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ABSTRACT 

 

Nutrient compounds are becoming increasingly significant in wastewater management, since 

their concentrations are observed to be escalating in the past few years. This condition is mostly 

due to the human activities, from the production and use of nitrogen fertilizers to the burning of 

fossil fuels in automobiles, power generation plants, and industries. Concern over this matter, 

the Department of Environment (DOE) Malaysia had significantly reduced the discharge limit 

for nitrogenous compound such as ammonia-nitrogen and nitrate through amendment of 

Environmental Quality (Sewage) Regulation 2009. Thus, the purpose of this study is to produce 

a new integrated wastewater treatment system that can help in meticulously remove nitrogen 

and produce high quality effluent. To achieve this, an integrated reactor consists of two - (2) 

aeration tanks, one - (1) anoxic tank and one - (1) clarifier was designed. This reactor, which is 

known as Compact Extended Aeration Reactor (CEAR) was operated under SRT of 40 days and 

was filled with approximately 330 litres of wastewater. During operation of the reactor, 

synthetic wastewater made from dilution of finely grinded dogs‟ food was used to imitate 

medium strength domestic wastewater, thus creating more consistent organic loading. Sludge 

from UTP sewage treatment plant was also added inside the reactor as the source of biomass 

and total of 48 litres/day recycle rate was imposed on the reactor. After acclimatization period 

over, it is found out that the effluent discharge of ammonia-nitrogen and nitrate become 

consistent at 0.5 mg/L and 0.3 mg/L, respectively. This result is true for both incoming flowrate 

of 8 mg/L and 10 mg/L. 
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CHAPTER 1 

1.0  INTRODUCTION 

 

 

1.1 Project Background 

 

Numerous wastewater treatment systems have been developed over the last 30 years to 

ensure safe effluent discharge to the water bodies. Most of these systems are the 

modifications of the existing activated-sludge processes that had evolved progressively 

over time. The activated sludge process is by far is the most common treatment system 

used to remove organic pollutant from wastewater since it is very cost-effective, 

flexible (can be adapted to any kind of wastewater), reliable, and poses high capability 

in producing high quality effluent (Mulas M., 2006). 

  Since its development in the early 20
th

 century, the activated-sludge process had 

undergone and continues to experience many changes in its operational features and 

design to improve both its efficiency and flexibility (Seviour, 2010). Despite its 

reputable features mentioned earlier, most activated-sludge processes still suffer from 

few operational problems since its inception. Problem associated with the activated-

sludge process can usually be related to four – (4) conditions (Schuyler, 1995); which 

are foam, high effluent suspended solids, high concentration of soluble materials, and 

low effluent pH. However, these problems will not necessarily develop inside every 

activated-sludge process, in fact, with proper operation and careful consideration such 

problems can definitely be obviate. 

According to Indah Water Konsortium (IWK) website, there are currently over 

5,834 operating wastewater treatment plant throughout Malaysia where different 

conventional activated-sludge processes are implemented. Regardless of the various 

existing process of activated-sludge system, it still seems that they were not able to 

produce low effluent discharge. These treatment systems are only efficient in removal 
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of biological oxygen demand (BOD) and total suspended solids (TSS), but provide less 

than optimal removal of nitrogen (10-30%)(WSDOH, 2005). This condition is due to 

nitrification being inhibited due to insufficient solids retention time and sludge age of 

biomass (S.R.M Kutty, M.H. Isa, L.C Leong, 2011).  

Nitrogen is present in wastewater in several forms, the important ones being 

organic nitrogen (both soluble and particulate), ammonia, and nitrate        

(A.V.Hanndel, 2007). The removal of nitrogen from wastewater using an onsite 

wastewater treatment system involves natural biological processes namely, 

ammonification, nitrification, and denitrification. These processes will change the many 

forms of the nitrogenous matter into nitrogen gas (N2), which is the most stable and safe 

form of nitrogen. A variety of proprietary technologies have been developed for the 

purpose of enhancing these natural processes. However, none of them had been 

demonstrated to provide a simple, effective, and consistently reproducible effluent 

(WSDOH, 2005). As a result, an increasing effort had been put in managing nitrogen 

removal from wastewater by many environmental bodies. 

 

1.2 Problem Statement 

 

In the promotion of environmentally sound and sustainable development, the 

Department of Environment (DOE) Malaysia has revised the discharge standard of all 

wastewater effluent parameters among other re-establishment of environmental 

consideration. As a result, the Environmental Quality Regulations 2009 is implemented 

and the discharge limits for most parameters are significantly reduced. Among 

parameters that are affected are ammonia-nitrogen (NH4-N) and nitrate (NO3) which 

has been reduced to 10 mg/L and 20 mg/L, respectively. The exact same values had 

been imposed to all wastewater treatment plant all over Malaysia until this day. The 

significant reduction for both parameters called the need for better wastewater treatment 

system that is efficient in performing nitrification and denitrification processes.  
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The needs to produce better treatment process also arise as the population 

increase rapidly; placing pressure on the environment and threatening water supplies. It 

was then recognized that the problem of human waste needed to be tackled. The 

developments of wastewater treatment plant has evolved fleetly in urban centers and 

cities, whereas simpler systems is still been used to serve small communities. However, 

the ever-increasing environment standard and population growth will eventually cause 

these areas to install better treatment systems as well in the future.  

Although many wastewater treatment systems today are capable in handling 

municipal wastewater, but the reasons stated above have prove that there are always 

constant needs for better system. Even the most ideal system will collapse after certain 

duration if proper maintenance is absence and equipments starts to wear off. That is the 

reason why it is so important to continue improvising the existing activated-sludge 

process and take responsibility on the waste we produce, instead of putting heavy 

burden on the lakes and rivers 

Thus, this research will focus on demonstrating an understanding of activated 

sludge process which will be reflected on a modified reactor. Various experiments will 

be conducted to measure its overall performance in treating wastewater. It is hope that 

the modified reactor will performed well and can eventually benefit the environmental 

and wastewater treatment industry.  

