

iv

ABSTRACT

Scientific computation requires a great amount of computing power especially

in floating-point operation but a high-end multi-cores processor is currently limited in

terms of floating point operation performance and parallelization. Recent

technological advancement has made parallel computing technically and financially

feasible using Compute Unified Device Architecture (CUDA) developed by NVIDIA.

This research focuses on measuring the performance of CUDA and implementing

CUDA for a scientific computation involving the process of porting the source code

from CPU to GPU using direct integration technique. The ported source code is then

optimized by managing the resources to achieve performance gain over CPU. It is

found that CUDA is able to boost the performance of the system up to 69 times in

Parboil Benchmark Suite. Successful attempt at porting Serpent encryption algorithm

and Lattice Boltzmann Method provided up to 7 times throughput performance gain

and up to 10 times execution time performance gain respectively over the CPU. Direct

integration guideline for porting the source code is then produced based on the two

implementations.

v

ACKNOWLEDGEMENTS

My praise to Allah the Almighty, with His willing, I was able to complete my

Final Year Project (FYP) in Universiti Teknologi PETRONAS.

The accomplishment of this project would have been impossible without the

help of these people:

• Dr. Fawnizu Azmadi Hussin, my project supervisor for his valuable insight,

guidance and support throughout the completion the project.

• Dr. Noohul Basheer Zain Ali, panel for my FYP seminar and Interim oral

presentation. His comments and suggestions have allowed further

improvement for the project.

• My family, for their support, giving me motivation and advices,

understanding, and their encouragement for me to perform better.

• My fellow friends and individuals who were supportive throughout the project

period.

Thank you.

vi

TABLE OF CONTENTS

ABSTRACT .. iv

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES .. viii

LIST OF TABLES... x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 INTRODUCTION .. 1

1.1 Background of Study .. 1

1.2 Problem Statement .. 2

1.3 Objectives and Scope of Study .. 3

CHAPTER 2 LITERATURE REVIEW ... 4

2.1 Computing with CUDA .. 4

2.2 Performance Benchmark ... 8

2.3 Serpent Encryption ... 10

2.4 Lattice Boltzmann for Fluid Flow ... 13

CHAPTER 3 METHODOLOGY ... 15

3.1 Procedure Identification .. 15

3.2 Experimental Setup ... 17

3.3 Benchmark ... 18

3.4 Potential Algorithms for Super Calculator using CUDA.................. 20

3.4.1 Integer Operation ... 21

3.4.2 Floating Point Operation .. 21

3.5 Porting to CUDA and Optimization .. 22

3.5.1 Serpent Encryption Algorithm Implementation 24

3.5.2 Lattice Boltzmann for Fluid Flow .. 28

3.6 General Guideline for CUDA porting process 37

vii

CHAPTER 4 RESULTS AND DISCUSSION .. 38

4.1 Parboil Benchmark ... 38

4.2 Benchmark Profile .. 41

4.3. Serpent Encryption Benchmark ... 42

4.4 Lattice Boltzmann Method benchmark result 45

4.5 Discussions ... 46

4.5.1 Compiler Flag Optimization .. 46

4.5.2 GPU Benchmark Score .. 47

4.5.3 Memory Copy ... 47

4.5.4 Serpent Encryption benchmark data trend 48

CHAPTER 5 CONCLUSION ... 49

REFERENCES .. 50

APPENDICES ... 53

Appendix A Publication ... 54

Appendix B System Information .. 55

Appendix C Parboil Benchmark data .. 57

Appendix D Serpent Encryption Algorithm Implementation 62

Appendix E Lattice Boltzmann Method Implementation 65

viii

LIST OF FIGURES

Figure 1: General illustration of CPU and GPU architecture 5

Figure 2: Diagram of Single Program Multiple Data (SPMD) kernel 6

Figure 3: CUDA Process Flow. ... 7

Figure 4: Serpent encryption flow chart ... 11

Figure 5: Key Scheduling process .. 12

Figure 6: Karman Vortex Street illustration ... 14

Figure 7: Flow Chart of Methodology .. 15

Figure 8: C source code fragment for sample array function. 22

Figure 9: Source code fragment for ported CUDA-compatible code......................... 23

Figure 10: Source code fragment for structured variables and data types 25

Figure 11: Encryption process on graphic card using CUDA 25

Figure 12: Block diagram for 16KB of data size for the initial attempt 26

Figure 14: GPU time spent in percentage ... 27

Figure 13: Block diagram for 16KB of data size in Complete Application 27

Figure 15: Flow chart for “Unsteady” simulation ... 29

Figure 16: Flow chart for the first part of geometry initialization function 31

Figure 17: Flow chart for the second part of geometry initialization function 32

Figure 18: Flow chart for the initial attempt on LBM CUDA implementation 33

Figure 19: Bar chart for percentage time taken for function "Collide" 34

Figure 20: Flow chart for Lattice Boltzmann Method complete application

implementation on CUDA .. 35

Figure 21: Block diagram showing 2D computational model on CUDA 35

Figure 22: Source code fragment for addressing 1D array for 2D computation model

... 36

Figure 23: Graph for performance gain in execution time versus number of threads

per block with normalized result ... 36

Figure 24: Bar chart for normalized Parboil benchmark score 38

Figure 25: Bar graph for detail benchmark score .. 40

Figure 26: Graph for Benchmark Profile according to GPU Time Percentage 41

Figure 27: Graph for Serpent encryption benchmark result 42

ix

Figure 28: Throughput comparison for complete application with initial attempt 43

Figure 29: Throughput performance for varied number of threads per block 44

Figure 30: Throughput performance for varied number of registers per thread 44

Figure 31: Bar chart for execution time performance comparison. The higher is the

better performance ... 45

x

LIST OF TABLES

Table 1: Parboil Benchmark Suite [9] .. 9

Table 2: Hardware Information for the Test System ... 17

Table 3: Software Information of the Test System ... 18

xi

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

API Application Programming Interface

CUBLAS Compute Unified Basic Linear Algebra Subprogram

CUFFT Compute Unified Fast Fourier Transform

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

GPU Graphics Processing Unit

GPGPU General-Purpose computing on Graphics Processing Unit

FFT Fast Fourier Transform

FLOP/s Floating Point Operation Per Second

GB/s Gigabyte Per Second

GCC GNU Collection Compiler

LB Lattice Boltzmann

NVCC NVIDIA CUDA Compiler

ICC Intel C/C++ Compiler

PCI-E Peripheral Component Interconnect Express

RHEL Red Hat Enterprise Linux

SKU Stock Keeping Unit

SMs Streaming Multiprocessors

SPMD Single Program Multiple Data

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Compute Unified Device Architecture (CUDA) is an architecture designed by

NVIDIA Corporation for General Purpose Computing using Graphic Processor Unit

(GPGPU), the term which become increasingly popular as the trend grows in year

2002 [1]. In the early stage of GPGPU, one of the popular known methods for

computation is using OpenGL. This method requires the algorithm to be reconstructed

to match graphic processes (i.e. using textures and such) and constrained to a lot of

limitations such as access to memory and data type limitation to only floating-point.

The advent of CUDA was in the November 2006, introduced to the public

with the G80 architecture which eventually entered the mainstream later. A year later,

some computational performance measurement results based on CUDA have been

released and several more computational works has been ported to be performed by

CUDA GPU instead of the Central Processing Units (CPU). These efforts were driven

by the trend of GPU that follows Moore’s Law growth faster than CPU. The fact that

GPU exists as commodity hardware also became one of the motivation in pursuing

the GPGPU interest.

CUDA-enabled graphic cards posses a higher computational performance

(measured in FLOP/s) and higher bandwidth (measured in GB/s) when compared to

CPU [2]. Although still to be further developed, early results suggested CUDA

performance is indeed promising. The pinnacle of CUDA is demonstrated with the

release of NVIDIA Tesla Personal Supercomputer which based on Tesla accelerator

cards (similar with CUDA GPU in fact the origin of CUDA development [2]) and also

2

the latest development of “Tsubame” supercomputer using CUDA GPUs which was

ranked 29th fastest in the world [3].

1.2 Problem Statement

The advancement of technology has pushed scientific computing even further

compared to a few years back as more theories are developed and tested using

simulation and numerical computation. This requires a great amount of floating-point

operations and parallelization to produce more reliable results over time. Mainstream

CPU in personal computers mostly lack of the floating-point computation

performance since the architecture focuses on integer performance for mass consumer

computing.

There are a number of ways to overcome this situation which include using

parallel computing, grid computing or distributed computing. Each of them might be

costly or not practical to begin with, for example; parallel computing with

supercomputer is highly expensive and maintaining a vast network of grid computers

consumes resources and gathering data from distributed computing is rather tedious

and complex. Hence, CUDA was introduced to improve the floating-point operation

and parallelism of a personal computer given the overall specifications is met within

the feasible cost.

Currently, there are not many applications that use CUDA that could be

acquired out of the box. Many applications would require the source code to be ported

and compiled using CUDA compiler. The process of porting of source code could

sometimes produce inefficient code that performs worse than the CPU counterpart or

only little performance gain. General guidelines are needed for the process of porting

the source code efficiently with considerable performance gain without much time

spent for the process.

3

1.3 Objectives and Scope of Study

The project objectives are to measure the CUDA performance to demonstrate

the integer and floating-point operation using parallelization capabilities based on

general application and scientific computations. Comparisons are made between CPU

and CUDA computing performance. The final objectives of the project are to

implement and study the effect of selected algorithms for integer and floating-point

processes on CUDA. At the end of the project, we will come up with general

guidelines to perform porting of the source code.

The scope of study covers general review of the architecture that contributes to

the parallelism effect on performance, integer performance, floating-point

performance and analysis of benchmark results. All of these are generally the

fundamentals in understanding CUDA for successful implementation and occupy the

time given for the project accordingly. As the project progress, the study is focused on

source code optimization to increase performance gain.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Computing with CUDA

Parallelization is not something new in the computer system but the

implementations during the earlier time were only widely used at higher scale (i.e.

supercomputer). Farber [4] explained much about CUDA based on his experience

working with supercomputer with a larger scale of parallelization in national

laboratories. CUDA provides parallelization with scalability, making it more

attractive to programmers. According to [2] and [4], the programmers have the ability

to program CUDA in high level language such as C, C++, Python and other high level

languages. The great performance are also achieved since the compiler directly

compile the source code to the CUDA device thus avoiding the performance overhead

of Application Programming Interface (API).

Since CUDA has been primarily used for computation, it is very closely

related to General-Purpose computing on Graphics Processing Unit (GPGPU). Owens

et al. [5] describes the detail analysis of current GPGPU trend in architecture and also

implementation. The architecture of CUDA GPU based on G80 architecture is

reviewed to shed lights on multiprocessing and stream processing of current GPU.

