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ABSTRACT  

Horizontal and multilateral wells are shaping the development of the oil and gas industry 

due to its increased reservoir contact. The horizontal well drilling technology was 

established about ten to fifteen years ago and has since become a method for improving 

hydrocarbon recovery. With its horizontal nature, the presence of a strong aquifer and gas 

cap facilitate the possibility of early water and gas breakthrough through a situation 

known as “heel toe effect” which is a result of frictional losses.  Reservoir heterogeneities 

results into variations in permeability along the length of the wellbore causing unequal 

influx of the inflowing fluids around the vicinity of the wellbore. The unequal influx 

contributes to early water and gas breakthrough because the fluids flowing in the zones 

with higher permeability (thief zones) move faster than those moving in the low 

permeability zones, thereby allowing the low viscosity fluids to bypass the high viscosity 

fluids making the well uneconomical. 

This research paper studies the application of Inflow Control Devices (ICDs) as a means 

of eradicating or at least delaying the water/gas breakthrough. A simulation method has 

been identified by the author after a thorough review of literature. The implementation of 

ICDs is expected to improve hydrocarbon recovery and delay water/gas production. The 

multi-segment well model in the ECLIPSE Black Oil Simulator is used to represent a 

horizontal well divided into segments with ICD installed in some of the suitable 

segments. A set of data is used to demonstrate and address the problem of unequal influx 

of fluid and early breakthrough or higher production of water and gas.  

Two cases of different model dimensions have been discussed in this study and both 

cases show that proper application of ICD to the segments that provide optimum oil 

recovery and reduced water and gas production at the same time will improve 

performance of horizontal wells. The two cases also showed that oil production may 

decrease at the beginning when using ICD because of the additional pressure drop created 

by forcing the fluids to flow through the device. However, the rate will increase 

eventually over time and higher recovery will be achieved. 

Key words: ICD, Horizontal well, Performance, Multi-segment well model. 



   
 

v 
 

AKNOWLEDGEMENTS 

The author would like to thank Messrs. Saleem Qadir Tunio and Iskandar Dzulkarnain 

for their unconditional and tireless supervisory work. They have motivated the author 

through many fruitful discussions throughout the project period. The author would also 

like to extend many thanks to all friends and colleagues who have given the inspiration 

necessary to do the project.  

Many thanks to Mr. Saleem especially for making sure that the author is always intact 

with the project deliverables and ensuring  the best writing format for every report is 

followed. The author also remains thankful to Mr. Iskandar for accepting to help as a co-

supervisor for technical support and advices.  

Grace be to the almighty God for giving the author the energy, power and knowledge that 

is necessary for the completion and success of this project. 

Lastly, but not the least, the author thanks Universiti Teknologi PETRONAS for 

providing a platform for students to explore their potentials through research and 

innovation and for providing the software for the success of the project. 

 

 

 

 

 

 

 

 

 



   
 

vi 
 

TABLE OF CONTENTS 

 
CERTIFICATION . . . . . ii 

ABSTRACT  . . . . . iv 

AKNOWLEDGEMENTS      v 

LIST OF FIGURES  . . . . . Viii 

LIST OF TABLES . . . . . ix 

APPENDICES . . . . . ix 

 

CHAPTER 1: INTRODUCTION . . 1 

 

1.1 

  
Background . . 1 

1.2      Problem Statement . . 1 

1.3
  

Objectives . . 1 

1.4      Scope of Study . . 2 

 

CHAPTER 2: LITERATURE REVIEW . . 3 

 

2.1 Literature Review . . 3 

2.2 Types of Inflow Control 

Device 
. . 6 

2.2.1 Channel Type ICD . . 7 

2.2.2      Nozzle Type ICD . . 7 

2.2.3  Orifice Type ICD . . 8 

2.3 Application of ICD with 

other Devices    . 
. . 9 

2.3.1 Application with SAS   . . 9 

2.3.2 ICD with Annular Isolation . . 9 

2.3.3 ICD with Artificial Lift . . 10 

2.3.4 ICD with Gravel Pack . . 10 

2.3.5 ICD with Intelligent 

Completion 
. . 10 

 

       



   
 

vii 
 

CHAPTER 3: METHODOLOGY . . 11 

 
3.1 Research Methodology . . 11 

3.2 The Multi-segment Model 

 

 

. . 12 

3.2.1 Inflow Control Device . . 13 

3.2.2 How ICD Works . . 14 

3.3 The Well Model      . . . 15 

3.4      Project Activities . . 17 

3.5 Project Flow Chart . . 18 

3.6 Gantt Chart                  . . . 19 

3.7 Equipment Required    . . . 20 

 

CHAPTER 4: RESULTS AND 

DISCUSSIONS 

. . 21 

 

4.1 Case One . . 21 

4.1.1 Segment GOR and Water 

Cut 

 

 

. . 23 

4.1.2 Base Case Rates for Case 1 . . 27 

4.1.3 ICD Rates for case 1 . . 28 

4.1.4 Comparison Between Base 
Case and ICD Results 

. . 32 

4.2      Case Two . . 37 

4.2.1 Base Case II Results . . 38 

4.2.2 ICD Case II Results                  

. 
. . 40 

4.2.3 Comparison: Base Case and 

ICD for Case Two 
. . 43 

 
 

CHAPTER 5: CONCLUSIONS AND 

RECOMMENDATIONS 

. . 48 

 

5.1  Conclusions . . 48 

5.2  Limitations   48 

5.2  Recommendations . . 49 

  
      

REFERENCES . . . . . . . 50 

    

 

 



   
 

viii 
 

  LIST OF FIGURES   

Figure 2.1 ICD operation envelope as a function of the flow rate per 

joint 

6 

Figure 2.2 Channel type ICD 7 

Figure 2.3 Housing unit section of Nozzle type ICD 8 

Figure 2.4 Flow pattern in Nozzle ICD 8 

Figure 2.5 Orifice type ICD for water injectors 9 

Figure 3.1 Multi-segment well model 12 

Figure 3.2 Hydrostatic head Components 13 

Figure 3.3 ICD segments illustrating addition pressure created by ICD 

 

14 

Figure 3.4 Project Process flow Chart 

 

18 

Figure 3.5 Gantt chart and Milestones for FYPII 

 

19 

Figure 4.1   GOR and water cut for every segment in the base case one 

 

25 

Figure 4.2   Oil, water and gas production for  case one without ICD 26 

Figure 4.3a   Production rates ICD  case one        30 

Figure 4.3b   Field Pressure and cumulative liquid productions        31 

Figure 4.4a   Production rates for both cases (with and without ICD) for   

Case one 

 

34 

Figure 4.4b    Water cut and GOR for both cases (with and without ICD) 

for   Case one 

 

35 

Figure 4.4c    Annual Cumulative production for both cases (with and 

without ICD) for   Case one 

 

 

36 

Figure 4.5a    Case II Production rates for both base case and ICD 

 

42 

Figure 4.5b    Case II Annual water cut and GOR for both base case and 

ICD 

 

44 

Figure 4.5c    Case II Annual Cumulative production for both base case         

and ICD 

 

45 

Figure 4.5d    Case II Graph of OIIP vs. Time for both base case and ICD 

 

46 

 

 

 

 

 



   
 

ix 
 

   LIST OF TABLES 

Table 3.1 Summary of segments and branches 16 

Table 3.2 Project Activities for FYPII 17 

Table 4.1  Data taken from Anna et al. with some modified for case One 22 

Table 4.2 Data taken from Preston Fernandes et al.  24 

Table 4.3  Case One: Production rates for base case (without ICD) 

 

28 

Table 4.4  Case One: Production results for ICD case   

 

29 

Table 4.5  Case One: Comparative analysis  between base case (without 

ICD) and ICD case 

 

33 

Table 4.6a  Reservoir rock and fluid properties for case II 

 

37 

Table 4.6b  Case II: Production rates and cumulative volume for base case 

(without ICD) 

 

39 

Table 4.6c   Case II: Production performance results for ICD case 

 

40 

Table 4.6d  Case II: Comparative analysis with and without ICD 

 

47 

Table 5  Conclusive Remarks 

 

 

48 

 

 

APPENDICES 

Appendix1 Model for case one (without ICD) 53 



   
 

1 
 

CHAPTER 1 

INTRODUCTION 

1.1. Background of Study 

Horizontal wells are currently widely used to maximize the contact within the reservoir. 

In other words, horizontal wells are used to reach wells that cannot be reached by the 

conventional vertically drilled wells. These wells are basically drilled to reach targets 

beneath adjacent lands, reduce the footprint of gas field development, to increase the 

length of the pay zone and to intersect fractures among others.  

Inflow control devices are choking control devices that provide an additional pressure 

drop at the wellbore. These devices are introduced to equalize inflow flux at the heel of 

the horizontal well and delay production of water and gas. The first application of inflow 

control device (ICD) was witnessed in the Troll oil field in Norway. 

1.2. Problem Statement 

Horizontal wells are associated with various problems since they are drilled at an angle   

making them susceptible to early water/gas breakthrough mostly motivated by factors 

such as frictional pressure drop, permeability variations along the wellbore and “heel toe 

effect”. These result to uneven flow sweep at the wellbore leading to low oil production, 

sharp oil production rate declines, and short economic production life of the well.    

Since the main objective of the engineer and the operating company is to produce oil but 

not water and gas, there is a need to develop a device that will control and stop or 

minimize these problems. 

1.3. Objectives 

The main objectives of this study are to apply ICD in horizontal wells to; 

 Achieve equal or uniform flux along the length of the horizontal well. 

 Delay premature breakthrough of water and gas as well as improve reservoir fluid 

recovery. 
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The bottom-line of the study is to mitigate the heel toe effect of horizontal wells and 

improve hydrocarbon recovery through the application of inflow control devices. 

