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ABSTRACT 

Scientific computation requires a great amount of computing power especially 

in floating-point operation but a high-end multi-cores processor is currently limited in 

terms of floating point operation performance and parallelization. Recent 

technological advancement has made parallel computing technically and financially 

feasible using Compute Unified Device Architecture (CUDA) developed by NVIDIA. 

This research focuses on measuring the performance of CUDA and implementing 

CUDA for a scientific computation involving the process of porting the source code 

from CPU to GPU using direct integration technique. The ported source code is then 

optimized by managing the resources to achieve performance gain over CPU. It is 

found that CUDA is able to boost the performance of the system up to 69 times in 

Parboil Benchmark Suite. Successful attempt at porting Serpent encryption algorithm 

and Lattice Boltzmann Method provided up to 7 times throughput performance gain 

and up to 10 times execution time performance gain respectively over the CPU. Direct 

integration guideline for porting the source code is then produced based on the two 

implementations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

Compute Unified Device Architecture (CUDA) is an architecture designed by 

NVIDIA Corporation for General Purpose Computing using Graphic Processor Unit 

(GPGPU), the term which become increasingly popular as the trend grows in year 

2002 [1]. In the early stage of GPGPU, one of the popular known methods for 

computation is using OpenGL. This method requires the algorithm to be reconstructed 

to match graphic processes (i.e. using textures and such) and constrained to a lot of 

limitations such as access to memory and data type limitation to only floating-point. 

 

The advent of CUDA was in the November 2006, introduced to the public 

with the G80 architecture which eventually entered the mainstream later. A year later, 

some computational performance measurement results based on CUDA have been 

released and several more computational works has been ported to be performed by 

CUDA GPU instead of the Central Processing Units (CPU). These efforts were driven 

by the trend of GPU that follows Moore’s Law growth faster than CPU. The fact that 

GPU exists as commodity hardware also became one of the motivation in pursuing 

the GPGPU interest. 

 

CUDA-enabled graphic cards posses a higher computational performance 

(measured in FLOP/s) and higher bandwidth (measured in GB/s) when compared to 

CPU [2].  Although still to be further developed, early results suggested CUDA 

performance is indeed promising. The pinnacle of CUDA is demonstrated with the 

release of NVIDIA Tesla Personal Supercomputer which based on Tesla accelerator 

cards (similar with CUDA GPU in fact the origin of CUDA development [2]) and also 
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the latest development of “Tsubame” supercomputer using CUDA GPUs which was 

ranked 29th fastest in the world [3]. 

1.2 Problem Statement 

The advancement of technology has pushed scientific computing even further 

compared to a few years back as more theories are developed and tested using 

simulation and numerical computation. This requires a great amount of floating-point 

operations and parallelization to produce more reliable results over time. Mainstream 

CPU in personal computers mostly lack of the floating-point computation 

performance since the architecture focuses on integer performance for mass consumer 

computing.  

 

There are a number of ways to overcome this situation which include using 

parallel computing, grid computing or distributed computing. Each of them might be 

costly or not practical to begin with, for example; parallel computing with 

supercomputer is highly expensive and maintaining a vast network of grid computers 

consumes resources and gathering data from distributed computing is rather tedious 

and complex. Hence, CUDA was introduced to improve the floating-point operation 

and parallelism of a personal computer given the overall specifications is met within 

the feasible cost. 

 

Currently, there are not many applications that use CUDA that could be 

acquired out of the box. Many applications would require the source code to be ported 

and compiled using CUDA compiler. The process of porting of source code could 

sometimes produce inefficient code that performs worse than the CPU counterpart or 

only little performance gain. General guidelines are needed for the process of porting 

the source code efficiently with considerable performance gain without much time 

spent for the process. 
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1.3 Objectives and Scope of Study 

The project objectives are to measure the CUDA performance to demonstrate 

the integer and floating-point operation using parallelization capabilities based on 

general application and scientific computations. Comparisons are made between CPU 

and CUDA computing performance. The final objectives of the project are to 

implement and study the effect of selected algorithms for integer and floating-point 

processes on CUDA. At the end of the project, we will come up with general 

guidelines to perform porting of the source code. 

 

The scope of study covers general review of the architecture that contributes to 

the parallelism effect on performance, integer performance, floating-point 

performance and analysis of benchmark results. All of these are generally the 

fundamentals in understanding CUDA for successful implementation and occupy the 

time given for the project accordingly. As the project progress, the study is focused on 

source code optimization to increase performance gain. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Computing with CUDA 

Parallelization is not something new in the computer system but the 

implementations during the earlier time were only widely used at higher scale (i.e. 

supercomputer). Farber [4] explained much about CUDA based on his experience 

working with supercomputer with a larger scale of parallelization in national 

laboratories. CUDA provides parallelization with scalability, making it more 

attractive to programmers. According to [2] and [4], the programmers have the ability 

to program CUDA in high level language such as C, C++, Python and other high level 

languages. The great performance are also achieved since the compiler directly 

compile the source code to the CUDA device thus avoiding the performance overhead 

of Application Programming Interface (API). 

 

Since CUDA has been primarily used for computation, it is very closely 

related to General-Purpose computing on Graphics Processing Unit (GPGPU). Owens 

et al. [5] describes the detail analysis of current GPGPU trend in architecture and also 

implementation. The architecture of CUDA GPU based on G80 architecture is 

reviewed to shed lights on multiprocessing and stream processing of current GPU. 

The paper [5] also explains the software performance libraries implementation (e.g. in 

the case of CUDA, CUBLAS and CUFFT libraries) and also the kernel performance 

which play a great role in CUDA performance. 

 

Parallelization in handling multiple data by program benefits greatly when 

using CUDA. The GPU architecture is designed primarily to process data instead of 

data caching and flow control compared to CPU. Figure 1 illustrates the general 
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architecture design of a CPU and GPU from [2]. GPU has a lot more Arithmetic 

Logic Units (ALUs) compared to a CPU; however GPU has limited amount of 

Control and Cache. The GPU architecture design also stresses on high throughput 

which uses data parallelization. 

 

 

Figure 1: General illustration of CPU and GPU architecture 

 

For the program to be able to handle multiple data in parallel, the programmer 

has to make the program initialize the kernel which runs on multiple threads at any 

given time. The program model is similar to Single Program Multiple Data (SPMD) 

model, with added advantage of scalability [6]. Figure 2 illustrates a program flow in 

kernel block initialization and scaling of the number of threads used according to the 

block specification. Each block can have a number of threads assigned to it in either 

one-dimension or up to three-dimension. Threads in the block will continue to run 

until the function for the threads to be synchronized is called. At that point, advanced 

threads will hold and wait for other threads to finish execution until the thread 

synchronization point. 
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Figure 2: Diagram of Single Program Multiple Data (SPMD) kernel 

 CUDA function is defined as a kernel that is called by specifying the number 

of thread blocks, the number of threads per block and the parameters needed for the 

function as shown in Figure 2. Each thread executes the function in parallel and can 

communicate with other thread in the same thread block. As the threads are organized 

into thread blocks, the thread blocks are controlled by the Streaming Multiprocessors. 

Each thread block has a limited 16KB of Shared Memory for faster memory access 

compared to Device Memory and also used for communication between threads in the 
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same block. Thread management is important to utilize the limited 16KB of Shared 

Memory to optimize memory access. 

 

 CUDA process flow is fairly straight-forward. Page-locked memory buffer is 

allocated in the host memory for faster memory transfer between host memory and 

device memory [2]. After the data transfer is done, the CPU will send instructions to 

the GPU for the program execution. The same program is executed on all of the 

threads inside the GPU. After all of the threads are synchronized, the data is 

transferred from the device memory back to the host memory. All of the process is 

summarized in Figure 3. 

 

Figure 3: CUDA Process Flow. 

 

Paper produced for performance study, [7]; makes use of the GPU design to 

improve the performance of general applications. Che et al. [7] compared CUDA with 

single-thread and multi-thread application executed on the multi-core CPU. The 

performance comparisons are given in speedup of CUDA over CPU. The authors also 

reported that a single graphic card was able to gain speedup over two dual-core high-

end CPUs. Some of the general applications only require little or no optimization 

when ported from CPU to CUDA and already shown considerable speedup. This 
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work has become motivation as to pursue parallel computing using GPU instead of 

multi-core CPU. 

 

2.2 Performance Benchmark 

In order to make sure the term “performance” is not loosely used throughout 

the project, a computer system text book is used for reference. Hennesy et al. [8] 

defined performance according to the execution time and also the number of 

instructions per second. In this research, the scoring system is also based on the 

execution time and normalized against processor benchmark score using basic 

compiler (i.e. GNU C Compiler). Regardless of how the scoring system is 

implemented, it should give an indication of the relative performance. 

 

While there is no specific standard guideline for computer performance 

benchmarking, the obvious rule is that the benchmark must pass the output 

comparison for the executed benchmark programs. Some of the optimization flags of 

the compiler affect the accuracy of the output from the program. Our research focuses 

more on the floating-point benchmarks which is the data type commonly used for 

scientific calculation. 

 

Parboil Benchmark Suite is one of the benchmarks that measure and can be 

used to compare both CPU and GPU performance [9]. The benchmark suite provided 

source codes, namely Base (basic source code with no optimization), CPU (optimized 

for processor) and CUDA (CUDA source code). Table 1 summarizes the benchmark 

programs in the suite. 
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Table 1: Parboil Benchmark Suite [9] 

Application Description  

MRI-Q 
Magnetic Resonance 

Imaging Q 

Computation of a matrix Q, representing the 

scanner configuration, used in a 3D magnetic 

resonance image reconstruction algorithm in 

non-Cartesian space. 