 

1.3 Objectives of Study 

 

The primary objective of this study is to produce a reliable integrated wastewater 

treatment system by incorporating two – (2) aeration tank, an anoxic tank, and a 

clarifier; that can comply with the latest DOE discharge limit on both organic matter 

and nitrogen compound. 
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1.4 Scope of Study 

 

This research is an extended study over two semesters in fulfilling the requirement of 

Final Year Project I and II courses prior graduating. The project‟s aims for FYP I course 

are to produce a literature review on the subject, to design a well-functioning tank, to 

fabricate the designated tank using clear fiber glass material, produce synthetic 

wastewater made from dog‟s food, and to perform preliminary experiments to test the 

functionality of the tank by measuring the rate of degradation of ammonia nitrogen 

(NH4-N) and nitrate (NO3). 

Post-FYP I demands data analysis to be conducted within FYP II. More detailed 

experiments were carried out throughout FYP II period. Among the experiments for 

FYP II are optimum Return Activated Sludge (RAS), optimum Solid Retention Time 

(SRT), optimum incoming flow rate, and optimum oxygen diffusion rate. All of these 

parameters were identified by monitoring the reactors‟ success in removing organic 

matter and nitrogen. 

In order to design the best integrated wastewater treatment system, this research 

concentrates on studies of organic oxidation process, aerobic digestion process, 

nitrification and denitrification processes, sedimentation and decanting processes. This 

is to ensure that this system was design in such way that BOD and nitrogen compound 

could be removed according to DOE current effluent guidelines. 

Research on synthetic wastewater was also conducted to imitate the typical 

medium strength wastewater composition. Various concentration of dogs‟ food were 

diluted into one liters of tap water and the concentration that were able to produce the 

most similar composition is adapted in the experiment. 

The scope of this research also include the best sampling and testing method for 

ammonia nitrogen (NH4-N) and nitrate (NO3). The fifth edition of the Water Analysis 

Handbook by Hach was used as the comprehensive sources to determine the exact 

procedure that handling method that must be carried out.  
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1.5 Relevancy of the Project 

 

This research pays attention to the human health factor and deterioration of waterways 

due to discharge of bad quality effluent from wastewater treatment plant. According to 

Florida Rural Water Association (FRWA), nitrogen, in its various forms, can deplete 

dissolved oxygen in receiving wasters, stimulating aquatic plant growth, exhibit toxicity 

towards aquatic life, present a public health hazard, and affect the suitability of 

wastewater for reuse purposes. Wastewater effluents containing nutrients such as 

nitrogen can also cause eutrophication, the excessive growth of plant and algae bloom 

in lakes and rivers. 

Nitrogen in the forms of ammonia can cause acute toxicity to several species of 

fish (WSDOH, 2005). Many mechanical sewage treatment plants in Malaysia had been 

required by the government to nitrify their effluent in order to avoid ammonia toxicity 

in the receiving waters. As for nitrogen in the forms of nitrate; the primary contaminant 

in drinking water, can cause a human health condition known as baby blue syndrome. 

This is due to the conversion of nitrite by nitrate reducing bacteria in the gastrointestinal 

tract. Ammonia toxicity, in particular, is not a significant issue because of the relatively 

low volumes and concentrations that would be released from sewage treatment plant.  

To counter all of these issues, the roots cause need to be identified and action to 

should be taken. In this case, the root cause begins at the feckless wastewater treatment 

system which produces effluent with high BOD and nutrients contents. The problem 

can be rectify by taking one foreseeable measures, which is to design a new and 

validated wastewater treatment system that is highly reliable. 
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CHAPTER 2 

2.0  LITERATURE REVIEW 

 

 

2.1 Description of Activated Sludge Process 

 

The evolution of wastewater treatment system was at its peak when a process known as 

activated sludge was observed and quickly became the accepted system for treating both 

municipal and industrial wastewater.  The activated sludge process was discovered in 

1913 in the United Kingdom (UK) by two engineers, Edward Ardern and W.T. Lockett 

(Beychok, 1967), who were conducting research for the Manchester Corporation Rivers 

Department at Davyhulme Sewage Work.  

Even so, only after decades later, a number of general studies were carried out to 

determine if activated sludge was basically a biological process or a physical-chemical 

process with the assistance of microorganism. These intense studies are the result from 

the loss of thousands lives in European cities during the 19
th

 century; where it was later 

discovered that the bacteria from river Elbe are the caused for the illness, and all the 

victims had been supplied with drinking water coming directly from it without any 

filtration. Only in 1960s that they realize that wastewater must be treated biologically 

before being discharged into surface water (Wiesmann, 2007). Soon after the discovery, 

various studies on activated sludge were conducted and different types of treatment 

systems are invented to protect human race from possibility of deadly diseases. 

Today, the activated sludge process is the most commonly used system for the 

treatment of municipal wastewater, and is probably the most versatile and effective of 

all wastewater treatment processes (Gerardi, 2002). The National Small Flows 

Clearinghouse, a West Virginia University (WVU) Research Corporation defines 

activated sludge as the sludge particles that produced in wastewater by the growth of 

organism in the aeration tanks. The term „activated‟ comes from the fact that the 

particles teem with bacteria, fungi, and protozoa; that can feed on the incoming 
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wastewater. The activated sludge process is widely used by large cities and 

communities where large volumes of wastewater must be highly treated economically, 

because this process is capable of producing a high quality effluent for a reasonable 

amount of cost. Other widely known advantages of this process are the low cost 

construction and the relatively small land requirement.  

 

Figure 1: Illustration of a Typical Activated Sludge Process 

Adapted from National Small Flows Clearinghouse, WVU Research Corporation 

Figure 1 above shows the basic activated sludge process which consists of several 

interrelated components, namely; aeration tank – where the biological reaction occurs, 

aeration source – to provide oxygen and mixing, clarifier tank – where the solids settle 

and are separated from treated wastewater, and the means of collecting the solids, either 

Return Activated Sludge (RAS) – to return solids to the aeration tank, or Waste 

Activated Sludge (WAS) – to remove excessive solid from the process.  

