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ABSTRACT 

 

In-Field Liner (IFL) is generally a flexible composite liner pipe, where it is commonly 

used nowadays to replace the degraded oil and gas steel pipeline. This project is aimed 

to determine the feasibility and the capability of IFL pipe to sustain the force exerted by 

the pulling cable in the pulling process to replace the degraded underwater steel pipeline 

for oil and gas application. There are two main concerns for this project, which are to 

design a pulling head for IFL pipe and analysis of the IFL pipe in term if its reaction to a 

certain amount of pulling force used in the pulling process. For design purposes, CATIA 

V5R20 software is used whereas ANSYS v14.0 software is used for analysis and 

simulation purposes. The pulling head design is created using CATIA software 

according to the specifications of IFL pipe, so that the pulling head will fit properly on 

the IFL pipe when it is attached. For analysis of IFL pipe, the Finite Element Analysis 

(FEA) model of IFL pipe in its folded configuration (U-shaped form) will be simulated 

using ANSYS software in order to determine the ability of IFL pipe to withstand the 

pulling force exerted by the pulling cable and its reaction to the pulling load will be the 

priority of this project as this will determine the relevancy and the feasibility of the 

replacement process by pulling the IFL pipe through the inner side the degraded steel 

pipeline. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

 

1.1 PROJECT BACKGROUND 

 

The underwater or subsea pipeline is usually used to transport fluids such as 

crude oil, natural gas and other hydrocarbon products which have been extracted from 

the wells deep in the sea to the offshore platform or to the onshore processing plant. The 

pipeline has long been considered as the most reliable and safest mode of long distance, 

high volume transport of crude oil, natural gas or other hydrocarbon products [1]. 

Despite this fact, the pipeline can and do fail due to the degradation on that pipeline after 

being exposed for a long period of time during its useful service life. 

 

The deterioration on the crude oil transport pipeline for example, can lead to 

massive environmental hazards as the deteriorating pipeline may potentially resulting in 

leakage of the fluids transported using that pipeline. This is due to the fact that the 

material selection for the pipeline, which is usually carbon steel will be degraded greatly 

as the unprocessed hydrocarbon fluids are corrosive in nature [2]. Besides, the 

aggressiveness and the compositions of the subsea environment also could lead to the 

degradation of the transporting pipeline, where it contains chloride (Cl
-
) ions which will 

react with the metal pipeline, especially carbon steel pipeline causing corrosion on it. In 

order to prevent these environmental hazards from occurring, the degraded pipeline 

needs to be upgraded or replaced with a new one. The replacement of that degraded 

pipeline will be done by implementing a trenchless pipeline rehabilitation method, 

where the high strength, flexible composite In-Field Liner (IFL) will be used by 

inserting it into the existing corroded pipeline and pulled through that pipeline without 

having to remove the degraded pipeline from its location. 
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Figure 1.1 shows the schematic view of the degraded steel pipeline replacement 

with the folded IFL pipe on the inner side of that steel pipeline. 

 

Figure 1.1: Schematic view of folded IFL pipe inside the steel pipeline 

 

This trenchless pipeline rehabilitation method has been widely practiced nowadays, 

especially for underwater or underground pipeline as compared to the conventional 

method by replacing the whole corroded pipeline with a new one. The latter method is 

not being considered anymore today as it is obviously requires higher cost than the 

trenchless rehabilitation method. Figure 1.2 shows the model of the degraded 

underwater pipeline which has been constructed based on its actual configuration. 

 

 

Figure 1.2: Model of the degraded underwater pipeline 
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This project is the actual industrial-based problem in the oil and gas industry, 

specifically in the replacement of the degraded steel pipeline with the pulling of IFL 

pipe through the inner side of the degraded pipeline.  Due to a very long pipeline with 

the length of 1266 m, a certain amount of pulling force is needed in order to pull the 

composite IFL pipe with the same length of 1266 m through the inner side of the 

degraded pipeline. The main equipment that will be used in the IFL installation process 

comprise of IFL drum, IFL Folded machine, winch, auto sensing load controller, pulling 

cable, riser and IFL proofing tool. Briefly, the insertion process mainly consisted of 

transferring the pulling cable by using a pigging robot. One end of the pulling cable will 

be connected to the winch, where it will pull the IFL pipe by applying a very large 

pulling force and the other end of pulling cable will be attached to the IFL pulling head. 

Prior to the insertion process, the composite IFL pipe will be folded into “U-shaped” 

form by using a U-Folded machine. The process of folding the IFL pipe into “U-shaped” 

form is shown in the Figure 1.3. 

 

 

Figure 1.3: Folding process for IFL pipe into “U-shaped” form 

 

Then, the process followed by the IFL pull-in with the pulling cable.  The required 

longitudinal pulling load for the installation of IFL has already been hand-calculated 

with the amount of 79151.3 N. 
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1.2 PROBLEM STATEMENT 

 

This project will utilizes the concept of trenchless pipeline rehabilitation method, 

where it involves the insertion and pulling process of In-Field Liner (IFL) pipe into the 

degraded underwater pipeline without having to remove the existing pipeline from its 

location on the seabed. Thus, before conducting and implementing the insertion process 

for IFL pipe into the underwater pipeline in the real situation, it is very important to 

determine and predict the mechanical responses of the composite liner pipe including 

stress and strain behavior of the composite IFL pipe during the pulling process by 

simulating the pulling process of the liner itself. This simulation will provide the 

information on the safety of IFL physical conditions and the feasibility of the 

configuration for IFL pipe itself during the installation process. 

