa Tawfeig Ahmed Izzeldin

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved:

Dr. Vijanth Sagayan Asirvadam

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2009

 iv

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contained herein have not been undertaken or done by unspecified sources or

persons.

Huzaifa Tawfeig Ahmed Izzeldin

 v

ABSTRACT

One of the basic elements that any plant process facility consists of is control tank

system. Custom tank is one type of these control tank systems. Proper controlling of this

element will help the facility to work smoothly and it will increase the reliability of the

whole system. This project is looking into predicting the state of variables that completely

represent the dynamics the custom tank (height of fluid or output flow rate). This prediction

can be used in controlling the custom tank (predictive control). The project involve

MATLAB SIMULINK simulation program for the custom tank along with different

prediction models. The obtained results showed that introducing Multilayer Perceptron

(MLP) Neural Network architecture improve the prediction significantly where different

algorithms, Recursive Kalman Filter (RKF) and Extended Kalman Filter (EKF) have been

used simultaneously to estimate fluid height and output flow. It further shows that

introducing cantered finite difference with EKF (particle filter) improve the performance of

the network. The report consists of an introduction, problem statement, objectives, literature

review and methodology used to solve the problem. It further looks into the obtained results

with consistent discussion.

 vi

ACKNOWLEDGEMENTS

Firstly, my utmost gratitude to ALLAH the All-Mighty for his uncountable graces

upon me and for the successful completion of this project in due course of time.

My enormous thanks to my family members for their priceless support and

continuous encouragement. Special gratitude to my Mother for her continuous and unlimited

support that kept me going. There is no words can fulfill her effort.

My respectful gratitude goes to my supervisor, Dr. Vijanth Sagayan Asirvadam for

his full support in the completion of this project. His constant guidance, helpful comments

and suggestions has helped me not only to complete but also to enhance the expected results

of the project. His kindness, valuable advice, friendly approach and patience will always be

appreciated.

I would like also to express my thanks for the FYP committee for their guidance and

management in making all projects run smoothly. A special gratitude to Siti Hawa Tahir for

her effort on monitoring and checking the reports to match the university’s standards.

Lastly, great appreciation to my friends, who were a constant source of support

during my work. To all UTP lecturers, students and staff and to all whose their names are

not mentioned here but they provided help directly or indirectly.

 vii

TABLE OF CONTENTS

ABSTRACT ... V

ACKNOWLEDGEMENTS .. VI

LIST OF FIGURES ... IX

LIST OF ABBREVIATION.. XI

CHAPTER 1 INTRODUCTION .. 1

1.1 Background of Study ... 1

1.2 Problem Statement ... 1

1.3 Objective and Scope of Study .. 1

CHAPTER 2 LITERATURE REVIEW .. 2

2.1 Types of Control Tank System .. 2

2.2 System Identification ... 4

2.2.1 White-box Modelling
[2]

 .. 5

2.2.2 Black-box Modelling
 [2]

 .. 5

2.2.3 Gray-box Modelling
[2]

 ... 5

2.2.4 System identification procedure ... 5

2.2.4.1 Experiment
 [5]

 .. 6

2.2.4.2 Select model structure
[5]

... 7

2.2.4.3 Estimate model
[5]

.. 7

2.2.4.4 Validation .. 7

2.2.5 ARX model
[5]

 .. 7

2.3 Prediction Algorithms .. 8

2.3.1 Recursive Least Square (RLS)
[2][7]

 .. 8

2.3.2 Recursive KALMAN Filter
[2][7]

 .. 8

2.3.3 Extended KALMAN Filter
[2][7]

 ... 9

2.4 Multilayer Perceptron Neural Network (MLP)
[5]

 10

2.5 Nonlinear Model Structure Based on Neural Networks
[5]

 11

2.5.1 Neural Network ARX (NNARX) .. 12

2.6 Particle Filter .. 13

CHAPTER 3 METHODOLOGY ... 14

3.1 Procedure identification flow ... 14

3.2 Tools and Equipment ... 14

 viii

CHAPTER 4 RESULT AND DISCUSSION ... 15

4.1 Experiment ... 15

4.1.1 Single Tank ... 15

4.1.2 Split Tank .. 16

4.1.3 Custom Tank ... 17

4.2 Results for Various Input Signals .. 18

4.2.1 Single Tank Model .. 19

4.2.2 Split Tank Model ... 21

4.2.3 Custom Tank Model .. 22

4.3 Linear Prediction .. 23

4.3.1 Recursive Least Square Algorithm
 [2]

 ... 23

4.3.2 Recursive KALMAN Filter Algorithm
[2]

 .. 25

4.4 Nonlinear Prediction Based on MLP ... 27

4.4.1 Recursive Prediction Error (RPE)
[7]

 .. 27

4.4.2 MLP with RKF for the Linear Weights ... 29

4.4.3 Hybrid Learning ... 31

4.5 Discussion .. 34

CHAPTER 5 CONCLUSION AND RECOMMENDATION.. 35

5.1 Conclusion ... 35

5.2 Recommendation.. 35

REFERENCES ... 36

APPENDICES .. 37

APPENDIX A .. 38

APPENDIX B .. 50

 ix

LIST OF FIGURES

Figure 1: Single Tank with Its Mathematical Expression
[1]

.. 3

Figure 2: Split Tank with Its Mathematical Expression
[1]

 .. 3

Figure 3: Custom Tank with Its Mathematical Expression
[1]

 ... 3

Figure 4: Basic System Identification Procedure
[5]

 .. 6

Figure 5: Input is applied to a system and output is observed ... 6

Figure 6: The structure of a MLP (Ni, Nh, 1) Network
 [6]

 ... 10

Figure 7: NNARX model structure .. 12

Figure 8: Methodology Flow Chart ... 14

Figure 9: Single Tank SIMULINK Block Diagram .. 15

Figure 10: Step Input Pulse .. 16

Figure 11: Single Tank Output waveform (height H) .. 16

Figure 12: Split Tank SIMULINK Block Diagram ... 17

Figure 13: Split Tank Output waveform (height H2) .. 17

Figure 14: Custom Tank SIMULINK Block Diagram .. 18

Figure 15: Custom Tank Output waveform (height H2) ... 18

Figure 16: Sine Wave... 19

Figure 17: Mixed input (Step + Sine) .. 19

Figure 18: Single Tank Output Waveform (pure sine input) ... 20

Figure 19: Single Tank Output Waveform (mixed input signal) ... 20

Figure 20: Split Tank Output Waveform (pure sine input).. 21

Figure 21: Split Tank Output Waveform (mixed input signal).. 21

Figure 22: Custom Tank Output Waveform (pure sine input) ... 22

Figure 23: Custom Tank Output Waveform (mixed input signal) ... 22

Figure 24: Custom Tank Block with RLS S-function ... 24

Figure 25: Measured Height Vs Predicted Height (RLS Algorithm) 24

Figure 26: Custom Tank RLS Prediction Error ... 24

Figure 27: Custom Tank Block with RKF S-function ... 26

Figure 28: Measured Height Vs Predicted Height (KALMAN Algorithm) 26

Figure 29: Custom Tank KALMAN Prediction Error ... 26

Figure 30: MLP [4 3 1] with RPE Training Algorithm ... 28

Figure 31: Custom Tank Simulation Result for RPE Training Algorithm 28

file:///E:/Lec/FYP2/Final%20Draft%202009.doc%23_Toc244974105
file:///E:/Lec/FYP2/Final%20Draft%202009.doc%23_Toc244974106
file:///E:/Lec/FYP2/Final%20Draft%202009.doc%23_Toc244974107
file:///E:/Lec/FYP2/Final%20Draft%202009.doc%23_Toc244974108
file:///E:/Lec/FYP2/Final%20Draft%202009.doc%23_Toc244974110
file:///E:/Lec/FYP2/Final%20Draft%202009.doc%23_Toc244974111

