Design Continuous Variable Transmission for Shell Eco Marathon Asia 2012 (SEM2012)

By:

MOHD SYAFIQ BIN MOHD RUSLAN

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

MAY 2012

UNIVERSITI TEKNOLOGI PETRONAS BANDAR SERI ISKANDAR 31750 TRONOH PERAK DARUL RIDZUAN

CERTIFICATION OF APPROVAL

Design Continuous Variable Transmission for Shell Eco Marathon Asia 2012 (SEM2012)

By:

Mohd Syafiq Bin Mohd Ruslan

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

Ir. Dr Masri Bin Baharom

UNIVERSITI TEKNOLOGI PETRONAS TRONOH PERAK MAY 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, and the original work is produced on my own except as specified in the references and acknowledgement, and it has not been undertaken or done by unspecified sources or person.

MOHD SYAFIQ BIN MOHD RUSLAN

ACKNOWLEDGEMENT

First and foremost, the author would like to thank The Most Merciful and The Most Gracious as without His help, the author will not able to complete this project. This project would not have been possible without the help and assistance from certain individuals and organization.

Firstly, the author would like to express his utmost appreciation to his supervisor, Ir.

Dr Masri Bin Baharom which had given full supervision, guidance, training and also inspiration to complete the project. The author has much benefited from him valuable knowledge and also experience. Without him contribution, this project would not be accomplished.

Secondly, the author would like to convey a word of sincerest gratitude to Mr. Mohd Syaifuddin bin Mohd and Dr. Zainal Ambri Bin Abdul Karim for sharing the experiences and giving guidance during the completion of the project.

Last but not least, special thanks dedicated to Mechanical Engineering Department and the lecturers for assisting the author in term of knowledge, equipment, and also support. Not to forget to all related parties who have been involved in this project directly or indirectly in making this project completed.

For those who has assisted the author in completing the project, but the name is not mentioned here, the author would like to thanks for all the contribution and supports.

Thank you very much.

ABSTRACT

This report describing a project entitled Design Continuous Variable Transmission for Shell Eco Marathon Asia 2012 (SEM2012). A brief about Shell Eco marathon competition will be included, as well as purpose of this project to improve the fuel efficiency. Due to the purpose of reducing the fuel consumption during the race, the analysis is accomplished through the equations and expected drive cycles to get the fuel consumption of the car. Theory developed for this project will be focuses on a case study using the CVT applied to the GEN89 urban concept car which need to have a reliable and inexpensive method for CVT tuning. Previous approaches to CVT tuning were strictly empirical and involved mechanical component replacement in a slow and expensive trial and- error optimization loop. The methodology for this project is creating the expected drive cycle for Sepang International Circuit with the expected fuel consumption, then compare it to the actual result during competition and fine up the best combination of primary pulley and secondary pulley tuning, thus determine the gear ratio produce by the CVT. This project find that CVT will promote advantage of improving fuel efficiency relating to Sepang drive cycle, provide smooth uninterrupted power without step discontinuities, accelerate without jerk and also naturally changes ratio continuously leads to steady acceleration.

TABLE OF CONTENT

CERTIFICATION OF APPROVAL	i
CERTIFICATION OF ORIGINALITY	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLES OF CONTENTS	Error! Bookmark not defined.
LIST OF FIGURES	Error! Bookmark not defined.
LIST OF TABLES	Error! Bookmark not defined.
LIST OF APPENDICES	Error!
Bookmark not defined.	
CHAPTER 1: INTRODUCTION	Error! Bookmark not defined.
1.1 Project Background	Error! Bookmark not defined.
1.2 Problem Statement	Error! Bookmark not defined.
1.3 Objective & Scope of Study	Error! Bookmark not defined.
1.4 Relevancy and Feasibility of the	project Error! Bookmark not defined.
CHAPTER 2: LITERATURE REVIEW	Error! Bookmark not defined.
CHAPTER 3: METHODOLOGY	Error! Bookmark not defined.
3.1 Research Methodology	Error! Bookmark not defined.
3.2 Project Activities	Error! Bookmark not defined.
3.2 Key Milestone	Error! Bookmark not defined.
3.4 Tools	Error! Bookmark not defined.
CHAPTER 4: RESULT AND DISCUSSI	ONError! Bookmark not defined.
4.1 Result	Error! Bookmark not defined.
4.1.1 Vehicle Parameter	Error! Bookmark not defined.
4.1.2 SIC Drive Cycle	Error! Bookmark not defined.

4.1.3 Tuning for best combination of primary and secondary pulleyError! Bookmark not defined.

4.1.3.1 Testing without loadError! Bookmark not defined.
4.1.3.2 Testing with connected to the loadError! Bookmark not defined.
4.1.4 Actual result during competitionError! Bookmark not defined.
4.2 Discussion Error! Bookmark not defined.
CHAPTER 5: CONCLUSIONS Error! Bookmark not defined.
5.1 ConclusionError! Bookmark not defined.
5.2 RecommendationError! Bookmark not defined.
REFERENCEError! Bookmark not defined.
APPENDICES Error! Bookmark not defined.

LIST OF FIGURES

Figure 1.1: Common arrangement of CVT	Error! Bookmark not defined.
Figure 1.2: Track for SEM2012	Error! Bookmark not defined.
Figure 1.3: Comparison of efficiency between	conventional automatic with CVTError!
Bookmark not defined.	
Figure 3.1: With team members	Error! Bookmark not defined.
Figure 3.2: Primary pulley with roller weight	Error! Bookmark not defined.
Figure 3.3: Gen89 Urban Concept car	Error! Bookmark not defined.
Figure 3.4: Testing	Error! Bookmark not defined.
Figure 3.5: Receiver for data logger installed	at the carError! Bookmark not defined.
Figure 3.6: Data logger	Error! Bookmark not defined.
Figure 4.01: Village 4 track testing	Error! Bookmark not defined.
Figure 4.02: Speed and acceleration vs. time .	Error! Bookmark not defined.
Figure 4.03: Power curve vs. time	Error! Bookmark not defined.
Figure 4.04: Coast down testing data	Error! Bookmark not defined.
Figure 4.05: Village 4 drive cycle	Error! Bookmark not defined.

Figure 4.06: SIC expected drive cycleError! Bookmark not defined.

Figure 4.07: Configuration of the drivetrain.....Error! Bookmark not defined.

Figure 4.08: Data for 12g roller weight with high stiffness secondary springError! Bookmark not defined.

Figure 4.09: Data for 10g roller weight with high stiffness secondary spring**Error!** Bookmark not defined.

Figure 4.10: Data for 12g roller weight with low stiffness secondary springError! Bookmark not defined.

Figure 4.11: Testing with load	Error! Bookmark not defined.
Figure 4.12: Actual result during competition ^[1]	Error! Bookmark not defined.
Figure 4.13: Graph for primary pulley	Error! Bookmark not defined.
Figure 4.14: Graph for secondary pulley	Error! Bookmark not defined.
Figure 4.15: Graph for gear ratio	Error! Bookmark not defined.

LIST OF TABLES

Table 1.1: Details of the car	Error! Bookmark not defined.
Table 3.1: Tools	Error! Bookmark not defined.

LIST OF APPENDICES

Appendix 10: Table data for testing with load......Error! Bookmark not defined.