The paper [5] also explains the software performance libraries implementation (e.g. in

the case of CUDA, CUBLAS and CUFFT libraries) and also the kernel performance

which play a great role in CUDA performance.

Parallelization in handling multiple data by program benefits greatly when

using CUDA. The GPU architecture is designed primarily to process data instead of

data caching and flow control compared to CPU. Figure 1 illustrates the general

5

architecture design of a CPU and GPU from [2]. GPU has a lot more Arithmetic

Logic Units (ALUs) compared to a CPU; however GPU has limited amount of

Control and Cache. The GPU architecture design also stresses on high throughput

which uses data parallelization.

Figure 1: General illustration of CPU and GPU architecture

For the program to be able to handle multiple data in parallel, the programmer

has to make the program initialize the kernel which runs on multiple threads at any

given time. The program model is similar to Single Program Multiple Data (SPMD)

model, with added advantage of scalability [6]. Figure 2 illustrates a program flow in

kernel block initialization and scaling of the number of threads used according to the

block specification. Each block can have a number of threads assigned to it in either

one-dimension or up to three-dimension. Threads in the block will continue to run

until the function for the threads to be synchronized is called. At that point, advanced

threads will hold and wait for other threads to finish execution until the thread

synchronization point.

6

Figure 2: Diagram of Single Program Multiple Data (SPMD) kernel

 CUDA function is defined as a kernel that is called by specifying the number

of thread blocks, the number of threads per block and the parameters needed for the

function as shown in Figure 2. Each thread executes the function in parallel and can

communicate with other thread in the same thread block. As the threads are organized

into thread blocks, the thread blocks are controlled by the Streaming Multiprocessors.

Each thread block has a limited 16KB of Shared Memory for faster memory access

compared to Device Memory and also used for communication between threads in the

7

same block. Thread management is important to utilize the limited 16KB of Shared

Memory to optimize memory access.

 CUDA process flow is fairly straight-forward. Page-locked memory buffer is

allocated in the host memory for faster memory transfer between host memory and

device memory [2]. After the data transfer is done, the CPU will send instructions to

the GPU for the program execution. The same program is executed on all of the

threads inside the GPU. After all of the threads are synchronized, the data is

transferred from the device memory back to the host memory. All of the process is

summarized in Figure 3.

Figure 3: CUDA Process Flow.

Paper produced for performance study, [7]; makes use of the GPU design to

improve the performance of general applications. Che et al. [7] compared CUDA with

single-thread and multi-thread application executed on the multi-core CPU. The

performance comparisons are given in speedup of CUDA over CPU. The authors also

reported that a single graphic card was able to gain speedup over two dual-core high-

end CPUs. Some of the general applications only require little or no optimization

when ported from CPU to CUDA and already shown considerable speedup. This

8

work has become motivation as to pursue parallel computing using GPU instead of

multi-core CPU.

2.2 Performance Benchmark

In order to make sure the term “performance” is not loosely used throughout

the project, a computer system text book is used for reference. Hennesy et al. [8]

defined performance according to the execution time and also the number of

instructions per second. In this research, the scoring system is also based on the

execution time and normalized against processor benchmark score using basic

compiler (i.e. GNU C Compiler). Regardless of how the scoring system is

implemented, it should give an indication of the relative performance.

While there is no specific standard guideline for computer performance

benchmarking, the obvious rule is that the benchmark must pass the output

comparison for the executed benchmark programs. Some of the optimization flags of

the compiler affect the accuracy of the output from the program. Our research focuses

more on the floating-point benchmarks which is the data type commonly used for

scientific calculation.

Parboil Benchmark Suite is one of the benchmarks that measure and can be

used to compare both CPU and GPU performance [9]. The benchmark suite provided

source codes, namely Base (basic source code with no optimization), CPU (optimized

for processor) and CUDA (CUDA source code). Table 1 summarizes the benchmark

programs in the suite.

9

Table 1: Parboil Benchmark Suite [9]

Application Description

MRI-Q
Magnetic Resonance

Imaging Q

Computation of a matrix Q, representing the

scanner configuration, used in a 3D magnetic

resonance image reconstruction algorithm in

non-Cartesian space.

MRI-

FHD

Magnetic Resonance

Imaging FHD

Computation of an image-specific matrix F
H
d,

used in a 3D magnetic resonance image

reconstruction algorithm in non-Cartesian

space.

CP Coulombic Potential

Computes the coulombic potential at each grid

point over on plane in a 3D grid in which point

charges have been randomly distributed.

Adapted from 'cionize' benchmark in VMD.

SAD
Sum of Absolute

Differences

Sum of absolute differences kernel, used in

MPEG video encoders. Based on the full-pixel

motion estimation algorithm found in the JM

reference H.264 video encoder.

TPACF
Two Point Angular

Correlation Function

TPACF is an equation used here as a way to

measure the probability of finding an

astronomical body at a given angular distance

from another astronomical body.

PNS Petri Net Simulation

Implements a generic algorithm for Petri net

simulation. Petri nets are commonly used to

model distributed systems.

RPES
Rys Polynomial

Equation Solver

Calculates 2-electron repulsion integrals which

represent the Coulomb interaction between

electrons in molecules.

10

Parboil benchmark is used in suitability study for CUDA by Hwu et al. [10].

Additionally, the suitability study includes Matrix Multiplication, Lattice Boltzmann

method and Saxpy apart from Parboil which mostly derived from high-performance

computing benchmark. The study done by [10] is accompanied by detail analysis of

the architectural bottleneck from the implementation. Instruction issue caused most of

the implementation bottleneck while a few others are caused by memory-related

bottleneck such as capacity, bandwidth and latency.

2.3 Serpent Encryption

Serpent encryption operates based on 32-round SP-network with four 32-bit

words as an input and up to 256-bit key as shown in Figure 4. The design of Serpent

algorithm is presented with parallelism by bit-slicing [11]. The 4x4 S-boxes

introduced within the SP-network has become the focus of previous works by [12]

and [13] to improve Serpent’s number of clock cycles. Different approaches were

taken with Gladman’s Serpent S-boxes [13] optimized for Intel Pentium 4 MMX

while Osvik’s Serpent [12] reduced the registers used by eliminating temporary

variables thus fit in the number of registers inside x86 architecture processors. Both of

the previous works provide good example of reducing the number of operations and

managing memory for CUDA implementation.

11

Figure 4: Serpent encryption flow chart

The Serpent encryption requires 132 32-bit words of key materials. The key

length provided by the user is normally ranging from the minimum 128-bit to the

maximum 256-bit key. Before any encryption could be done, the key provided by the

user is expanded, mixed and went through S-boxes before becoming the key

materials. The process is call “key scheduling” as summarized in Figure 5. The

symbol π is a constant with the value 0x9e3779b9.

Initial Operation

S-Boxes

r = 30

Linear

Transformation

Final Operation

kr

N

Y

k31

Plain Text

Cipher Text

12

11)(: 1358 <<<⊕⊕⊕⊕⊕=
−−−−

iwwwww iiiii π

),,,(:},,,{

),,,(:},,,{

...

),,,(:},,,{

),,,(:},,,{

),,,(:},,,{

),,,(:},,,{

),,,(:},,,{

1311301311283131130131128

1271261251244127126125124

19181716719181716

15141312015141312

1110981111098

765427654

321033210

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

=

=

=

=

=

=

=

Figure 5: Key Scheduling process

Graphic card as cryptography hardware is not entirely new, given the attempt

is made around year 2005 using OpenGL for AES Cryptography [14]; however the

performance suffered greatly from limited functionality. There were no successful

attempts made after that until the arrival of CUDA. Manavski [14] managed to

produce significant performance improvement using CUDA in AES Cryptography.

The author managed to produce up to 20 times speedup over CPU using 8MB of data

size and 128 bits of user key. Similar work is done for ARIA (cryptography originated

from Korea), Yeom et al. [15] able to produce comparable result to AES by

effectively using shared memory and registers inside the GPU.

13

2.4 Lattice Boltzmann for Fluid Flow

Ever since GPU is introduced to render computer images, the floating-point

operations (FLOP) performance has been increasing significantly till today that has

already reached hundreds of GFLOP/s compared to CPU which focused mainly on the

integer operation performance for mass consumer. By utilizing the GPU computation

capabilities along with low CUDA learning curve, we would produce methodology

for a simple porting process for additional performance gain.

Lattice Boltzmann for Fluid Flow is known for the simple algorithm and its

capabilities to be easily parallelized given the computation for each element inside the

lattice corresponds only to the element function [16]. Consequently, the amount of

resources needed for the computation is demandingly large and requires intensive

memory access. Boghosian [16] reviewed on the Lattice Boltzmann Equation based

on the book “The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond” by

Sauro Succi mentioned the algorithm originality and practical use. The algorithm is

made through discreet understanding of Navier-Stokes equation. This has made

parallel computation using multi-core platform possible and efficient.

Lattice Boltzmann has become increasingly popular in computational

dynamics. Numerous attempts were made to increase the performance of algorithm

that include study on the algorithm [17], optimization on multi-core platform [18] and

multi-GPU implementation for Lattice Boltzmann [19]. All of the studies suggested

significant performance gain by implementing the computation in parallel, however

specific methodology for the implementation process on CUDA is not shown.

14

A phenomenon known as Karman Vortex Street is used for the computation

fluid flow for this project. The unsteady separation of the flow of the fluid over a

body causes a repeating pattern of swirling vortices that is illustrated in Figure 6.

Detail methodology for CUDA implementation is described in Section 3.5.2.

Figure 6: Karman Vortex Street illustration

15

CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

 Figure 7 illustrates the method and the work flow of the project.

 Integer

Start

Article, Journal and related text reference review

Platform setup for benchmarks

Benchmarks and Compiler Installation

Execution of benchmarks and data acquisition

Porting source code from C to CUDA compatible

Benchmark Ported CUDA application

End

Identify potential Algorithms for implementation

Significant

performance gain?

Source code optimization

Floating Point

No

Yes

Figure 7: Flow Chart of Methodology

16

 The first approach in understanding CUDA concept and features is by

acquiring reference materials covering from the basic to implementation. The

understanding ensures the methods and approaches used are proper and correct to

avoid fallacies. The references are summarized and included in literature review.

Theory and practical analysis is essential to provide explanation in performance

measurement and programming algorithm.

After some of the theoretical review is done, the test platform was setup for

initial benchmarking purpose. The benchmark suite was later identified for the

project. This part is crucial in expecting the performance of the test setup and also

understanding how CUDA will perform for floating point and parallelization

computing.

CUDA performance measurement is done based on successful execution of

benchmarks that depends on the ability to produce results and not only to acquire the

output of the performance measurement. The measurement is to be done in a

controlled environment with both essential and non-essential factors to be as constant

as possible. The controlled environment includes but not limited to the Operating

System, the number of background programs and most important the computer system

specification. All of these are to make sure the highest possible results which are re-

produce-able.