1.4.Scope of the Study 

The general aim of this study is to model and simulate the performance of horizontal 

wells with ICD and without ICD to justify the significance of the application of ICD for 

optimizing horizontal wells performance. 
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CHAPTER 2 

LITERATURE REVIEW   
 

2.1.Literature Review 

With current efforts of maximizing contact with reservoir quality rock in either single or 

multiple reservoirs, horizontal and multilateral completions are proven superior to the 

conventional completion solutions as reported by El-Khelaiwi and Davies [1].  

Horizontal wells are first drilled as early as 1927 but the major application of drilling 

horizontal well came into effect in the 1980s initially with short well lengths, about 250ft 

long [11]. In 1985, the first medium radius horizontal well was drilled using a downhole 

mud motor. This has triggered the use of horizontal well to a higher level. Nowadays, 

horizontal well drilling has become a common practice and the medium radius drilling 

technique is the most commonly used technique.  

Horizontal wells are applied in vast reservoir types including low permeability, naturally 

fractured, carbonate reservoirs. But most of the horizontal wells are drilled in clastic 

reservoirs. Horizontal wells have also been used to produce thin zones, formations with 

water and gas coning problems, water flooding, heavy oil reservoirs, gas reservoirs and in 

enhanced oil recovery (EOR) methods such as thermal and CO2 flooding and  used to 

improve well economics. 

Since horizontal wells are drilled at an angle, there usually occur problems of gas and 

water conning at the heel of the well due to frictional pressure drop, variation of the 

permeability along the well, and or pressure drop along the completion’s flow path due to 

friction losses usually known as “heel-toe effect.” It has been found from previous 

researches that installation of Inflow ICD mitigates such problems. ICD is usually 

installed as a part of the sand face completion hard ware. It was proposed in the early 90s 

as solution to the above problems associated to horizontal and multilateral wells. The use 

of ICD is currently gaining more and more popularity and applications in different 

reservoirs [2]. Notable application of ICDs is in the Troll oilfield located in the North Sea 
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80km west from the Norwegian west coast. This was presented in a case study by 

Henriksen and Gule [3].  They argued that technical and functional description, 

qualification, computer modeling and production experience verifies that completions 

with ICDs yield higher volumetric oil recovery from each well as compared to the more 

conventional sand control completion methods.  

Several studies had been carried out on the application of ICD as a smart way of 

completions. These studies include the work by Birchenko [4] which focused on how to 

make a choice between active (Inflow Control Valve, ICV) and passive (ICD) inflow 

control completions. This study enumerated the areas of application of ICVs and ICDs 

with the major aspects dictating the choice between ICV and ICD completions. Although 

the application areas of ICV and ICD technologies have developed up to the extent that 

they overlap, they pointed out that ICDs are appropriate for mitigating the “heel toe 

effect” while also noting that ICD has greater advantage in terms of simpler design, 

installation and lower cost. This, according to their study, is due to the fact that the ICV’s 

reduced inner flow conduit increases the heel toe effect and the design and installation of 

ICV is quite complex as compared to that of ICD. 

A similar study on understanding the roles of ICD in Optimizing horizontal-well 

performance by Fernandes et al. stressed that even though the detail structure of 

designing ICD varies, the principle for different inflow devices is the same, which is to 

restrict flow by creating additional pressure drop and therefore balancing or equalizing 

the wellbore pressure drop to achieve an evenly distributed flow profile along a 

horizontal well [5]. This study showed that ICD is now widely considered by the oil and 

gas industry as a solution to the pressure inequality near the wellbore vicinity of 

horizontal wells.  However, they emphasized that careful observation has to be taken in 

determining as well as knowing the reservoir condition and the well structure together 

with the completion design because once the ICDs are installed, the location of the ICD 

as well as the relationship between the rate and the pressure will remain fixed. Since the 

reservoir may change with time, the impact of the ICD will also depend on time. 
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Another application of ICD was in in the SS field presented by Rahimah et al [6]. The SS 

field is in offshore East Malaysia currently with 3 horizontal producers and 3 water 

injectors. According to the paper, SS field has significant development challenges 

making early water and gas breakthrough inevitable which led to the implementation of 

horizontal wells and Inflow Control devices were the solution for the mitigation of the 

early water and gas breakthrough. Through the dynamic and static computer modeling, 

they were able to adequately place the horizontal wells, quantify the value of 

implementing ICD, compare production performance before and after ICD and achieve 

the bottom-line which is approval from management. The paper reported that ICD 

yielded significant benefits in suppressing the gas influx and balances the flow influx 

heterogeneity along the horizontal well length which resulted favorably in delaying gas 

and water breakthrough to optimize recovery.  Generally, the paper concluded that the 

application of ICD proved valuable to horizontal well optimization by reducing the risks 

of having early gas and water coning and that is important to make in depth feasibility 

studies to avoid misplacement of the device. 

The flow rate per joint of an ICD restricts the applicability of the device. In a paper 

presented by McKenzie and [7], they reported that the maximum flow rate per ICD 

should not exceed the erosion velocity since the erosion velocity is the function of the 

fluid properties, the flow area and the ICD material. Therefore, there is a need to consider 

the minimum flow per joint because if the well production is very low, it will make the 

ICD function like a normal screen since no additional pressure drop is created (i.e. ∆p =0 

through the screen). To avoid this scenario, it is recommended to operate within the 

envelope of the minimum and maximum flow rates per joint as in the figure shown 

below. This plot in the figure can also be used to identify the wells which can benefit 

from the application of ICD and determine the minimum well length or the reservoir 

contact needed for the ICD to function properly as reported by the study. 
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Figure 2.1: ICD operation envelope as a function of the flow rate per joint [7] 

The design and application of ICDs revolves around the pressure transient behavior of the 

horizontal wells since the additional pressure drop is the driving factor. It is important to 

know the transient behavior of the well before and after the ICD application. In a similar 

study by experts from Schlumberger, they observed that frictional pressure losses along 

the wellbore and through the completed intervals (multi-segmented intervals) and ICD 

dramatically alter the reservoir fluid inflow distribution along the wellbore [8]. In order to 

have a considerable insight on the inflow profiles of fluids along the wellbore, the 

evaluation of the transient performance of the horizontal well with ICD is significant. 

2.2.Types of Inflow Control Device  

Several types of ICD are present with different principles and uses. In a recent study on 

the design, implementation and use of ICD for improving the production performance of 

horizontal wells presented by Minulina et al., They noted that all ICD type designs are 

based on the principle of pressure equalization along the wellbore and balancing inflow 

along the well path which is achieved by including choking devices that create additional 

pressure drop between the reservoir wellbore annulus and the wellbore [9]. They 

described the most commonly used ICD types as below. 
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2.2.1.  Channel Type ICD 

 This ICD type achieves the pressure equalization by friction forces which are in built-in 

channels. This type of ICD is based on the Poiseuille’s law which states that the pressure 

drop in a laminar fluid flowing in a tube is proportional to the fluid viscosity and the 

length of the channel. This is given by [9]; 

                    
      

   
   ……………………………………………………… (2.1)  

Where: ∆P is the pressure drop; L is the length of the pipe; µ is the dynamic viscosity 

Q is the flow rate; d is the diameter 

 

 
Figure 2.2: Channel type ICD [9] 

The Channel type ICD is excellent in corrosion eradication and has a limitation in that it 

cannot be adjusted at the rig site and is sensitive to changes in fluid viscosity. 

2.2.2. Nozzle Type ICD 

The nozzle type ICD has a prefabricated number of nozzles ranging from 1 to 4 in each 

section. The pressure drop is achieved when the fluid enters through the nozzle.  

This is according to Bernoulli’s law which describes the physical phenomena as [9]     

     
  

 
            ……………………………..…………………………………… (2.2) 
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 ……………………………………………………………………………... (2.3) 

Where: 

∆P is the pressure drop, ρ is the flow rate of the fluid, v is the velocity of the fluid 

A is the cross-sectional area of the pipe 

 

 
Figure 2.3: Housing unit section of Nozzle type ICD [9] 

 

 
Figure 2.4: Flow pattern in Nozzle ICD [9] 

Unlike the channel type ICD, the nozzle type ICD is adjustable at the rig site and the 

pressure drop is insensitive to fluid viscosity although it depends on the fluid viscosity. 

2.2.3. Orifice Type ICD 

This ICD type has a number of orifices integrated into the device to provide restrictions. 

The pressure drop is achieved as the fluid flows through the restriction which can be 

adjusted by varying the number of open orifices. These orifices with known diameters 

and flow characteristics are installed around the pipe within the ICD chamber, 
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prefabricated before delivery. The Orifice type ICD is non-adjustable at the rig site and 

are known to be erosion prone due to higher fluid velocities required to create the 

instantaneous pressure drop. 

 

Figure 2.5: Orifice type ICD for water injectors [16] 

 

2.3.Application of ICD with other Control Devices 

However, several published papers have presented different applications of ICDs since its 

first application in the Troll field. For example, in Al-Khelaiwi et al paper, they presented 

other applications such as [1]; 

2.3.1. Application of ICDs with Stand Alone Screens (SAS) in horizontal wells 

This is applied in long horizontal wells like in the well M-22 in the Troll field which had 

a horizontal well length of 3,619 meters and completed with 279 jointed SAS with ICD. 

2.3.2. Integration of ICD with Annular Isolation 

The integration of ICDs with annular isolation is employed to prevent annular flow which 

may occur due to variations in permeability, hole size, or undulations along the wellbore 

even if ICD is installed. Annular isolation is always necessary to guarantee the full 

benefits of ICD implementation. For example, the Z-23 in Zulu field in Saudi Arabia was 
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completed with four mechanical External Casing Packers (ECPs) in conjunction with a 

single strength channel type ICD to segment a 2200ft length. 

2.3.3. Integration of ICD with Artificial Lift 

Practically, the application of Artificial Lift methods is to revive dead or low flow rate 

wells to increase production by increasing the pressure drop at the wellbore which is 

desirable in vertical wells. However, in horizontal wells, this could further worsen the 

effect of the pressure drop along the wellbore which encourage water or gas coning. This 

is mitigated by integrating ICD with artificial lift as witnessed at the Z and M fields and 

at the Troll and Grane fields in the Norwegian shelf of the North Sea. 