During the activated sludge process, the aerobic bacteria thrive as they travel 

through the aeration tank. They will multiply rapidly with enough food and oxygen; and 

by the time the waste reaches the end of the tank, the bacteria have used most of the 

organic matter to produce new cells. The organisms will then settle to the bottom of the 

clarifier tank, separating from the clearer water, while the sludge is pumped back to the 

aeration tank where it is mixed with the incoming wastewater or removed from the 

system as excess, a process called wasting. The relatively clear liquid above the sludge 

is sent on for further treatment as required (National Small Flows Clearinghouse, 2003). 
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2.2 Types of Activated Sludge Process  

 

Many of the early plants including the original design were fill and draw, and semi-

continuous system (Ardern and Lockett, 1941; Seviour, 2010), which is now becoming 

popular again as sequencing batch reactor (SBR) systems. These two are the basic main 

type of activated sludge processes and they can be differentiated on the basis of their 

mixing regimes, being referred to as either plug flow or completely mixed system.  

The following discussion will be on the existing type of activated sludge system 

which will be used in the design and focused mainly on the advantages and 

disadvantages of each system; so that clear understanding can be attain on the area of 

improvement in the future design.  

 

2.2.1 Completely Mixed System 

 

A completely mixed reactor has uniform characteristics throughout the content of entire 

reactor (Vesilind, 2003). Based on the configuration in Figure 3, the incoming flow will 

be distributed throughout the tank and mixed rapidly with the biomass. This means that 

the operating characteristics of Mixed Liquor Suspended Solid (MLSS), respiration rate, 

and soluble Biological Oxygen Demand (BOD) are uniform throughout; unlike plug 

flow system. This characteristic is cited as the primary reason why the completely 

mixed process can handle surges in organic loading and toxic shocks to a limited extend 

without producing a change in effluent quality (Vesilind, 2003), although slightly 

increasing chances of short circuiting of bulk liquid (Seviour, 2010). To add up, it can 

also produce good nitrification since Chemical Oxygen Demand (COD) is uniformly 

low. 

Comparing to plug slow system, this system had been rejected by certain 

engineers because it can stimulate the growth of filamentous bacteria which will 

eventually result in poor settling characteristics; which are caused by low food 
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concentration and low or variable DO levels. However, such problem can be obviated 

with proper design consideration and excellent maintenance. Apart from that, 

completely mixed system has another downside; where organic overloading and under-

aeration will restrict nitrification (Gray, 1990). Based on Seviour, 2010, this problem 

can be alleviated by incorporating several tanks in series, to produce what is really a 

„pseudo plug flow‟ generating a better settling sludge, and avoiding any possibility of 

eventual denitrification and N2 gas evolution in the clarifiers. Figure 2 below shows the 

typical completely mix process. 

 

 
Figure 2: Typical Completely Mix Process 

 

2.2.2 Plug Flow 

a) Conventional Plug Flow 

 

The activated sludge process in typical plug flow system can be seen in Figure 3.1. 

Settled wastewater and Return Activated Sludge (RAS) enter the front end of the 

aeration tank and are mixed by diffused air or mechanical aeration. Based on Wanner 

(1994) in his book “Activated Sludge Bulking and Foaming Control”, the 

implementation of plug flow is based on the thought to encourage less filamentous 

bacterial growth, and hence produce better settling sludge than completely mixed 

system. 
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Figure 3.1: General Features of a Plug Flow Process. 

Adapted from Seviour, Microbial Ecology of Activated Sludge (2010) 

 

b) Tapered Aeration 

 

Regardless the magnificent advantage it poses, plug flow has its own downside where 

such plants often operate inefficiently from uneven load distribution along the reactors 

(Seviour, 2010). This condition cause high O2 demand at the inlet, thus reducing the 

dissolved oxygen (DO) level near to zero. However, modification had been made to the 

plug flow system to overcome the imbalances of O2 demand by introducing tapered 

aeration system, that will attempts to supply air to match the oxygen demand along the 

length of the tank. Figure 3.2 illustrates the arrangement of the tapered aeration system, 

which attempted to distribute the O2 according to biomass requirement.  

 
Figure 3.2: Plug Flow Activated Sludge System with Tapered Aeration. 

Adapted from Seviour, Microbial Ecology of Activated Sludge (2010) 

 

\ 
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c) Step Aeration 

 

Following the advancement of tapered aeration in plug flow system, it has been found 

out that possibility of biomass to settle in plug flow process will increased in the area 

with low velocity input. Step aeration was thus introduces at several points along the 

tank length which is capable in producing more uniform oxygen demand throughout. It 

is achieved by dividing air supply into two portions and supplying the larger to the inlet 

half of the plant (Seviour, 2010).  This condition allow the system to produce a lesser 

effluent quality, in terms of BOD and TSS concentration. Refer to Figure 3.3 below for 

the illustration of plug flow activated sludge system with step aeration.  

 
Figure 3.3: Plug Flow Activated Sludge System with Step Aeration. 

Adapted from Seviour, Microbial Ecology of Activated Sludge (2010) 

 

d) Step Feed Aeration 

 

Step feed is a modification of the conventional plug-flow process in which the settled 

wastewater is introduced at 3 to 4 feed points in the aeration tank to equalize the F/M 

ratio, thus lowering peak oxygen demand (Metcalf & Eddy, 2004). The main objective 

of step feed is to has the same effect of tapered aeration by introducing raw feed at 

several points along the length of the plug flow system. The graphic can be seen in 

Figure 3.4. Based on C. Y. Shi, this design may also provide increased operational 

flexibility. Note that in plug flow system, complete nitrification and high reactivation of 

the sludge is guaranteed in long hydraulic retention time. 
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Figure 3.4: Plug Flow Activated Sludge System with Step Feed 

Adapted from Seviour, Microbial Ecology of Activated Sludge (2010) 

 

e) Contact Stabilization  

 

Contact stabilization has been heralded as a method of reducing aeration-tank volume 

requirements with little or no loss in treatment efficiency (Dague et al., 1972). Based on 

Gujer and Jenkins (1975), the real aim is to achieve a more rapid adsorption of solids 

onto the flocs, by allowing contact between the incoming waste and RAS in a small 

aerobic tank (known as contact tank) for up to one hour. In order to complete the 

biological oxidation process (removal of BOD), the recycled activated sludge (RAS) is 

aerated for 3 to 8 hours in a „stabilization tank‟.  