Based on the previous approaches, the computation on CUDA is done by

analyzing results taken from the performance measurement. The analysis is done

using profiling tools and time consuming process or instruction is identified.

Numerical method is chosen for the implementation of CUDA. Graphical interface on

the other hand, would require more time to be spent on the programming and the

usage of more complicated libraries. This approach increases the chances of

successful compilation of the program and proper execution.

17

3.2 Experimental Setup

The chosen hardware for the project is based on the availability and also

budget available at the time. Table 2 provides detailed information of the hardware for

the test system.

Table 2: Hardware Information for the Test System

CPU

Model Name Intel Core 2 Duo Processor E4500

Frequency 2200 MHz

Front Side Bus 800 MHz

L1 Cache 32 KB

L2 Cache 2048 KB

Motherboard
Chipset Intel P35 Express

PCI-E 1.1

Memory
Type Corsair CM2X1024-6400 DDR2 800MHz

Size 2048 MB

GPU

Model Name Gigabyte Nvidia GeForce GTX 260

Memory 896MB GDDR3

Core Clock 1242 MHz

Memory Clock 2000 MHz

Some parts for the test system may already be at the low-end category at this

current time but both of the processors and the motherboard still provide good

performance-to-cost ratio. The PCI-E 1.1 the motherboard bottlenecks the graphic

card which uses PCI-E 2.0 that has a faster transfer rate. The graphic card was chosen

from the high-end category because of the compute capability in double precision [2]

and because it has the same Stock-Keeping-Unit (SKU) with the top-of-the-line

product. It is also decided based on the performance-to-cost ratio by the given

specification. Detail information for CPU and GPU can be found in Appendix B.

Some more details that need to be covered are the software part for the system.

The software is used throughout the project from benchmarks to implementation of

Super Calculator. Table 3 shows the details of the software information in the test

system.

18

Table 3: Software Information of the Test System

Operating System
Distributor Red Hat Enterprise Linux 11 32-bit

Kernel 2.6.18-92.el5

Compiler

Intel Intel C/C++ Compiler 11.0

GNU GNU Compiler Collection 4.1.2

Nvidia Nvidia CUDA Compiler 2.0

Driver Nvidia 177.11

The software chosen are distributed under open source license with some

limitation. Software development under open source can be done within minimal

budget and also a lot of dependencies can be solved by searching in the repository

website in the Internet. As of the time benchmarking is done, the configuration used

such as the compilers and the driver is of the latest possible. The number of processes

running in the background is limited and controlled. The kernel performance is also

relatively better and does not hog the memory resources.

3.3 Benchmark

Benchmark is done at the early stages to provide preliminary data that is

needed for the progress of the project. The benchmark provides information of the test

system performance according to the programs in the benchmark suite. Later on,

based on the benchmark score, the performance-to-cost calculation can be done for

relative comparison. The objective of the project also depends on the representation of

the benchmark performance score.

The benchmark suite was executed under level five of Linux which in X11

mode in as no performance benefit is gained from level three command-line interface

mode. The benchmark test run was executed at least three times to ensure consistency

in the results. A range of five-percent deviation was set to define the consistency. The

final results were taken based on the best score achieved and within the consistency

19

range. The execution time is recorded into table and represented as graph for easier

visual comparison.

Four different benchmarks were executed to test the system that is using two

different compilers for the CPU benchmark and two different CPU frequencies for the

GPU benchmark. The compilers used for CPU benchmark are GNU Compiler

Collection (GCC) as reference and Intel C/C++ Compiler 11.0 (ICC) for Intel CPU

optimization. Different CPU frequencies were achieved through manipulation of the

CPU clock ratio to study the performance of CUDA with varying CPU frequency.

In the benchmark process, the source codes for CPU are compiled using GCC

with full optimization level (-O3) and SSE3 instruction flag (-msse3), providing

added performance to the CPU benchmark result. Additional flag that is also used for

the ICC is inter-procedural optimization (-ipo) that enables in-lining of the code while

processor specific optimization flag for Intel Core 2 Duo Processor (-xT) is used.

These are the optimization flags that are enabled by default if the fast optimization

flag (-fast) is used [22] since the flag is accepted as the base benchmark in Standard

Performance Evaluation Corporation (SPEC) CPU benchmark [23]. Further

optimization may affect the program size to become bigger and the accuracy of the

benchmark timing. Bigger program size may not fit inside the L2 cache thus data

transfer between cache and the main memory will be frequent resulting in longer

execution time.

CUDA GPU benchmark source codes are compiled using the Nvidia CUDA

Compiler (NVCC) and the CPU host codes are compiled using GCC as specified

within [2]. As the optimizations provided by the compiler are more closely related to

the hardware and source code, no other compiler related flag could be used for

optimization. The compiler itself is relatively new compared to the compiler

developed for the CPU, thus more features from NVCC is expected.

20

The score is reciprocal of the total time taken by the programs to run. The

Input / Output (I/O) time is omitted as the data is not critical for the benchmark study.

The overall score is calculated using geomean and normalized against processor with

basic compiler score. Geomean is an average calculation using total of multiplication

and square root. Thus the overall score will not be swayed by one or two large

numbers. Normalization provides an easy view for relative comparison. The

calculations involved in determining comparison data in Figure 24 and Figure 25 are

shown in (1) and (2).

Execution CPUCopy timeExecution GPU

1
 Score

++
= (1)








∏

=

=
n

ik
Score(k)Geomean

n

1

 (2)

3.4 Potential Algorithms for Super Calculator using CUDA

 Potential algorithms need to be identified and evaluated for feasibility before

being adopted for implementation. As time is a major constraint, the selected

application must be able to be ported within the time limitation of the project.

Potential algorithm with source code written in C language could be considered a

head start in porting the algorithm. CUDA implements the extension of C language

which can provide an advantage in porting the source code that is written in C

language for the application, thus shorten the time needed for programming and more

time for program debug and optimization. Direct integration of the source code is

possible either by linking or rewriting portion of the source code to be executed on the

graphic card. All of these will require knowledge of the selected application’s

algorithm to benefit from CUDA parallelism.

21

3.4.1 Integer Operation

It is well known that graphic cards native operation is in floating-point for

graphic processes. At a glance, integer operation might not receive any benefit from

CUDA and the performance maybe less compared to CPU. This fact is supported by

previous work by [21], as database operation mainly involves integer operation.

Nvidia [2] also stated numerous clock cycles taken when performing integer

operation. However, there are still integer operations that do not cost performance

reduction that much, that is the bitwise operations. CUDA could sustain up to eight

bitwise operations per clock cycle.

Cryptography is considered to have an intensive bitwise operations performed

for converting plain text to cipher text. Recent success in implementing cryptography

on CUDA for AES [14], DES [7] and ARIA [15] making it as motivation in using

Serpent encryption as potential algorithm for the implementation. Additionally,

Serpent encryption is distributed under GNU Public License (GPL), making it

possible for modification and redistribution. A number of previous works in speeding

up Serpent provided valuable data and information in providing basic understanding

of Serpent performance so far.

3.4.2 Floating Point Operation

Floating Point operation consisted of single precision and double precision.

Each of them must correspond to IEEE-754 floating point standard for computation.

Single precision computation performs faster compared to double precision however

it is less accurate. CUDA support for double precision floating point is also limited to

graphics card with Compute Capability 1.3 [2]. Lattice Boltzmann computation

utilizes double precision floating point and since the graphics card used supports the

double precision features, it has become the motivation for the implementation.

22

3.5 Porting to CUDA and Optimization

After the acquisition of the source code, the source code is divided into three

sections that are data initialization, computation and result. Computation section is

analyzed to identify the most compute intensive function. This can be done by using

profiler or by manually adding in “Wall-clock” function to identify which

computation took the most time. The compute intensive function is then converted as

CUDA kernel function. This direct integration method is usually dubbed as naïve

implementation method as some algorithms can already gain performance benefit

using this method [7]. A function operating on an array containing a large number of

elements can be used as an example.

A data with 1MB of size is fitted into an integer array with 256K of elements.

Memory space is allocated using “malloc” since the array size is considered large

to avoid segmentation fault error. After the array has been initialized, the function

“function_array” is called to perform the operation to the array. The function

has to loop through the array’s element to perform the operation. Figure 8 shows the

source code fragment for the function.

#define array_size 256*1024

int *array_sample;

// memory allocation

array_sample = (int *) malloc(array_size*sizeof(int));

... // array initialization

function_array(array_sample); // function call

function_array(int *array_sample) {

 int i;

 for(i = 0; i < array_size; i++) {

 array_sample[i] = array_sample[i] + 5;

 }

}

Figure 8: C source code fragment for sample array function.

23

The function “function_array” operated on the array elements in

independently with no relation between each element. Thus the function can be ported

safely to CUDA without any complication. The porting process involves adding in

CUDA header file and specifying identifier “__global__” for the CUDA function.

CUDA’s function call syntax is also different from a standard C language by using

different identifier such as “function_array<<<NumBlock,

NumThread>>>(datatype variable)”. Apart from the parameters for the

function argument, the syntax includes the number of blocks and the number of

threads per block respectively. The ported code is shown in Figure 9.

#define array_size 256*1024

#define NumThread 256

__global__ void function_array(int *array_CUDA) {

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 array_CUDA[idx] = array_CUDA[idx] + 5;

}

void main() {

 int *array_sample;

 int *array_CUDA;

 int NumBlock;

 size_t size;

 size = array_size*sizeof(int);

 // request page-locked memory buffer

 cudaMallocHost((void**)&array_sample, size);

 ... // initialization for array_sample

 cudaMalloc((void**)&array_CUDA, size);

 // copy data to device

 cudaMemcyp(array_CUDA, array_sample, size,

cudaMemcpyHostToDevice);

 NumBlock = array_size/NumThread; // determine number of blocks

 //function call

 function_array<<<NumBlock, NumThread>>>(array_CUDA);

 cudaThreadSynchronize();

 // copy data to host

 cudaMemcpy(array_sample, array_CUDA, size,

cudaMemcpyDeviceToHost);

}

Figure 9: Source code fragment for ported CUDA-compatible code

24

Although source code from Figure 9 is longer than Figure 8, all of the added

functions are the basic requirement for the CUDA application to work with additional

performance gain. Page-locked memory buffer is requested by the CUDA host

memory allocation (“cudaMallocHost”) for faster data transfer between the host

and the device. The data is moved to and from the device by using memory copy

function. From here onward, the porting of the source code will become more specific

to the algorithm implemented. The common processes between Serpent Encryption

implementation and Lattice Boltzmann implementation on CUDA will be used to

produce the guideline.