2.3.4. Integration of ICD with Gravel Pack 

For wells with high sand production, ICD can be combined with gravel pack to minimize 

both the problem of sand and water or gas breakthrough such as in the Etame oil field at 

offshore Gabon where ICD was combined with gravel pack in ET-6H well.  

2.3.5. Integration of ICD with Multilateral, Intelligent Completion  

This involves the combination of Inflow Control Valve and ICD in multilateral wells. 

The ICV is installed together with the ICD at the mouth of each lateral to avoid the 

potential of water breakthrough in one lateral before the other lateral in multilateral wells 

completed in different reservoir facies. In the Z field in offshore Saudi Arabia, an 

integrated ICD completion with level 4 multilateral junctions equipped with ICV was 

employed to control the production from each lateral well. 
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CHAPTER 3 

METHODOLOGY 

3.1.Research Methodology 

 The study investigates the reservoir performance through a comparison of base case 

model without ICD and a model with ICD employed. Therefore, two project phases were 

involved. Part one dealt with researching of the principles, application and industry best 

practices of ICD installation and part two focused on creating two dynamic and static 

reservoir models for predicting or forecasting the future well performances, quantifying 

the value of ICD implementation, appraisal and comparison of the production 

performance before and after the installation of ICD. The author used the ECLIPSE multi 

segment model feature in ECLIPSE 100 to divide the horizontal well length into a 

number of segments which include the annulus, the tubing and the ICD length.  

Several assumptions were made in order to model and simulate the impact of ICD using 

the multisegment model. These assumptions include [18]; 

i. Flow through the reservoir can be described by Darcy law and the inflow 

into the well is steady or pseudo-steady. 

ii. The distance between the well and the reservoir boundary is much longer 

than the well length (or parallel to the well). 

iii. Friction and acceleration pressure losses between the toe and the heel are 

small compared to the drawdown. 

iv. The fluid is incompressible. 

v. No fluid in the annulus parallel to the base pipe. 

vi. The ICDs installed are of the same strength. 

The first part which is primarily research was achieved through literature and industry 

papers while the second part which involves model creation and simulation was achieved 

using Schlumberger Eclipse Simulator and data from literature. 
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3.2. The Multi-segment Model 

The multi-segment well model is a special extension available in both Eclipse (100) and 

Eclipse (300) which is for black oil and compositional model respectively. This special 

extension is specifically designed for multi-lateral and horizontal wells although it can 

still be used for more detailed analysis of fluid flow in standard vertical wells. Like any 

standard well model, the equations are solved fully implicitly and simultaneously with 

the reservoir equations to ensure stability and meet the exact operating targets [13]. 

In this project, the wellbore length was divided into a number of 1-dimensional segments 

to obtain the detailed description of the fluid flowing conditions within the well. The 

segments were isolated from each other by packers. Each of the segments had their own 

set of independent variables. Since the author was using ECLIPSE 100, the number of the 

independent variables per segments was four which were the fluid pressure, the total flow 

rate and the flowing fractions of water and gas. The variables within each segment were 

evaluated by material balance equations for each phase or component and a pressure drop 

equation that takes into account the local hydrostatic, friction and acceleration pressure 

gradients. For better accuracy and ability to model the choke, the pressure drop was 

derived from pre-calculated vertical flow performance (VFP) tables [14]. The figure 

below shows a multi-segment model taken from literature. 

 

Figure 3.1: Multi-segment well model [13] 
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The flow between a grid block and its associated segment is given by the following 

equation [13]. 

        (                )  …………………………………………. (3.1) 

Where: 

 qpj  = Volumetric flow rate of phase p in connection j (stb). 

 Twj = Connection transmissibility factor. 

 Mpj = Phase mobility at the connection. 

 Pj = pressure in the grid block containing the connection. 

 Hcj = Hydrostatic pressure head between connection’s depth and the center depth 

of the grid. 

 Pn = Pressure at the associated segment’s node n. 

 Hnc = hydrostatic pressure head between the segment node and the connection 

depth (i.e. center depth is not necessarily equal to the segment node). 

 

                  Figure 3.2: Hydrostatic head Components [13] 

 

3.2.1. Inflow Control Device (ICD) 

An inflow control device is a permanent hardware installed upon completion of a well 

based on initial reservoir conditions and simulation prediction of reservoir performance. 

It is not adjustable and irretrievable. 
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3.2.2. How ICD Works 

ICDs work by imposing an additional pressure drop between the sand face and the tubing 

with the aim of equalizing drawdown throughout the length of the wellbore. The retard or 

slow down the fluid flow in the fastest zones (thief zones) leading to a more uniform fluid 

inflow profile along the length of the wellbore.  

The mechanism by which this additional pressure drop is achieved varies for different 

devices from simple flow control valves to complicated smart devices that are capable of 

changing their response according to the properties of the inflowing fluid. Due to the 

increased pressured drop introduced by ICD, wells may begin to produce at lower rates 

than when there is no ICD and gradually increase over time. This can be illustrated in the 

figure below. 

 

Figure 3.3: ICD segments illustrating the additional pressure drop created by the ICD [18] 

From figure 3.3, the green zone represents the additional pressure drop created by ICD 

between the sand face and the tubing, and the grey-yellowish zone shows the drawdown 

from the sand face totaling to one even pressure drop in all the segments which 

contributes to uniform influx of the fluids. 

Four ICD types that can be easily modeled in ECLIPSE Reservoir simulator include; 

1. Sub critical valve: additional pressure drop created by constriction – its magnitude 

depends upon both the size of the constriction and the velocity of inflowing fluid. 
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2. Labyrinth Device: forces the inflowing fluid to flow through a system of channels 

before it enters the tubing – the pressure drop depends on the length of the flow 

path through the channels and the velocity of the inflowing fluid. 

3. Spiral ICD: additional pressure drop is created by forcing the inflowing fluid to 

flow through a spiral before it enters the tubing. 

4. Autonomous ICD:  Same mechanism as spiral ICD. 

The equation for the additional pressure for the Spiral and Autonomous ICDs are given 

by the equations below [17]. 

       (
            

          
)
   

      
    ………………………………………………… (3.2) 

 

          (
    
 

    
) (

    

    
)
 

      
  ……………………………………………….. (3.3) 

     = Density of fluid mixture flowing through the device. This is calculated from 

saturated weighted average of the density of the individual phases. 

     = Density of the fluid used to calibrate the device during laboratory experiments. 

     = Viscosity of the fluid mixture flowing through the device. This can be calculated 

from either the averaging method or by a more sophisticated calculation which assumes 

that the oil and water form an emulsion. 

  = the device strength calibrated from the lab.  q = the volumetric flow rate through the 

device. x = user defined exponent measured during calibration. y = user defined exponent 

measured during calibration. 

The pressure drop depends on a combination of the fluid properties and the device 

variables. The pressure drop across ICD segment increases with the fluid flow rate which 

helps to retard or slow down flow in the fastest zones (thief zones). 

3.3. The Reservoir and Well Model  

To demonstrate the significance of the application of ICD, two models were created 

representing a reservoir with thin layer of 20 feet. Water injection had been performed for 



   
 

16 
 

pressure maintenance. The model represents a reservoir with 15x1x20 grids and 

thicknesses with varying horizontal and vertical permeability values. The first multi-

segment well model was run without ICD and the results were compared with the second 

model with ICD. Some of the data were assumed for the purpose of this study. The 

reservoir and fluid properties are given for two different cases in the respective sections 

in Chapter 4. 

The base case model without ICD was created by using the multi-segment well model 

described above to divide the production well into 25 segments with three branches and 

the injection well was divided into 24 segments with two branches. The segment 

properties and dimensions are given in the table below. 

Table 3.1: Summary of segments and branches 

 Property Production well  Injection well 

Number of segments 25 24 

Number of branches 4 3 

 

The simulator will calculate the flow of the fluid from segment to segment throughout the 

horizontal well length. 

The Spiral (SICD) was applied into the multi-segment well model to restrict flow in those 

segments with high permeability so that the inflow of the fluid is balanced. This was 

enabled in the simulator by a special keyword (WSEGSICD) to designate some of the 

segments to represent the SICD and impose an additional pressure drop between the sand 

face and the tubing. The pressure drop across the SICD depends on the viscosity and 

density of the fluid flowing through it and it is given by the equation 3.2 above. The 

viscosity of the mixture is given by equation 3.4 below. 

                      ………………………..………………………….. (3.4) 

Where:  

uo,w,g = the viscosities of oil, water and gas. 

αo,w,g = the volume fractions of the free oil, water and gas. 
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3.4. Project Activities 

The activities involved in this project ranges from doing research on the project to data 

collection, model creation and results analysis. These are summarized in the table below. 

Table 3.2: Project Activities for FYP2 

Activities Description 

Research and Review 

Literatures 

- Identifying the problem   

- Suggest a solution  

- Establish firm objectives 

- Extract relevant parameters and procedures  

- Adopt a methodology    

Preparation of Data  

Model Creation 

- Look for data in published papers 

- Create Multi-segment well model     

- Incorporate ICD into the multi-segment well model and 

create model to be used by E100 

Running the model in 

Simulator, Check for 

consistency and 

convergence 

- Export the model  into the E100 and run model 

- Check for errors and problems 

- Check for convergence and consistency 

- Modify control values to suit the project study 

Analyse the Results - Discuss and scrutinize the findings from the results 

- Draw a conclusion from the results. 