 x

Figure 32: Custom Tank with MLP and RKF estimation Block ... 29

Figure 33: MLP with RKF estimation for Custom Tank ... 30

Figure 34: Error in MLP with RPE Training ... 30

Figure 35: Error in MLP with RKF Training... 31

Figure 36: Estimated vs. Measured output using Hybrid Training .. 31

Figure 37: SQE for Hybrid Training .. 32

Figure 38: Comparison using Centered Finite Difference and Analytical Approach 32

Figure 39: Improvment using Centered Finite Difference ... 33

Figure 40: Flow Rate Estimation ... 33

 xi

LIST OF ABBREVIATION

RLS Recursive Least Square

RKF Recursive Kalman Filter

MLP Multilayer Perceptron

RPE Recursive Prediction Error

ARX AutoRegressive eXternal input

SQE Squared Error

SSE Sum of Squared Error

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Custom tank is one of the common vessels being used in chemical or plant

process industry. The project aims to build a simulation program using MATLAB-

SIMULINK to predict the flow rate and level of the fluid inside the custom tank

which will enhance the controllability of the system. The system will be

mathematically characterized and modelled using MATLAB. Different algorithm will

be used to predict the system variables.

1.2 Problem Statement

The estimation of state variables (fluid level and flow rate) is very essential to

produce a reliable controlling system for the custom tank. In order to control such a

process and to keep level and flow rate at desired set point, an efficient control

strategy is required. Also the suggested techniques such as Recursive Least Square,

Recursive KALMAN Filter and Multilayer Neural Network need to be implemented

under specific conditions. All the above will help in building a reliable system that

can be used in the real application.

1.3 Objective and Scope of Study

The Objectives of the project are:

 To do System Identification model for the custom tank that describes the

dynamics of the system.

 Build a MATLAB\SIMULINK model that predicts the flow rate and level of

the fluid inside the tank using several techniques.

The scope of the study starts with investigating custom tank system focusing on the

flow rate and level. Then design a MATLAB model for the tank. Then implement the

different estimation techniques on the model.

2

CHAPTER 2

LITERATURE REVIEW

Control tank system is an important element of any plant process facility.

Different types of tank or vessels are being used in different process plants. Such

tanks like: storage tanks, pressure tanks, mixing tanks and custom tanks have different

structure and functionality depending on the purpose of the facility where they are

being used. This project focuses only on custom tank system. However, in able to

understand the custom tank system other types of control tank systems must be

investigated and studied carefully.
[1]

The idea behind the project is to build up a filter (program) to predict the dynamic of

the custom tank (flow rate and level only). And by using different families and

subfamilies of system identification techniques which can be implemented as an

integral part of a controller (e.g. adaptive control).
[5]

2.1 Types of Control Tank System

There are several types of tank system which varies upon the application. One

Basic formation is the single tank. The single tank is used to form other types of tanks

such split tank, ladder tank and custom tank system (Figure 1, 2 and 3). However this

report will focus on the simulation done for single, split and custom tank formation

which will be examined using different estimation/prediction techniques.

3

Figure 1: Single Tank with Its Mathematical Expression
[1]

Figure 2: Split Tank with Its Mathematical Expression
[1]

Figure 3: Custom Tank with Its Mathematical Expression
[1]

4

2.2 System Identification

A common and practically oriented approach to control system design is to use

physical insights about the system in combination with practical closed-loop tests.

However those simple approaches fail to work because performance demand is too

strong and cannot be satisfied with simple design approaches. So more advances

design methods must be considered. Generally these designs require knowledge about

the system to be controlled and it should be described in terms of differential or

difference equations. A mathematical description of this kind is called a model of the

system.
 [5]

Basically there are two ways in which a model can be established:

 Derived in deductive manner using law of nature.

 It can be inferred (System Identification)

The first way can be simple but time consuming and it may even be considered

unrealistic or impossible to obtain a sufficiently accurate model. The second method

is commonly known as System Identification.
[5]

One definition of System Identification is the process of constructing a model

(mathematical description) of a dynamic system by means of measurement.
[5]

 The

identification has a different approach in which how we depend on the measured data

in comparing to our insight about the internal structure of the system.

There are three types of mathematical model namely, White-box, Gray-box, Black-box

modelling. However for its simplicity Black-box modelling has been used.

5

2.2.1 White-box Modelling
[2]

Also known as phenomenological or mechanistic model. And it has the following

characteristics:

 It is Based on:

 Energy and material balances

 Physical laws, constitutive relationships

 Kinetic and thermodynamic models

 Heat and mass transfer models

 Valid over wide operating range.

 Provide insight in the internal working of systems.

 Development and validation process: difficult and time consuming.

2.2.2 Black-box Modelling
 [2]

Has the following characteristic:

 Static maps (correlations)/ dynamic models (difference equations) developed

directly from input-output data.

 Valid over limited operating range.

 Provide no insight into internal working of systems.

 Development and validation process: much less time consuming

comparatively easy.

2.2.3 Gray-box Modelling
[2]

Semi-Phenomenological model were part of model developed from the first

principles and part developed from data. In some cases it is better choice than

complete black box models.

2.2.4 System identification procedure

When attempting to construct a model for a dynamic system it is common to

follow the procedure in figure 4.

Each step in the figure is explained in details in the following sections.

6

2.2.4.1 Experiment
 [5]

The purpose of this part is to collect a set of data that describe how the system

behaves over its entire range of operation. Basically the idea is to vary the input to the

system and observe the corresponding outputs as shown in figure 5.

Accepted

Not accepted

Experiment

Select model structure

Estimate model

Validate model

Figure 4: Basic System Identification Procedure
[5]

Input x(t)

Output y(t)

System

Figure 5: Input is applied to a system and output is observed

7

2.2.4.2 Select model structure
[5]

To construct a model we must first choose from set of a family of model

structure such as linear, multilayer perceptron networks or radial basis function. Then

we have to choose a subfamily such as ARX (AutoRegressive eXternal input), OE

(Output Error). [5] However we will be using ARX only throughout the project.