3.5.1 Serpent Encryption Algorithm Implementation

From the algorithm analysis, it is known that Serpent encryption involves data

dependencies from previous iteration. The algorithm also occupies resources in the

execution of sequential functions as well as load and store data. Since the algorithm

itself is in serial sequence, this makes it almost impossible to parallelize the processes

(unless using bit-slice method similar to the hardware implementation). Nevertheless,

the encryption process could be executed in single thread without consuming much

resource, therefore opening another possibility in parallelization.

The data initialization section of the source code is modified to handle

multiple data stored in an array. Since the original input data is already in array form

(i.e. x[4], with ‘x’ as the variable for input), another dimension has to be added to the

array. Although it is possible, adding in another dimension caused some confusion as

the variable is in pointer-array form as it involves dynamic memory allocation and

fixed array all at the same time. Instead of adding in another dimension, we used

structured variables to make the input block as a data type. The structure is aligned to

16-byte boundary to enable single read/write memory instruction for 128-bit. The

structured variables and data types are shown in Figure 10.

25

 The initial attempt made concentrate solely on the encryption function of the

application with each thread performing encryption for 16-byte of plain text. The

structured variables and data types are applied to the encryption process as shown.

The structured data types are now able to be declared as pointers for dynamic memory

allocation and page-locked memory buffer for faster memory access.

 The parallel encryption is described in source code in Figure 11. The variable

“idx” the thread number identifier. Each of the plain text is encrypted within the

thread specified by the “idx”. The structured data types avoid confusion from having

to build two-dimensional array.

Figure 11: Encryption process on graphic card using CUDA

typedef struct __align__(16) {

unsigned long x0, x1, x2, x3;

} SER_BLOCK;

typedef struct __align__(16) {

unsigned long k0, k1, k2, k3;

} SUBKEY;

typedef struct {

subkey k[33];
} SER_KEY;

Figure 10: Source code fragment for structured variables and data types

Line Command

1. __global__ void cuda_encrypt(SER_BLOCK *enc_block, SER_KEY
*keys) {

2. int idx = (blockIdx.x * blockDim.x + threadIdx.x);

3. enc_block[idx] = keying(enc_block[idx], keys[idx].k[0]);
4. enc_block[idx] = SBOX00 (enc_block[idx]);
5. enc_block[idx] = transform(enc_block[idx]);
6. …
7. enc_block[idx] = keying(enc_block[idx], keys[idx].k[31]);
8. enc_block[idx] = SBOX31(enc_block[idx]);
9. enc_block[idx] = keying(enc_block[idx], keys[idx].k[32]);
10. }

26

 Figure 12 illustrates an example of 16KB of plain text encrypted using parallel

thread. The time taken for key scheduling is excluded initially as it was done on the

CPU and transferred to the GPU for the encryption. The performance gain from this

method only showed around 1.67 times faster than the application executed on the

CPU as shown in Figure 12. This is caused by the huge memory transfer of the key

materials for the encryption. For example, 16MB of plain text would require around

528MB of key materials as 528-byte key materials are for every 16 bytes of data.

Profiler result of the initial attempt indicates the performance suffered greatly

from huge memory transfer of the key materials. This has been previously observed

based on the Parboil benchmark result which resulted in poor performance for Sum of

Absolute Difference (SAD) algorithm. This is known through benchmark profile in

Section 4.2 and discussed in Section 4.4.3. The only way to overcome the

performance degradation is to include key scheduling process inside each thread

before encryption as shown in Figure 13. Consequently, the memory transfer size for

the encryption key materials are reduced to 32-byte for every 16-byte of plain text.

This implementation managed up to 7.5 times performance gain in throughput.

Memory transfer is identified as one of inefficiencies in CUDA if it was not managed

correctly. Detailed benchmark result is discussed further in Section 4.3 of this report.

Figure 12: Block diagram for 16KB of data size for the initial attempt

16KB of Plain text +

528KB of key materials

Encryption Encryption

Thread idx= 1024 Thread idx= 1

16KB of Cipher text

...

27

Figure 14 shows the fraction time spent in the GPU for both of the attempts by

using CUDA Visual Profiler. The fraction of time taken for the initial attempt’s

memory transfer occupied a lot more compared to the complete application’s memory

transfer. Thus, in this case, optimization is done by limiting memory transfer.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial Attempt Complete

Application

GPU Time in (%)

Memory Transfer Cipher

Text

Encryption

Memory Transfer Plain

Text

Memory Transfer Keys

Figure 14: GPU time spent in percentage

Figure 13: Block diagram for 16KB of data size in Complete Application

16KB of Plain text + 32KB of User keys

Encryption Encryption

Thread idx= 1024 Thread idx= 1

16KB of Cipher text

...

Key Scheduler Key Scheduler

28

 A few more attempts were made to push the performance gain further that

includes changing the number of threads per block, varying the input block size and

specifying the number of registers to be used. The results are discussed in Section 4.3.

3.5.2 Lattice Boltzmann for Fluid Flow

We used a simple simulation in utilizing the Lattice Boltzmann Method

(LBM) to simplify the porting process. The program simulates Karman Vortex Street

phenomenon that has been discussed in Section 2.4 of the report. The source code is

acquired from an open source solution, that is the OpenLB [20] and it is still

maintained by the users although depreciated. It is written in modular form for

readability and flexibility for future extension. Unlike Serpent encryption, OpenLB

consisted of many processes for a complete simulation. Thus porting the source code

from C to CUDA-compatible would not be just one or two functions, but instead it

needs several functions to perform correctly.

The OpenLB’s “Unsteady” program source code utilizes a lot of pointers for

the data and functions. Additionally, OpenLB is managed with external function link

between the main file with the files containing the computation function. All of the

computations for the Lattice Boltzmann are done with double-precision floating-point.

The complete simulation flow chart is shown in Figure 15.

29

Start

setConstant()

initData()

constructSim(&sim,lx,ly)

iniGeometry()

updateZeroGradientBoundary()

Collide(&sim)

iT%tsave==0

Propagate(&sim)

makePeriodic(&sim)

iT<maxT

destructSim(&sim)

freeData()

End

saveVel(&sim)

Y

N

Y

N

iT+1

Compute LBM

Initialize Data

Figure 15: Flow chart for “Unsteady” simulation

30

We profiled the program by adding a “Wall-clock” function to the program for

time measurement. The “Wall-clock” function measures the time taken from one

point to another point in the program. Although, the timing might not be accurate

compared to a real profiler application, it served the purpose in determining the ratio

of a function runtime to the whole program execution time. The iteration of the

program, which is controlled by the variable “maxT” is set at 100000. Based on the

method used, the execution time for the function “Collide(&sim)” is measured for

comparison.

The “Collide” collision simulation function consisted of several modular

functions that are differentiated according to the element position inside the lattice.

The functions represent the computational dynamics for Bounce Back, Bhatnagar–

Gross–Krook (BGK) for the bulk dynamics and all of the side boundaries include

upper, lower, left and right. The elements function are determined in geometry

initialization function (i.e. “iniGeometry()”). The initialization is summarized and

shown in Figure 16 and Figure 17.

The original source code utilized function pointers and function template

parameters that is not supported by the Nvidia CUDA Compiler 2.3. Additionally,

data declared as pointer will have to be properly dereferenced for the GPU execution

otherwise the output would not be correct. The adjustment in the data structure is

necessary for the source code to be compatible with CUDA and executes correctly on

the GPU. The original source code uses 2D array for the lattice, although CUDA

compiler support 2D array, proper indexing of the 2D array proved to be difficult.

31

Start

Lattice[iX][iY]

iX=1,iY=1

(iX-obst_x)2+(iY-obst_y)2

<= (obst_r)2

bounceBack bulkDynamics

iX <= lx, iY <= ly

iX=1, iY=1

iX++,iY++

lowerBoundary

iX <= lx

iX++

iX=1, iY=ly

upperBoundary

iX <= lx

iX++

A

Y

Y

Y

Y

N

N

N

N

Figure 16: Flow chart for the first part of geometry initialization function

32

A

iX=1, iY=1

leftBoundary[iY]

iY <= ly

iY++

iX=lx, iY=1

rightBoundary[iY]

iY <= ly

iY++

End

Y

Y

N

N

Figure 17: Flow chart for the second part of geometry initialization function

The elements of the lattice are sorted out according to its function. Since the

compiler does not support pointer function, each of the function is assigned a

numerical value to be used in the conditionals elements sorting for faster comparison.

The functions are ported to CUDA-compatible source code by adding parallel access

using arrays. The amount of data handled for the computation is smaller compared to

Serpent Encryption. The amount of computations that is done on the GPU is also less

intensive compared to Serpent Encryption. Consequently, this would make it hard to

hide the global memory latency as suggested in the guideline for Serpent Encryption.

However, the small amount of data allows the usage of shared memory and constant

memory cache to be used.

33

Based on the profile of the program, the function “Collide” occupies most of

the program execution time. The goal of the initial attempt is to minimize the time

taken for the function to execute and shorten the execution time altogether. Initial

attempt was made by porting each of the function by using naïve implementation as

shown in the flow chart in Figure 18.

GPU Computation

Redistribute

Propagate

Collision?

Bulk dynamics Bounce Back

Finish

iteration?

Start

End

No

Yes

No

Yes

Figure 18: Flow chart for the initial attempt on LBM CUDA implementation

Although this is the easiest method in getting the functions to be executed on

the GPU, the code has become very inefficient. As a result, the performance for the

implementation degraded significantly. Figure 19 shows the comparison between

CUDA implementation with CPU. The CPU compilers used as comparison are Intel

C/C++ Compiler 11 (ICC) and GNU C Compiler 4.4 (GCC).

34

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g

e

Percentage time taken for Collide function

CUDA GCC ICC

Figure 19: Bar chart for percentage time taken for function "Collide"

 The performance degradation is caused by multiple requests for page-locked

memory buffers (i.e. “cudaMallocHost”). The time taken for the memory

allocation occupies most of the function’s execution time. Although page-locked

memory buffer offers high data transfer rate compared to usual memory allocation

using standard C function, the amount of time taken for the transfer does not

overcome the performance degradation caused by the page-locked request.

The last attempt made resulted in significant degradation of performance.

Another attempt is made by including the data initialization and overall computation

into the GPU. Since the initial value for the entire lattice elements are the same, the

data initialization can be done in parallel using the GPU. Although the computation

involved a few conditional branching, it is assumed the number of conditional

branching is within the GPU limited capabilities. The general flow of the program is

illustrated in Figure 20.