As a result, improved removal of particulate and readily biodegradable organic 

substrates is claimed, but not removal of the slowly degraded particulate matter (Gray, 

1990), which include ammonia removal. Another clear advantage coming from contact 

stabilization process is reduced aeration requirement with short contact tank residence 

time. Refer to Figure 4 for overall arrangement configuration. Although the 

configuration is slightly less efficient than the conventional activated sludge process, it 

is more stable when subjected to large variations in flow or BOD loading. 

The contact stabilization process is the best candidate for treating wastewater with 

very low soluble organic concentration and high insoluble organic materials (Schroeder, 

1977). Part of the system is physical or absorption and therefore is less temperature 

sensitive and requires less aeration volume then the biooxidation process (Niku and 

Schroeder, 1981). 
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Figure 4: Configuration of Contact Stabilization Process 

 

f) Multistage/Two-Sludge Treatment System  

 

The multistage/two-sludge process is a two stage system using high-rate activated 

sludge fro BOD removal for BOD removal followed by second stage for nitrification, 

which is operated at a longer SRT (Metcalf & Eddy, 2004). A portion of wastewater 

influent may be bypassed around the first stage to provide BOD and suspended solids 

for the nitrification process and also to promote flocculation and solids removal in 

secondary clarification.  

 

The need for multistage treatment process depends on the ability of the biomass 

to adapt to toxic or inhibitory influent material, which may affect nitrification (Seviour, 

2010). If a well nitrified effluent is needed, elimination of harmful or toxic elements 

maybe achieved by an adapted sludge in the first level of treatment, which will treats 

the influent partially. The treatment will only be completed when it undergo the second 

level of treatment, where the product of first stage treatment is nitrifies. Refer to Figure 

5 for the configuration of multistage/two-sludge treatment system. 
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Figure 5: Configuration of Multistage/Two-Sludge Treatment System 

Adapted from Seviour, Microbial Ecology of Activated Sludge (2010) 

 

This system produce very high quality effluent but the expense of installing and 

maintaining the treatment system must also be taken into consideration; since it 

involved two major processes. Note that this process can either be the combination of 

different or similar completely mix processes or plug flow processes. 

 

2.2.3 Extended Aeration 

a) Conventional Extended Aeration 

 

Extended aeration is a process that operates with low loadings and high Suspended 

Solid (SS) levels, and long aeration periods and sludge ages (Wanner, 1994). These 

conditions allow complete oxidation and improved stabilization of sludge (Seviour, 

2010). As a result, this process can consistently produce high quality effluent. That is 

the reason why it is the preferred choice and it is projected to have significant amount of 

extended aeration plant in the future.    

Extended aeration process is one example of completely mix process with high 

solids retention time, which allow endogenous respiration process to occurs the system; 

hence reducing the cost of sludge handling. That is why the aeration tank for an 

extended aeration process must be larger than that for a conventional activated sludge 

process (also a completely mix process), in order to give detention time of about 24 

hours instead of 6 to 8 hours used for conventional activated sludge (Bengston, 2011). 

This process is typically used in prefabricated “package plants” which intended to 

minimize design costs for sludge disposal from small communities, tourist facilities, 

and school. Refer to Figure 6 for the illustration of extended aeration process. 
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Figure 6: Flow of Extended Aeration Process 

Adapted from Journal by Bengtson H. (2011) 

 

b) Oxidation Ditch 

 

Oxidation ditch is mechanical secondary treatment systems which are tolerant of 

variations in hydraulic and organic loads (Indah Water, 1994). In a classical oxidation 

ditch system, wastewater and mixed liquor are pumped around an oval pathway 

(racetrack) by brushes, rotors, or other mechanical aeration devices and pumping 

equipment located at one or more points along the flow circuit (Vesilind, 2003). Similar 

to extended aeration, oxidation ditch also have high hydraulic retention time (24 hours) 

and solids retention time (20 to 30 days).  

Based on Vesilind (2003), oxidation ditch may be viewed as a complete-mix 

reactor even though they have some plug flow characteristics as flow traverse the loop. 

The good thing about this process is that it can easily be adjusted to meet most 

combinations of incoming wastewater and effluent standards. This process is able to 

achieve both high BOD reduction and some nutrient removal. However, oxidation 

ditches require more land than other processes but it is cheaper to construct and operate. 

Refer to Figure 7 below for the flow of oxidation ditch process. 
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Figure 7: Flow of Oxidation Ditch Process 

Adapted from Vesilind (2003), “Wastewater Treatment Plant Design” 

 

c) Orbal® 

 

The typical Orbal® multichannel oxidation ditch has three concentric channels. The 

outer channel known as the aerated anoxic reactor is where the majority of the process 

„work‟ takes place. The DO of the second channel operates in a swing mode to vary 

with the daily load conditions. The last channel maintains a polishing mode removing 

remaining BOD and ammonia before the flow exits to final clarifiers. Based on Siemens 

website, the mechanical backbone is its unique aeration disc with its high oxygen 

transfer and unmatched mixing efficiency.  

 

 Orbal® multichannel oxidation ditch process, using completely mixed reactors in 

series, provides economical, flexible, and reliable treatment performance. Its 

arrangement in series provides more opportunity to minimize cost by using common 

wall construction. Because of the mixing capability of the disc aerators, there is no need 

for mixers in the aeration-anoxic outer channel. One version of the Orbal design 

(Bionutre®) limits the aeration rate in the first channel so that both nitrification and 

denitrification can occur. Refer to Figure 8 for illustration of the reactor‟s process. 