2.2.4.3 Estimate model
[5]

Once a set of candidate models has been chosen, we choose one particular

model form this set. The choice will be according to some type of criterion. The

criterion can be formulated in many different was but it should relate to the intended

use of the model.
 [5]

The most common way is to choose the model that provides the best one-step

a head prediction which provides the smallest squared error between the observed and

the estimated data. Another way is the sum of squared error between observed and

estimated data which has been used in this project.
 [5]

2.2.4.4 Validation

After the model has been estimated it must be evaluated to investigate whether

or not it meets the necessary requirement. The validation is connected to the intended

use of the model. It is often the most hand-waved stage in the identification procedure

because the acceptance standards are some time fussy.
 [5]

2.2.5 ARX model
[5]

An AutoRegressive eXternal input or ARX model has the following form:

y(t)= a1y(t-1)+a2y(t-2)+....+b1x(t-1)+b2y(t-2)+...

Where

 y(t) is the output at time t, similarly y(t-1) is the output at time t-1 and so on.

 x(t) is the input at time t, similarly x(t-1) is the input at time t-1 and so on.

 a1, a2, b1, b2 called model parameter.

A term like ARX(2,2,1) signifies a time delay of one sampling period and the present

output depend on two past outputs and two past inputs.
 [5]

8

2.3 Prediction Algorithms

2.3.1 Recursive Least Square (RLS)
[2][7]

Real time or recursive identification algorithms are applied in tracking of time

varying parameters, prediction and artificial neural networks. Some modifications

need to be applied on the off-line algorithm so that can be implemented for the real

time simulation for single tank, custom tank or other formation. The recursive least

square identification is derived from the ordinary least square where

Xk = Yk =

The following is recursive least square algorithm that has been used for the simulation

 and and

 is a vector consist of parameters to be estimated and is the prediction error and

P0 is given initial matrix usually an identity matrix. Since RLS estimation gives equal

weighting to old and new input vectors, a forgetting factor λ (0 < λ ≤ 1)is introduced

in Pk matrix as above to suppress old input vector in order to track the parameter

which is time varying in real time identification.
[2][7]

2.3.2 Recursive KALMAN Filter
[2][7]

Assume the time varying system parameter θ may be described as:

Recursive KALMAN Filter for estimation of θ and can be expressed as:

9

Kk is KALMAN Filter gain and the estimation parameter θ using KALMAN Filter is

almost the same as Recursive Least Square (RLS) but there are two terms added (R1,

R2) into the matrix . The terms R1 and R2 added into cause changes in the

matrix property.

2.3.3 Extended KALMAN Filter
[2][7]

For Extended KALMAN Filter (EKF) we use the same formulas as in RKF

however EKF is intended to be used for nonlinear estimation where the curves cannot

be tracked by linear RKF. So basically EKF is an extension of RKF for nonlinear

systems.

We exchange xi and xi
T
 with (grad y) and respectively where

AutoRegressive eXternal input Model order of [2 2 1] has been used to represent our

output
[5]

Where the regressor vector .
[2][7]

10

2.4 Multilayer Perceptron Neural Network (MLP)
[5]

For a given application it is difficult to say that one identification technique

will outperform another before they have both been evaluated. It is desirable to

consider one technique for all applications.
[5]

Artificial neural networks have been the subject of much research in recent years in

the field of nonlinear system identification due to their ability to learn complex

nonlinear relationships from training examples.

They are characterised by a set of adjustable parameters which can be tuned

using appropriate training procedures in order to obtain an input-output mapping that

approximates the actual system. There are several forms of artificial neural network

architecture, but the two that show immense practical interest and popularity are MLP

and Radial Basis Function networks (Noorgard et. al. 2000). However we considered

one type for the project which is MLP. Figure 4 show a typical structure of MLP.

Figure 6: The structure of a MLP (Ni, Nh, 1) Network
 [6]

The MLP network is a simple structure consisting of layers of processing

units, called neurons. These neurons are interconnected into a network by a set of

weights (the arrows in figure 4) which are tuned using a chosen training algorithm.

Ni represents the input of the network.

Nh stands for the hidden neurons.

11

The hidden neurons can have different types of activation functions which

pass their outputs to the next layer through the connected set of weights.
[5][6]

 Example

of an activation function is the nonlinear Sigmoid

And finally the output layer which is usually a linear summation of the inputs from

the previous layer. The general output equation
 [6]

 is given as follow

Where;

y is the network output

ui is the i
th

 element of the network input vector u. The various weights which make up

the overall weight vector w are:

 The weight between the j
th

 neuron in the hidden layer and the linear (L) output

neuron.

 The weight between the i
th

 input and the j
th

 nonlinear hidden (NL) layer

neuron.

 The bias on the j
th

 hidden neuron.

d = The bias on the linear output neuron.
[5][6]

2.5 Nonlinear Model Structure Based on Neural Networks
[5]

When widening the focus to including black-box modelling identification of

nonlinear dynamic system, the problem of selecting model structures becomes more

difficult. In the previous section it was discussed that MLP networks is good at

learning nonlinear relationships from a set of data.
[5]

Therefore in choosing a family of model structures suitable for identification of

nonlinear dynamic systems, it is natural to bring up MLP networks.
 [5]

 By choosing

MLP the model structure selection is basically reduced to dealing with the following

two issues:

 Selecting the input to the network.

12

 Selecting an internal network structure.

An often common approach is to reuse the input structures from the linear models

while letting the internal architecture be feed-forward MLP network. This approach

has several advantages:

 It is a natural extension of the well-known linear model structures.

 The internal architecture can be expanded gradually as a higher flexibility is

needed to model more complex nonlinear relationships.

 The structural decision required by the user is reduced to a level that is

reasonable to handle.

 Suitable for design of control systems.

Nonlinear model structure has the following general form:

Or on predictor form

Where y is the output

θ is the parameter vector which specify the relation between the output y and the input

ψ.

2.5.1 Neural Network ARX (NNARX)

As for its linear counterpart, the predictor is always stable because there is a

pure algebraic relationship between prediction and past measurements and inputs.

This is important in the nonlinear case since the stability issue here is more complex

than in linear system.
[5]

 The model structure is described in figure 7.

.

.

.

x(t-1)

x(t-1)

y(t-1)

y(t-1)

Neural

Network

.

.

.

Figure 7: NNARX model structure

13

2.6 Particle Filter

Also known as Monte Carlo method is a nonparametric filter. The idea is that

“if we cannot solve the integrals required for a Bayesian recursive filter analytically,

we represent the posterior probabilities by a set of randomly chosen weighted

samples” (Matthias, 2003, p.27). Hence increasing the number of sample will result

in convergence to true probability density function (pdf)
[3]

.

Xk is the state (sample) at time k; z1:k is all the measurements up to k; Ns is the number

of samples; wk is associated weights.
[3]

Filtering techniques are wildly used in control system, in spacecraft navigation

(KALMAN Filter), Robot Localization (Particle Filter) and in econometrics (stock

markets, monetary flow)
[3], [4]

.

For both techniques we utilize the formula after the dynamic system has been

characterized by its state variables.

One way for finding the term grad y is analytically by finding the vector gradient of

the MLP network cost function (squared error).

Where

Another approach is using Centered Finite Difference theorem where the derivative is

calculated using

Where h is a small value change (noise) around v. One approach to implement

the particle filter concept is by using Hybrid EKF with Centered Finite Difference

theorem.
 [8][9][10]

Where we initialize the weights and use EKF to propagate it through time t and then

use Centered finite difference to add noise to it and propagate again.