35

Figure 20: Flow chart for Lattice Boltzmann Method complete application

implementation on CUDA

This is done not only to minimize the amount of size for memory transfer but

also to reduce the complexity of the memory copy. Although CUDA supports multi-

dimensional array operation, the array stored in the device memory is “flattened” (i.e.

from to two-dimensional array to one-dimensional array) to reduce the complexity of

the memory allocation. However, even though the array inside the GPU is flattened, it

can still be addressed and computed in two-dimensional fashion. Figure 21 illustrates

the two-dimensional computing model supported by CUDA and Figure 22 shows the

source code fragment for indexing method used to address one-dimensional array for

two-dimensional computation.

Figure 21: Block diagram showing 2D computational model on CUDA

36

The direct integration for the complete application has shown significant

performance gain in the execution time. The complete application was benchmarked

with varying lattice size to study the performance effect. The result is further

discussed in Section 4.4. After the successful source code porting process, an

optimization was done to further improve the performance gain of the application.

The optimization done has affected only small part of the source code. Blocks

and threads that are managed well will have equal distribution of resources and tasks,

thus the device can perform efficiently. However, the higher the number of blocks or

the number of threads per block does not mean it will give the better performance. In

this case, we measure the performance for each number of threads per block to

determine the best number of threads per block. Figure 23 shows the result for the

number of threads optimization with the result normalized over 8-thread per block.

1

1.05

1.1

1.15

1.2

1.25

1.3

8 16 32 64

Number of Threads Per Block

Performance Gain versus Number of

Threads Per Block

Figure 23: Graph for performance gain in execution time versus number of threads

per block with normalized result

Figure 22: Source code fragment for addressing 1D array for 2D computation

model

int idx = blockDim.x*blockIdx.x+threadIdx.x;

int by = blockIdx.y;

// node[x][y] = node_gpu[idx+lx*by];

node_gpu[idx+lx*by] = compute(node_gpu[idx+lx*by];

37

3.6 General Guideline for CUDA porting process

 Based on the porting process of Serpent encryption algorithm and Lattice

Boltzmann a number of key points is summarized for the general guideline:

• Identify parts in the source code for data initialization, compute intensive task

and data retrieval.

• Aligning a structure type containing 16 bytes of data to 16-byte boundary

provide coalesced memory transaction for the global memory thus increasing

global memory bandwidth efficiency.

• Page-locked memory buffer can be requested for higher data transfer rate

however multiple requests over small amount of data degrade the overall

performance significantly.

• Examine computation demanding task for data dependencies as well as

sequence. This is important to recognize whether the computation can be done

in parallel. Usually an arrays or matrices operation that is done in a loop

without any dependencies can be directly ported.

• Although the global memory has the highest latency among the other types of

memory in the device, the latency can be hidden by compute intensive

instructions.

• Memory management is crucial in getting most of the performance from

CUDA. By using shared memory as a temporary memory for operations could

increase the performance.

• The amount of size for memory transfer must be kept at minimum as possible

for efficiency. Generally, a big ratio between computations to memory transfer

must be maintained.

• For multi-dimensional array computation, it is more convenient to flatten the

array for memory allocation and memory transfer but the data will still be able

to be computed in multi-dimensional computational model by managing the

kernel’s blocks and threads.

38

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Parboil Benchmark

This part of report displays the result from the benchmark and some findings

that are worth mentioning. The benchmark result is obtained as at the time using the

hardware and software details mentioned in the previous section. Figure 24 shows the

summary of the benchmark result. The scoring system used was explained earlier in

previous section. It is meant to provide relative comparison as well clear indication of

the performance improvement.

1
4

69.21

59.91

0

20

40

60

80

Parboil Benchmark Score Summary

CPU @ GCC CPU @ ICC CUDA @ 2.2GHz CPU CUDA @ 1.2 GHz CPU

Figure 24: Bar chart for normalized Parboil benchmark score

The benchmark was executed a number of times for precision timing as to

make sure that each execution time does not vary too much from each other. The data

was then recorded based on the last execution and calculations were done to come out

with the figure. The overall score was calculated as explained in the Methodology

39

section of the report. The benchmark explains the bigger picture of the project as it is

one of the objectives of the project. However, the benchmark details must be

examined for the result to be more meaningful. Detail elaborations of the benchmark

result are described within this section.

As the score summary depict, the benchmark performs 4 times better using

ICC even when using GCC with generated processor instruction set. Unfortunately,

the source codes for the benchmark programs do not support processor parallelization

for it to execute on multiple thread. Thus the comparison can only be made with

single thread processor. Aggressive compiler optimization flag were not tested as it

may affect the accuracy of the benchmark such as when specifying the loop unroll,

thus the compiler optimization flag were kept standard and more focused towards the

effect on the hardware itself. The benchmark comparison between GCC and ICC

translate the compiler performance in enhancing program execution time.

The benchmark shows that GPU performance has big advantage over the CPU

with up to 69 times from GCC compiler and 17 times from ICC compiler. As for GPU

benchmark, it is found that the GPU performance indeed scale with the CPU

frequency of 1.15 times for 1 GHz. The CPU host code may occupy a small fraction

of code, thus the scale between CPU performance and GPU performance is within the

factor of the fraction. This comparison is only valid as clock-per-clock basis with

similar CPU architecture since newer CPU architecture design computes at lesser

clock cycle. Further elaboration in Discussion section explains more on CPU affect on

GPU performance. Based on the result, it can be conclude that CUDA increase

performance on a system even on low-end system with low CPU frequency.

40

cp rpes pns sad
mri-fhd

(small)

mri-fhd

(large)

mri-q

(small)

mri-q

(large)
tpacf

gcc 0.002 0.007 0.019 16.813 0.156 0.029 0.161 0.030 0.013

icc 0.072 0.030 0.025 18.131 0.996 0.181 0.992 0.186 0.010

cuda 3.114 1.784 0.430 7.514 8.422 6.648 8.558 6.957 0.733

0.000

5.000

10.000

15.000

20.000

Figure 25: Bar graph for detail benchmark score

 Figure 25 shows the detail benchmark scores for all of the benchmark

programs. Two of the benchmark programs (MRI-FHD and MRI-Q) have two inputs

in varying size that is noted by small and large that represents the size of the image

used for the MRI application. Each of the programs implements different data

structure in calculation. The detail benchmark scores provide further breakdown of

the benchmark result. It can be seen that most of the programs have large

improvement over the CPU counterpart except for Sum of Absolute Difference (SAD)

benchmark and Two Point Angular Correlation Function. In order to avoid having the

same performance decline in the implementation part, the source codes are profiled

using Nvidia CUDA Visual Profiler to provide more information for the benchmarks.

41

4.2 Benchmark Profile

 Source code profile provides detail information of the program flow indicated

by the timestamp, routine executed during the time, length of time and elapsed time

from the beginning of the program. The interest in profile is scale down to GPU as the

implementation of the application requires the information from the GPU side. Figure

26 represents the data of the benchmark profile based on time percentage for the

GPU.

Benchmark Profile Graph

3

53

1

75

4 3 1

97 99 96 97 99

25

47

0

25

50

75

100

cp rpes pns sad mri-fhd mri-q tpacf

Benchmark

G
P

U
 T

im
e
 P

e
r
c
e
n

ta
g

e
 (

%
)

Memcopy

Kernel

Execution

Figure 26: Graph for Benchmark Profile according to GPU Time Percentage

The graph shows two of the general routine executed by the benchmark. The

“Memcopy” represents the routine of memory copy involving device and host. The

“Routine” represents the calculations involved in the GPU and the percentage time

taken.

42

4.3. Serpent Encryption Benchmark

Based on the successful attempt in optimizing serpent encryption using

CUDA, benchmark is then done to study the effect of the number of block size with

the throughput performance. This data is valuable as the effect studied is the

scalability of CUDA and the maximum number of block size capable before all of the

resources on the graphic card are used. Figure 27 shows the throughput performance

of the Serpent encryption for CUDA and CPU. The maximum data size achieved is

16MB, while maintaining the throughput performance. The performance gain

maintained for all of the block sizes that is 7 times more throughput. The benchmark

was done using Nvidia CUDA Compiler 2.3 and GNU C Compiler 4.4 for CPU.

14.085 14.085 14.060 14.072

100.000 100.000 98.765 100.629

0

20

40

60

80

100

120

2 4 8 16

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Data Size (MB)

Throughput vs Data Size

CPU

CUDA

Figure 27: Graph for Serpent encryption benchmark result

 The result is compared side-by-side for initial attempt and complete

application. The improvement achieved by limiting the memory transfer was

significant. The throughput for CPU degraded in second attempt comparison as the

benchmark also includes key scheduling process for CPU. The graph is shown in

Figure 28.

43

100.629

14.072

50.79

32.52

0.000

20.000

40.000

60.000

80.000

100.000

120.000

CUDA CPU

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Throughput Performance for 16MB Data Size

Complete Application (Key

Scheduling and

Encryption on GPU)

Initial Attempt

(Encryption on GPU)

Figure 28: Throughput comparison for complete application with initial attempt

 Two more benchmarks were done to study the effect of number of threads per

block and also the number of registers per thread. These benchmarks were using

16MB data size as the plain text input. The number of threads per block was varied by

specified manually inside of the source code while the number of registers is passed

through to the compiler as the maximum registers count. The results are shown in the

graphs in Figure 29 and Figure 30.

 Although no significant performance gain can be achieved through the

attempts, it is safe to assume the current algorithm has already reached the maximum

possible throughput. It is interesting to mention the throughput result for varied

number of threads per block for 64 threads is slightly better than 256 threads. Further

detail is discussed in Section 4.5.4.

44

83.333

101.911 98.160 100.000

0

20

40

60

80

100

120

32 64 128 256

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Thread PerBlock

Throughput vs Thread PerBlock

Throughput

Figure 29: Throughput performance for varied number of threads per block

96.970

99.379 99.379 99.379

96

96

97

97

98

98

99

99

100

100

30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Registers

Throughput vs Registers

Throughput

Figure 30: Throughput performance for varied number of registers per thread

45

4.4 Lattice Boltzmann Method benchmark result

Based on the direct integration implementation for Lattice Boltzmann method

on CUDA, the performance of the implementation was measured against the CPU

source code with GCC 4.4 compiler as reference and ICC 11.0 as high-performance

compiler for CPU. The implementation managed a performance gain up to 10 times

with the performance gain increase with the increment of the lattice size. The

optimized thread number performance gain over the un-optimized thread number also

increases as the lattice size increases. Figure 31 shows the graph of the performance

gain in terms of execution time with the result normalized over CPU based code

compiled using GCC 4.4.

0

2

4

6

8

10

12

32x32 64x64 128x128 256x256 512x512

Lattice Size

Performance Comparison

GCC 4.4 ICC 11.0 CUDA 8T CUDA 16T

Figure 31: Bar chart for execution time performance comparison. The higher is the

better performance

The data trend shows an increasing performance gain as the occupancy of the

GPU increases and as the occupancy of the GPU nearing the maximum, the

performance gain only increases slightly.