MRI-

FHD 

Magnetic Resonance 

Imaging FHD 

Computation of an image-specific matrix F
H
d, 

used in a 3D magnetic resonance image 

reconstruction algorithm in non-Cartesian 

space. 

CP Coulombic Potential 

Computes the coulombic potential at each grid 

point over on plane in a 3D grid in which point 

charges have been randomly distributed. 

Adapted from 'cionize' benchmark in VMD. 

SAD 
Sum of Absolute 

Differences 

Sum of absolute differences kernel, used in 

MPEG video encoders. Based on the full-pixel 

motion estimation algorithm found in the JM 

reference H.264 video encoder. 

TPACF 
Two Point Angular 

Correlation Function 

TPACF is an equation used here as a way to 

measure the probability of finding an 

astronomical body at a given angular distance 

from another astronomical body. 

PNS Petri Net Simulation 

Implements a generic algorithm for Petri net 

simulation. Petri nets are commonly used to 

model distributed systems. 

RPES 
Rys Polynomial 

Equation Solver 

Calculates 2-electron repulsion integrals which 

represent the Coulomb interaction between 

electrons in molecules. 
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Parboil benchmark is used in suitability study for CUDA by Hwu et al. [10]. 

Additionally, the suitability study includes Matrix Multiplication, Lattice Boltzmann 

method and Saxpy apart from Parboil which mostly derived from high-performance 

computing benchmark. The study done by [10] is accompanied by detail analysis of 

the architectural bottleneck from the implementation. Instruction issue caused most of 

the implementation bottleneck while a few others are caused by memory-related 

bottleneck such as capacity, bandwidth and latency. 

 

2.3 Serpent Encryption 

Serpent encryption operates based on 32-round SP-network with four 32-bit 

words as an input and up to 256-bit key as shown in Figure 4. The design of Serpent 

algorithm is presented with parallelism by bit-slicing [11]. The 4x4 S-boxes 

introduced within the SP-network has become the focus of previous works by [12] 

and [13] to improve Serpent’s number of clock cycles. Different approaches were 

taken with Gladman’s Serpent S-boxes [13] optimized for Intel Pentium 4 MMX 

while Osvik’s Serpent [12] reduced the registers used by eliminating temporary 

variables thus fit in the number of registers inside x86 architecture processors. Both of 

the previous works provide good example of reducing the number of operations and 

managing memory for CUDA implementation. 
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Figure 4: Serpent encryption flow chart 

 

The Serpent encryption requires 132 32-bit words of key materials. The key 

length provided by the user is normally ranging from the minimum 128-bit to the 

maximum 256-bit key. Before any encryption could be done, the key provided by the 

user is expanded, mixed and went through S-boxes before becoming the key 

materials. The process is call “key scheduling” as summarized in Figure 5. The 

symbol π  is a constant with the value 0x9e3779b9. 

Initial Operation 

S-Boxes 

r = 30 

Linear 

Transformation 

Final Operation 

kr 

N 

Y 

k31 

Plain Text 

Cipher Text 



 

 

12 

 

11)(: 1358 <<<⊕⊕⊕⊕⊕=
−−−−

iwwwww iiiii π  

),,,(:},,,{

),,,(:},,,{

...

),,,(:},,,{

),,,(:},,,{

),,,(:},,,{

),,,(:},,,{

),,,(:},,,{

1311301311283131130131128

1271261251244127126125124

19181716719181716

15141312015141312

1110981111098

765427654

321033210

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

wwwwSkkkk

=

=

=

=

=

=

=

 

Figure 5: Key Scheduling process 

 

Graphic card as cryptography hardware is not entirely new, given the attempt 

is made around year 2005 using OpenGL for AES Cryptography [14]; however the 

performance suffered greatly from limited functionality. There were no successful 

attempts made after that until the arrival of CUDA. Manavski [14] managed to 

produce significant performance improvement using CUDA in AES Cryptography. 

The author managed to produce up to 20 times speedup over CPU using 8MB of data 

size and 128 bits of user key. Similar work is done for ARIA (cryptography originated 

from Korea), Yeom et al. [15] able to produce comparable result to AES by 

effectively using shared memory and registers inside the GPU. 
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2.4 Lattice Boltzmann for Fluid Flow 

Ever since GPU is introduced to render computer images, the floating-point 

operations (FLOP) performance has been increasing significantly till today that has 

already reached hundreds of GFLOP/s compared to CPU which focused mainly on the 

integer operation performance for mass consumer. By utilizing the GPU computation 

capabilities along with low CUDA learning curve, we would produce methodology 

for a simple porting process for additional performance gain. 

 

Lattice Boltzmann for Fluid Flow is known for the simple algorithm and its 

capabilities to be easily parallelized given the computation for each element inside the 

lattice corresponds only to the element function [16]. Consequently, the amount of 

resources needed for the computation is demandingly large and requires intensive 

memory access. Boghosian [16] reviewed on the Lattice Boltzmann Equation based 

on the book “The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond” by 

Sauro Succi mentioned the algorithm originality and practical use. The algorithm is 

made through discreet understanding of Navier-Stokes equation. This has made 

parallel computation using multi-core platform possible and efficient.  

 

Lattice Boltzmann has become increasingly popular in computational 

dynamics. Numerous attempts were made to increase the performance of algorithm 

that include study on the algorithm [17], optimization on multi-core platform [18] and 

multi-GPU implementation for Lattice Boltzmann [19]. All of the studies suggested 

significant performance gain by implementing the computation in parallel, however 

specific methodology for the implementation process on CUDA is not shown.   

 



 

 

14 

 

A phenomenon known as Karman Vortex Street is used for the computation 

fluid flow for this project. The unsteady separation of the flow of the fluid over a 

body causes a repeating pattern of swirling vortices that is illustrated in Figure 6. 

Detail methodology for CUDA implementation is described in Section 3.5.2. 

 

 

Figure 6: Karman Vortex Street illustration 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Procedure Identification 

 Figure 7 illustrates the method and the work flow of the project. 

 

  

 

 

 

 

 Integer 

Start 

Article, Journal and related text reference review 

Platform setup for benchmarks 

Benchmarks and Compiler Installation 

Execution of benchmarks and data acquisition 

Porting source code from C to CUDA compatible 

Benchmark Ported CUDA application 

End 

Identify potential Algorithms for implementation 

Significant 

performance gain? 

Source code optimization 

Floating Point 

No 

Yes 

Figure 7: Flow Chart of Methodology 
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 The first approach in understanding CUDA concept and features is by 

acquiring reference materials covering from the basic to implementation. The 

understanding ensures the methods and approaches used are proper and correct to 

avoid fallacies. The references are summarized and included in literature review. 

Theory and practical analysis is essential to provide explanation in performance 

measurement and programming algorithm. 

 

After some of the theoretical review is done, the test platform was setup for 

initial benchmarking purpose. The benchmark suite was later identified for the 

project. This part is crucial in expecting the performance of the test setup and also 

understanding how CUDA will perform for floating point and parallelization 

computing. 

 

CUDA performance measurement is done based on successful execution of 

benchmarks that depends on the ability to produce results and not only to acquire the 

output of the performance measurement. The measurement is to be done in a 

controlled environment with both essential and non-essential factors to be as constant 

as possible. The controlled environment includes but not limited to the Operating 

System, the number of background programs and most important the computer system 

specification. All of these are to make sure the highest possible results which are re-

produce-able. 

 

Based on the previous approaches, the computation on CUDA is done by 

analyzing results taken from the performance measurement. The analysis is done 

using profiling tools and time consuming process or instruction is identified. 

Numerical method is chosen for the implementation of CUDA. Graphical interface on 

the other hand, would require more time to be spent on the programming and the 

usage of more complicated libraries. This approach increases the chances of 

successful compilation of the program and proper execution. 
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3.2 Experimental Setup 

The chosen hardware for the project is based on the availability and also 

budget available at the time. Table 2 provides detailed information of the hardware for 

the test system. 

Table 2: Hardware Information for the Test System 

CPU 

Model Name Intel Core 2 Duo Processor E4500 

Frequency 2200 MHz 

Front Side Bus 800 MHz 

L1 Cache 32 KB 

L2 Cache 2048 KB 

Motherboard 
Chipset Intel P35 Express 

PCI-E 1.1 

Memory 
Type Corsair CM2X1024-6400 DDR2 800MHz 

Size 2048 MB 

GPU 

Model Name Gigabyte Nvidia GeForce GTX 260 

Memory 896MB GDDR3 

Core Clock 1242 MHz 

Memory Clock 2000 MHz 

 

Some parts for the test system may already be at the low-end category at this 

current time but both of the processors and the motherboard still provide good 

performance-to-cost ratio. The PCI-E 1.1 the motherboard bottlenecks the graphic 

card which uses PCI-E 2.0 that has a faster transfer rate. The graphic card was chosen 

from the high-end category because of the compute capability in double precision [2] 

and because it has the same Stock-Keeping-Unit (SKU) with the top-of-the-line 

product. It is also decided based on the performance-to-cost ratio by the given 

specification. Detail information for CPU and GPU can be found in Appendix B. 

 

Some more details that need to be covered are the software part for the system. 

The software is used throughout the project from benchmarks to implementation of 

Super Calculator. Table 3 shows the details of the software information in the test 

system. 
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Table 3: Software Information of the Test System 

Operating System 
Distributor Red Hat Enterprise Linux 11 32-bit 

Kernel 2.6.18-92.el5 

Compiler 

Intel Intel C/C++ Compiler 11.0 

GNU GNU Compiler Collection 4.1.2 

Nvidia Nvidia CUDA Compiler 2.0 

Driver Nvidia 177.11 

 

The software chosen are distributed under open source license with some 

limitation. Software development under open source can be done within minimal 

budget and also a lot of dependencies can be solved by searching in the repository 

website in the Internet. As of the time benchmarking is done, the configuration used 

such as the compilers and the driver is of the latest possible. The number of processes 

running in the background is limited and controlled. The kernel performance is also 

relatively better and does not hog the memory resources. 