 



17 
 

 
Figure 8: Flow of Orbal® 

Adapted from Metcalf & Eddy (2003), “Wastewater Engineering: Treatment and 

Reuse” 

 

2.2.4 Sequentially Operated System 

 

a) Sequencing Batch Reactor (SBR) 

 

According to Metcalf & Eddy (2004), SBR is a fill-and-draw type of reactor involving a 

single complete mix reactor in which all steps of the activated-sludge process occur. For 

municipal wastewater treatment with continuous flow, at least two – (2) basins are used 

so that one – (1) basin is in the fill mode while the other goes through react, solids 

settling, and effluent withdrawal. The major difference between the SBR reactor and 

conventional continuous-flow activated sludge system is that SBR carries out functions 

of equalization, aeration, and sedimentation in a time sequence rather than in 

conventional space sequence. Hence, a lot of space can be saved if SBR is implemented 

in a certain area since it only requires minimal footprint. 

 

 The operation of an SBR is based on the fill-and-draw principle, which consists of 

the following five basic steps; fill, aerate, settle, decant, and idle. The idle step occurs 

between decant and fill steps, in which treated effluent is removed and influent water is 

added. The length of the idle step varies depending on the influent flow rate and the 
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operating strategy. Equalization is achieved during this step if variable idle times are 

used. During fill, influent wastewater is added while the mixed liquor remains in the 

reactor during all the cycles, thereby eliminating the need for separate secondary 

sedimentation tanks. Decanting of supernatant is accomplished by either fixed or 

floating decanter mechanism. Figure 9 shows the process cycle of a typical SBR. 

 

 
Figure 9: Process of Sequencing Batch Reactor 

 

 SBR is also said to be very cost-effective since the need for clarifiers and many 

other equipment can be eliminated. It also posses operating flexibility and control 

compared to other type of wastewater treatment system. Despite that, a higher level of 

sophistication on timing unit and controls are required especially for larger SBR system, 

which will eventually cause higher degree of maintenance. SBR also suffer from the 

potential of plunging of aeration devices during selected cycles, depending on the 

aeration system used by the manufacturer.  
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2.3 Nitrogen in Wastewater 

 

Nitrogen compounds are becoming increasingly important in wastewater management, 

because of the many effects that nitrogenous material can have on the environment. 

Nitrogen, in its various forms can deplete oxygen due to nitrification, fertilize aquatic 

plant growth, exhibit toxicity toward aquatic life, affect chlorine disinfection efficiency 

and present a public health hazard (Halling-Sorensen et al., 1993). Nitrogen 

concentration in wastewater can be significant and are sometimes more refractory than 

what has been observed.  

2.3.1 Nitrogen Forms 

 

There are four stable forms of inorganic nitrogen in the aquatic system, namely, 

ammonium (NH4
+
), nitrate (NO3

-
), nitrite (NO2

-
), and N2. The first three forms are 

highly soluble, although ammonium can also lose a proton as pH increases above 

neutral to become ammonia (NH3), which exist primarily as insoluble gas (WEF Press, 

2010). The fourth form exists in gaseous state, which is the most abundant form of 

nitrogen in the earth. However, the principal nitrogen types of concern to wastewater 

treatment are more complicated, which are, total nitrogen (T-N), Total Kjeldahl 

Nitrogen (TKN), ammonia (NH3), organic nitrogen (org-N), nitrate (NO3), and nitrite 

(NO2). With correct chemical stoichiometry and presence of correspondent bacteria, 

these forms are interchangeable between one and another depending upon whether 

aerobic or anaerobic condition prevails. Table 1 shows the definition of nitrogen species 

that are commonly used. 
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Table 1: Terms used to define various nitrogen species. 

 

Adapted from Metcalf & Eddy (2004) 

2.3.2 Nitrogen Chemistry 

 

a) Ammonification 

Ammonification is the biochemical degradation of organic-N into ammonia (NH3) or 

ammonium (NH4

+
) by heterotrophic bacteria under aerobic or anaerobic condition 

(Oakley, 2004). This process is driven by a wide variety of microorganisms (Bitton, 

2005). While traveling through sewer pipes, majority of the nitrogen contained in the 

raw sewage, such as urea and fecal material, is converted through a process called 

hydrolysis. The process is described by the simplified equation below: 

 

Organic-N + Microorganisms → NH
3
/ NH

4
+ 

Based on the equation above both ammonia (NH3) and ammonium (NH4
+
) are being 

produced during ammonification process. The ratio of ammonia (NH3) versus 

ammonium (NH4

+
) is affected by pH and temperature. For typical condition in most 

wastewater treatment plants, far more ammonium than ammonia is produced. The 

typical condition refers to pH of 6 to 7, and temperatures of 10 to 20
o
C.  
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b) Nitrification 

Nitrification is the biological oxidation of ammonia (NH3) and ammonium (NH4
+
) to 

nitrate (NO3
-
) through a two-step autotrophic process by the bacteria Nitrosomonas and 

Nitrobacter (Rittman and McCarty, 2001). Bacteria known as Nitrosomonas is 

responsible for the conversion of ammonia or ammonium into nitrite while bacteria 

called Nitrobacter finish the conversion of nitrite (NO2
-
) to nitrate (NO3

-
). The two-step 

reaction are usually very rapid and hence it is rare to find nitrite (NO2
-
) levels higher 

than 1.0 mg/L in water (Sawyer, et al., 1994). 

These bacteria, known as “nitrifiers,” are strict “aerobes;” which means that 

presence of free dissolved oxygen is imperative to perform their work. Nitrification can 

occurs only under aerobic conditions at dissolved oxygen levels of 1.0 mg/L or more. It 

also requires a long retention time because growth of nitrifiers bacteria are very slow. In 

addition, it also demand low food to microorganism ratio (F:M) and a high mean cell 

residence time.  

Similar to ammonification process, nitrification process also required optimum 

temperature in order to have successful treatment. It has been investigated that the 

optimum temperature for nitrification are between 30 to 35
o
 Celsius. In case of high 

temperature, the nitrification rate of reaction will fall to zero immediately if it reaches 

40
o
 Celsius or higher. On the other hand, if the temperature falls below 20

o
C, the rate 

will become slower but will continue its reaction until 10
o
C. However, if nitrification is 

lost in low temperature wastewater, it will not resume until the temperature increases to 

well over 10
o
C. 

Another important factor not to be neglected is the pH during nitrification 

process. The optimum pH for Nitrosomonas and Nitrobacter is between 7.5 and 8.5. 