 

Before the composite liner pipe is inserted into the pipeline, it will pass through 

the folding machine to fold the liner into “U-shaped” form. By folding the liner into “U-

shaped” form, the friction force between the liner pipe and the inner wall of the steel 

pipeline will be at minimum during the pulling process. The folded composite liner pipe 

then will be inserted into the steel pipeline and it will be pulled by a steel cable through 

the entire length of the steel pipeline. The liner pipe is a fiber-reinforced composite pipe 

which exhibits complicated mechanical properties such as the orthotropic property of 

fiber-reinforced material. Due to this fact, the sustainability of the liner pipe which 

comprise of composite materials must be determine whether it can withstand the 

maximum pulling force exerted on it by the pulling cable. The main concern in this 

project is to determine the effects on the IFL pipe and its mechanical responses under a 

very large pulling force, either it manage to sustain the applied load or fail to sustain it 

which will eventually lead to the  failure of the IFL pipe. Besides, the pulling cable will 

be attached to the pulling head and therefore, a suitable design for IFL pulling head also 

must be proposed and produced. 
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1.3 OBJECTIVES 

 

The objectives of this project are to determine the effects and mechanical 

responses of the composite In-Field Liner (IFL) pipe in term of its physical condition 

when it is subjected to the pulling force by the pulling cable and to produce a suitable 

design for the IFL pulling head. The mechanical responses of the composite liner pipe 

when it is subjected to the pulling force will be simulated by using Finite Element 

Analysis (FEA) method in order to get all the pertinent information regarding its 

sustainability and effects on its physical elements when it is being pulled by the pulling 

cable with the designated longitudinal pulling force. The ability of the liner pipe to 

withstand the pulling force with no failure or fracture occurred can be verified from this 

simulation to ensure the feasibility of the liner pipe configuration during the replacement 

process,  installation method used and the safety of the liner pipe during the pulling 

process. Furthermore, the IFL pipe needs a pulling head to enable it to be pulled into the 

degraded pipeline by the pulling cable and the suitable design of the IFL pulling head 

should be produced. 

 

1.4 SCOPE OF STUDY 

 

This project is actually a design and simulation-based project in which it 

emphasizes the designing skill and analyzing the problem by means of simulation of the 

real model using Finite Element Analysis (FEA) method so that the characteristic or 

mechanical responses of that particular model under certain condition can be obtained. 

This project will focus on the ability to understand the problem encountered and to use 

all the necessary tools needed in order to verify the feasibility and relevancy of the 

proposed solution to the problem. In this case, the problem is the effect on the physical 

condition and the sustainability of the composite IFL pipe when it is subjected to the 

pulling force to pull the liner pipe through the inside of degraded underwater pipeline by 

using the pulling cable. In order to determine the effects on the liner pipe and to verify 

whether the composite liner pipe can withstand the pulling force exerted on it, a 
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simulation of that composite liner model must be done by using the actual parametric 

values of the properties for that liner pipe so that the simulation result obtained will be 

accurate to verify the feasibility on the implementation of this pipeline replacement 

method. Besides, this project also will focus on the ability to utilize and hone the design 

skill by producing a suitable and proper design for the IFL pulling head using the CAD 

software. Overall, this project mainly uses the Finite Element Analysis (FEA) method to 

obtain the required results from the simulation on the IFL pipe during the pulling 

process. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

 

2.1 TRENCHLESS PIPELINE REHABILITATION METHOD 

 

Wrobel et al. [3] explained that the trenchless pipeline rehabilitation is basically 

referring to the replacement, repair as well as installation of the underground or 

underwater pipeline without the need for excavation of a continuous trench from the 

surface to successfully install the new flexible pipeline within the original alignment. 

When the underwater pipeline for transporting crude oil, natural gas, or other 

hydrocarbon fluids degraded as a result from the gradual exposure to the corrosive 

environment of the subsea, that pipeline should be replaced immediately as to avoid the 

leakage of the fluids flowing inside the degraded pipeline and causing massive 

environmental hazards. 

 

The cost for replacing the entire pipeline structure is very high [3]. Besides, it 

will also distort and affect the processing or production progress in the onshore 

processing facilities as the operation of the transport pipeline that supply the crude oil 

for example, have to be shut down in order to enable the replacement and installation 

process for the new pipeline. The advancement of the trenchless pipeline rehabilitation 

with the pull-in-place method nowadays has caused it to be widely practiced in oil and 

gas industry. By pulling the flexible composite liner pipe through the degraded steel 

pipeline, it was proven to be the most cost-efficient pipeline rehabilitation method as 

compared to the conventional method by installing sets of a new pipeline [4]. 
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2.2 FLEXIBLE COMPOSITE IN-FIELD LINER (IFL) PIPE  

 

A composite is a combination of two or more distinct materials, where each of 

the constituent materials can take advantage of individual properties to create synergy in 

the newly formed material [5]. The composite liner pipe have to be flexible enough 

because during the pulling process of liner pipe into the steel pipeline by the pulling 

cable, there are some bending sections in the underwater pipeline configuration and the 

flexible characteristic of that liner pipe will enable it to be pulled smoothly throughout 

the entire pipeline configuration even at the bending sections. The type of composite In-

Field Liner pipe that will be used in this project is Primus Line
®

 DN 200 PN 25. In 

Figure 2.1, it shows a schematic illustration of Primus Line
®

 DN 200 PN 25, where it 

consisted of 3 layers of composite material with the inner layer is made of 

Thermoplastic Polyurethane (TPU), reinforced with the seamless, woven aramid fibers 

layer (Kevlar
®

), and coated with the outer layer of abrasion-resistance Polyethylene (PE) 

sheath [6]. 