 

3.3 Benchmark 

Benchmark is done at the early stages to provide preliminary data that is 

needed for the progress of the project. The benchmark provides information of the test 

system performance according to the programs in the benchmark suite. Later on, 

based on the benchmark score, the performance-to-cost calculation can be done for 

relative comparison. The objective of the project also depends on the representation of 

the benchmark performance score. 

 

The benchmark suite was executed under level five of Linux which in X11 

mode in as no performance benefit is gained from level three command-line interface 

mode. The benchmark test run was executed at least three times to ensure consistency 

in the results. A range of five-percent deviation was set to define the consistency. The 

final results were taken based on the best score achieved and within the consistency 
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range. The execution time is recorded into table and represented as graph for easier 

visual comparison. 

 

Four different benchmarks were executed to test the system that is using two 

different compilers for the CPU benchmark and two different CPU frequencies for the 

GPU benchmark. The compilers used for CPU benchmark are GNU Compiler 

Collection (GCC) as reference and Intel C/C++ Compiler 11.0 (ICC) for Intel CPU 

optimization. Different CPU frequencies were achieved through manipulation of the 

CPU clock ratio to study the performance of CUDA with varying CPU frequency. 

 

In the benchmark process, the source codes for CPU are compiled using GCC 

with full optimization level (-O3) and SSE3 instruction flag (-msse3), providing 

added performance to the CPU benchmark result. Additional flag that is also used for 

the ICC is inter-procedural optimization (-ipo) that enables in-lining of the code while 

processor specific optimization flag for Intel Core 2 Duo Processor (-xT) is used. 

These are the optimization flags that are enabled by default if the fast optimization 

flag (-fast) is used [22] since the flag is accepted as the base benchmark in Standard 

Performance Evaluation Corporation (SPEC) CPU benchmark [23]. Further 

optimization may affect the program size to become bigger and the accuracy of the 

benchmark timing. Bigger program size may not fit inside the L2 cache thus data 

transfer between cache and the main memory will be frequent resulting in longer 

execution time. 

 

CUDA GPU benchmark source codes are compiled using the Nvidia CUDA 

Compiler (NVCC) and the CPU host codes are compiled using GCC as specified 

within [2]. As the optimizations provided by the compiler are more closely related to 

the hardware and source code, no other compiler related flag could be used for 

optimization. The compiler itself is relatively new compared to the compiler 

developed for the CPU, thus more features from NVCC is expected. 
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The score is reciprocal of the total time taken by the programs to run. The 

Input / Output (I/O) time is omitted as the data is not critical for the benchmark study. 

The overall score is calculated using geomean and normalized against processor with 

basic compiler score. Geomean is an average calculation using total of multiplication 

and square root. Thus the overall score will not be swayed by one or two large 

numbers. Normalization provides an easy view for relative comparison. The 

calculations involved in determining comparison data in Figure 24 and Figure 25 are 

shown in (1) and (2). 
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3.4 Potential Algorithms for Super Calculator using CUDA 

 Potential algorithms need to be identified and evaluated for feasibility before 

being adopted for implementation. As time is a major constraint, the selected 

application must be able to be ported within the time limitation of the project. 

Potential algorithm with source code written in C language could be considered a 

head start in porting the algorithm. CUDA implements the extension of C language 

which can provide an advantage in porting the source code that is written in C 

language for the application, thus shorten the time needed for programming and more 

time for program debug and optimization. Direct integration of the source code is 

possible either by linking or rewriting portion of the source code to be executed on the 

graphic card. All of these will require knowledge of the selected application’s 

algorithm to benefit from CUDA parallelism. 
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3.4.1 Integer Operation 

It is well known that graphic cards native operation is in floating-point for 

graphic processes. At a glance, integer operation might not receive any benefit from 

CUDA and the performance maybe less compared to CPU. This fact is supported by 

previous work by [21], as database operation mainly involves integer operation. 

Nvidia [2] also stated numerous clock cycles taken when performing integer 

operation. However, there are still integer operations that do not cost performance 

reduction that much, that is the bitwise operations. CUDA could sustain up to eight 

bitwise operations per clock cycle. 

 

Cryptography is considered to have an intensive bitwise operations performed 

for converting plain text to cipher text. Recent success in implementing cryptography 

on CUDA for AES [14], DES [7] and ARIA [15] making it as motivation in using 

Serpent encryption as potential algorithm for the implementation. Additionally, 

Serpent encryption is distributed under GNU Public License (GPL), making it 

possible for modification and redistribution. A number of previous works in speeding 

up Serpent provided valuable data and information in providing basic understanding 

of Serpent performance so far. 

 

3.4.2 Floating Point Operation 

Floating Point operation consisted of single precision and double precision. 

Each of them must correspond to IEEE-754 floating point standard for computation. 

Single precision computation performs faster compared to double precision however 

it is less accurate. CUDA support for double precision floating point is also limited to 

graphics card with Compute Capability 1.3 [2]. Lattice Boltzmann computation 

utilizes double precision floating point and since the graphics card used supports the 

double precision features, it has become the motivation for the implementation.  
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3.5 Porting to CUDA and Optimization 

After the acquisition of the source code, the source code is divided into three 

sections that are data initialization, computation and result. Computation section is 

analyzed to identify the most compute intensive function. This can be done by using 

profiler or by manually adding in “Wall-clock” function to identify which 

computation took the most time. The compute intensive function is then converted as 

CUDA kernel function. This direct integration method is usually dubbed as naïve 

implementation method as some algorithms can already gain performance benefit 

using this method [7]. A function operating on an array containing a large number of 

elements can be used as an example. 

 

A data with 1MB of size is fitted into an integer array with 256K of elements. 

Memory space is allocated using “malloc” since the array size is considered large 

to avoid segmentation fault error. After the array has been initialized, the function 

“function_array” is called to perform the operation to the array. The function 

has to loop through the array’s element to perform the operation. Figure 8 shows the 

source code fragment for the function. 

 

#define array_size 256*1024 

 

int *array_sample; 

// memory allocation 

array_sample = (int *) malloc(array_size*sizeof(int)); 

 

... // array initialization 

 

function_array(array_sample); // function call 

 

function_array(int *array_sample) { 

 int i; 

 for(i = 0; i < array_size; i++) { 

  array_sample[i] = array_sample[i] + 5; 

 } 

} 

Figure 8: C source code fragment for sample array function. 
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The function “function_array” operated on the array elements in 

independently with no relation between each element. Thus the function can be ported 

safely to CUDA without any complication. The porting process involves adding in 

CUDA header file and specifying identifier “__global__” for the CUDA function. 

CUDA’s function call syntax is also different from a standard C language by using 

different identifier such as “function_array<<<NumBlock, 

NumThread>>>(datatype variable)”. Apart from the parameters for the 

function argument, the syntax includes the number of blocks and the number of 

threads per block respectively. The ported code is shown in Figure 9. 

 

 

#define array_size 256*1024 

#define NumThread 256 

 

__global__ void function_array(int *array_CUDA) { 

 int idx = blockIdx.x * blockDim.x + threadIdx.x; 

 

 array_CUDA[idx] = array_CUDA[idx] + 5; 

 

} 

 

 

void main() { 

 int *array_sample; 

 int *array_CUDA; 

 int NumBlock; 

 size_t size; 

 

 size = array_size*sizeof(int); 

 

 // request page-locked memory buffer 

 cudaMallocHost((void**)&array_sample, size); 

 

 ... // initialization for array_sample 

 

 cudaMalloc((void**)&array_CUDA, size); 

 // copy data to device 

 cudaMemcyp(array_CUDA, array_sample, size, 

cudaMemcpyHostToDevice); 

 

 NumBlock = array_size/NumThread; // determine number of blocks 

 

 //function call 

 function_array<<<NumBlock, NumThread>>>(array_CUDA); 

 cudaThreadSynchronize(); 

 // copy data to host 

 cudaMemcpy(array_sample, array_CUDA, size, 

cudaMemcpyDeviceToHost); 

 
} 

Figure 9: Source code fragment for ported CUDA-compatible code 
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Although source code from Figure 9 is longer than Figure 8, all of the added 

functions are the basic requirement for the CUDA application to work with additional 

performance gain. Page-locked memory buffer is requested by the CUDA host 

memory allocation (“cudaMallocHost”) for faster data transfer between the host 

and the device. The data is moved to and from the device by using memory copy 

function. From here onward, the porting of the source code will become more specific 

to the algorithm implemented. The common processes between Serpent Encryption 

implementation and Lattice Boltzmann implementation on CUDA will be used to 

produce the guideline. 

 

3.5.1 Serpent Encryption Algorithm Implementation 

From the algorithm analysis, it is known that Serpent encryption involves data 

dependencies from previous iteration. The algorithm also occupies resources in the 

execution of sequential functions as well as load and store data. Since the algorithm 

itself is in serial sequence, this makes it almost impossible to parallelize the processes 

(unless using bit-slice method similar to the hardware implementation). Nevertheless, 

the encryption process could be executed in single thread without consuming much 

resource, therefore opening another possibility in parallelization. 

