Identification and Control of Recycle Process

by

Raja Norakmal bin Raja Bakhtiar Affendy

Dissertation submitted in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Chemical Engineering)

DECEMBER 2012

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Identification and Control of Recycle Process

by

Raja Norakmal bin Raja Bakhtiar Affendy

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

(Dr Lemma Dendena Tuffa)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources of persons.

(RAJA NORAKMAL BIN RAJA BAKHTIAR AFFENDY)

ABSTRACT

The recycle stream is important to increase and optimize the conversion of the feed and also the selectivity of the desired product. Even though recycle brings a lot of advantages, in the process dynamics and control point of view, it causes a lot of problem to the whole dynamics of the process. In this project, three control strategies are used to control the recycle stream in two CSTR connected in series. The control strategies are recycle compensator, Ziegler-Nichols tuning method and Skogestad tuning method. The performances of these control strategies and their combinations are compared based on certain aspects such as response time and offset value to find the best control strategy or combination of control strategies, each one of them are analysed by using the integral error analysis which are the Integral of the absolute value of the error, Integral of the squared error, Integral of time-weighed absolute error.

ACKNOWLEDGEMENT

I wish to express my sincere and deepest gratitude to my final year project supervisor, **Dr. Lemma Dendena Tuffa** for his guidance and care throughout the completion of this project. Despite having a busy schedule as a lecturer, he never hesitates to assist me in the very best way he can. Thanks for his valuable advice, encouragement and patience, I am able to improve in so many ways especially in the control and dynamics field and also in operating the MATLAB software. I also would like to express my deepest appreciation to anyone who got involved directly or indirectly in the completion of this project.

TABLE OF CONTENTS

CERTIFICATION	•	•	•	•	•	•	•	i
ABSTRACT .	•	•	•	•	•	•	•	iii
ACKNOWLEDGEN	MENT	•	•	•	•	•	•	iv
CHAPTER 1:	INTR	ODU	CTION	Ι.	•	•	•	1
	1.1	Back	ground	l of Stud	у.	•	•	1
	1.2	Prob	lem Sta	tement	•	•	•	2
	1.3	Obje	ectives a	and Scop	e of St	udy	•	2
CHAPTER 2:	LITE	RATI	URE RI	EVIEW	•		•	4
	2.1	Recy	cle Pro	cess	•	•	•	4
	2.2	Nega	ative Im	pact of	the Ree	cycle Sti	eam	5
	2.3	Cont	roller S	trategies	s for Pi	ocesses		
		with	Recycl	e Stream	n .	•	•	6
	2.4	Case	study	•	•	•	•	11
CHAPTER 3:	MET	HOD	OLOGY	Υ.	•	•	•	14
	3.1	Gene	eral Res	search M	ethodo	ology	•	14
	3.2	Proje	ect Wor	·k.	•	•	•	15
	3.3	Tool	s/softw	are.	•	•	•	16
	3.4	Gant	t Chart	•	•	•	•	17
CHAPTER 4:	RESU	LTS	AND D	ISCUS	SION	•	•	20
	4.1	Deri	vation o	of transfe	er func	tion and		
		Bloc	k diagra	am	•	•	•	20
	4.2	Step	test on	the recy	cle sys	tem	•	22
	4.3	The	Recycle	e Compe	nsator	•	•	27
	4.4	Zieg	ler-Nicl	hols Tun	ing M	ethod	•	32
	4.5	Skog	gestad T	Tuning M	lethod	•	•	35
	4.6	Com	parison	of cont	rol stra	tegies	•	40
CHAPTER 5:	CON	CLUS	ION					
	AND	RECO	OMME	NDATI	ONS	•	•	44
REFERENCES	•	•	•	•	•	•	•	45
APPENDICES	•	•	•	•	•	•	•	46