 

 

Figure 2.1: Schematic of Primus Line
®
 DN 200 PN 25 by layers. 
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2.2.1 Thermoplastic Polyurethane (TPU) 

 

Qi and Boyce [7] explained that TPU is a thermoplastic polymer that exhibits the 

mechanical performance characteristics of rubber but it can be processed like a 

thermoplastic material. This particular characteristic of TPU causes it to have high 

elasticity and high abrasion resistance. With the modified TPU as the inner layer of the 

composite IFL pipe, it contains an oil-resistant interior coating based on TPU so that the 

flow and transportation process of the hydrocarbon fluids like crude oil in the IFL pipe 

become smooth due to its resistant to aromatic and aliphatic hydrocarbons [6]. The use 

of TPU for inner layer of this liner pipe also promotes less deposit on the inner wall of 

the composite liner as it has a smooth surface of internal coating. 

 

2.2.2 Kevlar
®
 Aramid Fiber 

 

Kevlar
®
 Aramid Fiber is one type of an organic fiber from the aromatic 

polyamide family but it is quite different and unique among polyamides. Strong [8] 

revealed that the unique properties and chemical composition of wholly aromatic 

polyamides (aramids) distinguish the aramid or also known as Kevlar in the fiber form 

from the other commercial fibers, especially when a part of the back bone stiffens and 

strengthens the Kevlar beyond any of the other polymeric material. In addition, Yue et 

al. [9] added that Kevlar is very well-known for its high-strength reinforcement fiber for 

plastic composites. Besides, it has a very remarkable combination of high modulus, 

thermal stability and toughness as compared to the other organic fibers [10]. In term of 

weight, Kevlar still has the highest specific tensile strength of all the fibers available in 

the industry. This is due to the fact that their molecular structure is developed during the 

production process which is based on liquid crystal technology, where the rigid 

molecular chains form a mesophase in solution and the spinning process aligns the 

molecular chains parallel to the fiber axis leading to a highly ordered structure with a 

high degree of crystallinity [11]. 
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2.2.3 Polyethylene (PE)
 
 

 

Farshad [12] stated that polyethylene is categorized as one of the common 

synthetic homopolymer along with polypropylene (PP), polystyrene (PS) and polyvinyl 

chloride (PVC). With its high molecular weight, polyethylene exhibits the property of 

insensitive relatively to most solvent [8]. This property gives polyethylene an advantage 

when it is used in the underwater pipeline application due to its critical inertness. In 

addition, a modified outer layer of composite IFL pipe is made from wear and abrasion 

resistant polyethylene, so that it can withstand the corrosive and aggressiveness of the 

environmental condition in the subsea and keep the long service life of the composite 

liner pipe by protecting the other layers of liner as it is resistant to the wear and 

abrasion, even when the IFL pipe is fully exposed as the steel pipeline is totally 

degraded. 

 

2.3 FINITE ELEMENT ANALYSIS (FEA) 

  

 Finite Element Analysis (FEA) has been widely practiced nowadays as it is able 

to solve numerous kinds of problem, from the numerical solutions to a very complex and 

complicated engineering problem [13]. Antal et al. [14] also added that Finite Element 

Analysis (FEA) is applicable in wide range of engineering principles, including 

hydrodynamics, mechanical, heat transfer and gas diffusion phenomena. Basically, in 

the Finite Element Analysis, it involves the model generation of some material or design 

that is stressed or analyzed for obtaining a specific results. It is commonly used to 

evaluate and analyzed the new product design or existing product for refinement works 

in order to verify that the proposed design will be able to function according to the 

client’s specifications prior to manufacturing of the proposed design.  

  

 However, despite the countless advantages that FEA possessed, there is a quite 

small flaw with this method. Roylance [13] explained that FEA approach does not 

necessarily reveal how the stresses are influenced by the important problem variables 
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such as materials properties and geometrical features, with an error in input data can 

produce inaccurate results that may be overlooked by the analyst. 

 

2.3.1 Assumptions for Finite Element Analysis (FEA) on Liner Pipe Pull-In 

Process 

 

 Finite Element Analysis (FEA) has been extensively practiced to solve many 

complex problems because of its ability to easily analyze the problem and its flexibility 

when dealing with the complicated geometry and boundary conditions. There are several 

key issues that should be considered in the finite element analysis of the liner pipe 

problem. As proposed by El-Sawy and Moore [15], the liner plane strain is assumed to 

prevail. In the case where two dimensional analysis involves, the higher stresses in the 

liner for a given external fluid pressure and reduction in stability is relative to those 

predicted using three-dimensional analysis. In addition, Bathe [16] also suggested that 

when the updated Lagrangian incremental approach is used, the load is applied in an 

incremental fashion and the geometry of the problem is updated after the application of 

each load increment. 