However most treatment plants are able to effectively nitrify with a pH of 6.5 to 7.0 

because the production of acid during nitrification process, which will lower the pH of 

the biological population in the aeration tank. Since low pH is considered toxic to 

nitrifiers, reduction in the growth rate of nitrifying bacteria will take place. Nitrification 

will eventually stops at a pH below 6.0.  
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The following equations describe the nitrification process: 

 

NH4
+
  +  1.5O2→  2H

+
  +  2H2O + NO2

- 

(Nitrosomonas) 

 

NO2
-
  +  0.5O2 →  NO3

-
 

(Nitrobactor) 

 

NH4
+
 + 1.83O2  + 1.98HCO3

-  
→  0.021C5H702N + 0.98NO3

-
 + 1.041H2O + 1.88H2CO3

-
 

NH4
+
 + 1.9O2 + 2HCO3

- 
  →  1.9CO2  +  2.9H2O  +  0.1CH2 

 

From the above equations, it can be calculated that for every pound of ammonia 

oxidized to nitrate, the following occurs: 

 4.18 pounds of oxygen are consumed and 

 7.14 pounds of alkalinity are consumed measured as calcium carbonate 

(CaCO3)
–
 or   -12 pounds of alkalinity measured as sodium bicarbonate 

(NaHCO3) 

 

c) Denitrification 

 

Nitrate (NO3
-
) can be reduced, under anoxic conditions, to N

2 
gas through heterotrophic 

biological denitrification (US EPA, 1993). Denitrification occurs when oxygen levels 

are depleted and nitrate becomes the primary oxygen source for microorganism. The 

process is performed under anoxic condition; that is when the dissolved oxygen 

concentration is less than 0.5 mg/L, or ideally less than 0.2 mg/L (WPC, n.p.). When 

bacteria break apart nitrate (NO3
-
) to gain the oxygen (O2), the nitrate is reduced to 

nitrous oxide (N2O), and in turn, nitrogen gas (N2). Since nitrogen gas has low water 

solubility, it escapes into atmosphere as gas bubbles. The reaction is as follows: 
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6NO3
-
 + 5CH3OH → 3N2 + 5CO2 + 7H2O + 6OH

- 

A can be seen from the equation; heterotrophic bacteria need a carbon source as 

food. In this case, carbon can be obtained from the presence of sufficient soluble 

organic matter, which may be in the form of raw wastewater or supplemental carbon. 

Similar to other reaction, this process is also temperature dependant. It will occurs 

between 5 to 30
o
 Celsius and the rate will increases with temperature and type of 

organic present, such as methanol or acetic acid. It has been found that the lowest 

growth rates occur when relying on endogenous carbon sources at low temperature.  

Another important aspect of the reaction is the pH in the system. Dissimilar 

from nitrification process, denitrification produces alkalinity during the reaction. 

Approximately 3.0 to 3.6 pounds of alkalinity (as CaCO3) is produced per pound of 

nitrate, thus partially mitigating the lowering pH caused by nitrification in the mixed 

liquor. The optimum pH values for denitrification are between 7.0 and 8.5. 
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CHAPTER 3 

3.0  Methodology 

 

 

3.1 Design of Compact Extended Aeration Reactor 

 

The main concept of the reactor is to combine various processes inside one integrated 

tank. The reactor does not concern with any preliminary treatment processes such as 

screening or grit and grease chamber that are usually presence in typical wastewater 

treatment plant. Instead, the influent wastewater will directly flow into biological 

treatment tank. After careful consideration, it is decided to set-up two – (2) aeration 

tank, an anoxic tank, and a sedimentation tank inside one integrated reactor. Figure 10 

shows the cross-section of integrated wastewater treatment reactor. 

Figure 10: Process Flow of Designated CEAR 
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The reactor is purposely built with two – (2) aeration tanks under circumstance 

where longer retention time can be achieved, thus allowing nitrification process to take 

place. The first tank can take up to 17 liters (HRT = 2 days) whereas the second tank 

can take up almost 40 liters (HRT = 3 days). In the anoxic tank, a series of continuous 

narrow baffle path of 6 cm width are built to ensure proper mixing of wastewater and 

keeping the biomass in complete suspension. As for the clarifier, it is designed to have 

volume of 273 liters (HRT = 23 days) so that supernatant can be contained before being 

released as effluent. The influent is set to directly enter the first aeration tank, and then 

goes to the baffled anoxic tank, and followed by second aeration tank and clarifier, 

respectively. Refer to Figure 11 for illustration of the overall process in CEAR. 

Figure 11: Flow of Treating Wastewater inside CEAR 
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The biomass from clarifier will be recycled directly into the first aeration tank 

for every two – (2) hours to ensure sufficient biomass is present in order for biological 

reaction to occurs. As for the moment, the incoming flow is set to be as low as possible; 

which is 8 mL/min. This is to allow the reactor to attain and accomplish its 

acclimatization period. As a result, the current SRT for the reactor is 28 days. The stated 

rate will be used until acclimatization period ended, and constant effluent quality is 

obtained. Only then, the incoming synthetic wastewater flow rate will be modified 

according to sustainability of the tank. 

 

3.2 Feasibility Study of Synthetic Wastewater 

 

The study was conducted using synthetic wastewater and biomass from UTP‟s 

wastewater treatment plant. The objective of using synthetic wastewater is to ensure a 

consistent organic loading throughout the experimental period. In order to simulate the 

synthetic wastewater, dogs‟ food of brand Purino Alpo High Protein Puppy Dog Meal is 

grinded for 5 minutes. The grinded dog‟s food was then sieve for finer result. This is to 

ensure that the dogs‟ food will be easily diluted when it is mixed with tap water. An 

experiment was then conducted in the laboratory to study the effect various 

concentration of dog‟s food in 1 mL of tap water to the value of COD. Table 2 shows 

the result of the experiment: 

Table 2: COD Values for Different Concentration of Dogs‟ Food 

Weight of Grinded Dogs‟ Food (mg/L) COD 

600 493 

800 573 

1 000 809 

1 200 702 

1 500 1478 

2 000 1425 

2 500 1673 
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It has been found out that the most suitable synthetic wastewater ratio is 600 mg 

in 1 liters of tap water. After that, several other tests were conducted to further verify 

the characteristic of the synthetic wastewater. The characteristic of synthetic wastewater 

with comparison to the typical medium strength wastewater are tabulated in Table 3. 