Report Writing Compilation of all works into a final report 
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3.5. Project Flow Chart 
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3.6. Gantt chart and Key Milestones for FYP2 (semester 2) 

No. Activity/  Week 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 

1 Project Work Continues        

M
id

-S
em

es
te

r
 B

r
ea

k
 

        

                 

2 Submission of Progress Report                

                 

3 Project Work Continues                

                 

4 Pre-SEDEX                

                 

5 Submission of Draft Report                

                 

6 Submission of Dissertation (soft bound)                

                 

7 Submission of Technical Paper                

                 

8 Oral Presentation                

                 

9 Submission of Project Dissertation (Hard 

Bound) 
               

Figure 3.5: Gantt chart and Milestones for FYP2 as per the FYP Guideline 
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3.7.Equipment and Data Required for the Project 

The Schlumberger Reservoir Simulator (ECLIPSE Black Oil, E100) is used in this 

project.  The data for this project were taken from various papers and some of them were 

assumed since the data were needed as an example for demonstrating the significance of 

ICD application. There are limitations to the data and these limitations are discussed in 

the proceeding chapters. 
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CHAPTER 4 

RESULTS AND DISCUSSION 
 

To illustrate the effect of ICD on the reservoir performance, two models were considered 

for study with different reservoir rock and fluid properties. The data used were taken 

from literature and were assumed to be appropriate for this study. The two models both 

show a positive effect of applying ICD in a completion for better performances. As 

discussed before, the major functions of ICD are; 

1. To redistribute the flowing pressure in the wellbore by creating an additional 

pressure drop to balance the reservoir drawdown along the wellbore and 

subsequently achieve evenly distributed flow rate along the horizontal well. 

2. To restrict high permeability channels or high drawdown spots (thief zones) at the 

heel of the well and along the well length in order to delay early water or gas 

breakthrough since they are not the fluids we want to produce. The reservoir 

heterogeneity and are well identified before any completion is applied in the field. 

The two cases were aimed to justify the above functions of ICD in horizontal well 

completions. Both cases were pressure supported by water injection and it was assumed 

that some of the injected water was produced with the oil, thereby increasing the water 

cut of the completion. 

4.1. Case One 

The first case consisted of a reservoir with 300 cells (15x1x20 dimensions) [15]. This 

reservoir was having an initial pressure of 3000psi and was expected to produce to a 

maximum rate of 650stb/d. The well has three branches. The first branch has 10 segments 

ranging from segment 2 to 12 as the top branch. The second branch consists of 5 

segments ranging from 13 to 17 making the middle branch. The third and last branch 

consists of 6 segments ranging from 18 to 24 at the bottom. All branches were in the 

horizontal direction and no inclined branch or segments for simplicity. The reference 

depth or the depth to the nodal point of the top segment was taken to be 7010 ft. and the 
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length down the tubing to the nodal point of the top segment (the distance between the 

bottom hole pressure reference depth, 7010, and the tubing head) was 20 ft.  A tubing 

size of 4.5 inches (0.375 ft.) was applied with an effective absolute roughness of 0.001. 

The cross sectional area for a segment is given by; 

  (
  

 
)  ……………………………………………………………………………. (4.1) 

Where D = the tubing diameter.  

Therefore, the cross sectional area for the segment was calculated to be 15.9 square 

inches (0.11 square feet). 

The volume of the segment is given by the cross sectional area multiplied by the length of 

the segment (A.L). For the top segment, the length of each segment was given to be 50 ft. 

Hence, the volume of a single segment in the top branch can be calculated to be 5.5 cubic 

feet (795 cubic inches). Some of the necessary rock and fluid properties are presented in 

tables 4.1 and 4.2 below. 

Table 4.1: Data taken from Anna et al. [15], with some modified. 

Property Value 

Block dimensions 15x1x20  

Size of reservoir grid blocks* 200x100x20ft
3 

Reservoir initial water saturation, swi 0.12 

Total well length* 1000 ft. 

Well roughness 0.001 

Size of segment* 100 ft. 

Reservoir temperature at top boundary 160 degF 
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Table 4.2: Data taken from Preston Fernandes et al. [5] 

Property Value 

Horizontal permeability* 2000 md 

Vertical Permeability 20 md 

Average reservoir pressure* 3000 psi 

Pressure at heel* 2700 psi 

Reference depth* 7010 

Water oil contact* 7990 

Oil viscosity 2 cp 

Oil density 40 lb/ft
3 

Tubing diameter 4.5 in 

Gas viscosity 0.02 cp 

 

The asterisk * shows modified and added data for the project. 

There were two sets of results for this case. The first results were from the base case 

without ICD and the second results were from the base case with ICD. 

4.1.1. Segment GOR and Water cut 

Water cut is the ratio of water produced compared to the total volume of liquids 

produced. Here it is the ratio of the water produced to the oil produced at the surface. 

Therefore, a water cut of 0.5 means 50% of the liquids produced is water and the rest if 

oil. Water cut is a problem in reservoirs with strong aquifers or aquifers supported by 

water injection.  

Like the water cut, gas oil ratio (GOR) is the ratio of the amount of gas produced to that 

of the oil produced. GOR may occur due to the presence of gas in solution with oil and 

the pressure drops below bubble point where the gas starts to escape from the oil and 

subsequently produced together with the oil or when there is a gas cap on top of the oil 

zone and the gas is penetrating or coning through the oil into the production tubing. 
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The amount of water and gas produced immensely influence the production performance 

and the overall economic decisions of the well, as well as the whole field. 

To determine the segments suitable for the application of ICD, the base case model 

without ICD was run and the results of the segments which produce most of the water 

and gas are shown in the figure 4.1. 

It can be clearly observed from the figure that segments 1, 3, 13, 14, 15, 16and 17 were 

the most suitable for applying ICD to reduce gas and water production because they have 

higher water cut. The rest of the segments have low water production and gas production 

but the fluid inflow is variable which qualify them for ICD as well. Here, ICD was 

applied to the segments which will optimize oil recovery and reduce unwanted fluid 

production at the same time. ICD was not applied to segments 1 to 3 because they are 

located at the top segment near to the heel of the well and putting ICD there will instead 

push more water or gas towards production. No pressure losses were calculated from the 

top segments because the mult-isegment model does not calculate pressure losses above 

the nodal point of the top segment. Instead, the pressure losses between the bottom hole 

pressure reference depth and the tubing head were handled by the vertical flow 

performance (VFP) tables. 

 It is also recommended in the simulator not to include an ICD in the top segments (1 and 

2) because once we restrict the top segments, the flow into the liner will be blocked and 

this will lead to low fluid recovery.  

The question remains whether to install ICD for all segments ranging from 5 to 25 or just 

select some of them. Here, some of the segments have ICD while others were left without 

ICD as discussed above. 
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Figure 4.1: GOR and water cut for every segment in the base case 
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Figure 4.2: Annual Oil, water and gas production for base case (without ICD)



   
 

27 
 

4.1.2.  Base Case (without ICD) Production Rates for Case One 

Results from the base case without ICD shows that the well starts producing with high 

rates and declines until lower rates the end of production year. From graph in figure 4.2, 

production began with 620 STB/D in the first day of production and declines to 500 

STB/D after a year of production. In the third year, the oil production rate dropped to 

only 190 STB/D and at the end of production, the oil rate was only around 40 STB/D. 

The well also started with high gas rates and low water rates. But water increased rapidly 

and the gas rate decreased with time. The water production rate became higher than oil 

production in the second year and continued to rise until the last year of production. The 

gas production rate kept decreasing, showing that there was gas dissolved in the oil and 

when the pressure dropped below bubble point, the gas started to escape. However, after 

the implementation of water injection to maintain the pressure of the reservoir above the 

bubble point, the gas declined and consequently, some of the injected water penetrates 

through the oil into the production liner by the process of fingering resulting to high 

water production rates. 

Higher water production may be the result of some zones having faster fluid inflow than 

the other zones and water, because of its higher density and low viscosity, breaks through 

the oil so easily. The uneven inflow distribution let to the decrease in oil production rates 

and higher water production. From table 4.3 below, total cumulative oil production of 

721872 STB was recovered while cumulative water production was 2203128 STB, which 

was higher than the total oil produced. The pressure increased, demonstrating the support 

offered by the water injection program. In general, gas production was not a major 

problem in this well because its production was considered low and could be handled in 

the surface facilities. Therefore, the main mission remains to improve the inflow 

distribution and reduce or delay water production and if possible, increase the oil 

production. Table 4.3 shows results of the base case without ICD. 
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Table 4.3: Production rates for base case without ICD (Simulated) 

TIME         YEAR       Oil Rate        Gas rate    

Water 

Rate      

Cum. 

Oil      

Cum. 

Water       
GOR         

DAYS         YEAR        STB/D  MSCF/D     STB/D      STB          STB          
MSCF/STB     

1 0.003 594.7499 594.7639 55.25005 594.7499 55.25005 
1.000023 

750 2.0533 313.1326 339.898 336.8674 369912.2 117587.8 
1.085476 

1110 3.039   195.8681 213.7527 454.1319 457478.6 264021.4 
1.09131 

1470 4.024  143.7855 154.9961 506.2145 516828.2 438671.8 
1.077968 

1830 5.010  111.3233 118.6299 538.6768 561862.1 627637.9 
1.065635 

2220 6.078  87.84339 92.94745 562.1566 600048.1 842951.9 
1.058104 

2580 7.063  72.15463 76.02178 577.8453 628478 1048522 
1.053595 

2940 8.049  60.7084 63.84494 589.2916 652120.5 1258880 
1.051666 

3300 9.034  52.06255 54.72628 597.9374 672233.6 1472766 
1.051164 

3660 10.02  45.06068 47.36242 604.9393 689568.4 1689432 
1.051081 

4020 11.00  39.31342 41.3339 610.6866 704636.9 1908363 
1.051394 

4410 12.07  34.18361 35.96579 615.8164 718859 2147641 
1.052136 

4500 12.32  33.13748 34.87265 616.8625 721872.4 2203128 
1.052363 

 

4.1.3.  Base Case with ICD Production Rates for Case One 

The application of ICD was expected to improve the sweep efficiency and delay or 

reduce the production of water or gas. These were evaluated here by observing the 

performance of the well. From the graphs in figure 4.3a and 4.3b, Oil production started 

with a rate of 260 STB/D and increased up to a maximum of 440 STB/D within a year. It 

started to decline thereafter until 200 STB/D in the fourth year. It kept declining to a rate 

of 65 STB/D in the end year (12.25 years).  During the start of production, water 
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production rate was as low as 100 STB/D and increased until the water rate equals the oil 

rate at 3 years at the rate of 250 STB/D.  More water continued to break through until it 

reaches a maximum of 520 STB/D in the end of production year. This higher rate of 

water production was the result of the water from the injection coning through the oil into 

the wellbore. As discussed above, gas production was considered low and manageable. 