46

4.5 Discussions

4.5.1 Compiler Flag Optimization

The C/C++ Compiler for CPU has been extensively developed for quite some

time. As the CPU technology advance, new processor flag instruction is introduced to

execute instructions at lesser clock cycles. Thus, to make use of the processor flag

instruction, the compiler has to be optimized for the specific CPU to be able to

generate special instruction code. This is where programmer normally optimized the

program to make it run faster by compiling the source code with optimization flag. In

the benchmark process, the source codes for CPU are compiled with full optimization

level (-O3) and SSE3 instruction flag (-msse3), providing added performance to the

CPU benchmark result. Additional flag that is also used for the ICC is inter-

procedural optimization (-ipo) that enables in-lining of the code while processor

specific instruction.

Optimization can unleash the true potential of the hardware but it can also be

misleading. For instance, generating profile is one of the compiler optimization

features that can improve the execution time of the program however at the same time

requires the program to be executed at least two times in order to generate the profile

for optimization. The profile is compatible with system that has similar configuration

to the test setup but may not be for others. This does not state the true fact about the

performance of the program and also the system when execution time is concerned.

However in some cases, profile does benefit greatly if the implementation involves

similar algorithm.

47

4.5.2 GPU Benchmark Score

Execution time for the GPU to execute the benchmark programs include the

time taken for host code to execute, data copied into the share memory and device

code to execute. All of these are necessary in order for a program to execute on GPU,

thus it cannot be neglected. Nevertheless, input/output time was omitted from the

execution time calculation as mentioned in Methodology chapter. GPU Benchmark

Profile provide more information as the GPU

The CPU frequency scaling and its effect on GPU performance are studied in

the benchmark. As stated before, the CUDA source code contains lines of codes for

the host to execute before being offloaded to the GPU. A good CUDA code will take

minimal time in host execution and minimal amount of time for the data to be copied

to the shared memory in the GPU. From the benchmark, MRI application which is

applied in matrices benefits greatly from CUDA. Other application such as

Cuolombic Potentials, make use of CUDA Three Dimensional (3D) vector

capabilities to compute 150 times faster compared to GCC and 42 times faster

compared to ICC.

4.5.3 Memory Copy

One of the concerns in developing application on interconnected device is

transfer of data. In the case of Super Calculator test setup, GPU is connected through

PCI-E v1.1 which has a data rate of 250 MB/s. The memory copy routine as shown by

the benchmark, affects the performance of the application. Figure 26 show that SAD

application took performance degradation from the high percentage time of memory

copy. One of the factors to be considered however is the use of PCI-E v1.1 which

only half the data rate of the latest PCI-E v2.0. The memory copy may have been too

large, thus this factor should be considered in developing the application.

48

4.5.4 Serpent Encryption benchmark data trend

The benchmark data only shows a flat trend over increasing data size.

However, this only shows the scalability up to the maximum data size the GPU could

handle in single execution. The maximum data size is achieved at 16MB because of

the memory limitation within the graphic card. Larger data size will need to be broken

into chunks for parallel encryption. The optimum number of threads per block for

Serpent encryption algorithm is 64 while maximum number of registers could be

maintained at 40.

The number of blocks corresponded to the number of thread per block for a

given data size. Larger number of thread per block would result in smaller number of

blocks. While having small number of threads per block will result in poor

performance, having large number of thread per block in this case does not give any

performance gain either. Each of the blocks has shared memory that is shared between

the threads in the same block. However the size of the shared memory is limited to

16KB [2]. Thus the right number of threads per block will give better memory access,

resulting in better performance.

The maximum number of registers specified limit the number of registers used

for storage purpose, thus making it available for computation. Both shared memory

and registers per block are limited, thus device memory is used to store the large

amount of data. Although the device memory storage is a lot bigger (896MB in this

case), access latency is much higher. Compute intensive and memory intensive

application need to consider these factors as compute intensive program would be

able to hide the latency; however memory intensive program may suffer performance

degradation cause by the latency.

49

CHAPTER 5

CONCLUSION

Based on the work done to both Serpent encryption and Lattice Boltzmann, a

general guideline is produced for simple and direct integration method from CPU-

based algorithm in C language to CUDA-compatible source code with minimal effort.

Both of the programs are based on compute intensive application that usually stresses

the CPU extensively, thus becoming perfect candidates as an example for the

implementation.

The benchmark data and profile data provide information and expectation for

the development of application for the Super Calculator. The analysis has provided

knowledge and understanding on the performance study of CUDA. Serpent

encryption algorithm which is based on integer and bitwise manipulation managed to

achieve up to 7 times performance gain compared to the CPU by using multiple block

encryption in parallel. The data for the multiple blocks is handled independently

without any relation with the other blocks. The Lattice Boltzmann was chosen for the

floating-point implementation because of its parallel algorithm for the lattice’s

elements computation. By using direct integration method, the performance gain in

the execution time is up to 10 times over that of the CPU.

 Although CUDA is able to provide massive parallelism, it is limited by only

one kernel can be executed at the same instance. Nevertheless, it was able to give

considerable performance gain and still holds much potential. Direct integration

method also worked well, given the programmer could spend some time in profiling

the ported source code. Optimizations such as limiting memory transfer, thread block

management and memory management could already give considerable performance

gain over system with just CPU as computation processor.

50

REFERENCES

[1] M. Harris, “General-Purpose computation on Graphic Processing Units”,

[Online]. Available: http://www.gpgpu.org. Last Accessed: September 10,

2009.

[2] NVIDIA Corporation, “Programming Guide,” in NVIDIA CUDA Compute

Unified Device Architecture, Ver. 2, June 2008, [Online]. Available:

http://www.nvidia.com/object/cuda_home.

[3] D. Adams, Inside Tsubame: Japan’s NVIDIA GPU Supercomputer, Dec.

2008, [Online]. Available: http://www.osnews.com/story/20635/Inside_

Tsubame_Japan_s_NVIDIA_GPU_Supercomputer. Last Accessed: May 3,

2009.

[4] R. Farber, “Architecture and Design,” in CUDA, Supercomputing for the

Masses: Part 1, April 2008, [Online]. Available:

http://www.ddj.com/architect/207200659.

[5] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,

“GPU Computing,” in Proceedings Of The IEEE, Vol. 96, No. 5, pp 879-899,

May 2008.

[6] J. Nickolls, I. Buck, M Garlanda and K. Skadron, “Scalable Parallel

Programming with CUDA,” in GPUs for Computing, Vol. 6, No. 2, April

2008.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. "A

Performance Study of General Purpose Applications on Graphics Processors

using CUDA," in Journal of Parallel and Distributed Computing, Elsevier,

68(10):1370-80, Oct. 2008, DOI http://dx.doi.org/10.1016/j.jpdc.2008.05.014.

[8] J. L. Hennesy and D. A. Patterson, “The Role of Performance”, in Computer

Organization and Design, San Mateo, California, Morgan Kaufman Publisher,

pp 46 – 77, 1994.

51

[9] Parboil benchmark suite, [Online]. Available:

http://www.crhc.uiuc.edu/impact/parboil.php. Last Accessed: April 28, 2009.

[10] Wen-Mei Hwu, Rodrigues, C., Ryoo, S. and Stratton, J., "Compute Unified

Device Architecture Application Suitability," Computing in Science &

Engineering , vol.11, no.3, pp.16-26, May-June 2009

[11] R. Anderson, E. Biham, and L. Knudsen, “Serpent: a proposal for the advance

encryption standard.” [Online]. Available:

http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf, Accessed: July 1, 2009.

[12] D. A Osvik, “Speeding up serpent,” in AES Candidate Conference, New York,

NY, USA, April 2000.

[13] B. Gladman, http://gladman.plushost.co.uk/oldsite/cryptography_technology

/serpent/index.php, Accessed: July 26, 2009.

[14] S. A. Manavski, “CUDA compatible GPU as an efficient hardware accelerator

for AES cryptography,” in IEEE International Conference on Signal

Processing and Communication, ICSPC 2007, Nov. 2007, pp. 65–68.

[15] Y. Yeom, Y. Cho, and M. Yung, “High-Speed Implementations of Block

Cipher ARIA Using Graphics Processing Units,” in Proceedings of the 2008

international Conference on Multimedia and Ubiquitous Engineering (April

24 - 26, 2008). MUE. IEEE Computer Society, Washington, DC, 271-275.

2008.

[16] Boghosian, B.M., "A look at lattice boltzmann equations [Book Review],"

Computing in Science & Engineering , vol.5, no.2, pp. 86-87, Mar/Apr 2003

[17] Weibin Guo, Cheqing Jin and Jianhua Li, "High Performance Lattice

Boltzmann Algorithms for Fluid Flows," Information Science and Engieering,

2008. ISISE '08. International Symposium on, vol.1, no., pp.33-37, 20-22 Dec.

2008.

[18] Williams, S., Carter, J., Oliker, L., Shalf, J. and Yelick, K., "Lattice

Boltzmann simulation optimization on leading multicore platforms," Parallel

52

and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on , vol., no., pp.1-14, 14-18 April 2008.

[19] Jifu Zhou, Chengwen Zhong, Jianfei Xie and Shiqun Yin, "Multiple-GPUs

Algorithm for Lattice Boltzmann Method," Information Science and

Engieering, 2008. ISISE '08. International Symposium on , vol.2, no., pp.793-

796, 20-22 Dec. 2008.

[20] OpenLB (Open source lattice Boltzmann method), [Online]. Available:

http://www.lbmethod.org/openlb/index.html. Last Accessed: October 19,

2009.

[21] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast

computation of database operations using graphics processors,” in Proc. of

SIGMOD, 2004.

[22] Intel Corporation, “Intel Software Development Products,” in Quick-

Reference Guide to Optimization with Intel® Compilers Version 11, Accessed:

April 16, 2009, [Online]. Available: cache-

www.intel.com/cd/00/00/22/23/222300_

222300.pdf

[23] Standard Performance Evaluation Corporation, SPEC CPU2006 Results,

[Online]. Available: http://www.spec.org/cpu2006/results/

53

APPENDICES

54

Appendix A

Publication

1. Anas Mohd Nazlee, Fawnizu Azmadi Hussin and Noohul Basheer Zain Ali,

"Serpent Encryption Algorithm Implementation on Compute Unified Device

Architecture (CUDA)", In Proceeding IEEE Student Conference on Research

and Development, November 16-18, 2009.