14

CHAPTER 3

METHODOLOGY

3.1 Procedure identification flow

The following flow chart explains the methodology in executing the project:

3.2 Tools and Equipment

The main tool will be used in the project is MATLAB and MATLAB SIMULINK

tool.

Figure 8: Methodology Flow Chart

Research Work

Literature Review

Selection of

Prediction Algorithm

Result

Conceptual Study

MATLAB Simulation

15

CHAPTER 4

RESULT AND DISCUSSION

4.1 Experiment

Below are the simulations results obtained from applying different input and

observe the corresponding output using MATLAB SIMULINK software.

4.1.1 Single Tank

Figure 9: Single Tank SIMULINK Block Diagram

Figure 10 represent the applied input and figure 11 represent the output of the tank

(height h).

16

Figure 10: Step Input Pulse

Figure 11: Single Tank Output waveform (height H)

4.1.2 Split Tank

For this tank the same step input used before was applied as an input. The

SIMULINK block in figure 12 represent the split tank formation and the output

behaviour is showed in figure 13.

17

Figure 12: Split Tank SIMULINK Block Diagram

Figure 13: Split Tank Output waveform (height H2)

4.1.3 Custom Tank

For this tank there are two step inputs that have been used. One for each upper

tank and the output flow for both is fed into the third tank as an input as shown

previously in figure 3. Figure 14 illustrate the custom tank in SIMULINK and figure

15 shows the output.

18

Figure 14: Custom Tank SIMULINK Block Diagram

Figure 15: Custom Tank Output waveform (height H2)

4.2 Results for Various Input Signals

All the previous results were obtained by applying step input to the system. A pure

sine wave and mixed of step and sine wave signals figure 16 and 17 respectively were

19

applied to each tank system and the output were observed.

Figure 16: Sine Wave

Figure 17: Mixed input (Step + Sine)

4.2.1 Single Tank Model

Figure 18 shows the output response for the single tank system when the input

is a pure sine wave. We can notice the amplitude of the input has changed from -1 to

+1 to around -0.56 to +0.56 in the output. Figure 19 shows the response for mix input

signals. The simulation time was 100s with 0.5 as a max step size.

20

Figure 18: Single Tank Output Waveform (pure sine input)

Figure 19: Single Tank Output Waveform (mixed input signal)

21

4.2.2 Split Tank Model

Figure 20 and 21 shows the output response for pure sine wave and mixed

input signal respectively.

Figure 20: Split Tank Output Waveform (pure sine input)

Figure 21: Split Tank Output Waveform (mixed input signal)

22

4.2.3 Custom Tank Model

Since the custom tank has two input, both types of signals pure sine and mixed

wave were applied and the output response was observed for each signal as in figure

22 and 23.

Figure 22: Custom Tank Output Waveform (pure sine input)

Figure 23: Custom Tank Output Waveform (mixed input signal)

23

4.3 Linear Prediction

In this part we have implemented different prediction algorithms on custom tank

only. Two linear prediction algorithms have been used namely Recursive Least

Square and Recursive KALMAN Filter. Also MLP with RPE and MLP with RKF

have been tested on the custom tank as nonlinear prediction algorithms.

4.3.1 Recursive Least Square Algorithm
 [2]

An ARX (AutoRegressive eXternal input) Recursive Least Square algorithm

with the following formulas has been used to predict the output (height H) of the

custom tank model.

The algorithm has been implemented as an S-function block that has two

inputs (input for the system x and the measured output y) as shown in figure 24. The

block performs prediction for the height (H). With 100s simulation time and a step

size of 0.5 the measured output verses the predicted output (Hp) was obtained as in

figure 25. Figure 26 shows the squared error (SQE). Note that a first order ARX

model ([1 1 1]) and a forgetting factor λ=0.9999 has been used to obtain the result.

24

Figure 24: Custom Tank Block with RLS S-function

Figure 25: Measured Height Vs Predicted Height (RLS Algorithm)

Figure 26: Custom Tank RLS Prediction Error

25

4.3.2 Recursive KALMAN Filter Algorithm
[2]

An ARX Recursive KALMAN Filter Algorithm with the following formulas

has been used to predict the output (height H) of the custom tank model.

The algorithm has been implemented as an S-function block that has two

inputs (input for the system x and the measured output y) as shown in figure 27. The

block performs prediction for the height (H). With 100s simulation time and a step

size of 0.5. Note that a first order ARX model ([1 1 1]) and a forgetting factor

λ=0.9999 has been used to obtain the result.

R1 is the variance in the parameter and its being set is zero. R2 is the variance

in the estimated output, it is calculated (R2= 3.1506) from off-line data and fed back

again into the ARX recursive KALMAN S-function block (figure 27) and the result

was obtained as in figure 28 and the squared error in figure 29.

26

Figure 27: Custom Tank Block with RKF S-function

Figure 28: Measured Height Vs Predicted Height (KALMAN Algorithm)

Figure 29: Custom Tank KALMAN Prediction Error

27

4.4 Nonlinear Prediction Based on MLP

4.4.1 Recursive Prediction Error (RPE)
[7]

In this part we developed a MLP (4,3,1) neural network model to estimate the

output height of the custom tank model in SIMULINK. Two training algorithms for

the MLP have been used to develop an input-output mapping scheme, Recursive

Prediction Error and RKF.

RPE is basically RLS for nonlinear system where instead of having xi in the equations

We exchange xi and xi
T
 with and respectively where

AutoRegressive eXternal input Model order of [2 2 1] has been used to represent our

output as
 [5]

Where the regressor vector . Figure 30 show the block diagram for

the custom tank along with the MLP block with RPE training algorithm.

28

Figure 30: MLP [4 3 1] with RPE Training Algorithm

Setting the Learning Rate to 1, ARX [2 2 1], 3 hidden neurons and single output

simulation result has been obtained as shown in figure 31.

Figure 31: Custom Tank Simulation Result for RPE Training Algorithm

29

4.4.2 MLP with RKF for the Linear Weights

Referring to section 2.4 there are two sets of weights, nonlinear weights

between the input and the hidden layer neuron and linear weight between the hidden

neuron and the output layer neuron. In this section we used RKF to estimate the linear

weights only while the nonlinear weights were fixed to the initialization value this

process known as Extreme Machine Learning. The output of the activation functions

act as an input to the RKF and the linear weights as the parameter vector where

Ŷ= * R2= 1.45 and R1= 0 figure 23 shows the block diagram of the custom

tank with the MLP block. The simulation result obtained is shown in figure 33.

Figure 32: Custom Tank with MLP and RKF estimation Block

30

Figure 33: MLP with RKF estimation for Custom Tank

Figure 34 and 35 shows the error in the prediction for MLP with RPE and MLP with

RKF training algorithm respectively.

Figure 34: Error in MLP with RPE Training

31

Figure 35: Error in MLP with RKF Training

4.4.3 Hybrid Learning

In this section EKF has been used for the nonlinear weights in the MLP

architecture and RKF has been used for estimation of the linear weights. Combing

both algorithms to find optimum prediction is called Hybrid learning. Figure 35

illustrate the prediction output and figure 36 for the squared error.