The field pressure was increased from 3160 psi to a constant pressure of 3530 psi from 

the beginning of production till the end year of production. Some of the results for the 

ICD case are presented in table 4.4 below.   

Table 4.4: Production results for the base case with ICD (Simulated) 

TIME         YER 

Oil 

Rate        Gas Rate       

Water 

Rate         Cum. Oil        

Cum. 

Water     GOR         

DAY         YEAR      STB/D MSCF/D   STB/D    STB          STB          MSCF/STB     

1 0.00 405.94 431.74 118.35 405.94 118.3522 1.06 

750 2.05 376.37 413.68 177.79 297688.00 99544.48 1.10 

1110 3.04 257.61 278.80 253.23 409450.40 179050.3 1.08 

1470 4.02 193.90 209.02 322.87 488901.30 284069.6 1.08 

1830 5.01 151.30 163.12 377.81 549632.40 411261.8 1.08 

2220 6.08 125.06 134.46 418.49 602557.00 568127.2 1.08 

2580 7.06 108.48 116.02 443.11 644310.20 723648.8 1.07 

2940 8.05 93.69 99.72 464.60 680406.20 887474.6 1.06 

3300 9.03 81.09 85.95 482.63 711612.40 1058345 1.06 

3660 10.02 70.69 74.68 497.35 738713.00 1235055 1.06 

4020 11.01 62.41 65.77 509.01 762489.40 1416458 1.05 

4410 12.07 55.28 58.14 519.03 785282.60 1617147 1.05 

4500 12.32 53.83 56.59 521.06 790170.10 1663982 1.05 
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Figure 4.3a: Production rates for the base case with ICD for case one 
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Figure 4.3b: Field pressur and cummulative productions as a function of time
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4.1.4. Comparison between the Base Case Results and the ICD case Results 

To clearly identify and illustrate the effect of the application of ICD in this well, let us 

look at a comparative view of the two results. The figure 4.4 below shows the results of 

the annual fluid production rates for both cases (base case and ICD case).   

 When we produced without ICD, the production began with a high rate of 640STB/D 

and declined rapidly until a rate of 200 STB/D in 3 years and continued to decrease until 

40 STB/D at the end of production year 12. Water started with a low production rate of 

20 STB/D and increased until water rate became equal to the oil rate at the second year 

with a rate of 330 STB/D with a maximum rate of 620 STB/D at the end of production 

year 12. While with ICD, production began with an oil rate of 260 STB/D and water rate 

of 100 STB/D. The oil rate decreased while the water rate increased until the rate of 

water equaled that of oil in 3 years with at a rate of 260 STB/D. Water continued to 

increase until a rate of 520 STB/D and oil decreased until a rate of 60 STB/D at the end 

of production (12.2 years). 

Looking at figure 4.4b and 4.4c which shows the water cut, GOR, cumulative oil and 

cumulative water respectively, it was observed that the field water cut was reduced. The 

GOR was not highly affected but it was reduced as well. It is also evident that the oil 

recovery was improved as it can be seen that the total volume of oil produced at the end 

of production in the case without ICD was only 736739 STB as compared to the ICD 

case with about 801572 STB. This gave a difference of 64833 STB extra volumes of oil 

recovered due to the application of ICD. That is a percentage increase of 8%. 

The increase in oil and reduction in the water rate was due to the additional pressure drop 

created by the ICD when the fluids were flowing through the device. This means that the 

model was able to demonstrate the objective of improving inflow distribution and sweep 

performance as well as reducing water/gas production in the well. Table 4.5a shows the 

summary of the comparative analysis of the two results. 
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Table 4.5: Comparative analysis of the Base case without ICD and the one with ICD (simulated results) 

Property Year 

Base Case 

(No ICD) 

Base Case  

( with 

ICD) 

 

Comment 

Oil Rate 

(STB/D) 

  

 1 500 420 Oil rate was low for ICD in the 

beginning because of the restriction, 

and it was improved from the third 

year and remained above the base case 

rate until end of production. 

3 195 275 

6  87 125 

12 40 55 

Water Rate 

(STB/D) 

  

1 140 120 Water production was immensely 

reduced throughout the production 

period. 

This is due to even influx of the 

inflowing fluids by the additional 

pressure drop created by ICD. 

 3 460 260 

 6 560 420 

 12 620 520 

  

Gas Rate 

(MSCF/D) 

  

 1 600 520  

Gas production was reduced but it 

started to increase, insignificantly. 

Still manageable level 

 3 210  280 

 6  80 130 

 12  40 50 

Cum. Oil 

(STB) 

  

 1 253438 1535560 The total volume of oil produced at 

the end of production is much higher 

than when no ICD is used. Over 8% 

increase in oil production. 

 3 477407 430255 

 6 612967 612967 

 12 736739 807466 

Cum. 

Water 

(STB) 

  

 1 23575 23575  Total water volumes produced are 

reduced as compared to without ICD. 

Total decrease of 23.94%. 

Very successful in terms of water 

production reduction. 

 3 
271120 

182711 

 6 
 848723 

 577603 

 12 
2139000 

 1626720 
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Figure 4.4a: Production Rates for both cases (with and without ICD) 
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Figure 4.4b: Water cut (WWCT) and gas oil ratio for both cases 
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Figure 4.4 c: Annual Cumulative production for both cases (with and without ICD) 
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In conclusion, the application of the inflow control device has improved the well 

performance by reducing the production of the unwanted fluids (water and gas) as well as 

equalizing the distribution of the fluids to be produced at the vicinity of the wellbore. 

Although the oil production rate was reduced at the start of production, it increased over 

time and better cumulative oil production was achieve. Therefore, our objective of 

achieving evenly distributed inflow at the wellbore area while reducing water and gas 

production has been addressed for case one. ICD can be a tool for production 

performance optimization. 

4.2. Case Two 

The second case consists of a model of 500 grid cells (10x5x10). Each grid has the 

dimensions of 200x200x50 ft. with initial water saturation of 0.22 and a high 

permeability of 2000 md to demonstrate the existence of thief zones and heterogeneity. 

The vertical permeability was 50 md and initial pressure of 3000 psi. Some of the 

reservoir and fluid properties are shown in the table below.  

Table 4.6a: Reservoir rock and fluid properties for case II [5] 

Property Value 

Model dimensions  10x5x10 

Grid size  200x200x50 ft 

Initial pressure 3000 psi 

Reference depth 7020 ft 

Reference pressure 2700 psi 

Permeability in x and y direction 2000 md 

Permeability in Z direction 50 md 

Oil density 45 lb/cu.ft 

Water density 63 lb/cu.ft 

Gas density 0.702 lb/cu.ft 
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Continuation: Table 4.6 

Water viscosity 0.96 cp 

Oil viscosity 2.1 cp 

Oil FVF 1.21 rb/stb 

Water FVF 1 cp 

WOC 7990 ft 

GOC 7020 ft 

Well Length 822 ft 

ICD strength 0.0002 psi/(ft/day)^2 

Segment length 20 ft 

 

The model consists of one horizontal well and one injection well. Like the first case, the 

production well was divided into 25 segments and three main branches with 15 nodes. 

The injection was divided into 24 segments. The injection well was used for pressure 

maintenance and specifically in this study to demonstrate the existence of a strong water 

drive which results to higher water production rates. 

4.2.1. Base case II Results 

As in the first case, both the production and injection wells were divided into segments 

and it was run normally without ICD. The production rates are published in the table 

below. 
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Table 4.6b: Production rates and cumulative volumes for Case II without ICD (Simulated) 

YEAR 

 Oil rate 

(STB/D) 

Gas rate 

(MSCF/D) 

Water 

rate 

(STB/D) 

Cum. Oil 

(STB) 

Cum. 

Water 

(STB) 

GOR 

MSCF/STB 

0 0.52 0.53 649.48 0.52 649.48                1.01 

2 72.95 84.42 577.05 36871.42 528628.60 1.12 

4 95.88 109.87 554.12 89605.11 865894.90 1.14 

6 100.83 116.44 549.17 161148.5 1262352 1.15 

8 99.27 115.65 550.73 233381.9 1658118 1.17 

10 94.94 111.49 555.06 303337.8 2056162 1.18 

12 89.23 105.57 560.77 372339.8 2474660 1.19 

   12.32 88.31 104.84 561.69 382978.6 2542022 1.19 

 

From the table above, the well started producing at an oil rate of 0.52 STB/D and 

increased to 72.95 in the second year while water started at a higher rate of 649.48 

STB/D and increased to 577 STB/D. This was considered very high water production. 

Most of the water might have come from the injection well due to the effect of fingering 

because of viscosity and mobility differences. The water was able to cut through the oil 

into the producing liner. The oil rate reached a maximum of 100 STB/D in the sixth year 

and started to decrease in a stabilized manner until it reached a production rate of 88 

STB/D at the end of production. The water increased as the oil rate decreased leading to 

higher cumulative water production and higher water cut. The gas was also increasing as 

the oil was decreasing.  This means that there was gas in solution with the oil and the 

reservoir pressure had started to decline to below the bubble point pressure. The overall 
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performance of the well in terms of production rates can be observed in the proceeding 

figures 4.5a to 4.5c below. 

4.2.2. Results for Case II with ICD 

The segments with high water cut and suitable for ICD application were identified to be 

segments 5, 6, 7, 8, 13, and 14. Spiral ICD of 0.0002 psi/(ft/day)
2 

was applied and the 

results are given the table below. 

Table 4.6c: Production performance results for ICD Case II (Simulated) 

YEAR 

 
Oil Rate 
(STB/D) 

Gas Rate 
(MSCF/D) 

Water Rate 
(STB/DAY) 

Cum. Oil 

(STB) 

Cum. 