 

 When the polymeric material is used for the liner pipe, the behavior of those 

polymer materials is significantly time dependent, and ultimately the finite element 

analysis should accurately model the rheology of the material. For design purposes, a 

suitable approximation is to use the long-term Young’s modulus, where the value is 

taken from the end of the lifetime for liner pipe. Generally, a better approximation is to 

consider a time-dependent Young’s modulus of the polymer material [17]. Another 

assumption that can be made when conducting the analysis of liner pipe insertion 

process is that the interaction between the liner pipe and the rigid cavity strongly 

influences the behavior of the encased liner. Therefore, a conservative assumption of a 

smooth interface is used [18]. 
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2.3.2 Non-Linear Finite Element Analysis (FEA) of Liner Pull-In Process 

 

 In a non-linear finite element analysis of liner pull-in process, there are 3 key 

points that can be treated with this level of complexity; the pre-installation folding, the 

reformation process, and the bending that occurs in the pipeline with bend sections 

during installation. Among these 3 instances, the liner core pipe and the adhesive tape 

that are most susceptible to failure. The application of 2-D plane strain solid type 

elements captured the material stress-strain behavior in a more accurate manner than it 

would by using 3-D shell elements [19]. 

 

Analysis of the Folding Process 

 

 In the form of folded “U-shaped”, the liner pipe has been simulated to ensure 

that the folding process not detrimental to the strength of the core liner pipe. Figure 2.2 

illustrates the final shape of the liner in the U-forming process by using the FEA 

simulation. 

 

 

Figure 2.2: FEA simulation of the final shape in a U-forming process. 
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Bethel et al. [19] explained that the most heavily deformed region in the U-forming 

process is due to the bending at the root of the region. Even so, the maximum strain 

level at the large deformations on U-forming process is not large enough to cause a 

failure on the liner pipe. 

 

Reformation Analysis 

 

After the U-forming process is completed, the deformed cross section of the liner 

pipe is wrapped by adhesive tapes in order to prevent the elastic spring back during the 

insertion of the liner into the pipeline [19]. Immediately after the installation, the 

internal pressure is used to break the adhesive tapes to allow the liner pipe to expand to 

its original round shape again and fill up the internal of the pipeline. 

 

Bending Analysis 

 

Bethel et al. [19] added that the liner pipe model has been used to analyze the 

performance of the liner pipe itself when it is pulled through the pipeline during the 

installation in U-shape form at the bend location subsequently. A special constitutive 

behavior model of Marlow material is used that allow them to carry a tensile load only. 

During the installation, it is possible for the liner pipe to rotate as it is pulled-in and all 

possible orientations must be considered to ensure that the installation can be made 

safely even with the liner pipe in its most highly stressed condition. 
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CHAPTER 3 

 

3. METHODOLOGY 

 

 

3.1 PLANNED PROGRESS FLOW OF THE PROJECT 

 

  This chapter focused on the planned progress flow for this project. After the 

project title was selected, a preliminary research work was done including consultation 

with the supervisor to get the overview and basic understanding of the selected project. 

The details and information of the project which was given by the supervisor have been 

studied in order to understand the project background, problem statement, objectives and 

scope of study for this particular project. After fully understand the basics of the project, 

a more thorough research work was done for the literature review of this project. During 

this stage, all related materials and information including the previous researches and 

journals were retrieved as much as possible for a more thorough and deep understanding 

on the materials used for the composite IFL pipe and the mechanism of the pulling 

process for the composite IFL pipe into the degraded underwater steel pipeline. 

 

  Then, after all the research works have been completed, the main stage of this 

project was initiated. Firstly, in order to be able to design a good and suitable IFL 

pulling head, I have to familiarize myself with the design software first. In this case, the 

design software which I have used was CATIA V5R20 because of its ability to produce 

a three-dimensional (3D) model design easily on the basis of surface modeling and it 

can be exported to the simulation software like ANSYS for the simulation works due to 

its compatibility with the ANSYS software. After I have familiarized and mastered the 

CATIA software, the next step in this project was to produce a suitable design for the 

liner pipe pulling head. All parameters and data related to the composite IFL pipe and 

the steel pipeline were taken into consideration during the design stage in order to 

produce an acceptable and good design for the liner pipe pulling head. This has ensured 



15 

 

that the IFL pipe pulling head design has met the requirement as in the real life design 

and maintained the credibility of the simulation results obtained. 