 

The data initialization section of the source code is modified to handle 

multiple data stored in an array. Since the original input data is already in array form 

(i.e. x[4], with ‘x’ as the variable for input), another dimension has to be added to the 

array. Although it is possible, adding in another dimension caused some confusion as 

the variable is in pointer-array form as it involves dynamic memory allocation and 

fixed array all at the same time. Instead of adding in another dimension, we used 

structured variables to make the input block as a data type.  The structure is aligned to 

16-byte boundary to enable single read/write memory instruction for 128-bit. The 

structured variables and data types are shown in Figure 10. 
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 The initial attempt made concentrate solely on the encryption function of the 

application with each thread performing encryption for 16-byte of plain text. The 

structured variables and data types are applied to the encryption process as shown. 

The structured data types are now able to be declared as pointers for dynamic memory 

allocation and page-locked memory buffer for faster memory access. 

 

 

 

 The parallel encryption is described in source code in Figure 11. The variable 

“idx” the thread number identifier. Each of the plain text is encrypted within the 

thread specified by the “idx”. The structured data types avoid confusion from having 

to build two-dimensional array. 

Figure 11: Encryption process on graphic card using CUDA 

typedef struct __align__(16) { 

unsigned long x0, x1, x2, x3; 

} SER_BLOCK; 

 

typedef struct __align__(16) { 

unsigned long k0, k1, k2, k3; 

} SUBKEY; 

 

typedef struct { 

subkey k[33]; 
} SER_KEY; 

Figure 10: Source code fragment for structured variables and data types 

Line Command 

1. __global__ void cuda_encrypt(SER_BLOCK *enc_block,  SER_KEY 
*keys) { 

 

2. int idx = (blockIdx.x * blockDim.x + threadIdx.x); 
 

3. enc_block[idx] = keying(enc_block[idx], keys[idx].k[ 0]); 
4. enc_block[idx] = SBOX00 (enc_block[idx]); 
5. enc_block[idx] = transform(enc_block[idx]); 
6. … 
7. enc_block[idx] = keying(enc_block[idx], keys[idx].k[31]); 
8. enc_block[idx] = SBOX31(enc_block[idx]); 
9. enc_block[idx] = keying(enc_block[idx], keys[idx].k[32]); 
10. } 
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 Figure 12 illustrates an example of 16KB of plain text encrypted using parallel 

thread. The time taken for key scheduling is excluded initially as it was done on the 

CPU and transferred to the GPU for the encryption. The performance gain from this 

method only showed around 1.67 times faster than the application executed on the 

CPU as shown in Figure 12. This is caused by the huge memory transfer of the key 

materials for the encryption. For example, 16MB of plain text would require around 

528MB of key materials as 528-byte key materials are for every 16 bytes of data. 

 

 

Profiler result of the initial attempt indicates the performance suffered greatly 

from huge memory transfer of the key materials. This has been previously observed 

based on the Parboil benchmark result which resulted in poor performance for Sum of 

Absolute Difference (SAD) algorithm. This is known through benchmark profile in 

Section 4.2 and discussed in Section 4.4.3. The only way to overcome the 

performance degradation is to include key scheduling process inside each thread 

before encryption as shown in Figure 13. Consequently, the memory transfer size for 

the encryption key materials are reduced to 32-byte for every 16-byte of plain text. 

This implementation managed up to 7.5 times performance gain in throughput. 

Memory transfer is identified as one of inefficiencies in CUDA if it was not managed 

correctly. Detailed benchmark result is discussed further in Section 4.3 of this report.  

Figure 12: Block diagram for 16KB of data size for the initial attempt 

16KB of Plain text + 

528KB of key materials  

Encryption Encryption 

Thread idx= 1024 Thread idx= 1 

16KB of Cipher text 

... 
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Figure 14 shows the fraction time spent in the GPU for both of the attempts by 

using CUDA Visual Profiler. The fraction of time taken for the initial attempt’s 

memory transfer occupied a lot more compared to the complete application’s memory 

transfer. Thus, in this case, optimization is done by limiting memory transfer. 
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Figure 14: GPU time spent in percentage 

  

Figure 13: Block diagram for 16KB of data size in Complete Application 
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 A few more attempts were made to push the performance gain further that 

includes changing the number of threads per block, varying the input block size and 

specifying the number of registers to be used. The results are discussed in Section 4.3. 

 

3.5.2 Lattice Boltzmann for Fluid Flow 

We used a simple simulation in utilizing the Lattice Boltzmann Method 

(LBM) to simplify the porting process. The program simulates Karman Vortex Street 

phenomenon that has been discussed in Section 2.4 of the report. The source code is 

acquired from an open source solution, that is the OpenLB [20] and it is still 

maintained by the users although depreciated. It is written in modular form for 

readability and flexibility for future extension. Unlike Serpent encryption, OpenLB 

consisted of many processes for a complete simulation. Thus porting the source code 

from C to CUDA-compatible would not be just one or two functions, but instead it 

needs several functions to perform correctly.  

 

The OpenLB’s “Unsteady” program source code utilizes a lot of pointers for 

the data and functions. Additionally, OpenLB is managed with external function link 

between the main file with the files containing the computation function. All of the 

computations for the Lattice Boltzmann are done with double-precision floating-point. 

The complete simulation flow chart is shown in Figure 15. 
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constructSim(&sim,lx,ly)

iniGeometry()

updateZeroGradientBoundary()

Collide(&sim)
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Figure 15: Flow chart for “Unsteady” simulation 
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We profiled the program by adding a “Wall-clock” function to the program for 

time measurement. The “Wall-clock” function measures the time taken from one 

point to another point in the program. Although, the timing might not be accurate 

compared to a real profiler application, it served the purpose in determining the ratio 

of a function runtime to the whole program execution time. The iteration of the 

program, which is controlled by the variable “maxT” is set at 100000. Based on the 

method used, the execution time for the function “Collide(&sim)” is measured for 

comparison. 

 

The “Collide” collision simulation function consisted of several modular 

functions that are differentiated according to the element position inside the lattice. 

The functions represent the computational dynamics for Bounce Back, Bhatnagar–

Gross–Krook (BGK) for the bulk dynamics and all of the side boundaries include 

upper, lower, left and right. The elements function are determined in geometry 

initialization function (i.e. “iniGeometry()”). The initialization is summarized and 

shown in Figure 16 and Figure 17. 

 

The original source code utilized function pointers and function template 

parameters that is not supported by the Nvidia CUDA Compiler 2.3. Additionally, 

data declared as pointer will have to be properly dereferenced for the GPU execution 

otherwise the output would not be correct. The adjustment in the data structure is 

necessary for the source code to be compatible with CUDA and executes correctly on 

the GPU. The original source code uses 2D array for the lattice, although CUDA 

compiler support 2D array, proper indexing of the 2D array proved to be difficult. 
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Figure 16: Flow chart for the first part of geometry initialization function 
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Figure 17: Flow chart for the second part of geometry initialization function 

 

The elements of the lattice are sorted out according to its function. Since the 

compiler does not support pointer function, each of the function is assigned a 

numerical value to be used in the conditionals elements sorting for faster comparison. 

The functions are ported to CUDA-compatible source code by adding parallel access 

using arrays. The amount of data handled for the computation is smaller compared to 

Serpent Encryption. The amount of computations that is done on the GPU is also less 

intensive compared to Serpent Encryption. Consequently, this would make it hard to 

hide the global memory latency as suggested in the guideline for Serpent Encryption. 

However, the small amount of data allows the usage of shared memory and constant 

memory cache to be used. 
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Based on the profile of the program, the function “Collide” occupies most of 

the program execution time. The goal of the initial attempt is to minimize the time 

taken for the function to execute and shorten the execution time altogether. Initial 

attempt was made by porting each of the function by using naïve implementation as 

shown in the flow chart in Figure 18.  
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Figure 18: Flow chart for the initial attempt on LBM CUDA implementation 

 

Although this is the easiest method in getting the functions to be executed on 

the GPU, the code has become very inefficient. As a result, the performance for the 

implementation degraded significantly. Figure 19 shows the comparison between 

CUDA implementation with CPU. The CPU compilers used as comparison are Intel 

C/C++ Compiler 11 (ICC) and GNU C Compiler 4.4 (GCC). 
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Figure 19: Bar chart for percentage time taken for function "Collide" 

 

 The performance degradation is caused by multiple requests for page-locked 

memory buffers (i.e. “cudaMallocHost”). The time taken for the memory 

allocation occupies most of the function’s execution time. Although page-locked 

memory buffer offers high data transfer rate compared to usual memory allocation 

using standard C function, the amount of time taken for the transfer does not 

overcome the performance degradation caused by the page-locked request. 

 

The last attempt made resulted in significant degradation of performance. 

Another attempt is made by including the data initialization and overall computation 

into the GPU. Since the initial value for the entire lattice elements are the same, the 

data initialization can be done in parallel using the GPU. Although the computation 

involved a few conditional branching, it is assumed the number of conditional 

branching is within the GPU limited capabilities. The general flow of the program is 

illustrated in Figure 20. 
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Figure 20: Flow chart for Lattice Boltzmann Method complete application 

implementation on CUDA 

 

This is done not only to minimize the amount of size for memory transfer but 

also to reduce the complexity of the memory copy. Although CUDA supports multi-

dimensional array operation, the array stored in the device memory is “flattened” (i.e. 

from to two-dimensional array to one-dimensional array) to reduce the complexity of 

the memory allocation. However, even though the array inside the GPU is flattened, it 

can still be addressed and computed in two-dimensional fashion. Figure 21 illustrates 

the two-dimensional computing model supported by CUDA and Figure 22 shows the 

source code fragment for indexing method used to address one-dimensional array for 

two-dimensional computation. 