Table 3: Composition of Synthetic Wastewater against Medium Strength Wastewater 

Parameter Average Reading (mg/L) 
Typical Medium Strength 

Wastewater Composition (mg/L) [1] 

COD 500 430 

BOD5 150 190 

TSS 150 210 

NH3-N 5 25 

NO3 4 0 

 

As can be seen in the table above, the ammonia content in the synthetic 

wastewater is much lower than the typical medium strength wastewater value. 

However, since ammonia will be produced during the degradation of organic matters in 

biological treatment stage, the ammonia is predicted to increase in aeration tank. 

 

3.3 Experimental Methodology 

 

3.3.1 Setting-up of Reactor 

 

Compact Extended Aeration Reactor was set up on ground floor of Block 13, UTP 

Academic Complex while further experimental works were conducted in 14-02-10, 

UTP Environmental Laboratory. Figure 12 below shows the reactor during (a) setting 

up process and (b) completely assembled reactor.  
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    (a)                                                              (b)                                          

Figure 12: Experimental Methodology 

 

The reactors‟ body was fabricated with fiber glass, and two windows are placed 

at its side. All pipes and connections used are made from 60 mm PVC pipes and 

connectors. Diffusers are also installed to ensure minimum DO of 2 mg/L. Note that the 

biological reactor was examined with hydraulic test prior operation to ensure all piping 

connections are properly attached; while other mechanical equipments were tested 

beforehand. When ready, influent is pumped into the reactor continuously at the rate of 

8 m
3
/min and 10 m

3
/min using Masterflex Pump. Samples from the reactor is taken 

once every two – (2) day to be tested on NH4-N and NO3. 

 

3.3.2 Measurement of the Parameters 

a) Ammonia-Nitrogen (NH3-N) 

 

To test for ammonia-nitrogen, USAPA Nessler Method (Method 8038) was used.  

For the first step, sample and blank were prepared by filling 25 mL of sample and 

deionized water into separate mixing cylinder. Three drops of Mineral Stabilizer was 

then added to both mixing cylinders before they were inverted for mixing. The Mineral 

Stabilizer will complexe hardness in the sample. After that, three drops of Polyvinyl 

Alcohol Dispersing Agent (to aids in color formation in the reaction) were added to 

each cylinder, followed by 1.0 mL of Nessler Reagent. Following these processes, the 

cylinders were inverted several times for better mixing.  
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The mixture was then left for one-minute reaction period and once the timer 

goes off, 10 mL of the mixture of each solution were poured into sample cell. The 

content of ammonia-nitrogen was then measured afther the instrument is zero using the 

blank. 

 

b) Nitrate (NO3) 

 

To test for nitrate, Cadmium Reduction Method (Method 8039) was used. Preparation 

of sample was done by filling the sample cell with 10mL of sample. After that content 

of one NitraVer 5 Nitrate Reagent was added, shake for one-minute, and left for five-

minute reaction period. An amber color will develop if nitrate was present. Content of 

nitrate can then be measure after the instrument was zero using the blank. Blank was 

prepared by filling the sample cell with 10mL of similar sample. 

 

3.4 Method of Sampling 

 

Test on ammonia-nitrogen and nitrate are conducted on four-(4) sample, which is taken 

from four-(4) different point in the reactor, namely; effluent aeration tank 1, effluent 

anoxic tank, effluent aeration tank 2, and final effluent. The testing on ammonia-

nitrogen and nitrate were also carried out three-(3) times on each samples and average 

of the reliable results is taken to ensure consistent value is obtained. These samples are 

taken once every two days.  
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3.5 Gantt Chart and Key Milestone 

 

3.6 Tools and Equipments 

 

Tools and equipments used during experimental period are summarized in Table 4 

below: 

Table 4: Tools and Equipment 

No. Tools / Equipment Quantity 

1. Integrated Wastewater Treatment Reactor 1 unit 

2. Masterflex digital peristaltic pumps 1 unit 

3. Masterflex tube size 16 - 

4. Influent/Effluent container 2 unit 

5. Recycle Pump 1 unit 

6. Recycle Pipe - 

7. Air Pump 1 unit 

8. Diffuser 10 unit 

9. Valve 1 unit 

10. Tube Diffuser - 

11. Timer 2 unit 
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CHAPTER 4 

4.0  Results and Discussions 

 

The main parameter of concern in this study is ammonia-nitrogen (NH3-N), nitrate 

(NO3). In order to encourage nitrification, the reactor is operated under extended 

aeration condition where higher retention time is provided to allow nitrifiers to grow. 

The nitrification process is expected to occur partially in aeration tank 1 and continue in 

aeration tank 2. 

 

Test on the mentioned parameters are conducted on four-(4) sample, which is 

taken from four-(4) different point in the reactor, namely; effluent aeration tank 1, 

effluent anoxic tank, effluent aeration tank 2, and final effluent. The testing was carried 

out three-(3) times and average of the reliable results is taken to ensure consistent value 

is obtained.  

 

So far, the reactor has been tested on two – (2) different incoming wastewater 

loading; 8 m
3
/min and 10 m

3
/min. During the operation on first loading (8 m

3
/min), the 

influent wastewater was not tested as frequently as the other four effluent points 

mentioned earlier. It is assumed that the synthetic wastewater would always possess 

constant characteristics. However, it is later found out that the synthetic wastewater 

constituent will degrades and eventually causes the reading to fluctuate. Despite that, 

the reactor continues to operate under the same loading until the effluent reading 

stabilizes. 

 

In order to obtained better and more accurate data, the reactor is operated under 

different loading (10 m
3
/min). This time around, the influent parameters are also tested 

together with the other effluent samples. Under both loading, the reactor will initially 

undergo acclimatization period before it start to stabilize. Data will only be reliable 

once the reactor stabilizes.  
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4.1 Removal of Ammonia-Nitrogen 

 

Test on ammonia-nitrogen are carried out based on UESPA Nessler Method (Method 

8038). The result of ammonia-nitrogen removal for 8 m
3
/min influent loading is 

presented in Figure 13. 