55

Appendix B

System Information

CPU Information

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz

stepping : 13

cpu MHz : 2200.000

cache size : 2048 KB

physical id : 0

siblings : 2

core id : 0

cpu cores : 2

apicid : 0

initial apicid : 0

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx

lm constant_tsc arch_perfmon pebs bts pni dtes64 monitor ds_cpl est

tm2 ssse3 cx16 xtpr pdcm lahf_lm

bogomips : 4400.11

clflush size : 64

power management:

processor : 1

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : Intel(R) Core(TM)2 Duo CPU E4500 @ 2.20GHz

stepping : 13

cpu MHz : 2200.000

cache size : 2048 KB

physical id : 0

siblings : 2

core id : 1

cpu cores : 2

apicid : 1

initial apicid : 1

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 10

56

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx

lm constant_tsc arch_perfmon pebs bts pni dtes64 monitor ds_cpl est

tm2 ssse3 cx16 xtpr pdcm lahf_lm

bogomips : 4399.69

clflush size : 64

power management:

Graphic Card Information

CUDA Device Query (Runtime API) version (CUDART static linking)

There is 1 device supporting CUDA

Device 0: "GeForce GTX 260"

 CUDA Driver Version: 2.30

 CUDA Runtime Version: 2.30

 CUDA Capability Major revision number: 1

 CUDA Capability Minor revision number: 3

 Total amount of global memory: 938803200 bytes

 Number of multiprocessors: 27

 Number of cores: 216

 Total amount of constant memory: 65536 bytes

 Total amount of shared memory per block: 16384 bytes

 Total number of registers available per block: 16384

 Warp size: 32

 Maximum number of threads per block: 512

 Maximum sizes of each dimension of a block: 512 x 512 x 64

 Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

 Maximum memory pitch: 262144 bytes

 Texture alignment: 256 bytes

 Clock rate: 1.24 GHz

 Concurrent copy and execution: Yes

 Run time limit on kernels: Yes

 Integrated: No

 Support host page-locked memory mapping: Yes

 Compute mode: Default (multiple

host threads can use this device simultaneously)

57

Appendix C

Parboil Benchmark data

IO GPU Copy Compute Score

cp 0.010220 0.000000 0.000000 38.157044 0.026207

rpes 0.017431 0.000000 0.000000 43.362025 0.023062

pns 0.000171 0.000000 0.000000 49.227340 0.020314

sad 0.184050 0.000000 0.000000 0.118138 8.464677

mri-fhd (small) 0.001230 0.000000 0.000000 0.973062 1.027684

mri-fhd (large) 0.009014 0.000000 0.000000 5.402111 0.185113

mri-q (small) 0.001280 0.000000 0.000000 2.856392 0.350092

mri-q (large) 0.008727 0.000000 0.000000 15.385966 0.064994

tpacf 0.478070 0.000000 0.000000 105.746986 0.009457

cp 0.010238 0.000000 0.000000 14.119911 0.070822

pns 0.000169 0.000000 0.000000 39.126251 0.025558

sad 0.187726 0.000000 0.000000 0.055288 18.087108

mri-fhd (small) 0.001307 0.000000 0.000000 1.077504 0.928071

mri-fhd (large) 0.008613 0.000000 0.000000 5.751265 0.173875

mri-q (small) 0.009305 0.000000 0.000000 1.010185 0.989918

mri-q (large) 0.008709 0.000000 0.000000 5.371924 0.186153

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

Base

CPU

Benchmark

Compiler Intel C/C++ Compiler 11.0

-O3 -xT

PARBOIL BENCHMARK

Compiler Flags

58

IO GPU Copy Compute Score

cp 0.032949 0.000000 0.000000 501.844121 0.001993

rpes 0.017617 0.000000 0.000000 150.546424 0.006642

pns 0.000169 0.000000 0.000000 71.271529 0.014031

sad 0.188217 0.000000 0.000000 0.160405 6.234220

mri-fhd (small) 0.034531 0.000000 0.000000 6.393511 0.156409

mri-fhd (large) 0.082410 0.000000 0.000000 34.263895 0.029185

mri-q (small) 0.022346 0.000000 0.000000 6.068583 0.164783

mri-q (large) 0.073838 0.000000 0.000000 32.603966 0.030671

tpacf 1.466546 0.000000 0.000000 78.562207 0.012729

cp 0.012978 0.000000 0.000000 502.250742 0.001991

pns 0.000166 0.000000 0.000000 52.458300 0.019063

sad 0.183087 0.000000 0.000000 0.059477 16.813222

mri-fhd (small) 0.001319 0.000000 0.000000 6.461661 0.154759

mri-fhd (large) 0.009133 0.000000 0.000000 34.427118 0.029047

mri-q (small) 0.001292 0.000000 0.000000 6.192104 0.161496

mri-q (large) 0.009277 0.000000 0.000000 33.035517 0.030270

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

CPU

Compiler GNU C Collection 4.1.2

PARBOIL BENCHMARK

Base

Benchmark

Compiler Flags -O3 -msse3

59

IO GPU Copy Compute Score

cp 0.061839 0.000000 0.000000 36.055435 0.027735

rpes 0.034432 0.000000 0.000000 33.804972 0.029581

pns 0.000467 0.000000 0.000000 46.818074 0.021359

sad 0.169085 0.000000 0.000000 0.140549 7.114956

mri-fhd (small) 0.038362 0.000000 0.000000 1.004024 0.995992

mri-fhd (large) 0.072529 0.000000 0.000000 5.523443 0.181046

mri-q (small) 0.037232 0.000000 0.000000 2.915938 0.342943

mri-q (large) 0.065463 0.000000 0.000000 15.476124 0.064616

tpacf 1.503969 0.000000 0.000000 103.854404 0.009629

cp 0.102240 0.000000 0.000000 13.809612 0.072413

pns 0.000175 0.000000 0.000000 39.249689 0.025478

sad 0.152698 0.000000 0.000000 0.055155 18.130723

mri-fhd (small) 0.001271 0.000000 0.000000 1.077723 0.927882

mri-fhd (large) 0.009012 0.000000 0.000000 5.750769 0.173890

mri-q (small) 0.001245 0.000000 0.000000 1.007732 0.992327

mri-q (large) 0.009077 0.000000 0.000000 5.374488 0.186064

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

Benchmark

Base

CPU

Compiler Intel C/C++ Compiler 11.0

Compiler Flags -O3 -xT -ipo

PARBOIL BENCHMARK

60

IO GPU Copy Compute Score

cp 0.013888 0.187609 0.129066 0.004418 3.114363

rpes 0.022802 0.177085 0.176380 0.206931 1.784452

pns 0.015593 2.140182 0.185902 0.000318 0.429848

sad 0.202321 0.001066 0.126997 0.005020 7.514108

mri-fhd (small) 0.001408 0.006426 0.112163 0.000152 8.421691

mri-fhd (large) 0.008662 0.031053 0.118984 0.000384 6.648008

mri-q (small) 0.001393 0.005103 0.111635 0.000105 8.558493

mri-q (large) 0.009001 0.024938 0.118441 0.000354 6.957345

tpacf 1.349266 1.225661 0.114639 0.023142 0.733438

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

Compiler (Host) GNU Compiler Collection 4.1.2

Geomean Score 3.279578

CPU Frequency 2200 MHz

Compiler (Device) Nvidia CUDA Compiler 2.0

CUDA

PARBOIL BENCHMARK

Benchmark

61

IO GPU Copy Compute Score

cp 0.053813 0.185729 0.144260 0.008053 2.958212

rpes 0.042267 0.172555 0.200605 0.364360 1.355895

pns 0.000397 2.145531 0.237047 0.000635 0.419602

sad 0.356111 0.001072 0.158113 0.000933 6.245394

mri-fhd (small) 0.005235 0.006495 0.137339 0.000253 6.940251

mri-fhd (large) 0.073647 0.031099 0.145790 0.000678 5.631677

mri-q (small) 0.012598 0.005145 0.137375 0.000185 7.007463

mri-q (large) 0.068388 0.024980 0.144972 0.000636 5.862077

tpacf 1.799922 1.225601 0.142054 0.041766 0.709511

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

GNU Compiler Collection 4.1.2

Geomean Score 2.838817

PARBOIL BENCHMARK

Benchmark

CUDA

CPU Frequency 1200 MHz

Compiler (Device) Nvidia CUDA Compiler 2.0

Compiler (Host)

62

Appendix D

Serpent Encryption Algorithm Implementation

Serpent Encryption Algorithm Data Structure

// Data Structure

typedef struct {

 uint32_t x0, x1, x2, x3;

}SER_BLOCK;

typedef struct {

 int keyLen;

 uint32_t rkey[8];

}RAW_KEYS;

typedef struct {

 uint32_t x0, x1, x2, x3;

}SUBKEY;

typedef struct {

 SUBKEY k[33];

}SER_KEY;

Serpent Encryption Algorithm CPU Source Code

void cpu_serpent(SER_BLOCK *pt2ct, RAW_KEYS *keys) {

 SER_KEY skey;

 const int N = ENCRYPT_BLOCKS;

 int idx;

 for(idx = 0; idx<N; idx++) {

 skey = makeKey(keys[idx]);

 pt2ct[idx] = encrypt(pt2ct[idx], skey);

 }

}

int main(void) {

 SER_BLOCK *host_databuffer;

 RAW_KEYS *keycpu;

//Data initialization

cpu_serpent(host_databuffer, keycpu);

}

63

Serpent Encryption Algorithm CUDA source code

__global__ void cuda_serpent(SER_BLOCK *pt2ct, RAW_KEYS *keys) {

 const uint32_t idx = (blockIdx.x * blockDim.x + threadIdx.x);

 __shared__ SER_KEY skey;

 skey = cuda_makeKey(keys[idx]);

 pt2ct[idx] = cuda_encrypt(pt2ct[idx], skey);

}

int serpent_encrypt(unsigned char* inbuffer, size_t MemSize, unsigned

char* outbuffer, unsigned char* keycpu, size_t KeySize) {

 SER_BLOCK *gpubuffer;

 RAW_KEYS *key;

 size_t BufferBlocks, NumBlock, TransferSize;

 BufferBlocks = KeySize / sizeof(RAW_KEYS);

 if ((int)BufferBlocks <= 0) {

 printf("ERROR! Not Enough BufferBlock! (%d)", BufferBlocks);

 return 0;

 }

 cudaMalloc((void **) &gpubuffer, MemSize);

 cudaMalloc((void **) &key, KeySize);

 while (BufferBlocks > 0) {

 TransferSize = BufferBlocks > BLOCKBUFFER_SIZE ?