 

 

Figure 21: Block diagram showing 2D computational model on CUDA 
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The direct integration for the complete application has shown significant 

performance gain in the execution time. The complete application was benchmarked 

with varying lattice size to study the performance effect. The result is further 

discussed in Section 4.4. After the successful source code porting process, an 

optimization was done to further improve the performance gain of the application. 

 

The optimization done has affected only small part of the source code. Blocks 

and threads that are managed well will have equal distribution of resources and tasks, 

thus the device can perform efficiently. However, the higher the number of blocks or 

the number of threads per block does not mean it will give the better performance. In 

this case, we measure the performance for each number of threads per block to 

determine the best number of threads per block. Figure 23 shows the result for the 

number of threads optimization with the result normalized over 8-thread per block. 
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Figure 23: Graph for performance gain in execution time versus number of threads 

per block with normalized result 

Figure 22: Source code fragment for addressing 1D array for 2D computation 

model 

int idx = blockDim.x*blockIdx.x+threadIdx.x; 

int by = blockIdx.y; 

// node[x][y] = node_gpu[idx+lx*by]; 

 
node_gpu[idx+lx*by] = compute(node_gpu[idx+lx*by]; 
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3.6 General Guideline for CUDA porting process 

 Based on the porting process of Serpent encryption algorithm and Lattice 

Boltzmann a number of key points is summarized for the general guideline: 

• Identify parts in the source code for data initialization, compute intensive task 

and data retrieval. 

• Aligning a structure type containing 16 bytes of data to 16-byte boundary 

provide coalesced memory transaction for the global memory thus increasing 

global memory bandwidth efficiency.  

• Page-locked memory buffer can be requested for higher data transfer rate 

however multiple requests over small amount of data degrade the overall 

performance significantly. 

• Examine computation demanding task for data dependencies as well as 

sequence. This is important to recognize whether the computation can be done 

in parallel. Usually an arrays or matrices operation that is done in a loop 

without any dependencies can be directly ported. 

• Although the global memory has the highest latency among the other types of 

memory in the device, the latency can be hidden by compute intensive 

instructions. 

• Memory management is crucial in getting most of the performance from 

CUDA. By using shared memory as a temporary memory for operations could 

increase the performance. 

• The amount of size for memory transfer must be kept at minimum as possible 

for efficiency. Generally, a big ratio between computations to memory transfer 

must be maintained.  

• For multi-dimensional array computation, it is more convenient to flatten the 

array for memory allocation and memory transfer but the data will still be able 

to be computed in multi-dimensional computational model by managing the 

kernel’s blocks and threads. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Parboil Benchmark 

This part of report displays the result from the benchmark and some findings 

that are worth mentioning. The benchmark result is obtained as at the time using the 

hardware and software details mentioned in the previous section. Figure 24 shows the 

summary of the benchmark result. The scoring system used was explained earlier in 

previous section. It is meant to provide relative comparison as well clear indication of 

the performance improvement. 
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Figure 24: Bar chart for normalized Parboil benchmark score 

 

The benchmark was executed a number of times for precision timing as to 

make sure that each execution time does not vary too much from each other. The data 

was then recorded based on the last execution and calculations were done to come out 

with the figure. The overall score was calculated as explained in the Methodology 
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section of the report. The benchmark explains the bigger picture of the project as it is 

one of the objectives of the project. However, the benchmark details must be 

examined for the result to be more meaningful. Detail elaborations of the benchmark 

result are described within this section. 

 

As the score summary depict, the benchmark performs 4 times better using 

ICC even when using GCC with generated processor instruction set. Unfortunately, 

the source codes for the benchmark programs do not support processor parallelization 

for it to execute on multiple thread. Thus the comparison can only be made with 

single thread processor. Aggressive compiler optimization flag were not tested as it 

may affect the accuracy of the benchmark such as when specifying the loop unroll, 

thus the compiler optimization flag were kept standard and more focused towards the 

effect on the hardware itself. The benchmark comparison between GCC and ICC 

translate the compiler performance in enhancing program execution time. 

 

The benchmark shows that GPU performance has big advantage over the CPU 

with up to 69 times from GCC compiler and 17 times from ICC compiler. As for GPU 

benchmark, it is found that the GPU performance indeed scale with the CPU 

frequency of 1.15 times for 1 GHz. The CPU host code may occupy a small fraction 

of code, thus the scale between CPU performance and GPU performance is within the 

factor of the fraction. This comparison is only valid as clock-per-clock basis with 

similar CPU architecture since newer CPU architecture design computes at lesser 

clock cycle. Further elaboration in Discussion section explains more on CPU affect on 

GPU performance. Based on the result, it can be conclude that CUDA increase 

performance on a system even on low-end system with low CPU frequency. 
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Figure 25: Bar graph for detail benchmark score 

 

 Figure 25 shows the detail benchmark scores for all of the benchmark 

programs. Two of the benchmark programs (MRI-FHD and MRI-Q) have two inputs 

in varying size that is noted by small and large that represents the size of the image 

used for the MRI application. Each of the programs implements different data 

structure in calculation. The detail benchmark scores provide further breakdown of 

the benchmark result. It can be seen that most of the programs have large 

improvement over the CPU counterpart except for Sum of Absolute Difference (SAD) 

benchmark and Two Point Angular Correlation Function. In order to avoid having the 

same performance decline in the implementation part, the source codes are profiled 

using Nvidia CUDA Visual Profiler to provide more information for the benchmarks.  
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4.2 Benchmark Profile 

 Source code profile provides detail information of the program flow indicated 

by the timestamp, routine executed during the time, length of time and elapsed time 

from the beginning of the program. The interest in profile is scale down to GPU as the 

implementation of the application requires the information from the GPU side. Figure 

26 represents the data of the benchmark profile based on time percentage for the 

GPU. 
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Figure 26: Graph for Benchmark Profile according to GPU Time Percentage 

 

The graph shows two of the general routine executed by the benchmark. The 

“Memcopy” represents the routine of memory copy involving device and host. The 

“Routine” represents the calculations involved in the GPU and the percentage time 

taken. 
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4.3. Serpent Encryption Benchmark 

Based on the successful attempt in optimizing serpent encryption using 

CUDA, benchmark is then done to study the effect of the number of block size with 

the throughput performance. This data is valuable as the effect studied is the 

scalability of CUDA and the maximum number of block size capable before all of the 

resources on the graphic card are used. Figure 27 shows the throughput performance 

of the Serpent encryption for CUDA and CPU. The maximum data size achieved is 

16MB, while maintaining the throughput performance. The performance gain 

maintained for all of the block sizes that is 7 times more throughput. The benchmark 

was done using Nvidia CUDA Compiler 2.3 and GNU C Compiler 4.4 for CPU. 
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Figure 27: Graph for Serpent encryption benchmark result 

  

 The result is compared side-by-side for initial attempt and complete 

application. The improvement achieved by limiting the memory transfer was 

significant. The throughput for CPU degraded in second attempt comparison as the 

benchmark also includes key scheduling process for CPU. The graph is shown in 

Figure 28. 
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Figure 28: Throughput comparison for complete application with initial attempt 

 

 Two more benchmarks were done to study the effect of number of threads per 

block and also the number of registers per thread. These benchmarks were using 

16MB data size as the plain text input. The number of threads per block was varied by 

specified manually inside of the source code while the number of registers is passed 

through to the compiler as the maximum registers count. The results are shown in the 

graphs in Figure 29 and Figure 30. 

  

 Although no significant performance gain can be achieved through the 

attempts, it is safe to assume the current algorithm has already reached the maximum 

possible throughput. It is interesting to mention the throughput result for varied 

number of threads per block for 64 threads is slightly better than 256 threads. Further 

detail is discussed in Section 4.5.4. 
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Figure 29: Throughput performance for varied number of threads per block 
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Figure 30: Throughput performance for varied number of registers per thread 
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4.4 Lattice Boltzmann Method benchmark result 

Based on the direct integration implementation for Lattice Boltzmann method 

on CUDA, the performance of the implementation was measured against the CPU 

source code with GCC 4.4 compiler as reference and ICC 11.0 as high-performance 

compiler for CPU. The implementation managed a performance gain up to 10 times 

with the performance gain increase with the increment of the lattice size. The 

optimized thread number performance gain over the un-optimized thread number also 

increases as the lattice size increases. Figure 31 shows the graph of the performance 

gain in terms of execution time with the result normalized over CPU based code 

compiled using GCC 4.4. 
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Figure 31: Bar chart for execution time performance comparison. The higher is the 

better performance 

 

The data trend shows an increasing performance gain as the occupancy of the 

GPU increases and as the occupancy of the GPU nearing the maximum, the 

performance gain only increases slightly. 
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4.5 Discussions 

4.5.1 Compiler Flag Optimization 

The C/C++ Compiler for CPU has been extensively developed for quite some 

time. As the CPU technology advance, new processor flag instruction is introduced to 

execute instructions at lesser clock cycles. Thus, to make use of the processor flag 

instruction, the compiler has to be optimized for the specific CPU to be able to 

generate special instruction code. This is where programmer normally optimized the 

program to make it run faster by compiling the source code with optimization flag. In 

the benchmark process, the source codes for CPU are compiled with full optimization 

level (-O3) and SSE3 instruction flag (-msse3), providing added performance to the 

CPU benchmark result. Additional flag that is also used for the ICC is inter-

procedural optimization (-ipo) that enables in-lining of the code while processor 

specific instruction. 

 

Optimization can unleash the true potential of the hardware but it can also be 

misleading. For instance, generating profile is one of the compiler optimization 

features that can improve the execution time of the program however at the same time 

requires the program to be executed at least two times in order to generate the profile 

for optimization. The profile is compatible with system that has similar configuration 

to the test setup but may not be for others. This does not state the true fact about the 

performance of the program and also the system when execution time is concerned. 