Water 

(STB) 

GOR 

(MSCF/STB) 

0 264.73 286.14 385.27 264.73 0.53 1.08 

2 338.46 380.41 311.54 319841.40 84.42 1.12 

4 276.79 317.37 373.21 503797.20 109.87 1.15 

6 201.67 235.74 448.33 675756.10 116.44 1.17 

8 153.41 182.05 496.59 800258.90 115.65 1.19 

10 131.58 158.11 518.42 901343.80 111.49 1.20 

12 113.61 137.91 536.39 993080.50 105.57 1.21 

       12.3 111.50 135.5047 538.50 1003179 1921821 1.22 

 

It can be observed from the above table that the production was improved. When using 

ICD, the well started producing at the rate 264.3 STB/D as opposed to 0.53 STB/D 

without ICD. Its maximum was at the second year (338 STB/D) and decreased in a 

stabilized manner until 111 STB/D as compared to 88 STB in the end of production. The 

cumulative oil produced increased from 382978.6 STB to 1003179 STB with ICD, a 

massive increase of 62%. The water production was also reduced from 649.48 STB/D in 
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the start of production without ICD to 286.14 STB/D with ICD. Total water produced at 

the end of production was also reduced. 

Notably, the gas rate was not improved by ICD as it increased, even though it was an 

insignificant increase. This may be a result of poor pressure maintenance by water 

injection. Since water injection was not the objective of this study, it is only provided to 

illustrate the pressure of strong water source and was not discussed here. 

When ICD was applied to all the segments, the oil production rate decreased badly and 

the water cut was reduced to minimum. That means more unwanted restriction was 

provided which subsequently lowered the recovery although water cut will be minimum. 

For this analysis, the ICD application in the selected segments was considered the 

optimum strategy for oil recovery with ICD. More comparative analysis and discussions 

were provided in the proceeding subsection below with graphical illustrations. 
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Figure 4.5a: Production rates for Case II with and without ICD

 Water production rate reduced, 
mostly at the early years of 
production 

 Gas rate increased 

 Oil rate increased 
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4.2.3. Comparison Between Base Case and ICD Case for Case Two 

Figure 4.5a above shows the production rates for Case II with and without ICD. It can 

clearly be seen that the improved to higher rates and the water rate was reduced to lesser 

than when we produced without ICD. The increment in the oil production rate was the 

result of even inflow redistribution at the wellbore vicinity by the additional restriction 

and pressure drop provided by the ICD. The restriction also resulted into reduced water 

production, although the gas production increased. The increment in gas production by 

the application of ICD provides evident that the gas in solution escapes faster with the 

additional pressure by ICD because the pressure maintenance strategy was not very 

successful. 

Figure 4.5b below shows the water cut and gas oil ratio for the Case II with and without 

ICD. It was illustrated graphically that the water cut was decreased into a very low value 

that made the application of ICD very successful here and desirable for application in the 

industry. The gas oil ratio increased but not very much. That means this was still 

considered insignificant increase and can be improved into a better desirable lower ratio. 

Figure 4.5c below illustrates the cumulative volumes of fluid produced for Case II with 

and without ICD. It was evident that the production with ICD was much better than that 

without ICD. The STOIP was given in figure 4.5d and demonstrated that ICD application 

was successful in this case. The OOIP was 7.49 MSTB and 1003179 STB was produced. 

Therefore, 13.57 % of the OOIP was produced with ICD. Without ICD, only 382978.6 

STB was recovered, resulting to only 5.11% recovery. In general, an incredible increase 

of 62.31% in oil production was achieved by the application of ICD. More comparisons 

are provided and illustrated for better understanding in a summarized way in table 4.6d 

below.
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Figure 4.5b: Annual Water cut and GOR for Case II with and without ICD 

 GOR same at beginning, but 

increased over time 

Large decrease in water cut by 

ICD 
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Figure 4.5c: Annual Cumulative fluid volumes produced for Case II with and without ICD 

 

 

23% decrease in cumulative water 

by ICD 

Oil recovery increased from 

5.1% to 13.2% 
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Figure 4.6d: Graph of OIIP vs. production years for Case II with and without ICD 
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Table 4.6d: Comparative analysis for Case II with and without ICD (Simulated) 

YEARS        Cum. Oil (STB)          Cum. Water (STB)          
GOR 
(MSCF/STB) 

 
 
Recovery (%) 

             Base Case ICD  Base case        ICD 
Base 
Case ICD 

Base 
case 

ICD 

1 

  
9272.612 140630.8 

  
244227.4 112869.2 1.01 1.08 1.104 1.878 

2 36871.42 319841.40 528628.60 84.42 1.12 1.12 
0.492 4.270 

4 89605.11 503797.20 865894.90 109.87 1.14 1.15 
1.196 6.726 

6 161148.5 675756.10 1262352.0 116.44 1.15 1.17 
2.152 9.022 

8 233381.9 800258.90 1658118.0 115.65 1.17 1.19 
3.116 10.684 

10 303337.8 901343.80 2056162 111.49 1.18 1.20 
4.050 12.034 

  12 372339.8 993080.50 2474660 105.57 1.19 1.21 
4.971 13.259 

 12.32 382978.6 1003179.00 2542022 1921821 1.19 1.22 
5.113 13.394 

 

This shows a massive increase in recovery. 13.39% was considered high as compared to 

5.11% without ICD. This was especially quite good for primary recovery and given the 

fact that ICDs are not as expensive as EOR methods. The application of ICD to Case II of 

this study was successful. This rhymed with the objectives of the study which were to 

reduce water/gas production and increasing oil recovery by even distribution of the 

inflow in the vicinity of the wellbore.   

In general, for the two cases presented above, there was increase in oil recovery as well 

as decrease in the unwanted fluid production (water and gas). This demonstrated that the 

application of ICD was having a positive impact on horizontal well performance when 

properly optimized. Choosing the segments to install the ICD was very crucial to obtain 

the best recovery strategy. As it was only simulation, it was important to do “try and 

error” in placing the ICDs to various segments and find the best segments that improves 

oil production as well as decrease water and gas production for an overall better recovery.



   
 

48 
 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Conclusions 

Horizontal wells are currently widely used in the oil and gas industry as a way of 

improving oil recovery due to high world demand for oil.  From the results, the basic idea 

for the application of ICD was witnessed. It was apparent that ICD can improve the flux 

efficiency of horizontal well as well as reducing the production of water and gas. From 

the two cases presented above, the objectives of this study have been achieved. It is worth 

noting that the use of simulation tools can enhance the optimization of horizontal wells 

by ICD modeling. The multi-segment well model in the ECLIPSE Black Oil simulator is 

very essential to ICD modeling. Table 5 presents a summary of the study in a conclusive 

manner with respect to the objectives. 

Table 5: Conclusive remarks 

Base Case (without ICD) Base Case (with ICD) 

Low oil recovery. High Oil recovery  

Unequal influx at the heel of the well 

depicted by low oil rates and high water 

production 

Equalized influx at the heel of the well 

resulting to higher oil recovery. 

Higher Water and gas production Reduced water and gas production 

 

5.2 Limitations 

There are some limitations in the study of ICD application as a student since there was no 

practical data provided. Usually, actual reservoir data are required to simulate the effect 

of ICD on horizontal well performance. Given the time and the current circumstance, 

partial data from literature have been used and other data were assumed to meet the 

objective of the study. 
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The ECLISPE Simulator was also challenging software which requires a lot of time and 

expertise and there is a need for proper training for the engineer for better simulation. 

5.3 Recommendations 

The use of actual reservoir data may enhance the study of ICD application and students 

interested in ICD study may need to get a proper knowledge of the simulator. 
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APPENDICES 

Appendix 1: Case One Model (without ICD) 

=================    

RUNSPEC 

TITLE  

3D - 3 Phase Model 

--        Number of cells 

--       NX      NY      NZ 

--       --      --      -- 

DIMENS    

 15        1       20/ 

 

-- Phases 

OIL 

WATER 

GAS 

DISGAS 

/ 

-- Units 

FIELD 

/ 

TABDIMS 

--#Sat tabs #pvt tabs  #Sat nodes 

#Pnodes  #FIP   NRPVT 

     1        1        15          15      2      

15  / 

EQLDIMS 

--Number of equilibration regions  

 2  / 

-- Maximum well/connection/group 
values 

--     #wells  #cons/w  #grps  

#wells/grp 

--     ------  -------  -----  ---------- 

WELLDIMS 

   2     25        3          1 / 

VFPPDIMS 

 6  3  3  3  1  1  / 

VFPIDIMS 

 6  3  2  / 

WSEGDIMS 

--#msw   #segments/well   #Branches 

    2       25              6  / 

-- Unified output files 

UNIFOUT 

 

NSTACK 

60/ 

-- Simulation start date 

START 

  1 Jan 2008 / 

==========================  

GRID 

EQUALS 

 'DX'     200  / 

 'DY'     100  / 

 'PERMX'  2000   / 

 'PERMZ'  20   / 

 'DZ'     20   / 

 'PORO'   0.2  / 

 'TOPS'   7000   1 15  1 1  1   1  / 

 'DZ'     200    1 15  1 1  15  15  / 

 'PORO'   0.0    1 15  1 1  15  15  / 

 / 

COPY 

  PERMX PERMY / 

 / 

RPTGRID 

  -- Report Levels for Grid Section 
Data 

 / 

-- Output file with geometry and 

rock properties (.INIT) 

INIT 

==========================  

PROPS 

-- Densities in lb/ft3 

--            Oil      Wat      Gas 

--            ---      ---      --- 

DENSITY 

      45        63.02       

0.0702 / 

-- PVT data for water 

--         P         Bw        Cw          Vis      

Viscosibility 

--       ----       ----      -----       -----     -

------------ 

PVTW 

        3000      1.00341   3.0D-6         
0.96         0.0 / 

-- Rock compressibility 

--         P           Cr 

--       ----        ----- 

ROCK     

         3000    4.0D-6   / 

PVDG 

 400  5.9   0.013 

 800  2.95  0.0135 
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1200  1.96  0.014 