 

  After completing the design for IFL pulling head, the design for a three-

dimensional (3D) model of “U-shaped” folded IFL pipe was carried out immediately by 

using CATIA V5R20 software. The IFL pipe was analyzed in the same manner as a 

three-dimensional (3D) beam element with an equivalent cross-section of the IFL pipe 

as to consider the complexities of the composite material and the shape of cross-section 

for the “U-shaped” folded IFL pipe during the replacement process by the pulling 

method. With the completion of the design task, then the simulation of the IFL pipe in 

the form of FEA models was done by using ANSYS Version 14.0 software. But still, I 

have to familiarize myself with the ANSYS software first before any simulation was 

done. After I have fully understood how the ANSYS software works, the FEA model of 

“U-shaped” folded IFL pipe was imported from the CATIA software to simulate the 

model and determined the sustainability of the composite liner pipe even when it was 

subjected to the maximum pulling force exerted by the pulling cable. The FEA model of 

IFL pipe was analyzed as it is in the form of beam element, where it was fixed on one 

end and the longitudinal pulling force with the magnitude of 79151.3 N was applied on 

the other end of IFL pipe in the simulation. 

  

  When the simulation has been completed, the results obtained were discussed 

and analyzed in order to verify the feasibility and the safety of the composite IFL pipe if 

it is happened to be used to replace the degraded pipeline in the real situation. The 

results obtained from the simulation have determined the effects and mechanical 

responses of the composite liner pipe including their ability to resist the failures when it 

was subjected under a very high pulling force by the pulling cable. Finally, the final 

report was produced and compiled based on the overall study and the results from the 

simulation of IFL pipe model. Figure 3.1 shows the planned progress flow for this 

project. 
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3.2 PROJECT FLOW CHART  

 

Figure 3.1: Project Flow Chart

Start 

Preliminary research work 

Literature review 

Familiarize with the design software (CATIA V5R20) 

Design of IFL pulling head using CATIA V5R20  

Design of "U-shaped" Folded IFL model using 
CATIA V5R20 

Familiarize with the ANSYS 14.0 software 

Meshing of "U-shaped" Folded IFL model using 
ANSYS 14.0 

Simulation of FEA model for "U-shaped" Folded IFL 
pipe using ANSYS 14.0 

Discussion and analysis on the simulation result 
obtained 

Final report  

End 
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CHAPTER 4 

 

4. RESULTS AND DISCUSSIONS 

 

 

4.1 DATA GATHERING  

 

 This project consisted of two main parts, namely the designing task and the 

simulation task. All parameters that were used in this project, including the design 

parameters and the simulation parameters were carefully chosen as to ensure that the end 

results were accurate and valid. 

 

4.1.1 Design Parameters 

 

 The design parameters play an important role in determining the validity of the 

design produced for IFL pulling head and the folded configuration of IFL pipe. Table 

4.1 shows the material properties of the existing steel pipeline which was very important 

in the process of designing the IFL pulling head as to ensure that the pulling head was fit 

nicely inside the steel pipeline, thus enable it to be pulled through the pipeline. 

 

Table 4.1: Material properties of existing steel pipeline 

ITEMS UNITS VALUES 

Outside Diameter (OD) m 0.2191 

Inside Diameter (ID) m 0.2 

Wall Thickness  m 0.00953 

Pipeline Length m 1266 

Steel Density Kg/m
3
 7800 

Young’s Modulus (E) GPa 2.07 

Poisson’s Ratio (v) - 0.3 
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The properties of IFL also were very important for the design task of the IFL pulling 

head and the folded configuration of the IFL pipe itself. The properties of the IFL pipe 

are shown in Table 4.2. 

 

Table 4.2: Properties of IFL pipe 

Type Primus Line® DN200 PN25 

Fluid Crude Oil 

Outside Diameter  182 mm 

Inside Diameter 169 mm 

Wall Thickness 6.5 mm 

Internal Coating Material TPU 

Reinforced Layer Material Kevlar® 

External Coating Material PE 

 

4.1.2 Simulation Parameters 

 

 For simulation purposes of the IFL pipe, there were 3 different sets of data that 

should be taken into consideration when dealing with the simulation input parameters, 

which were the properties for each layer of the IFL pipe. There were also 3 different 

layers for the IFL pipe, in which the outer layer was made from Polyethylene, Kevlar as 

the reinforcement layer, and TPU as an inner layer of the IFL pipe. Among these 3 

layers, the source of the strength for the IFL pipe was contributed mainly from the 

Kevlar layer. The inner layer from TPU concerns with the smooth flow of the crude oil 

as it is oil-resistant while the outer layer which is made from wear and abrasion-resistant 

polyethylene was used to protect the surface of the IFL pipe and prolonged its service 

life. 

 

 The simulation of this project was aimed to determine whether the IFL pipe has 

an adequate strength to sustain a pulling load of 79151.3 N during the pulling process 

without being damaged. Therefore, only the properties of Kevlar layer will be 
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considered and was used as the simulation input parameters. The following Table 4.3 

shows the material properties of Kevlar layer for IFL pipe. 

 

Table 4.3: Material properties of Kevlar layer for IFL pipe. 

Manufacturer DuPont 

Product Name Kevlar 29 

Young’s Modulus (E) 70.5 GPa 

Poisson’s Ratio (v) 0.32 

Yield Strength 1.24 GPa 

Ultimate Tensile Strength 2.92 GPa 

Shear Modulus (G) 1.8 GPa 
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4.2 DESIGN AND MODELING 

 

 For design and modeling part, there were 2 items that need to be designed and 

modeled, namely the IFL pulling head and the Folded IFL pipe. All designs and 

modeling tasks were carried out by using CATIA V5R20 software. 