However in some cases, profile does benefit greatly if the implementation involves 

similar algorithm. 
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4.5.2  GPU Benchmark Score 

Execution time for the GPU to execute the benchmark programs include the 

time taken for host code to execute, data copied into the share memory and device 

code to execute. All of these are necessary in order for a program to execute on GPU, 

thus it cannot be neglected. Nevertheless, input/output time was omitted from the 

execution time calculation as mentioned in Methodology chapter. GPU Benchmark 

Profile provide more information as the GPU 

 

The CPU frequency scaling and its effect on GPU performance are studied in 

the benchmark. As stated before, the CUDA source code contains lines of codes for 

the host to execute before being offloaded to the GPU. A good CUDA code will take 

minimal time in host execution and minimal amount of time for the data to be copied 

to the shared memory in the GPU. From the benchmark, MRI application which is 

applied in matrices benefits greatly from CUDA. Other application such as 

Cuolombic Potentials, make use of CUDA Three Dimensional (3D) vector 

capabilities to compute 150 times faster compared to GCC and 42 times faster 

compared to ICC. 

 

4.5.3 Memory Copy 

One of the concerns in developing application on interconnected device is 

transfer of data. In the case of Super Calculator test setup, GPU is connected through 

PCI-E v1.1 which has a data rate of 250 MB/s. The memory copy routine as shown by 

the benchmark, affects the performance of the application. Figure 26 show that SAD 

application took performance degradation from the high percentage time of memory 

copy. One of the factors to be considered however is the use of PCI-E v1.1 which 

only half the data rate of the latest PCI-E v2.0. The memory copy may have been too 

large, thus this factor should be considered in developing the application. 
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4.5.4 Serpent Encryption benchmark data trend 

The benchmark data only shows a flat trend over increasing data size. 

However, this only shows the scalability up to the maximum data size the GPU could 

handle in single execution. The maximum data size is achieved at 16MB because of 

the memory limitation within the graphic card. Larger data size will need to be broken 

into chunks for parallel encryption. The optimum number of threads per block for 

Serpent encryption algorithm is 64 while maximum number of registers could be 

maintained at 40. 

 

The number of blocks corresponded to the number of thread per block for a 

given data size. Larger number of thread per block would result in smaller number of 

blocks. While having small number of threads per block will result in poor 

performance, having large number of thread per block in this case does not give any 

performance gain either. Each of the blocks has shared memory that is shared between 

the threads in the same block. However the size of the shared memory is limited to 

16KB [2]. Thus the right number of threads per block will give better memory access, 

resulting in better performance. 

 

The maximum number of registers specified limit the number of registers used 

for storage purpose, thus making it available for computation. Both shared memory 

and registers per block are limited, thus device memory is used to store the large 

amount of data. Although the device memory storage is a lot bigger (896MB in this 

case), access latency is much higher. Compute intensive and memory intensive 

application need to consider these factors as compute intensive program would be 

able to hide the latency; however memory intensive program may suffer performance 

degradation cause by the latency. 
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CHAPTER 5 

CONCLUSION 

 

Based on the work done to both Serpent encryption and Lattice Boltzmann, a 

general guideline is produced for simple and direct integration method from CPU-

based algorithm in C language to CUDA-compatible source code with minimal effort. 

Both of the programs are based on compute intensive application that usually stresses 

the CPU extensively, thus becoming perfect candidates as an example for the 

implementation. 

 

The benchmark data and profile data provide information and expectation for 

the development of application for the Super Calculator. The analysis has provided 

knowledge and understanding on the performance study of CUDA. Serpent 

encryption algorithm which is based on integer and bitwise manipulation managed to 

achieve up to 7 times performance gain compared to the CPU by using multiple block 

encryption in parallel. The data for the multiple blocks is handled independently 

without any relation with the other blocks. The Lattice Boltzmann was chosen for the 

floating-point implementation because of its parallel algorithm for the lattice’s 

elements computation. By using direct integration method, the performance gain in 

the execution time is up to 10 times over that of the CPU. 

 

 Although CUDA is able to provide massive parallelism, it is limited by only 

one kernel can be executed at the same instance. Nevertheless, it was able to give 

considerable performance gain and still holds much potential. Direct integration 

method also worked well, given the programmer could spend some time in profiling 

the ported source code. Optimizations such as limiting memory transfer, thread block 

management and memory management could already give considerable performance 

gain over system with just CPU as computation processor. 
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Appendix B 

System Information 

 

CPU Information 

 
processor : 0 

vendor_id : GenuineIntel 

cpu family : 6 

model  : 15 

model name : Intel(R) Core(TM)2 Duo CPU     E4500  @ 2.20GHz 

stepping : 13 

cpu MHz  : 2200.000 

cache size : 2048 KB 

physical id : 0 

siblings : 2 

core id  : 0 

cpu cores : 2 

apicid  : 0 

initial apicid : 0 

fdiv_bug : no 

hlt_bug  : no 

f00f_bug : no 

coma_bug : no 

fpu  : yes 

fpu_exception : yes 

cpuid level : 10 

wp  : yes 

flags  : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx 

lm constant_tsc arch_perfmon pebs bts pni dtes64 monitor ds_cpl est 

tm2 ssse3 cx16 xtpr pdcm lahf_lm 

bogomips : 4400.11 

clflush size : 64 

power management: 

 

processor : 1 

vendor_id : GenuineIntel 

cpu family : 6 

model  : 15 

model name : Intel(R) Core(TM)2 Duo CPU     E4500  @ 2.20GHz 

stepping : 13 

cpu MHz  : 2200.000 

cache size : 2048 KB 

physical id : 0 

siblings : 2 

core id  : 1 

cpu cores : 2 

apicid  : 1 

initial apicid : 1 

fdiv_bug : no 

hlt_bug  : no 

f00f_bug : no 

coma_bug : no 

fpu  : yes 

fpu_exception : yes 

cpuid level : 10 
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wp  : yes 

flags  : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx 

lm constant_tsc arch_perfmon pebs bts pni dtes64 monitor ds_cpl est 

tm2 ssse3 cx16 xtpr pdcm lahf_lm 

bogomips : 4399.69 

clflush size : 64 

power management: 

 

 

Graphic Card Information 

 
CUDA Device Query (Runtime API) version (CUDART static linking) 

There is 1 device supporting CUDA 

 

Device 0: "GeForce GTX 260" 

  CUDA Driver Version:                           2.30 

  CUDA Runtime Version:                          2.30 

  CUDA Capability Major revision number:         1 

  CUDA Capability Minor revision number:         3 

  Total amount of global memory:                 938803200 bytes 

  Number of multiprocessors:                     27 

  Number of cores:                               216 

  Total amount of constant memory:               65536 bytes 

  Total amount of shared memory per block:       16384 bytes 

  Total number of registers available per block: 16384 

  Warp size:                                     32 

  Maximum number of threads per block:           512 

  Maximum sizes of each dimension of a block:    512 x 512 x 64 

  Maximum sizes of each dimension of a grid:     65535 x 65535 x 1 

  Maximum memory pitch:                          262144 bytes 

  Texture alignment:                             256 bytes 

  Clock rate:                                    1.24 GHz 

  Concurrent copy and execution:                 Yes 

  Run time limit on kernels:                     Yes 

  Integrated:                                    No 

  Support host page-locked memory mapping:       Yes 

  Compute mode:                                  Default (multiple 

host threads can use this device simultaneously) 
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Appendix C 

Parboil Benchmark data 

IO GPU Copy Compute Score

cp 0.010220 0.000000 0.000000 38.157044 0.026207

rpes 0.017431 0.000000 0.000000 43.362025 0.023062

pns 0.000171 0.000000 0.000000 49.227340 0.020314

sad 0.184050 0.000000 0.000000 0.118138 8.464677

mri-fhd (small) 0.001230 0.000000 0.000000 0.973062 1.027684

mri-fhd (large) 0.009014 0.000000 0.000000 5.402111 0.185113

mri-q (small) 0.001280 0.000000 0.000000 2.856392 0.350092

mri-q (large) 0.008727 0.000000 0.000000 15.385966 0.064994

tpacf 0.478070 0.000000 0.000000 105.746986 0.009457

cp 0.010238 0.000000 0.000000 14.119911 0.070822

pns 0.000169 0.000000 0.000000 39.126251 0.025558

sad 0.187726 0.000000 0.000000 0.055288 18.087108

mri-fhd (small) 0.001307 0.000000 0.000000 1.077504 0.928071

mri-fhd (large) 0.008613 0.000000 0.000000 5.751265 0.173875

mri-q (small) 0.009305 0.000000 0.000000 1.010185 0.989918

mri-q (large) 0.008709 0.000000 0.000000 5.371924 0.186153

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

Base

CPU

Benchmark

Compiler Intel C/C++ Compiler 11.0

-O3 -xT

PARBOIL BENCHMARK

Compiler Flags
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IO GPU Copy Compute Score

cp 0.032949 0.000000 0.000000 501.844121 0.001993

rpes 0.017617 0.000000 0.000000 150.546424 0.006642

pns 0.000169 0.000000 0.000000 71.271529 0.014031

sad 0.188217 0.000000 0.000000 0.160405 6.234220

mri-fhd (small) 0.034531 0.000000 0.000000 6.393511 0.156409

mri-fhd (large) 0.082410 0.000000 0.000000 34.263895 0.029185

mri-q (small) 0.022346 0.000000 0.000000 6.068583 0.164783

mri-q (large) 0.073838 0.000000 0.000000 32.603966 0.030671

tpacf 1.466546 0.000000 0.000000 78.562207 0.012729

cp 0.012978 0.000000 0.000000 502.250742 0.001991

pns 0.000166 0.000000 0.000000 52.458300 0.019063

sad 0.183087 0.000000 0.000000 0.059477 16.813222

mri-fhd (small) 0.001319 0.000000 0.000000 6.461661 0.154759

mri-fhd (large) 0.009133 0.000000 0.000000 34.427118 0.029047

mri-q (small) 0.001292 0.000000 0.000000 6.192104 0.161496

mri-q (large) 0.009277 0.000000 0.000000 33.035517 0.030270

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

CPU

Compiler GNU C Collection 4.1.2

PARBOIL BENCHMARK

Base

Benchmark

Compiler Flags -O3 -msse3
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IO GPU Copy Compute Score