1600  1.47  0.0145 

2000  1.18  0.015 

2400  0.98  0.0155 

2800  0.84  0.016 

3200  0.74  0.0165 

3600  0.65  0.017 

4000  0.59  0.0175 

4400  0.54  0.018 

4800  0.49  0.0185 

5200  0.45  0.019 

5600  0.42  0.0195 / 

PMAX 

 7000 / 

PVCO 

400  0.165   1.012    1.17   5.0E-5  1* 

800  0.335   1.0255   1.14     2* 

1200 0.500   1.038    1.11     2* 

1600 0.665   1.051    1.08     2* 

2000 0.828   1.063    1.06     2* 

2400 0.985   1.075    1.03     2* 

2800 1.130   1.087    1.00     2* 

3200 1.270   1.0985   0.98     2* 

3600 1.390   1.11     0.95     2* 

4000 1.500   1.12     0.94     2* 

4400 1.600   1.13     0.92     2* 

4800 1.676   1.14     0.91     2* 

5200 1.750   1.148    0.9      2* 

5600 1.810   1.155    0.89     2* 

/ 

-- Water, Gas and oil rel perms & 
capillary pressures 

SWFN 

-- Sw    Krw    Pcow 

  0.22   0.0    6.30 

  0.3    0.07   3.60 

  0.4    0.15   2.70 

  0.5    0.24   2.25 

  0.6    0.33   1.80 

  0.8    0.65   0.90 

  0.9    0.83   0.45 

  1.0    1.0    0.0    / 

SGFN 

-- Sg    Krg    Pcgo 

  0.0   0.0     0.0 

  0.04  0.0     0.2 

  0.1   0.022   0.5 

  0.2   0.1     1.0 

  0.3   0.24    1.5 

  0.4   0.34    2.0 

  0.5   0.42    2.5 

  0.6   0.5     3.0 

  0.7   0.8125  3.5 

  0.78  1.0     3.9    / 

SOF3 

-- So   Krow    Krog 

  0.0   0.0     0.0 

  0.2   0.0     0.0 

  0.38  1*      0.0 

  0.4   0.0048  1* 

  0.48  1*      0.02 

  0.5   0.0649  1* 

  0.58  1*      0.1 

  0.6   0.125   1* 

  0.68  1*      0.33 

  0.7   0.4     1* 

  0.74  1*      0.6 

  0.78  1.0     1.0   / 

--SWOF 

--  0.22  0     1.0     3.5 

--  0.3   0.07  0.4     2 

--  0.4   0.15  0.125   1.5 

--  0.5   0.24  0.0649  1.25  

SOLUTION 

-- Initial equilibration conditions 

--        Datum   Pi@datum    WOC    

Pc@WOC 

--        -----   --------   -----   ------ 

EQUIL       

  7020.00    2700.00 
7990.00  0.0000   7020.00  .00000    

0   0   5 / 

         7200.00    3700.00 7300.00   
.00000 7000.00   .00000    1   0   5 / 

 

RSVD       2 TABLES    3 NODES 

IN EACH           FIELD   12:00 17 

AUG 83 

   7000.0  1.0000 

   7990.0  1.0000 

/ 

   7000.0  1.0000 

   7400.0  1.0000 

/ 

RPTRST 

-- Restart File Output Control 

'BASIC=2' 'FLOWS' 'POT' 'PRES' / 

RPTSOL 

--  

-- Initialisation Print Output 

'PRES' 'SOIL' 'SWAT' 'SGAS' 'RS' 
'RESTART=1' 'FIP=2' 'EQUIL' 

'RSVD' / 

==========================  

SUMMARY 
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-- Field average pressure 

FPR 

-- Bottomhole pressure of all wells 

WBHP 

/ 

-- Field Oil Production Rate 

FOPR 

--Field gas production 

FGPR 

-- Field Water Production Rate 

FWPR 

-- Field Oil Production Total 

FOPT 

-- Field Water Production Total 

FWPT 

-- field Recovery factor  

FOE 

--Field Water cut 

FWCT 

--Field GOR 

FGOR 

-- Water cut in PROD 

WWCT 

PROD / 

WOPR/ 

FOIP 

SOFR 

 'PROD' 1 / 

 'PROD' 2 / 

 'PROD' 3 / 

 'PROD' 10 / 

 'PROD' 13 / 

 'PROD' 18 / 

 'PROD' 20 / 

 'PROD' 22 / 

 'PROD' 23 / 

 / 

 

SOFRF 

 'PROD' 1 / 

 'PROD' 2 / 

 'PROD' 3 / 

 'PROD' 10 / 

 'PROD' 13 / 

 'PROD' 18 / 

 'PROD' 20 / 

 'PROD' 22 / 

 'PROD' 23 / 

 / 

SOFRS 

 'PROD' 1 / 

 'PROD' 2 / 

 'PROD' 3 / 

 'PROD' 10 / 

 'PROD' 13 / 

 'PROD' 18 / 

 'PROD' 20 / 

 'PROD' 22 / 

 'PROD' 23 / 

 / 

SWFR 

 'PROD' 1 / 

 / 

SGFR 

 'PROD' 1 / 

 'PROD' 2 / 

 'PROD' 3 / 

 'PROD' 10 / 

 'PROD' 13 / 

 'PROD' 18 / 

 'PROD' 20 / 

 'PROD' 22 / 

 'PROD' 23 / 

 / 

SGFRF 

 'PROD' 1 / 

 'PROD' 2 / 

 'PROD' 3 / 

 'PROD' 10 / 

 'PROD' 13 / 

 'PROD' 18 / 

 'PROD' 20 / 

 'PROD' 22 / 

 'PROD' 23 / 

 / 

SGFR 

 'PROD' 1 / 

 'PROD' 2 / 

 'PROD' 3 / 

 'PROD' 10 / 

 'PROD' 13 / 

 'PROD' 18 / 

 'PROD' 20 / 

 'PROD' 22 / 

 'PROD' 23 / 

 / 

SWCT 

 'PROD' 1 / 

 'PROD' 3 / 
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 'PROD' 13 / 

 'PROD' 14 / 

 'PROD' 15 / 

 'PROD' 16 / 

 'PROD' 17 / 

 / 

SGOR 

 'PROD' 1 / 

 'PROD' 23 / 

 'PROD' 25 / 

 'PROD' 25 / 

 / 

SPR 

 'PROD' / 

 / 

SPRDH 

 'PROD' 2 / 

 'PROD' 3 / 

 / 

SPRDF 

 'PROD' / 

/ 

 

SWFR 

 'WINJ' 1 / 

 'WINJ' 4 / 

 'WINJ' 5 / 

 / 

SWCT 

 'WINJ' 4 / 

 / 

SGOR 

 'WINJ' 4 / 

 / 

SPR 

 'WINJ' / 

 / 

SPRDH 

 'WINJ' 2 / 

 'WINJ' 3 / 

 / 

 

SPRDF 

 'WINJ' / 

 / 

RUNSUM 

-- CPU usage 

TCPU 

-- Create Excel readable Run 
Summary file (.RSM) 

EXCEL 

==========================  

SCHEDULE 

DEBUG 

   1 3   / 

DRSDT 

   1.0E20  / 

RPTSCHED 

  'PRES'  'SWAT'  'SGAS'  

'RESTART=1'  'RS'  'WELLS=2'  

'SUMMARY=2' 

  'CPU=2' 'WELSPECS'   

'NEWTON=2' / 

NOECHO 

--PRODUCTION WELL VFP 

TABLE   1 

VFPPROD 

 

   1     7.0000E+03   'LIQ'    'WCT'    

'GOR'  'thp'  'iglr' 'field' / 

   2.00000E+00  6.00000E+02  

1.40000E+03  2.00000E+03 

   4.00000E+03  6.00000E+03 

 / 

   2.00000E+02  5.00000E+02  
1.00000E+03 

 / 

    .00000E+00  4.00000E-01  

8.00000E-01 

 / 

   1.00000E+00  2.00000E+00  

4.00000E+00 

 / 

    .00000E+00 

 / 

   1   1   1   1   1.97594E+03  

1.37517E+03  7.75232E+02  

7.31301E+02 

                   8.63600E+02  
1.07507E+03 

                 / 

   2   1   1   1   2.24076E+03  

2.05768E+03  2.00844E+03  

1.95077E+03 

                   1.91803E+03  
1.99808E+03 

                 / 

   3   1   1   1   2.71295E+03  

2.70532E+03  2.71278E+03  

2.72263E+03 

                   2.78084E+03  
2.87541E+03 

                 / 

 

   1   2   1   1   2.34711E+03  

1.96200E+03  1.80998E+03  

1.63946E+03 

                   1.53864E+03  
1.65905E+03 

                 / 

   2   2   1   1   2.61779E+03  

2.49181E+03  2.45750E+03  

2.45608E+03 
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                   2.49589E+03  