 

4.2.1 IFL Pulling Head Design 

 

Figure 4.1 shows the illustration of the IFL pulling head design in multiple views 

created using CATIA V5R20 software.  

 

 

Figure 4.1: IFL Pulling Head design in multiple views. 
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4.2.2 Folded IFL Design 

 

In this project, the most challenging task was to design the Folded IFL pipe 

model due to its complex cross-section and geometrical shape. In folded form, the outer 

diameter of IFL was smaller as compared to the outer diameter of IFL when it was 

expanded. In addition, the length of the IFL pipe circumference must be kept maintained 

in folded form and it should be exactly the same as in the expanded form. Figure 4.2 

shows the illustration of Folded IFL design in multiple views created using CATIA 

V5R20 software. 

 

 

Figure 4.2: Folded IFL design in multiple views. 
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4.3 ANALYSIS AND SIMULATION OF IFL PULLING PROCESS 

 

 The Finite Element Analysis (FEA) of IFL pipe was done by using ANSYS 

v14.0 software. The analysis and simulation of the IFL pipe was done in order to 

determine the effects of pulling load applied on the IFL during the pulling process 

through the inner side of the existing steel pipeline. 

 

4.3.1 Meshing for FEA Model of Folded IFL Pipe 

 

In Finite Element Analysis (FEA) method, the model of folded IFL pipe was 

meshed first before the simulation of the pulling process for IFL pipe was done. Figure 

4.3 and Figure 4.4 show the meshing for FEA model of Folded IFL pipe in isometric 

and front view respectively. 

 

 

Figure 4.3: Meshing for FEA model of Folded IFL pipe in isometric view. 
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Figure 4.4: Meshing for FEA model of Folded IFL pipe in front view. 

 

4.3.2 Simulation Results of Folded IFL Pipe 

 

  The simulation of Folded IFL pipe was done based on the static analysis 

method, where only a partial of the IFL pipe was used in this simulation. In this case, the 

IFL pipe model that was used in the simulation was about 500 mm in length. One end of 

the IFL pipe was fixed in all Degree of Freedom (DOF) while on the other end, the 

pulling force with the magnitude of 79151.3 was applied on IFL pipe. Due to the 

complex cross-section and geometrical shape of Folded IFL pipe, the results obtained 

were not really accurate where the distribution of the displacement on IFL pipe body 

was not as expected. Therefore, as an alternative, the simulation was done in a backward 

calculation manner. Instead of applying the pulling force on all 4 pinholes area for the 

IFL pulling head and the IFL pipe body, the displacement in the direction of the pulling 

force was applied. Then, once the simulation has been solved, the total reaction force 
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acting on the body of IFL pipe was calculated from the simulation so as to ensure that 

the total reaction force was equivalent to the total amount of the actual pulling force 

required. 

 

 In this alternative simulation method, the applied displacement in the direction of 

the pulling force was about 0.119 mm and the resultant reaction force acting on the IFL 

pipe body was 79419 N. This value was almost the same as the actual pulling force 

required, which was 79151.3 N. Figure 4.5 shows the reaction force acting on IFL pipe 

as a result of the applied displacement of 0.119 mm in the direction of the pulling force. 

 

 

Figure 4.5: Reaction force acting on IFL pipe 
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The following figures show the simulation results obtained on the pulling process of the 

IFL pipe and they were represented in the form of Nodal Solution. 

 

Displacement of IFL Pipe in z-Direction (Pulling Force Direction) 

 

 Based on Figure 4.6, it shows that the maximum displacement on the IFL pipe as 

a result of the applied pulling force on it was about 0.119 mm. The maximum 

displacement on the IFL pipe can be observed to concentrate mainly at the joint hole or 

the pinhole area for the attachment of the IFL pulling head on the IFL pipe body. 

 

 

Figure 4.6: Displacement of IFL in z-direction. 
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Displacement of IFL Pipe in y-Direction 

 

 Figure 4.7 shows the displacement of IFL pipe in y-direction. The maximum 

displacement of the IFL pipe in y-direction was about 0.054 mm. It can be seen from the 

figure that the maximum displacement was concentrated mainly at the top of the folding 

area on the IFL pipe, where the pulling force was applied on that end of the IFL pipe.

 

 

Figure 4.7: Displacement of IFL in y-direction. 
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Displacement of IFL Pipe in x-Direction 

 

Figure 4.8 shows the displacement of IFL pipe in x-direction. The maximum 

value for the displacement of the IFL pipe was about 0.142 mm and it focused mainly at 

the front left side of the IFL pipe, where the pulling force was applied on that end of the 

IFL pipe. 

  

 

Figure 4.8: Displacement of IFL in x-direction. 
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IFL Pipe Displacement Vector Summation 

 

 Figure 4.9 shows the IFL pipe displacement vector summation. The maximum 

displacement on the IFL pipe was about 0.181 mm and it focused mainly at the front 

side on its end where the pulling force was applied during the pulling process 

simulation. 

  

 

Figure 4.9: IFL displacement vector summation. 
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Stress on IFL Pipe in x-Direction 

 

 Figure 4.10 shows the stress on the IFL pipe in x-direction. The maximum stress 

value in x-direction was about 108.391 MPa. 