cp 0.061839 0.000000 0.000000 36.055435 0.027735

rpes 0.034432 0.000000 0.000000 33.804972 0.029581

pns 0.000467 0.000000 0.000000 46.818074 0.021359

sad 0.169085 0.000000 0.000000 0.140549 7.114956

mri-fhd (small) 0.038362 0.000000 0.000000 1.004024 0.995992

mri-fhd (large) 0.072529 0.000000 0.000000 5.523443 0.181046

mri-q (small) 0.037232 0.000000 0.000000 2.915938 0.342943

mri-q (large) 0.065463 0.000000 0.000000 15.476124 0.064616

tpacf 1.503969 0.000000 0.000000 103.854404 0.009629

cp 0.102240 0.000000 0.000000 13.809612 0.072413

pns 0.000175 0.000000 0.000000 39.249689 0.025478

sad 0.152698 0.000000 0.000000 0.055155 18.130723

mri-fhd (small) 0.001271 0.000000 0.000000 1.077723 0.927882

mri-fhd (large) 0.009012 0.000000 0.000000 5.750769 0.173890

mri-q (small) 0.001245 0.000000 0.000000 1.007732 0.992327

mri-q (large) 0.009077 0.000000 0.000000 5.374488 0.186064

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

Benchmark

Base

CPU

Compiler Intel C/C++ Compiler 11.0

Compiler Flags -O3 -xT -ipo

PARBOIL BENCHMARK
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IO GPU Copy Compute Score

cp 0.013888 0.187609 0.129066 0.004418 3.114363

rpes 0.022802 0.177085 0.176380 0.206931 1.784452

pns 0.015593 2.140182 0.185902 0.000318 0.429848

sad 0.202321 0.001066 0.126997 0.005020 7.514108

mri-fhd (small) 0.001408 0.006426 0.112163 0.000152 8.421691

mri-fhd (large) 0.008662 0.031053 0.118984 0.000384 6.648008

mri-q (small) 0.001393 0.005103 0.111635 0.000105 8.558493

mri-q (large) 0.009001 0.024938 0.118441 0.000354 6.957345

tpacf 1.349266 1.225661 0.114639 0.023142 0.733438

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

Compiler (Host) GNU Compiler Collection 4.1.2

Geomean Score 3.279578

CPU Frequency 2200 MHz

Compiler (Device) Nvidia CUDA Compiler 2.0

CUDA

PARBOIL BENCHMARK

Benchmark
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IO GPU Copy Compute Score

cp 0.053813 0.185729 0.144260 0.008053 2.958212

rpes 0.042267 0.172555 0.200605 0.364360 1.355895

pns 0.000397 2.145531 0.237047 0.000635 0.419602

sad 0.356111 0.001072 0.158113 0.000933 6.245394

mri-fhd (small) 0.005235 0.006495 0.137339 0.000253 6.940251

mri-fhd (large) 0.073647 0.031099 0.145790 0.000678 5.631677

mri-q (small) 0.012598 0.005145 0.137375 0.000185 7.007463

mri-q (large) 0.068388 0.024980 0.144972 0.000636 5.862077

tpacf 1.799922 1.225601 0.142054 0.041766 0.709511

NOTES:

1) IO is the time taken for the Input/Output of the system

2) GPU is the time taken for the program execution inside the GPU

3) Copy is the time taken for the program to be copied inside the shared memory of the GPU

4) Compute is the time taken for the program execution inside the CPU

5) Score is defined as 1/(GPU+Copy+Compute)

GNU Compiler Collection 4.1.2

Geomean Score 2.838817

PARBOIL BENCHMARK

Benchmark

CUDA

CPU Frequency 1200 MHz

Compiler (Device) Nvidia CUDA Compiler 2.0

Compiler (Host)
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Appendix D 

Serpent Encryption Algorithm Implementation 

Serpent Encryption Algorithm Data Structure 

// Data Structure 

typedef struct { 

   uint32_t x0, x1, x2, x3; 

}SER_BLOCK; 

 

typedef struct { 

   int keyLen; 

   uint32_t rkey[8]; 

}RAW_KEYS; 

 

typedef struct { 

   uint32_t x0, x1, x2, x3; 

}SUBKEY; 

 

typedef struct { 

   SUBKEY k[33]; 

}SER_KEY; 

Serpent Encryption Algorithm CPU Source Code 

void cpu_serpent(SER_BLOCK *pt2ct, RAW_KEYS *keys) { 

 

  SER_KEY skey; 

  const int N = ENCRYPT_BLOCKS; 

  int idx; 

 

  for(idx = 0; idx<N; idx++) { 

   skey = makeKey(keys[idx]); 

   pt2ct[idx] = encrypt(pt2ct[idx], skey); 

  } 

 

} 

 
int main(void) { 

 

   SER_BLOCK *host_databuffer;    

   RAW_KEYS *keycpu; 

 

//Data initialization 

cpu_serpent(host_databuffer, keycpu); 

 

} 
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Serpent Encryption Algorithm CUDA source code 

__global__ void cuda_serpent(SER_BLOCK *pt2ct, RAW_KEYS *keys) { 

   const uint32_t idx = (blockIdx.x * blockDim.x + threadIdx.x); 

   __shared__ SER_KEY skey; 

 

   skey = cuda_makeKey(keys[idx]); 

   pt2ct[idx] = cuda_encrypt(pt2ct[idx], skey); 

} 

 

int serpent_encrypt(unsigned char* inbuffer, size_t MemSize, unsigned 

char* outbuffer, unsigned char* keycpu, size_t KeySize) { 

 

   SER_BLOCK *gpubuffer; 

   RAW_KEYS *key; 

   size_t BufferBlocks, NumBlock, TransferSize; 

 

 

 

   BufferBlocks = KeySize / sizeof(RAW_KEYS); 

   if ((int)BufferBlocks <= 0 ) { 

      printf("ERROR! Not Enough BufferBlock! (%d)", BufferBlocks); 

      return 0; 

   } 

 

    

 

   cudaMalloc((void **) &gpubuffer, MemSize); 

   cudaMalloc((void **) &key, KeySize); 

 

 

 

   while (BufferBlocks > 0) { 

      TransferSize = BufferBlocks > BLOCKBUFFER_SIZE ? 

BLOCKBUFFER_SIZE : BufferBlocks; 

      NumBlock = TransferSize / THREADPERBLOCK; 

      dim3 dimGrid(NumBlock); 

      dim3 NumThread(THREADPERBLOCK); 

 

      cudaMemcpy(key, keycpu, TransferSize * sizeof(RAW_KEYS), 

cudaMemcpyHostToDevice); 

      cudaMemcpy(gpubuffer, inbuffer, TransferSize * 

sizeof(SER_BLOCK), cudaMemcpyHostToDevice); 

      cuda_serpent<<<dimGrid, NumThread>>>(gpubuffer, key); 

      cudaThreadSynchronize(); 

    

      checkCUDAError("kernel invocation"); 

 

      // device to host copy  

      cudaMemcpy( outbuffer, gpubuffer, TransferSize * 

sizeof(SER_BLOCK), cudaMemcpyDeviceToHost ); 

      // Check for any CUDA errors  

      checkCUDAError("memcpy"); 

   

      // Aligning data according to buffer 

      inbuffer += TransferSize * sizeof(SER_BLOCK); 

      outbuffer += TransferSize * sizeof(SER_BLOCK); 

      keycpu += TransferSize * sizeof(SER_KEY); 

      BufferBlocks -= TransferSize; 

    } 
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   // Free Device Memory 

   cudaFree(gpubuffer);  

   cudaFree(key); 

 

   return 1; 

} 

int main(void) { 

 

   SER_BLOCK *host_databuffer;    

   RAW_KEYS *keycpu; 

   size_t MemSize, KeySize; 

//Memory Allocation 

//Data initialization 

enc = serpent_encrypt((unsigned char*) host_databuffer, MemSize, 

(unsigned char*) host_databuffer, (unsigned char*) keycpu, KeySize); 

 

} 
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Appendix E 

Lattice Boltzmann Method Implementation 

Lattice Boltzmann Method Data Structure 

//CPU Data structure 

typedef struct { 

 int lx; //nodes number in axis x 

 int ly; //nodes number in axis y 

 int n; //lattice dimension elements 

 bool **obst; //Obstacle Array lx * ly 

 double ***node; //n-speed lattice  n * lx * ly 

 double ***temp; //temporarely storage of fluid densities 

} s_lattice; 

 

//CUDA Data Structure 

typedef struct{ 

 double n[9]; 

} Node; 

 

//lattice structure 

typedef struct { 

 int lx; //nodes number in axis x 

 int ly; //nodes number in axis y 

 int **obst; //Obstacle Array lx * ly 

 Node **node; //n-speed lattice  n * lx * ly 

 Node **temp; //temporarely storage of fluid densities 

} s_lattice; 

Lattice Boltzmann Method CPU Source Code 

int main(int argc, char **argv) { 

//Data Initialization 

for (time = 0; time < properties->t_max; time++) { 

   

 redistribute(lattice, properties->accel, properties->density); 