BLOCKBUFFER_SIZE : BufferBlocks;

 NumBlock = TransferSize / THREADPERBLOCK;

 dim3 dimGrid(NumBlock);

 dim3 NumThread(THREADPERBLOCK);

 cudaMemcpy(key, keycpu, TransferSize * sizeof(RAW_KEYS),

cudaMemcpyHostToDevice);

 cudaMemcpy(gpubuffer, inbuffer, TransferSize *

sizeof(SER_BLOCK), cudaMemcpyHostToDevice);

 cuda_serpent<<<dimGrid, NumThread>>>(gpubuffer, key);

 cudaThreadSynchronize();

 checkCUDAError("kernel invocation");

 // device to host copy

 cudaMemcpy(outbuffer, gpubuffer, TransferSize *

sizeof(SER_BLOCK), cudaMemcpyDeviceToHost);

 // Check for any CUDA errors

 checkCUDAError("memcpy");

 // Aligning data according to buffer

 inbuffer += TransferSize * sizeof(SER_BLOCK);

 outbuffer += TransferSize * sizeof(SER_BLOCK);

 keycpu += TransferSize * sizeof(SER_KEY);

 BufferBlocks -= TransferSize;

 }

64

 // Free Device Memory

 cudaFree(gpubuffer);

 cudaFree(key);

 return 1;

}

int main(void) {

 SER_BLOCK *host_databuffer;

 RAW_KEYS *keycpu;

 size_t MemSize, KeySize;

//Memory Allocation

//Data initialization

enc = serpent_encrypt((unsigned char*) host_databuffer, MemSize,

(unsigned char*) host_databuffer, (unsigned char*) keycpu, KeySize);

}

65

Appendix E

Lattice Boltzmann Method Implementation

Lattice Boltzmann Method Data Structure

//CPU Data structure

typedef struct {

 int lx; //nodes number in axis x

 int ly; //nodes number in axis y

 int n; //lattice dimension elements

 bool **obst; //Obstacle Array lx * ly

 double ***node; //n-speed lattice n * lx * ly

 double ***temp; //temporarely storage of fluid densities

} s_lattice;

//CUDA Data Structure

typedef struct{

 double n[9];

} Node;

//lattice structure

typedef struct {

 int lx; //nodes number in axis x

 int ly; //nodes number in axis y

 int **obst; //Obstacle Array lx * ly

 Node **node; //n-speed lattice n * lx * ly

 Node **temp; //temporarely storage of fluid densities

} s_lattice;

Lattice Boltzmann Method CPU Source Code

int main(int argc, char **argv) {

//Data Initialization

for (time = 0; time < properties->t_max; time++) {

 redistribute(lattice, properties->accel, properties->density);

 propagate(lattice);

 bounceback(lattice);

 relaxation(lattice, properties->density, properties->omega);

 }

}

66

Lattice Boltzmann CUDA Source Code

__global__ void lb_cuda_kernel(int *dev_obst, Node *dev_node, Node

*dev_temp, int lx, int ly, double accel,

 double density, double omega)

{

 int idx = blockDim.x*blockIdx.x+threadIdx.x;

 int idy = blockIdx.y;

 int tx = threadIdx.x;

 //Redistribute

 if(idx == 0)

 dev_node[idx+lx*idy]=redistribute(dev_obst[idx+lx*idy],

dev_node[idx+lx*idy], accel, density);

 //Propagate

 int x_e, x_w, y_n, y_s;

 //compute upper and right next neighbour nodes

 x_e = (idx + 1)%lx;

 y_n = (idy + 1)%ly;

 //compute lower and left next neighbour nodes

 x_w = (idx - 1 + lx)%lx;

 y_s = (idy - 1 + ly)%ly;

 //density propagation

 //zero

 dev_temp[idx+lx*idy].n[0] = dev_node[idx+lx*idy].n[0];

 //east

 dev_temp[x_e+lx*idy].n[1] = dev_node[idx+lx*idy].n[1];

 //north

 dev_temp[idx+lx*y_n].n[2] = dev_node[idx+lx*idy].n[2];

 //west

 dev_temp[x_w+lx*idy].n[3] = dev_node[idx+lx*idy].n[3];

 //south

 dev_temp[idx+lx*y_s].n[4] = dev_node[idx+lx*idy].n[4];

 //north-east

 dev_temp[x_e+lx*y_n].n[5] = dev_node[idx+lx*idy].n[5];

 //north-west

 dev_temp[x_w+lx*y_n].n[6] = dev_node[idx+lx*idy].n[6];

 //south-west

 dev_temp[x_w+lx*y_s].n[7] = dev_node[idx+lx*idy].n[7];

 //south-east

 dev_temp[x_e+lx*y_s].n[8] = dev_node[idx+lx*idy].n[8];

 //Bounce Back

 if (dev_obst[idx+lx*idy] == 1)

 dev_node[idx+lx*idy]=bounceback(dev_node[idx+lx*idy],

dev_temp[idx+lx*idy]);

 //Relaxation

 else {

 int i;

 double c_squ = 1.0 / 3.0;

 double t_0 = 4.0 / 9.0;

 double t_1 = 1.0 / 9.0;

 double t_2 = 1.0 / 36.0;

 __shared__ double u_x[THREADS];

 __shared__ double u_y[THREADS];

 __shared__ double u_squ[THREADS];

67

 __shared__ double d_loc[THREADS];

 __shared__ Node u_n[THREADS], n_equ[THREADS];

 d_loc[tx] = 0.0;

 for (i = 0; i < 9; i++) {

 d_loc[tx] += dev_temp[idx+lx*idy].n[i];

 __syncthreads();

 }

 //x-, and y- velocity components

 u_x[tx] = (dev_temp[idx+lx*idy].n[1] +

dev_temp[idx+lx*idy].n[5] + dev_temp[idx+lx*idy].n[8] -

(dev_temp[idx+lx*idy].n[3] + dev_temp[idx+lx*idy].n[6] +

dev_temp[idx+lx*idy].n[7])) / d_loc[tx];

 u_y[tx] = (dev_temp[idx+lx*idy].n[2] +

dev_temp[idx+lx*idy].n[5] + dev_temp[idx+lx*idy].n[6] -

(dev_temp[idx+lx*idy].n[4] + dev_temp[idx+lx*idy].n[7] +

dev_temp[idx+lx*idy].n[8])) / d_loc[tx];

 __syncthreads();

 //square velocity

 u_squ[tx] = u_x[tx] * u_x[tx] + u_y[tx] * u_y[tx];

 //n- velocity components

 //only 3 speeds would be necessary

 u_n[tx].n[1] = u_x[tx];

 u_n[tx].n[2] = u_y[tx];

 u_n[tx].n[3] = -u_x[tx];

 u_n[tx].n[4] = -u_y[tx];

 u_n[tx].n[5] = u_x[tx] + u_y[tx];

 u_n[tx].n[6] = -u_x[tx] + u_y[tx];

 u_n[tx].n[7] = -u_x[tx] - u_y[tx];

 u_n[tx].n[8] = u_x[tx] - u_y[tx];

 //zero velocity density

 n_equ[tx].n[0] = t_0 * d_loc[tx] * (1.0 - u_squ[tx] /

(2.0 * c_squ));

 //axis speeds: factor: t_1

 n_equ[tx].n[1] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[1] /

c_squ + u_n[tx].n[1] * u_n[tx].n[1] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 n_equ[tx].n[2] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[2] /

c_squ + u_n[tx].n[2] * u_n[tx].n[2] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 n_equ[tx].n[3] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[3] /

c_squ + u_n[tx].n[3] * u_n[tx].n[3] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 n_equ[tx].n[4] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[4] /

c_squ + u_n[tx].n[4] * u_n[tx].n[4] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 //diagonal speeds: factor t_2

 n_equ[tx].n[5] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[5] /

c_squ + u_n[tx].n[5] * u_n[tx].n[5] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

68

 n_equ[tx].n[6] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[6] /

c_squ + u_n[tx].n[6] * u_n[tx].n[6] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 n_equ[tx].n[7] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[7] /

c_squ + u_n[tx].n[7] * u_n[tx].n[7] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 n_equ[tx].n[8] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[8] /

c_squ + u_n[tx].n[8] * u_n[tx].n[8] / (2.0 * c_squ * c_squ) -

u_squ[tx] / (2.0 * c_squ));

 //relaxation step

 for (i = 0; i < 9; i++) {

 dev_node[idx+lx*idy].n[i] =

dev_temp[idx+lx*idy].n[i] + omega * (n_equ[tx].n[i] -

dev_temp[idx+lx*idy].n[i]);

 }

 }

}

void lb_cuda(s_lattice *l, int t_max, double accel, double density,

double omega) {

 int i;

 int x,y;

 //device variables

 int *dev_obst;

 Node *dev_node;

 Node *dev_temp;

 Node *h_node;

 cudaMallocHost((void **)&h_node, l->lx*l->ly*sizeof(Node));

 //device memory allocation

 CUDA_SAFE_CALL(cudaMalloc((void **)&dev_obst, l->lx*l-

>ly*sizeof(int)));

 CUDA_SAFE_CALL(cudaMalloc((void **)&dev_node, l->lx*l-

>ly*sizeof(Node)));

 CUDA_SAFE_CALL(cudaMalloc((void **)&dev_temp, l->lx*l-

>ly*sizeof(Node)));

//printf("p_obst = %d\n", pitch_obst);

//printf("p_node = %d\n", pitch_node);

//printf("p_temp = %d\n", pitch_temp);

 //memory copy

 CUDA_SAFE_CALL(cudaMemset(dev_obst, 0, l->lx*l-

>ly*sizeof(int)));

 CUDA_SAFE_CALL(cudaMemset(dev_node, 0, l->lx*l-

>ly*sizeof(Node)));

 CUDA_SAFE_CALL(cudaMemset(dev_temp, 0, l->lx*l-

>ly*sizeof(Node)));

 //kernel parameter

 dim3 dimBlock(THREADS);

 dim3 dimGrid(l->lx/THREADS, l->ly);

 lb_cuda_initial<<<dimGrid, dimBlock>>>(dev_obst, dev_node, l-

>lx, l->ly, density);

 cudaThreadSynchronize();

 for(i = 0; i < t_max; i++) {

69

 lb_cuda_kernel<<<dimGrid, dimBlock>>>(dev_obst, dev_node,

dev_temp, l->lx, l->ly, accel, density, omega);

 cudaThreadSynchronize();

 }

printf("pass kernel\n");

 //copy from device

 //CUDA_SAFE_CALL(cudaMemcpy(h_obst, dev_obst, l->lx*l-

>ly*sizeof(int), cudaMemcpyDeviceToHost));

 CUDA_SAFE_CALL(cudaMemcpy(h_node, dev_node, l->lx*l-

>ly*sizeof(Node), cudaMemcpyDeviceToHost));

 for(y=0;y<l->ly;y++)

 for(x=0;x<l->lx;x++)

 for(i=0;i<9;i++) {

 l->node[x][y].n[i] = h_node[x+l->lx*y].n[i];

 }

 //free memory allocation

 cudaFree(dev_obst);

 cudaFree(dev_node);

 cudaFree(dev_temp);

 cudaFreeHost(h_node);

}

int main(int argc, char **argv) {

//Data initialization

lb_cuda(lattice, properties->t_max, properties->accel, properties-

>density, properties->omega);

}