 

 

Figure 4.10: Stress on IFL in x-direction. 
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Stress on IFL Pipe in y-Direction 

 

 Figure 4.11 shows the stress on the IFL pipe in y-direction. The maximum stress 

value in y-direction was about 106.934 MPa. 

 

 

Figure 4.11: Stress on IFL in y-direction. 
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Stress on IFL Pipe in z-Direction 

 

 Figure 4.12 shows the stress on the IFL pipe in z-direction. The maximum stress 

value in z-direction was about 510.861 MPa. 

 

 

Figure 4.12: Stress on IFL in z-direction. 
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Shear Stress on IFL Pipe in XY-Plane 

 

 Figure 4.13 shows the shear stress on the IFL pipe in xy-plane. The maximum 

shear stress value in xy-plane was about 27.367 MPa. 

 

 

Figure 4.13: Shear Stress on IFL in xy-plane. 
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Shear Stress on IFL Pipe in YZ-Plane 

 

Figure 4.14 shows the shear stress on the IFL pipe in yz-plane. The maximum 

shear stress value in yz-plane was about 152.346 MPa. 

 

 

Figure 4.14: Shear Stress on IFL in yz-plane. 
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Shear Stress on IFL Pipe in ZX-Plane 

 

Figure 4.15 shows the shear stress on the IFL pipe in zx-plane. The maximum 

shear stress value in zx-plane was about 48.523 MPa. 

 

 

Figure 4.15: Shear Stress on IFL in zx-plane. 
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Von Mises Stress on IFL Pipe 

 

Figure 4.16 shows the Von Mises stress on the IFL pipe. The maximum Von 

Mises stress value on the IFL pipe was about 424.461 MPa. 

 

 

Figure 4.16: Von Mises Stress on IFL pipe. 

 

The distributions of Von Mises stress on IFL pipe seemed to focus on the joint holes or 

pinholes area for the attachment of the IFL pulling head and the IFL pipe body. Figure 

4.17 shows the closed-up view on the distribution of Von Mises stress on the IFL pipe. 

The maximum concentration of Von Mises stress on the pinhole area indicates that it 

could be the critical area for the initiation of the fracture or failure for the IFL pipe. 
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Figure 4.17: Von Mises Stress on IFL pipe (closed-up view). 
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4.4 SIMULATION RESULTS VERIFICATION 

 

 In order to ensure that the simulation results obtained were accurate, the results 

were verified. So, in this case, the verification method used was the analytical method, 

where the maximum value of Von Mises stress was calculated from the value of 

maximum stresses obtained from this simulation. 

 

Principal Stresses 

Cubic stress equation (3D state of stress) 

 

σ
3
 – σ

2
 (σx+ σy+ σz) + σ (σxσy + σyσz + σzσx - τxy

2
 - τyz

2
 – τzx

2
) – 

(σxσyσz + 2 τxyτyzτzx - σxτyz
2
 - σyτzx

2
 - σzτxy

2
) = 0 

 

Roots to the above equation were the principal stresses σ1, σ2, σ3 

 

Von Mises Stress 

Octahedral shearing stress criterion 

 

 

σH = 
 

√ 
 √(σ1 - σ2)

2
 + (σ2 – σ3)

2
 + (σ3 – σ1)

2
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Maximum Stresses Values For IFL Pipe 

 

 All the maximum stresses values are shown in Table 4.4. These maximum 

stresses values were very important in order to calculate the maximum Von Mises stress 

by using the analytical method, so that the simulation results obtained was verified to be 

accurate. 

 

Table 4.4: Maximum stresses values for IFL pipe 

Stress, σx 108.391 MPa 

Stress, σy 106.934 MPa 

Stress, σz 510.861 MPa 

Shear Stress, τxy 27.3671 MPa 

Shear Stress, τyz 152.346 MPa 

Shear Stress, τzx 48.5233 MPa 

 

Principal Stresses: 

σ
3
 – σ

2
 (108.391 + 106.934 + 510.861) + σ [(108.391)(106.934) + (106.934)(510.861) + 

(510.861)(108.391) – 27.3671
2
 – 152.346

2
 – 48.5233

2
] – [(108.391)(106.934)(510.861) 

+ 2(27.3671)(152.346)(48.5233) – (108.391)(152.346)
2
 – (106.934)(48.5233)

2
 – 

(510.861)(27.3671)
2
] = 0 

 

Roots to the above equation were the principal stresses σ1, σ2, σ3 

σ1 = 568.385 MPa 

σ2 = 104.158 MPa 

σ3 = 53.6433 MPa 

 

Von Mises Stress: 

σH = 
 

√ 
 √(568.385 – 104.158)

2
 + (104.158 – 53.6433)

2
 + (53.6433 – 568.385)

2
 

 = 491.44 MPa.  
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The value obtained for Von Mises stress by using the analytical method was 491.44 

MPa as compared to the Von Mises stress value obtained from the simulation result, 

which was 424.461 MPa. The difference between these two values is small and therefore 

the results obtained from the simulation have been verified to be accurate. 