 

 propagate(lattice); 

 

 bounceback(lattice); 

 

 relaxation(lattice, properties->density, properties->omega); 

 

 } 

 

} 
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Lattice Boltzmann CUDA Source Code 

__global__ void lb_cuda_kernel(int *dev_obst, Node *dev_node, Node 

*dev_temp, int lx, int ly, double accel,  

    double density, double omega) 

{ 

 int idx = blockDim.x*blockIdx.x+threadIdx.x; 

 int idy = blockIdx.y; 

 int tx = threadIdx.x; 

 

 //Redistribute 

 if(idx == 0) 

   dev_node[idx+lx*idy]=redistribute(dev_obst[idx+lx*idy], 

dev_node[idx+lx*idy], accel, density); 

 

 //Propagate 

 int x_e, x_w, y_n, y_s; 

 //compute upper and right next neighbour nodes 

 x_e = (idx + 1)%lx; 

 y_n = (idy + 1)%ly; 

 

 //compute lower and left next neighbour nodes 

 x_w = (idx - 1 + lx)%lx; 

 y_s = (idy - 1 + ly)%ly; 

 //density propagation 

 

 //zero 

 dev_temp[idx+lx*idy].n[0] = dev_node[idx+lx*idy].n[0]; 

 //east 

 dev_temp[x_e+lx*idy].n[1] = dev_node[idx+lx*idy].n[1]; 

 //north 

 dev_temp[idx+lx*y_n].n[2] = dev_node[idx+lx*idy].n[2]; 

 //west 

 dev_temp[x_w+lx*idy].n[3] = dev_node[idx+lx*idy].n[3]; 

 //south 

 dev_temp[idx+lx*y_s].n[4] = dev_node[idx+lx*idy].n[4]; 

 //north-east 

 dev_temp[x_e+lx*y_n].n[5] = dev_node[idx+lx*idy].n[5]; 

 //north-west 

 dev_temp[x_w+lx*y_n].n[6] = dev_node[idx+lx*idy].n[6]; 

 //south-west 

 dev_temp[x_w+lx*y_s].n[7] = dev_node[idx+lx*idy].n[7]; 

 //south-east 

 dev_temp[x_e+lx*y_s].n[8] = dev_node[idx+lx*idy].n[8]; 

 

 //Bounce Back 

 if (dev_obst[idx+lx*idy] == 1) 

  dev_node[idx+lx*idy]=bounceback(dev_node[idx+lx*idy], 

dev_temp[idx+lx*idy]); 

  

 //Relaxation 

 else  { 

  int i; 

  double c_squ = 1.0 / 3.0; 

  double t_0 = 4.0 / 9.0; 

  double t_1 = 1.0 / 9.0; 

  double t_2 = 1.0 / 36.0; 

  __shared__ double u_x[THREADS]; 

  __shared__ double u_y[THREADS]; 

  __shared__ double u_squ[THREADS]; 
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  __shared__ double d_loc[THREADS]; 

  __shared__ Node u_n[THREADS], n_equ[THREADS];  

 

  d_loc[tx] = 0.0; 

  for (i = 0; i < 9; i++) { 

   d_loc[tx] += dev_temp[idx+lx*idy].n[i]; 

   __syncthreads(); 

  } 

 

  //x-, and y- velocity components 

  u_x[tx] = (dev_temp[idx+lx*idy].n[1] + 

dev_temp[idx+lx*idy].n[5] + dev_temp[idx+lx*idy].n[8] - 

(dev_temp[idx+lx*idy].n[3] + dev_temp[idx+lx*idy].n[6] + 

dev_temp[idx+lx*idy].n[7])) / d_loc[tx]; 

 

  u_y[tx] = (dev_temp[idx+lx*idy].n[2] + 

dev_temp[idx+lx*idy].n[5] + dev_temp[idx+lx*idy].n[6] - 

(dev_temp[idx+lx*idy].n[4] + dev_temp[idx+lx*idy].n[7] + 

dev_temp[idx+lx*idy].n[8])) / d_loc[tx]; 

 

  __syncthreads(); 

  //square velocity 

  u_squ[tx] = u_x[tx] * u_x[tx] + u_y[tx] * u_y[tx]; 

  //n- velocity components 

  //only 3 speeds would be necessary 

  u_n[tx].n[1] = u_x[tx]; 

  u_n[tx].n[2] = u_y[tx]; 

  u_n[tx].n[3] = -u_x[tx]; 

  u_n[tx].n[4] = -u_y[tx]; 

  u_n[tx].n[5] = u_x[tx] + u_y[tx]; 

  u_n[tx].n[6] = -u_x[tx] + u_y[tx]; 

  u_n[tx].n[7] = -u_x[tx] - u_y[tx]; 

  u_n[tx].n[8] = u_x[tx] - u_y[tx]; 

  

  //zero velocity density 

  n_equ[tx].n[0] = t_0 * d_loc[tx] * (1.0 - u_squ[tx] / 

(2.0 * c_squ)); 

 

  //axis speeds: factor: t_1 

  n_equ[tx].n[1] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[1] / 

c_squ + u_n[tx].n[1] * u_n[tx].n[1] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

  n_equ[tx].n[2] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[2] / 

c_squ + u_n[tx].n[2] * u_n[tx].n[2] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

  n_equ[tx].n[3] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[3] / 

c_squ + u_n[tx].n[3] * u_n[tx].n[3] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

  n_equ[tx].n[4] = t_1 * d_loc[tx] * (1.0 + u_n[tx].n[4] / 

c_squ + u_n[tx].n[4] * u_n[tx].n[4] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

  //diagonal speeds: factor t_2 

  n_equ[tx].n[5] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[5] / 

c_squ + u_n[tx].n[5] * u_n[tx].n[5] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 
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  n_equ[tx].n[6] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[6] / 

c_squ + u_n[tx].n[6] * u_n[tx].n[6] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

  n_equ[tx].n[7] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[7] / 

c_squ + u_n[tx].n[7] * u_n[tx].n[7] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

  n_equ[tx].n[8] = t_2 * d_loc[tx] * (1.0 + u_n[tx].n[8] / 

c_squ + u_n[tx].n[8] * u_n[tx].n[8] / (2.0 * c_squ * c_squ) - 

u_squ[tx] / (2.0 * c_squ)); 

 

     

  //relaxation step 

  for (i = 0; i < 9; i++) { 

   dev_node[idx+lx*idy].n[i] = 

dev_temp[idx+lx*idy].n[i] + omega * (n_equ[tx].n[i] - 

dev_temp[idx+lx*idy].n[i]); 

 

   } 

  } 

 

 

} 

 

void lb_cuda(s_lattice *l, int t_max, double accel, double density, 

double omega) { 

 int i; 

 int x,y; 

 //device variables 

 int *dev_obst; 

 Node *dev_node; 

 Node *dev_temp; 

 Node *h_node; 

 

 cudaMallocHost((void **)&h_node, l->lx*l->ly*sizeof(Node)); 

 //device memory allocation 

 CUDA_SAFE_CALL(cudaMalloc((void **)&dev_obst, l->lx*l-

>ly*sizeof(int))); 

 CUDA_SAFE_CALL(cudaMalloc((void **)&dev_node, l->lx*l-

>ly*sizeof(Node))); 

 CUDA_SAFE_CALL(cudaMalloc((void **)&dev_temp, l->lx*l-

>ly*sizeof(Node))); 

//printf("p_obst = %d\n", pitch_obst); 

//printf("p_node = %d\n", pitch_node); 

//printf("p_temp = %d\n", pitch_temp); 

 

 //memory copy 

 CUDA_SAFE_CALL(cudaMemset(dev_obst, 0, l->lx*l-

>ly*sizeof(int))); 

 CUDA_SAFE_CALL(cudaMemset(dev_node, 0, l->lx*l-

>ly*sizeof(Node))); 

 CUDA_SAFE_CALL(cudaMemset(dev_temp, 0, l->lx*l-

>ly*sizeof(Node))); 

 //kernel parameter 

 dim3 dimBlock(THREADS); 

 dim3 dimGrid(l->lx/THREADS, l->ly); 

 lb_cuda_initial<<<dimGrid, dimBlock>>>(dev_obst, dev_node, l-

>lx, l->ly, density); 

 cudaThreadSynchronize(); 

 for(i = 0; i < t_max; i++) { 
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  lb_cuda_kernel<<<dimGrid, dimBlock>>>(dev_obst, dev_node, 

dev_temp, l->lx, l->ly, accel, density, omega); 

  cudaThreadSynchronize(); 

 } 

printf("pass kernel\n"); 

 //copy from device 

 //CUDA_SAFE_CALL(cudaMemcpy(h_obst, dev_obst, l->lx*l-

>ly*sizeof(int), cudaMemcpyDeviceToHost)); 

 CUDA_SAFE_CALL(cudaMemcpy(h_node, dev_node, l->lx*l-

>ly*sizeof(Node), cudaMemcpyDeviceToHost)); 

 

 for(y=0;y<l->ly;y++) 

   for(x=0;x<l->lx;x++) 

     for(i=0;i<9;i++) { 

       l->node[x][y].n[i] = h_node[x+l->lx*y].n[i]; 

     } 

 //free memory allocation 

 cudaFree(dev_obst); 

 cudaFree(dev_node); 

 cudaFree(dev_temp); 

 cudaFreeHost(h_node); 

 

} 

 

 

int main(int argc, char **argv) { 

 

//Data initialization 

 

lb_cuda(lattice, properties->t_max, properties->accel, properties-

>density, properties->omega); 

 

} 

 