 

Figure 13: Effluent Ammonia Nitrogen for 8 m
3
/min Incoming Load 

 

It can be observed in the above graph that effluent from aeration 1 and aeration 

2 have the highest NH3-N content, especially in day 9 which is 4.28 mg/L and          

4.50 mg/L respectively. Although value of NH3-N are small in the influent, but it 

increases rapidly as it enters both aeration tank because that is where ammonification 

process occurs. Based on the value obtained, it can be say that both aeration tanks are 

working very well; since it can convert the organic matter contained in the incoming 

synthetic wastewater into ammonia. 
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As for effluent anoxic tank; which is the effluent of anoxic tank, value of NH3-N 

are generally lower than values in aeration tank but slightly higher than the final 

effluent. It can be seen in the graph that the values did not exceed 2.5 mg/L. The values 

lowered because some of NH3-N is no longer present in the anoxic tank as it has been 

converted into NO2, NO3, or N2 by nitrification or denitrification induced bacteria. 

However, not all NH3-N are converted but it is acceptable because there is another 

aeration tank located after anoxic tank that can further treat NH3-N before it is 

discharge. 

In the final effluent, values of NH3-N were drastically decreased. Their values 

merely reach      0.5 mg/L at the discharge point. The values can be considered 

successful since they have fulfilled the Malaysia‟s DOE Standard A requirement on 

NH3-N, which is 10 mg/L. From the graph, it can be seen that the reactor start to 

stabilize from day 21 onwards. 

Starting from 3
rd

 December 2012, the incoming load imposed on the reactor had 

been increased to 10 m
3
/min. The result of ammonia-nitrogen removal for 10 m

3
/min 

influent loading is presented in Figure 14. 

 

Figure 14: Effluent Ammonia Nitrogen for 10 m
3
/min Incoming Load 
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As can be seen from the graph above, the data obtained are still fluctuating. This 

condition indicates that the reactor is still undergoing acclimatization period in which it 

is trying to adapt to the new incoming load. However, a clear pattern could still be seen 

from the graph. Effluent from both aeration tanks shows the highest amount of NH3-N 

had presence, since ammonification process occurs rapidly in the tanks. 

 

4.2 Removal of Nitrate 

 

Test on ammonia-nitrogen are carried out based on Cadmium Reduction Method 

(Method 8039). The result of nitrate removal is presented as follows for 8 m
3
/min 

influent loading is presented in Figure 15. 

 

Figure 15: Effluent Nitrate for 8 m
3
/min Incoming Load 

 

Generally, effluent from first aeration tank has the highest amount of NO3; 

except for when the reactor starts to stabilizes. This condition may happen due to the 

acclimatization period which the reactor is still undergoing or defect in preservation of 

NO3 sample since the result will only be most reliable when samples are analyzed soon 

after collection. Theoretically, effluent 1 should have the highest amount of NO3 as 
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illustrated during the earlier sampling days because the completed ammonification 

process happened in the first aeration tank will produce high NO3; and if nitrification 

haven‟t had the chance to occur. 

On the other hand, effluent anoxic should have low NO3 because it has been 

converted into N2 in denitrification process; and it is reflected in the graph above. This 

means that the anoxic tank has successfully treated the NO3 produced in the previous 

process. The NO3 range in the effluent is between 1.00 mg/L to 7.5 mg/L with removal 

percentage efficiency as high as 95%; which occurs during second day of sampling. 

As for effluent aeration 2, the NO3 have quite similar but slightly lower ranges to 

effluent 1. This may be due to high-effectiveness of aeration tank 1 in treating 

ammonia; leaving lesser treating process to aeration tank 2. In final effluent, the NO3 

has been treated successfully in which the value did not exceed 2 mg/L. Such value is 

considered safe to be discharge since it is below than the DOE Standard A requirement; 

20 mg/L. 

Starting from 3
rd

 December 2012, the incoming load imposed on the reactor had 

been increased to 10 m
3
/min. The result of nitrate removal for 10 m

3
/min influent 

loading is presented in Figure 16. 

 

Figure 16: Effluent Nitrate for 10 m
3
/min Incoming Load 
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As can be seen from the graph above, the data obtained are still fluctuating. This 

condition indicates that the reactor is still undergoing acclimatization period in which it 

is trying to adapt to the new incoming load. However, a clear pattern could still be seen 

from the graph. Effluent from both aeration tanks shows the highest amount of NH3-N 

had presence, since denitrification process did not completely occurs in anoxic tank. 

As a whole it can be clearly seen that both ammonia-nitrogen and nitrate has been 

treated to reach Standard A limit of Environmental Quality (Sewage) Regulation 2009. 
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CHAPTER 5 

5.0  Conclusion and Recommendation 

 

As Downing pointed out back in 1992, apart from the incorporation of more 

sophisticated instrumentation for in situ plant monitoring, and computerized control 

systems, the basic design for wastewater treatment plant had change little proceeding 80 

or so years. This means that the basic concept is still there; we still apply activated 

sludge process in most of our system and we still use clarifier to separate supernatant 

from the settling sludge. As restricted as it sounds, there are still many space for 

development and modifications on the system. It requires creative human mind to 

innovate what is already there. 

In this study, simple modification had been made to the arrangement of 

activated sludge process; where all the reaction happened in a single tank. The result 

obtained from the experiment conducted had shown that CEAR is capable in treating 

nitrogen from municipal wastewater. Although CEAR is only a laboratory-scale reactor, 

but it is believe with further modification, it can take up higher load and fit itself inside 

the industry. If so, that means the objective to design a reliable integrated wastewater 

treatment system is a success. 

However, further modification could be done to improve CEAR such as the 

incoming organic load or flowrate should be varies and its capability should be 

recorded. This is crucial to determine the maximum capacity. Besides that, scapper 

should also be added at the bottom of clarifier for better sludge recycling.   
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