  

4.5 DISCUSSIONS 

 

 Based on the results obtained from the simulation of IFL pipe, it can be seen that 

the displacement of the IFL pipe in the direction of the applied pulling force (79151.3 

N) was about 0.119 mm. The displacement was maximum at the point where the pulling 

force is applied, namely at the pinholes where the pulling head was attached to the IFL 

pipe. This value of displacement was still acceptable without any major effect on the 

IFL pipe. This is due to the fact that the maximum value of Von Mises stress developed 

on the critical area of the IFL pipe was about 424.461 MPa, which was less than the 

yield strength of Kevlar material which was 1240 MPa. Therefore, under the influence 

of the pulling force with the magnitude of 79151.3 N, the IFL pipe was only deformed 

elastically due to the lower value of Von Mises stress as compared to the Yield Strength 

of the Kevlar material. In addition, based on the simulation results obtained, the IFL 

pipe will not be fractured or failed during the pulling process as the value of Ultimate 

Tensile Strength for Kevlar material, which was about 2.92 GPa, was way too high as 

compared to the value of Von Mises stress developed on the critical area of the IFL pipe. 

 

The Ultimate Tensile Strength determined the fracture limit of that IFL pipe, 

where it can be fractured if it was exceeded and vice versa. The Von Mises Stress was 

observed to develop mainly in the area perpendicular to the direction where the pulling 

force was applied. In other word, the critical area which could potentially be the initial 

point of the failure for IFL pipe was perpendicular to the direction of the pulling force. 

The IFL pipe was considered to be in the safe level during the pulling process to pull the 

IFL pipe through the inner side of the degraded steel pipeline. 
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CHAPTER 5 

 

5. CONCLUSION & RECOMMENDATIONS 

 

 

5.1 CONCLUSION 

 

As a conclusion, this project is a comprehensive study and research upon the 

utilization and the usage of proper tools and software for designing the In-Field Liner 

(IFL) pulling head model and Folded IFL model, followed by the simulation of FEA 

model for IFL pipe during the pulling process. For designing tasks of the IFL pulling 

head and folded IFL model, these tasks were carried out successfully with the full 

utilization of the design software, where CATIA software was used in this case. The 

simulation on the FEA model of IFL pipe revealed the reactions and mechanical 

responses on the physical aspect of the composite IFL pipe material including their 

capability to withstand the pulling force exerted by the pulling cable. This can be 

visualized from the simulation results obtained and the simulation results verification by 

using the analytical method to calculate the maximum Von Mises stress on the critical 

area of IFL pipe. Under the influence of pulling force with the magnitude of 79151.3 N, 

the IFL pipe only undergone a displacement of 0.119 mm in the same direction as the 

applied pulling force. The IFL pipe was said to be deformed elastically as the maximum 

value of Von Mises stress developed on IFL pipe was less than the Yield Strength of the 

Kevlar material. The critical area on IFL pipe has been identified to be developed 

perpendicularly to the direction of the pulling force. The critical area can be the potential 

initial point of failure for the IFL pipe during the pulling process. The result of this study 

will correlate on the feasibility and the safety of the composite IFL pipe if it is happened 

to replace the degraded steel pipeline with this composite IFL pipe in the real life 

situation. Overall, the objectives of this project have been successfully achieved within 

the time frame given. 
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5.2 RECOMMENDATIONS 

 

 For the suggested future works, another simulation on the IFL pipe can be done 

in order to validate further the simulation results obtained from this simulation. For the 

validation purposes, the suggested method is to use a contact element in the form of a 

rigid body and it will be placed in the pinhole of the IFL pipe. The pulling force will be 

applied on both ends of that rigid body contact element and the results obtained will be 

compared.  
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APPENDIX I: Project Gantt Chart for FYP I 

 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. 

Selection of Project Title:  

Design and Analysis of IFL and IFL Pulling Head for 

Underwater Pipeline 

                            

2. 

Preliminary Research Work: Understanding the basics 

information of the project (Project background, 

problem statement, objectives, etc.) 

                            

3. 
A Thorough Research Work: Study and research on the 

literatures of the project.   
      

 
                    

4. 
Familiarizing with the design software (CATIA 

V5R20). 
              

5. 
 Design of IFL pulling head model using CATIA 

V5R20 software. 
                            

6. 
Design of “U-shaped” Folded IFL model using CATIA 

V5R20 software. 
              

 
            

7. Familiarizing with FEA software (ANSYS v14.0).               

8. 
Meshing of IFL pulling head model using ANSYS 

v14.0 software. 
              

9. 
Meshing of U-Folded IFL model using ANSYS v14.0 

software. 
              

10. Submission of Interim report               
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APPENDIX II: Project Key Milestone Chart for FYP I 

 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Completion of IFL pulling head design.               

2. Completion of FEA model of U-Folded IFL design.               

3. Completion of meshing for IFL pulling head model.               

4. Completion of meshing for U-Folded IFL model               

5. Completion and submission of Interim Report               
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APPENDIX III: Project Gantt Chart for FYP II 

 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. 

Simulation of FEA model for “U-shaped” Folded 

IFL during the pulling process using ANSYS 

v14.0 software. 

                            

2. 
Discussion and analysis on the simulation results 

obtained. 
              

3.. Produce a final report.                            
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APPENDIX IV: Project Key Milestone Chart For FYP II 

 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. 
Completion of simulation on the pulling process for 

folded IFL pipe 
              

2. 
Completion of discussion and analysis on the 

simulation results obtained. 
              

3. Completion and submission of final report               

 

 

 