Figure 36: Estimated vs. Measured output using Hybrid Training

32

Figure 37: SQE for Hybrid Training

Figure 38 shows a comparison between MLP with hybrid training when grad y

is calculated analytically and using centered finite difference. Figure 39 shows the

advantage of using centered finite difference over the analytical approach where the

estimation can follow up the true output around the curve points. Figure 40 shows

estimation for the flow rate in the tank.

Figure 38: Comparison using Centered Finite Difference and Analytical Approach

33

Figure 39: Improvment using Centered Finite Difference

For 5000 samples the analytical approach has 6.252x10
-3

% mean percentage sum of

squared error. Centered finite difference showed 4.518x10
-3

% and MLP with extreme

learning machine has 4.572x10
-3

%.

Figure 40: Flow Rate Estimation

34

4.5 Discussion

From the results obtained we observe the differences between RLS and Recursive

KALMAN, where the overshoot in Recursive KALMAN algorithm is greater than

RLS algorithm, the R2 value has an effect on the result. The value of the variance R2

has been set to 1.45 but it can also be calculated form offline data and inserted to the

system. Furthermore the MLP with hybrid training has demonstrated better

performance. From the graphs we notice that the MLP architecture require more a bit

longer time to learn the function.

The evaluation of the different algorithms was based on the error between the

estimated outputs and measured one. The flow rate has a similar wave form like the

height of the fluid in the tank, so most of the results focus on the height. MLP with

Hybrid training with cantered finite difference approach showed better perform in

terms error and the ability to predict smooth changes (curves).

35

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 The dynamics of custom tank needs very good control strategy. Implementing a

proper filtering or prediction technique will help in achieving optimal control for the

system. Good mathematical analysis will lead at the end to a reliable simulation which

can help in maximizing safety for the system.

 On-Line System identification techniques are useful tools in tracking, filtering and

smoothing dynamics systems nonlinear or linear ones. Different linear (RLS and

RKF) and nonlinear (MLP with different training algorithms) have been tested.

Multilayer Perceptron has shown better performance especially with the new

approach of cantered finite difference to find the derivative for the change in the

output to the change in the network weights

 In conclusion, it can be said that this project is able to be completed with the given

time line frame to achieve the required objectives.

5.2 Recommendation

 Through this project different linear and nonlinear techniques have been

implemented for the system identification of the project. This work can be expanded

to investigate on how to enhance those algorithms to produce a better estimation.

Furthermore a practical implementation for the project within a university laboratory

or with any host company will enhance the performance from any practical issues that

might rise.

36

REFERENCES

[1] Michael, Alwin Prakash 2007, system identification applied on various forms

of control-tank system, Bachelor of Electrical & Electronics Engineering

dissertation, Universiti Teknologi Petronas, Malaysia.

[2] Ljung L., System Identification: Theory for the user, Englwood Cliff, NJ:

Prentice-Hall, 1987.

[3] Dan Simon 2001, kalman filtering, Cleveland State University, USA.

[4] Matthias M¨uhlich 2003, Particle filters an overview, J.W.Goethe-University

at Frankfurt, Germany.

[5] NØrgaard M., Ravn O., Poulsen N.K. and Hansen L.K., Neural Networks for

Modelling and Control of Dynamic Systems, A Practitioner’s Handbook.

[6] Asirvadam V.S., McLoone S.F., Hybrid Recursive Training Algorithms using

Fixed Size MLP-Network: A Survey, Asian Institute of Medicine, Science and

Technology (AIMST), National University of Ireland Maynooth.

[7] Haykin S., Kalman Filtering and Neural Networks McMaster University,

Canada.

[8] Freitas JFG., Niranjan M., Gee A.H. and Doucet A., Sequential Monte Carlo

Methods for Optimization of Neural Network Models, Cambridge University

Engineering Department, UK

[9] Simandl M., Dunik J. 2009, Derivative-free Estimation Methods: New Result

and Performance Analysis, Department of Cybernetics & Research Center

Data-Algorithm-Decision Making, Faculty of Applied Sciences, University of

West Bohemia, Czech Republic.

[10] Merwe R.V.D., Wan E.A., Efficient Derivative-Free Kalman Filters for

Online Learing, Oregon Graduate Institute of Science and Technology, USA.

37

APPENDICES

38

APPENDIX A

Below are the m-files for the S-function blocks used for different estimation

algorithms.

%*******RLS algorithm********************
function [sys,x0,str,ts] = SfunRLS(t,x,u,flag,...
 samTime,Morder,cfac,Ts,erridx)

global count;
global st_y;
global st_x;
global lag;
global max_st;
global Ystore;
global Xstore;
global Inp;
global theta;
global Pmat;
global er;

switch flag,

case 0,
 [sys,x0,str,ts] = mdlInitializeSizes(samTime,Morder);

 if (size(Morder,2) == 3)
 st_y = Morder(1);
 st_x = Morder(2);
 lag = Morder(3);
 else
 error('Wrong Morder row vector dimension ');
 end

 if ((st_y < 0 | st_x <= 0) | lag <= 0)
 error('Vector element should be positive');
 end

 if (cfac < 0.9 | cfac > 1)
 error(' Large or incorrect forgeting factor input');
 end

er = 0;
max_st = max(st_y,st_x);
Ystore = ones(1,(max_st+1)+(lag-1));
Xstore = ones(1,(max_st+1)+(lag-1));
Pmat = eye((st_y+st_x));
Inp = zeros((st_y+st_x),1);
theta = ones((st_y+st_x),1);

count =0;

case 2,

 sys = mdlUpdate(t,x,u,st_y,st_x,lag,max_st,cfac);

case 3,
 sys = mdlOutputs(t,x,u);

39

case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

function [sys,x0,str,ts]=mdlInitializeSizes(samTime,Morder)

sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = Morder(1)+Morder(2)+3;
sizes.NumOutputs = Morder(1)+Morder(2)+3;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
x0 = 0;
str = [];
ts = [samTime 0]; % Sample period
function sys = mdlUpdate(t,x,u,st_y,st_x,lag,max_st,cfac);

global Xstore;
global Ystore;
global Pmat;
global Inp;
global theta;
global count;
global er;

Ystore(2:(max_st+1)+(lag-1)) = Ystore(1:(max_st)+(lag-1));
Xstore(2:(max_st+1)+(lag-1)) = Xstore(1:(max_st)+(lag-1));

if (count >= (max_st+1 + lag-1))

 Inp = [Ystore((lag+1):(lag+1)+st_y-1) Xstore((lag+1):(lag+1)

+st_x-1)]';

 Pmat = (Pmat- (Pmat*Inp*Inp'*Pmat)/(cfac + Inp'*Pmat*Inp))/cfac;
 er = u(1) - Inp'*theta;
 theta = theta + Pmat*Inp*er;
 yEst = theta'*Inp;
 LSQE = win_SQE(theta,u(1),Inp);
else
 count = count +1;
 yEst = theta'*Inp;
 LSQE = 1;
end
Ystore(1) = u(1);
Xstore(1) = u(2);
sys = [theta ; u(1); yEst;LSQE];
function sys = mdlOutputs(t,x,u)
sys = x;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for Kalman filter replace the equation with:

Pmat_new = Pmat- (Pmat*Inp*Inp'*Pmat)/(var_est + Inp'*Pmat*Inp) +

var_par;
 er = u(1) - Inp'*theta;
 K = Pmat*Inp/(var_est + Inp'*Pmat*Inp);

40

 theta = theta + K*er;
%%%

%*******MLP with RKF for linear weights algorithm********************

function [sys,x0,str,ts] = Non(t,x,u,flag,Ts)

%Variables declaration:
global ym;
global ym_1;
global xm;
global xm_1;
global w1;
global w2;
global yhat;
global yv;
global p;
global PmatL;
global PmatNL;
global Vphy;
global Vyd;
global prer;
global Pold;

switch flag,

case 0,
 [sys,x0,str,ts] = mdlInitializeSizes(Ts);
 ym = 0;
 ym_1 = 0;
 xm = 0;
 xm_1 = 0;
 Ni = 4; %No. of model inputs.
 Nh = 3; %No. of hidden layers.
 No = 1; %No. of model outputs.
 w1 = 2 * (1 - 0.5 * rand(Nh,Ni + 1)) * (3 / sqrt(Ni))
 w2 = (1 - 0.5 * rand(Nh + 1,No))

%*******intitialization of Kalman parameters********************

 PmatNL = eye((Ni+1)* Nh);
 p = 10 * eye(Nh+1);
 yhat = 0;
 load Vset2nd;
 prer = zeros(Nh+1,1);

case 2,

 [sys] = mdlUpdate(t,x,u);

case 3,
 sys = mdlOutputs(t,x,u);
case 9,
 sys = [];
otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

function [sys,x0,str,ts]=mdlInitializeSizes(Ts)
sizes = simsizes;

41

sizes.NumContStates = 0;
sizes.NumDiscStates = 6;
sizes.NumOutputs = 6;
sizes.NumInputs = 3;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);
x0 = 0;
str = [];
ts = [Ts 0];

function [sys] = mdlUpdate(t,x,u);

%Variables declaration:
global ym;
global ym_1;
global ym_2;
global xm;
global xm_1;
global xm_2;
global phy;
global w1;
global w2;
global r;
global er;
global yhat;
global ni;
global nh;
global r;
global w1;
global w2;
global p;
global k;
global PmatNL;
global Vphy;
global Vyd;
global Ver;
global Vyh;
global prer;
global estW2;
global estY;
global er_Kalman;
global Pold;
%Regressor vector formation:
if(u(3)==1)
ym_1 = ym;
ym_2 = ym_1;
ym = u(1);
xm_1 = xm;
xm_2 = xm_1;
xm = u(2);
phy = [ym_1;ym_2;xm_1;xm_2]

[nc ni1] = size(w1);
[nc1 no] = size(w2);
ni = ni1-1;

[yhat,r]=mlpnet(w1,w2,phy);
er = ym-yhat;

fgfcL = 1;

42

%********Estimation of W2 using Recursive Kalman

Filter***************

[estW2 estY]=RKFforW2(w2,r,ym,t);

w2=estW2;
Fl = 0;
else
 Fl = 1
end
sys = [ym;yhat;u(1);estY;ym;Ver];

function sys = mdlOutputs(t,x,u)
sys = x;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%*******MLP with Hybrid EKF and RKF********************

function [sys,x0,str,ts] = SfunRPE1(t,x,u,flag,...
 samTime,Morder,Nh,Lr,tc)

global count;
global st_y;
global st_x;
global lag;
global max_st;
global Ystore;
global Xstore;
global Inp;
global W1;
global Tu;
global Ty;
global W2;
global Rgain;
global Pmat;
global prevdel_W;
global Weight;
global er;
global lamda;
global optionflag;
global PMSEflag;
global Pold;
global Pw2old;
global erw2;

switch flag,

case 0,
 [sys,x0,str,ts] = mdlInitializeSizes(samTime,Morder,Nh);

 if (size(Morder,2) == 3)
 st_y = Morder(1);
 st_x = Morder(2);
 lag = Morder(3);
 else
 error('Wrong Morder row vector dimension ');
 end

 if ((st_y < 0 | st_x < 0) | lag <= 0)

43

 error('Vector element should be positive');
 end

 if (Nh <= 0)
 error(' The number of hidden neuron should be positive ');
 end

er = 0;
erw2 = 0;
max_st = max(st_y,st_x);
Ystore = ones(1,(max_st+1)+(lag-1));
Xstore = ones(1,(max_st+1)+(lag-1));

[W1,W2,optionflag] = createMLP(st_y+st_x,Nh,1);

structMLP = [st_y+st_x Nh 1];
save structM structMLP;
Inp = zeros((st_y+st_x),1);
Rgain = [0.001 0.1];
lamda = 1; % Learning Rate
prevdel_W = zeros(1,(st_y+st_x+1)*Nh + Nh + 1)';
no_weight = (st_y+st_x+1)*Nh + Nh + 1;
%Pmat = eye(no_weight);
Pold = eye(((st_y+st_x+1)*Nh));
Pw2old = eye(Nh + 1);

[Tu,Ty] = loadDataNN(tc);
Weight = 0.001*rand(no_weight,1);

[nc ni1] = size(W1);
[nc1 no] = size(W2);
ni = ni1-1;

[W1,W2] = vect2mlp(Weight,ni,nc,no);

count =0;

case 2,

 sys = mdlUpdate(t,x,u,st_y,st_x,lag,max_st,Lr);

case 3,
 sys = mdlOutputs(t,x,u);

case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

function [sys,x0,str,ts]=mdlInitializeSizes(samTime,Morder,Nh)

sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = (Morder(1)+Morder(2)+1)*Nh + (Nh+1) +3;
sizes.NumOutputs = (Morder(1)+Morder(2)+1)*Nh + (Nh+1) +3;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 0;

44

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = 0;
str = [];
ts = [samTime 0]; % Sample period

function sys = mdlUpdate(t,x,u,st_y,st_x,lag,max_st,Lr);

global Xstore;
global Ystore;
global Weight;
global Inp;
global W1;
global W2;
global Pmat;
global Tu;
global Ty;
global Rgain;
global prevdel_W;
global optionflag;
global count;
global er;
global lamda;
global PMSEflag;
global neta;
global weightflag;
global Pold;
global Pnew;
global R1;
global R2;
global er;
global K;
global KK;
global r;
global Pw2old;
global Pw2new;
global erw2;

Ystore(2:(max_st+1)+(lag-1)) = Ystore(1:(max_st)+(lag-1));
Xstore(2:(max_st+1)+(lag-1)) = Xstore(1:(max_st)+(lag-1));

if (count >= (max_st+1 + lag-1))

 Inp = [Ystore((lag+1):(lag+1)+st_y-1) Xstore((lag+1):(lag+1)

+st_x-1)]';

 [nc ni1] = size(W1);
 [nc1 no] = size(W2);
 ni = ni1-1;

 grad = finiteWBgrad(W1,W2,optionflag,Inp',u(1)');%to use the

analytical approach replace finiteWBgrad with mlp_WinBgrad%%%%%%

 [dw1,dw2] = vect2mlp(grad,ni,nc,no);
 Mgrad = -grad;

45

 Weight = mlp2vect(W1,W2);
 prevdel_W = mlp2vect(dw1,dw2);