LIST OF FIGURES

Figure 2.1	An example of	of a bloc	ck diagr	am of a	ı plant v	with rec	ycle	•	4
Figure 2.2	Block diagram	m of a s and a re	ystem c cycle co	onsistii ompens	ng of a p ator	olant •	•	•	6
Figure 2.3	Block diagram Skogestad's r	m of the nethod	e control	l systen	n in PIC	tuning	with •	•	7
Figure 2.4	Block diagram	m for a	standarc	l feedba	ack con	trol syst	tem	•	9
Figure 2.5	Schematics o	f 2 CST	'R syste	ms witl	h recycl	е.	•	•	11
Figure 2.6	Open loop rea without recyc	sponses cle; (2) v	of the t with rec	wo out ycle	put con	centratio	ons (1)	•	13
Figure 3.1	the MATLAI	B softwa	are	•	•	•	•	•	21
Figure 4.1	Block diagram	m of 2 C	CSTR w	ith recy	cle stre	am	•	•	22
Figure 4.2	Cases 1	•	•	•	•	•	•	•	23
Figure 4.3	Case 2	•	•	•	•	•	•	•	23
Figure 4.4	Case 3	•	•	•	•	•	•	•	24
Figure 4.5	Case 4	•	•	•	•	•	•	•	24
Figure 4.6	Case 5	•	•	•	•	•	•	•	25
Figure 4.7	Case 6	•	•	•	•	•	•	•	25
Figure 4.8	Response in a and without r	disturba ecycle	nce step	• chang	e four o	output Y	1 for pr	ocess w	ith 26
Figure 4.9	Response in a and without r	listurba ecycle	nce step	o chang	e four o •	output Y	2 for pr	ocess w	ith 26
Figure 4.10	Block diagram	m for pr	ocess w	vith recy	ycle	•	•	•	27
Figure 4.11	Simplified bl	ock dia	gram fo	r proces	ss with	recycle	•	•	28
Figure 4.12	Disturbance s without recyc	step cha ele comp	nge for pensator	system for ou	with re tput Y1	cycle co	ompensa	ator and	30
Figure 4.13	Disturbance s without recyc	step cha ele comp	nge for pensator	system for ou	with re tput Y2	cycle co	ompensa •	ator and	31
Figure 4.14	Block diagram	m of the d recyc	e two CS le comp	STR wi	th recyc r in the	ele syste MATLA	em with AB softw	feedbac ware	k 33

Figure 4.15	Performance for disturbance step change for output Y1 .	34
Figure 4.16	Performance for disturbance step change for output Y2 .	34
Figure 4.17	SIMC tuning for PI and PID for output Y1	35
Figure 4.18	SIMC tuning for PI and PID for output Y2	36
Figure 4.19	Disturbance step changes for PI controller using SIMC tuning met with and without recycle compensator for output Y1 .	hod 37
Figure 4.20	Disturbance step changes for PI controller using SIMC tuning met with and without recycle compensator for output Y2 .	hod 37
Figure 4.21	Disturbance step changes for PID controller using SIMC tuning method with and without recycle compensator for output Y1	38
Figure 4.22	Disturbance step changes for PID controller using SIMC tuning method with and without recycle compensator for output Y2	39
Figure 4.23	Effect of recycle compensator on control strategies for output Y1	42
Figure 4.24	Effect of recycle compensator on control strategies for output Y1	43

LIST OF TABLES

Table 2.1	Variables and parameters for the 2 CSTR with recycle systems	12
Table 3.1	Gantt chart of FYP1	17
Table 4.1	Cases for step test	22
Table 4.2	Controller parameters for the 2 CSTR with recycle stream .	32
Table 4.3	Parameters for feedback controllers using SIMC	35
Table 4.4	Integral error analysis of controller strategies for output Y1.	40
Table 4.5	Integral error analysis of controller strategies for output Y2.	40

ABBREVIATIONS AND NOMENCLATURE

CSTR	Continuous Stirred-Tank Reactor
DS	Direct Synthesis
IAE	Integral of the Absolute value of the Error
ISE	Integral of the Squared Error
ITAE	Integral of Time-weighed Absolute Error
PI	Proportional and Integral
PID	Proportional, Integral and Derivative
RC	Recycle Compensator
SIMC	Simple Internal Model Control
Z-N	Ziegler-Nichols

CHAPTER 1

INTRODUCTION

1.1 Background of Study

In a process plant, the main objective is to convert the feed or reactant into a desired product. However, in the real-life situation, typically the reactor used in a process plant does not completely convert all of the reactant into the product. The unreacted feed is then purged out of the reactor along with the product. Not only this is economically unviable as the reactant is wasted, but this also causes difficulties later on in the process as the unreacted feed is required to be separated from the final product and treated before it is purged as a waste.