2.53344E+03 

                 / 

   3   2   1   1   3.09452E+03  
3.09009E+03  3.09663E+03  

3.10603E+03 

                   3.15875E+03  

3.24354E+03 

                 / 

   1   3   1   1   2.85373E+03  
2.68696E+03  2.63428E+03  

2.62542E+03 

                   2.66829E+03  

2.70294E+03 

                 / 

   2   3   1   1   3.14219E+03  

3.09125E+03  3.08104E+03  

3.08301E+03 

                   3.12402E+03  
3.20092E+03 

                 / 

   3   3   1   1   3.63367E+03  

3.63377E+03  3.64044E+03  

3.64886E+03 

                   3.69552E+03  

3.76936E+03 

                 / 

   1   1   2   1   1.90703E+03  

4.23900E+02  4.91041E+02  

5.61854E+02 

                   8.41860E+02  
1.14254E+03 

                 / 

   2   1   2   1   2.13732E+03  

1.51748E+03  1.10210E+03  

1.13989E+03 

                   1.31168E+03  

1.53169E+03 

                 / 

   3   1   2   1   2.52712E+03  

2.36101E+03  2.32094E+03  

2.26533E+03 

                   2.32880E+03  
2.47300E+03 

                 / 

   1   2   2   1   2.24180E+03  

1.37824E+03  7.45545E+02  
7.21454E+02 

                   9.51216E+02  

1.21802E+03 

                 / 

   2   2   2   1   2.47044E+03  

2.06424E+03  1.91696E+03  
1.78107E+03 

                   1.76738E+03  

1.92943E+03 

                 / 

   3   2   2   1   2.87369E+03  

2.74718E+03  2.72192E+03  

2.72627E+03 

                   2.78577E+03  

2.89035E+03 

                 / 

   1   3   2   1   2.75731E+03  
2.35384E+03  2.23030E+03  

2.18779E+03 

                   2.01332E+03  

2.05525E+03 

                 / 

   2   3   2   1   3.02294E+03  

2.83361E+03  2.77281E+03  

2.76184E+03 

                   2.80340E+03  

2.86235E+03 

                 / 

   3   3   2   1   3.47670E+03  
3.41854E+03  3.40882E+03  

3.41186E+03 

                   3.45913E+03  

3.54604E+03 

                 / 

   1   1   3   1   1.87259E+03  

3.91529E+02  5.70235E+02  

7.19731E+02 

                   1.21992E+03  

1.71171E+03 

                 / 

   2   1   3   1   2.11457E+03  
8.41615E+02  9.39654E+02  

1.03956E+03 

                   1.43521E+03  

1.86682E+03 

                 / 

   3   1   3   1   2.50409E+03  
1.83217E+03  1.79926E+03  

1.85238E+03 

                   2.09347E+03  

2.40294E+03 

                 / 

   1   2   3   1   2.22684E+03  
5.02107E+02  5.73039E+02  

6.81812E+02 

                   1.06856E+03  

1.47815E+03 

                 / 

   2   2   3   1   2.45705E+03  

1.54829E+03  1.10263E+03  

1.17176E+03 

                   1.46382E+03  
1.80211E+03 

                 / 

   3   2   3   1   2.83378E+03  

2.42600E+03  2.30007E+03  

2.22995E+03 

                   2.38437E+03  

2.65017E+03 

                 / 

 

   1   3   3   1   2.73870E+03  

1.91960E+03  1.48679E+03  

1.24203E+03 

                   1.23967E+03  
1.44955E+03 

                 / 

   2   3   3   1   2.98935E+03  

2.50931E+03  2.37089E+03  

2.32059E+03 

                   2.18865E+03  
2.28214E+03 

                 / 

   3   3   3   1   3.40018E+03  

3.17167E+03  3.10777E+03  

3.09743E+03 

                   3.14591E+03  
3.22270E+03 
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                 / 

 

--INJECTION WELL VFP TABLE   

1 

VFPINJ 

  1     7.0000E+03   'WAT'   / 

  2.00000E+00  6.00000E+02  
1.40000E+03  2.00000E+03 

  4.00000E+03  6.00000E+03 

/ 

  5.00000E+02 

/ 

   1  3.49209E+03  3.48640E+03  

3.46590E+03  3.44178E+03 

      3.30981E+03  3.10032E+03 

    / 

--INJECTION WELL VFP TABLE   
2 

VFPINJ 

  2     6.90000E+03   'GAS'   / 

  1.00000E+00  3.00000E+02  

7.00000E+02  1.00000E+03 

  2.00000E+03  3.00000E+03 

/ 

  1.00000E+03  2.00000E+03  

3.00000E+03 

/ 

   1  1.31963E+03  1.31781E+03  
1.31049E+03  1.30133E+03 

      1.24694E+03  1.15029E+03 

    / 

   2  2.73750E+03  2.73671E+03  

2.73365E+03  2.72991E+03 

      2.70847E+03  2.67303E+03 

    / 

   3  3.92693E+03  3.92631E+03  

3.92396E+03  3.92110E+03 

      3.90493E+03  3.87853E+03 

    / 

ECHO 

 

-- Location of wellhead and pressure 

gauge 

--      Well  Well   Location   BHP    
Pref. 

--      name  group   I    J   datum   

phase 

--     -----  ----    -    -   -----   ----- 

WELSPECS  

        PROD   G1     1    1   7030     

OIL    0.0  STD  STOP  YES 0 AVG 
0 /  

        WINJ   G2     15   1   7030     

WAT    0.0  STD  STOP  YES 0 
AVG 0 /  

/ 

-- Completion interval 

--      Well   Location  Interval  Status      

Well 

--      name    I    J    K1  K2   O or S       

ID 

--      ----    -    -    --  --   ------     ------ 

COMPDAT 

 'PROD' 1  1 2 2   3*  0.2   3*  'X' / 

 'PROD' 2  1 2 2   3*  0.2   3*  'X' / 

 'PROD' 3  1 2 2   3*  0.2   3*  'X' / 

 'PROD' 4  1 2 2   3*  0.2   3*  'X' / 

 'PROD' 5  1 2 2   3*  0.2   3*  'X' / 

 'PROD' 1  1 5 5   3*  0.2   3*  'X' / 

 'PROD' 2  1 5 5   3*  0.2   3*  'X' / 

 'PROD' 3  1 5 5   3*  0.2   3*  'X' / 

 'PROD' 4  1 5 5   3*  0.2   3*  'X' / 

 'PROD' 5  1 5 5   3*  0.2   3*  'X' / 

 

 'PROD' 1  1 10 10   3*  0.2   3*  'X' / 

 'PROD' 2  1 10 10   3*  0.2   3*  'X' / 

 'PROD' 3  1 10 10   3*  0.2   3*  'X' / 

 'PROD' 4  1 10 10   3*  0.2   3*  'X' / 

 'PROD' 5  1 10 10   3*  0.2   3*  'X' / 

 'WINJ' 15  1 2 2   3*  0.2   3*  'X' / 

 'WINJ' 14  1 2 2   3*  0.2   3*  'X' / 

 'WINJ' 13  1 2 2   3*  0.2   3*  'X' / 

 'WINJ' 12  1 2 2   3*  0.2   3*  'X' / 

 'WINJ' 11  1 2 2   3*  0.2   3*  'X' / 

 'WINJ' 15  1  20  20   3*  0.2   3*  

'X' / 

 'WINJ' 14  1  20  20   3*  0.2   3*  
'X' / 

 'WINJ' 13  1  20  20   3*  0.2   3*  

'X' / 

 'WINJ' 12  1  20  20   3*  0.2   3*  
'X' / 

 'WINJ' 11  1  20  20   3*  0.2   3*  

'X' / 

/ 

WELSEGS 

 

-- Name    Dep 1   Tlen 1  Vol 1 

  'PROD'   7010      20    0.31   'INC' / 

-- First   Last   Branch   Outlet  

Length   Depth  Diam   Ruff   Area  
Vol 

-- Seg     Seg    Num      Seg              

Chang 

-- Main Stem 

    2       12     1        1         20     20   

0.375   1.E-3  1*   1* / 

-- Top Branch 

    13      13     2        2         50     0    
0.375   1.E-3  1*   1* / 

    14      17     2        13        100    0    

0.375   1.E-3  1*   1* / 

-- Bottom Branch 

    18      18     3        9         50     0    

0.375   1.E-3  1*   1* / 
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    19      22     3        18        100    0    

0.375   1.E-3  1*   1* / 

    23      23     4        12        50     0    
0.375  1.E-3  1*   1* / 

    24      25     4        23        100    0    

0.375   1.E-3  1*   1* / 

 / 

COMPSEGS 

-- Name 

  'PROD' / 

-- I  J  K  Brn  Start   End     Dirn   

End 

--          No   Length  Length  Penet  
Range 

-- Top Branch 

   1  1  2  2      30      1*     'X'    10  / 

-- Middle Branch 

   1  1  5  3      170     1*     'X'    10  / 

-- Bottom Branch 

   1  1  10  4     230     1*     'X'    10  / 

 / 

WELSEGS 

-- Name    Dep 1   Tlen 1  Vol 1 

  'WINJ'   7010      20    0.31   'INC' / 

-- First   Last   Branch   Outlet  

Length   Depth  Diam  Ruff  Area  
Vol 

-- Seg     Seg    Num      Seg              

Chang 

-- Main Stem 

    2       14     1        1         20     20   

0.375   1.E-3  1*   1* / 

-- Top Branch 

    15      15     2        2        50     0    

0.375   1.E-3  1*   1* / 

    16      19     2        15       100     0    
0.375   1.E-3  1*   1* / 

-- Bottom Branch 

    20      20     3        14       50     0    

0.375   1.E-3  1*   1* / 

    21      24     3        20       100     0    

0.375   1.E-3  1*   1* / 

 / 

COMPSEGS 

-- Name 

  'WINJ' / 

-- I  J  K  Brn  Start   End     Dirn   

End 

--          No   Length  Length  Penet  

Range 

-- Top Branch 

   15  1  2  2       30     1*     'X'    8  / 

-- Bottom Branch 

   15  1  20 3       270    1*     'X'    8  / 

 / 

WSEGITER 

--MXSIT  NR    FR   FI 

   70  100    0.8  10/ 

 

WEFAC 

 '*'  1.0  / 

 / 

-- Production control 

--  Well  Status  Control    Oil   Wat   
Gas    Liq  Resv   BHP 

--  name           mode     rate  rate  

rate   rate  rate  limit 

--  ----  ------  ------    ----  ----  ----   --
--  ----  ----- 

WCONPROD   

   'PROD' 'OPEN'   'LRAT'   3* 650   

1*    1000 0.0   1/ 

/ 

WCONINJE 

  'WINJ'  'WAT'    'OPEN'    'RESV'   

1*  2000   3500  1*   1 / 

/ 

WVFPEXP 

 '*' 'EXP' / 

 / 

TUNING 

 / 

 / 

 30 40 50   20   30 / 

NUPCOL 

100/ 

DEBUG 

6* 1/ 

-- Number and size (days) of 

timesteps 

TSTEP 

150*30 

-- 2  18  80  100  2*500 

/ 

END 

 

 