 [yEst,r] = mlpnet(W1,W2,optionflag,Inp');

 fgfc = 0.9;
 error = u(1) - yEst;
 gradY = dw1/(error + eps);
 gradY = gradY(:);
 no_w = size(Weight,1);

 %%%%%%%%%%%%%%%%%%%%%%%%EKF for W1%%%%%%%%%%%%%%%%%%%%%%%%%%

 R1=0;
 R2=1;

 Pnew = (1/fgfc)*(Pold - (Pold*gradY*gradY'*Pold)/(R2*fgfc +

gradY'*Pold*gradY) + R1);
 er = u(1) - yEst;
 K = Pold*gradY/(R2 + gradY'*Pold*gradY);

 W1=W1(:);
 W1 = W1 + K*er;

 Pold = Pnew;

 Weight = mlp2vect(W1,W2);

 [W1,W2] = vect2mlp(Weight,ni,nc,no);

 %%

 [yEst,r] = mlpnet(W1,W2,optionflag,Inp');
 er = u(1) - yEst;
 %%%%%%%%%%%%%%%%%%%%%RKF for W2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 r=r';
 Pw2new = (1/fgfc)*(Pw2old- (Pw2old*r*r'*Pw2old)/(R2*fgfc+

r'*Pw2old*r) + R1);

 KK = Pw2old*r/(R2 + r'*Pw2old*r);

 W2 = W2 + Lr*KK*er;
 Pw2old = Pw2new;

 %%
 PMSEflag =1;
 Weight = mlp2vect(W1,W2);
 [W1,W2] = vect2mlp(Weight,ni,nc,no);

 [yEst,r] = mlpnet(W1,W2,optionflag,Inp');

 SQEN = mlp_NSQE(W1,W2,optionflag,Inp',u(1));

else
 if (count == 0)
 weightflag = 0;
 neta = Lr;
 end

46

 SQEN = 0;
 yEst = u(1);
end

 count = count +1;
 Weight = mlp2vect(W1,W2);
 Ystore(1) = u(1);
 Xstore(1) = u(2);

 sys = [Weight ; u(1); yEst; SQEN];

function sys = mdlOutputs(t,x,u)
sys = x;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%RPE algorithm%%%%%%%%%%%%%%%%%%%%%%%

function [sys,x0,str,ts] = SfunRPE1(t,x,u,flag,...
 samTime,Morder,Nh,Lr,tc)

global count;
global st_y;
global st_x;
global lag;
global max_st;
global Ystore;
global Xstore;
global Inp;
global W1;
global Tu;
global Ty;
global W2;
global Rgain;
global Pmat;
global prevdel_W;
global Weight;
global er;
global lamda;
global optionflag;
global PMSEflag;

switch flag,

case 0,
 [sys,x0,str,ts] = mdlInitializeSizes(samTime,Morder,Nh);

 if (size(Morder,2) == 3)
 st_y = Morder(1);
 st_x = Morder(2);
 lag = Morder(3);
 else
 error('Wrong Morder row vector dimension ');
 end

 if ((st_y < 0 | st_x < 0) | lag <= 0)
 error('Vector element should be positive');
 end

 if (Nh <= 0)
 error(' The number of hidden neuron should be positive ');

47

 end
er = 0;
max_st = max(st_y,st_x);
Ystore = ones(1,(max_st+1)+(lag-1));
Xstore = ones(1,(max_st+1)+(lag-1));

[W1,W2,optionflag] = createMLP(st_y+st_x,Nh,1);

structMLP = [st_y+st_x Nh 1];
save structM structMLP;
Inp = zeros((st_y+st_x),1);
Rgain = [0.001 0.1];
lamda = 1; % Learning Rate
prevdel_W = zeros(1,(st_y+st_x+1)*Nh + Nh + 1)';
no_weight = (st_y+st_x+1)*Nh + Nh + 1;
Pmat = eye(no_weight);

[Tu,Ty] = loadDataNN(tc);
Weight = 0.001*rand(no_weight,1);

[nc ni1] = size(W1);
[nc1 no] = size(W2);
ni = ni1-1;

[W1,W2] = vect2mlp(Weight,ni,nc,no);

count =0;

case 2,

 sys = mdlUpdate(t,x,u,st_y,st_x,lag,max_st,Lr);

case 3,
 sys = mdlOutputs(t,x,u);

case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

function [sys,x0,str,ts]=mdlInitializeSizes(samTime,Morder,Nh)

sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = (Morder(1)+Morder(2)+1)*Nh + (Nh+1) +3;
sizes.NumOutputs = (Morder(1)+Morder(2)+1)*Nh + (Nh+1) +3;
sizes.NumInputs = 2;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = 0;
str = [];
ts = [samTime 0]; % Sample period

function sys = mdlUpdate(t,x,u,st_y,st_x,lag,max_st,Lr);

48

global Xstore;
global Ystore;
global Weight;
global Inp;
global W1;
global W2;
global Pmat;
global Tu;
global Ty;
global Rgain;
global prevdel_W;
global optionflag;
global count;
global er;
global lamda;
global PMSEflag;
global neta;
global weightflag;

Ystore(2:(max_st+1)+(lag-1)) = Ystore(1:(max_st)+(lag-1));
Xstore(2:(max_st+1)+(lag-1)) = Xstore(1:(max_st)+(lag-1));

if (count >= (max_st+1 + lag-1))

 Inp = [Ystore((lag+1):(lag+1)+st_y-1) Xstore((lag+1):(lag+1)

+st_x-1)]';

 [nc ni1] = size(W1);
 [nc1 no] = size(W2);
 ni = ni1-1;

 grad = mlp_WinBgrad(W1,W2,optionflag,Inp',u(1)');

 Mgrad = -grad;

 [dw1, dw2] = vect2mlp(Mgrad,ni,nc,no);

 Momen = 0.0;
 neta = Lr;

 [del_w1,del_w2] = vect2mlp(prevdel_W,ni,nc,no);

 chgw1 = neta*dw1 + Momen*del_w1;
 chgw2 = neta*dw2 + Momen*del_w2;
 Weight = mlp2vect(W1,W2);
 prevdel_W = mlp2vect(chgw1,chgw2);

 yEst = mlpnet(W1,W2,optionflag,Inp');
 beta = 0.01;
 n_lamda = min(beta,1/(count^(1-beta)));
 fgfc = lamda*(1-n_lamda)/n_lamda;
 lamda = n_lamda;
 %fgfc = 0.99*lamda + (1-0.99);
 %lamda = fgfc;
 fgfc = 0.999;
 error = u(1) - yEst;
 gradY = grad/(error + eps);
 no_w = size(Weight,1);

49

 denom = inv(fgfc + gradY'*Pmat*gradY);
 Pmat = (Pmat - (Pmat*gradY*denom*gradY'*Pmat))/fgfc;
 Pmat = (1/trace(Pmat))*Pmat;

 Weight = Weight + Pmat*prevdel_W;
 PMSEflag =1;
 [W1,W2] = vect2mlp(Weight,ni,nc,no);

 yEst = mlpnet(W1,W2,optionflag,Inp');

 SQEN = mlp_NSQE(W1,W2,optionflag,Inp',u(1));

else
 if (count == 0)
 weightflag = 0;
 neta = Lr;
 end

 SQEN = 0;
 yEst = u(1);
end

 count = count +1;
 Weight = mlp2vect(W1,W2);
 Ystore(1) = u(1);
 Xstore(1) = u(2);
 sys = [Weight ; u(1); yEst; SQEN];

function sys = mdlOutputs(t,x,u)
sys = x;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50

APPENDIX B

Below are common m-files used by all S-functions.

% function [w1 ,w2 ,flags]=createMLP(Ni,Nh,No,method)
%
% Initialises MLP given dimensions
% Sigmoid nonlinearities and linear output neurons assumed
%
% See also saveMLP and loadMLP.

function [w1 ,w2 ,flags]=createMLP(Ni,Nh,No,method);

 fprintf('Creating MLP network ... ');

 if nargin <3
 error('Invalid number of input parameters');
 end

 if nargin >4
 error('Invalid number of input parameters');
 end
 if nargin ==3
 method =1;
 end
 flags =[1 1 0]; % sigmoid + linear output
 if method ==1
 w1=2*(1-2*rand(Nh,Ni+1))*(3/sqrt(Ni));
 w2=(1-2*rand(Nh+1,No));
 end
 if method ==2
 w1=2*(1-2*rand(Nh,Ni+1))/Ni;
 w2=(1-2*rand(Nh+1,No));
 sc=0.7*4*Nh^(1/Ni);
 for i =1:Nh
 w1(i,1:Ni)=w1(i,1:Ni)/sqrt(w1(i,1:Ni)*w1(i,1:Ni)')*sc;
 end
 w1(:,Ni+1)=w1(:,Ni+1)*sc;
 end
 if method >2
 w1=2*(1-2*rand(Nh,Ni+1))/Ni;
 w2=(1-2*rand(Nh+1,No));
 for i =1:Nh
 w1(i,:)=4*w1(i,:)/(Ni+1);
 end
 end
 fprintf('MLP(%d,%d,%d) initialised\n',size(w1,2)-1,

size(w1,1),size(w2,2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Out]= extractTheta(Vect)
array_size = size(Vect,1);
Out = [Vect(1:array_size-3)];
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Out]= extractSQE(Vect)
array_size = size(Vect,1);
Out = [Vect(array_size)];
return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Out]= extractY(Vect)

51

array_size = size(Vect,1);
Out = [Vect(array_size-2) Vect(array_size-1)];
Return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Out]= extractWeight(Vect)
array_size = size(Vect,1);
Out = [Vect(1:array_size-3)];
return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function [grad] = finiteWBgrad(w1,w2,flags,u,yd)

%The function return the vector gradient using finite difference

method of the
%MLP network for SSE cost function
function [grad] = finiteWBgrad(w1,w2,flags,u,yd,block)

 [nh ni1]=size(w1);
 [nh1 no]=size(w2); %Implemented only for single output

 CenDiff_w1 = eye(nh,ni1);
 CenDiff_w2 = eye(nh1,no);
 percentV = 0.001;

 for i=1:nh
 for j=1:ni1

 w1bw = w1;
 w1fw = w1;

 Dx = percentV*w1bw(i,j);
 w1bw(i,j) = w1(i,j) - Dx;
 w1fw(i,j) = w1(i,j) + Dx;

 sqeb_w1= mlp_SQE(w1bw,w2,flags,u,yd);
 sqef_w1= mlp_SQE(w1fw,w2,flags,u,yd);

 % Using Central Difference in finite difference

 CenDiff_w1(i,j)= (sqef_w1 - sqeb_w1)/(2*Dx);

 end
 end

 grad=mlp2vect(CenDiff_w1,w2);

 return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function [grad] = mlp_WinBgrad(w1,w2,flags,TSu,TSy)

% the function returns the vector gradient of the MLP network
% cost function for SSE cost function.

function [grad] = mlp_WinBgrad(w1,w2,flags,u,yd,block)

 global PMSEflag;

52

 [nh ni1]=size(w1);
 [nv ni]=size(u);
 [nh1 no]=size(w2);

 grad_w1=zeros(nh,ni1);
 grad_w2=zeros(nh1,no);
 uni1 = ones(nv,1);

 [y,r]=mlpnet(w1,w2,flags,u);

 err=y-yd; % (nv * no) matrix
 % NB: Using PMSE gradient scaling factor leads to rounding errors
 if ~isempty(PMSEflag)
 if PMSEflag ==1
 err=err/length(err(:))*100;% normalized if % Mean squared

error used;
 end
 end

 r=r'; % Transposed for use below (nh1 *nv) matrix
 grad_w2= 2*r*err; % nh1 *no matrix

 %compute factors independent of Nv

 %For sig function dr = r(1-r)

 r=r.*(1-r);
 r=r(2:nh1,:); % NB r is now dr and is a (nh *nv) matrix

....
 u1 = [uni1 u]; % Add one column for for bias weights
 P=w2(2:nh1,:)*err'; % (nh * nv) matrix

 grad_w1= (P.*r)*u1;

 grad=mlp2vect(grad_w1,grad_w2);
return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [lsqe] = win_SQE(the,Yv,IN)

smallvalue = eps;
yestimate = the'*IN;
NErr = (Yv - yestimate)*(Yv - yestimate)';
Derr = Yv*Yv';
lsqe = NErr/(Derr + smallvalue) * 100;

return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [v]=mlp2vect(w1,w2)

 v=[w1(:);w2(:)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% [w1,w2]=vect2mlp(vect,ni,nh,no)
% Transforms the mlp parameters stored in vector form
% to the standard w1,w2 form.
function [w1,w2]=vect2mlp(v,ni,nh,no)

 lv=length(v);

 if lv ~= (ni+1)*nh +(nh+1)*no;

53

 error('input vector dimension does not agree with MLP

dimensions');
 end

 w1=zeros(nh,ni+1);
 w2=zeros(nh+1,no);

 % convert vector to matrix form for w1 and w2;
 for i=1:(ni+1)
 w1(:,i)=v(1+(i-1)*nh : i*nh);
 end
 v=v((ni+1)*nh+1:lv);

 for i=1:no
 w2(:,i)=v(1+(i-1)*(nh+1) : i*(nh+1));
 end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [estW2 estY]=RKFforW2(w2,r,ym,t)

global Pold;
global Pnew;
global Inp;
global theta;
global R1;
global R2;
global er;
global k;
global yEst;
global t;

if(t==0)
 Pold = eye(size(w2,1));
 er=0;
end
%**********Initilization of Kalman Parameters****************

theta=w2;
Inp=r;
R1=0;
R2=1.45;
%******************End of Initilization**********************

 Pnew = Pold- (Pold*Inp*Inp'*Pold)/(R2+ Inp'*Pold*Inp) + R1;
 er = ym - Inp'*theta;
 K = Pold*Inp/(R2 + Inp'*Pold*Inp);

 theta = theta + K*er;
 Pold = Pnew;
 yEst = Inp'*theta;
 %LSQE = win_SQE(theta,u(1),Inp);
estW2=theta;
estY=yEst;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