In order to prevent problems in the latter stages and to increase the economic efficiency, a recycle stream is introduced to the reactor system to recycle the unreacted feed. A recycle loop coupled with a reactor will generally contain a separation process in which unused reactants are separated from products. These reactants are then fed back into the reactor along with the fresh feed.

Reactions with recycle are very useful for a number of reasons, most notably because they can be used to improve the selectivity of multiple reactions occurring in the reactor, push a reaction beyond its equilibrium conversion, or speed up a catalytic reaction by removing the products. However, in a process control and dynamics point of view reaction with recycle could cause lots of problems.

Through the years, many controllers have been found to control a certain dynamics problems. In the recycle system, the most commonly used control strategy is by using recycle compensator. It is said that the recycle compensator can help to reduce the negative impact of the recycle stream to the dynamics of the plant. With the existence of the found controllers, comparisons and combinations of the controllers can be done to further improve the control of recycle process.

1.2 Problem Statement

Recycle process is important to increase the conversion of the feed. It is also required due to some environmental and economic constraints. However, although recycling has so many advantages, it also has negative impact on the whole process. Recycle streams causes various problems and dynamic phenomena such as the snowball effect and extremely slow response. Various studies have been conducted to generate a controller strategy to solve the problem with the recycle process. Control strategies to stabilize the problems caused by the recycle process are important to ensure the recycle stream can be used in the plant without causing problem to the whole dynamics. This way, the advantages of the recycle system can be fully utilized without worrying about the drawbacks that can be caused in the control and dynamics point of view. Studies have been conducted to counter the recycle dynamics problem is by using the recycle compensator. However, in this research comparison of this method to other controller and possibly a combination could be done to further improve the control of recycle process.

1.3 Objectives and Scope of Study

The objectives of this study are:

- 1.3.1 To compare the performance of various controller strategies based on for processes with recycle stream in a 2 CSTR system with recycle.
- 1.3.2 To analyse the performance of the controller strategies using on Integral of the absolute value of the error, Integral of the squared error, Integral of time-weighed absolute error.

The scope of this study is to compare the performance of various controller strategies to stabilize the problems caused by recycle stream. The controller strategies that will be studied are the recycle compensator, Ziegler-Nichols tuning method and Skogestad tuning method. To compare the performance, some integral error analysis is used. This will be assisted by using simulation on the MATLAB software. To gain understanding on the controller strategies used by previous studies for processes with recycle stream, literature research is done.

CHAPTER 2

LITERATURE REVIEW

In this section, the effect of the recycle system to the dynamics of the whole process is explained in details. Several control strategies have been found through the literature research. The theory and derivation method of the reviewed control strategies are studied and explained. After the controller strategies have been reviewed, a case study is reviewed to pose as the process model for the testing of the controllers.

2.1 Recycle Process

The recycle stream is usually introduced to the output of a reactor to send back the unreacted feed back to the fresh feed stream.

Figure 2.1 shows an example of a block diagram of a plant with recycle. In the figure, 'G' represents the direct of forward path transfer function that describes the relationship between the output and the input. ' G_r ' represents the recycle path transfer function and ' G_d ' represents the disturbance transfer function. Disturbance is a variable in the process plant that can affect the process but the variable itself is not affected by the process and cannot be controlled.

Figure 2.1 An example of a block diagram of a plant with recycle

Denoting the output as 'Y' and the input as 'U', the transfer function of the plant, according to the general expression of feedback control systems is as follows:

$$\frac{Y(s)}{U(s)} = \frac{G}{1 - GG_r}$$
(2.1)

Where $G = \frac{K_1 e^{-t_1 s}}{\tau_1 s + 1}$ and $G_r = \frac{K_2 e^{-t_2 s}}{\tau_2 s + 1}$, assuming the stable first order transfer function.

Substituting G and G_r into equation (2.1):

$$\frac{Y(s)}{U(s)} = \frac{K_1 e^{-t_1 s} (\tau_2 s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1) - K_1 K_2 e^{-(t_1 + t_2)s}} (2.2)$$

The presence of the deadtime term in the denominator makes it difficult to design the controller. Most analytical control design algorithms cannot be applied to systems that do not have a rational denominator. For the case if the time delays t_1 and t_2 are zero, it is observed that when K_1K_2 is more than 1, the system becomes openloop unstable (Lakshminarayanan & Takada, 2001).

2.2 Negative Impact of the Recycle Stream

The recycle process is found to cause lots of negative impacts on the whole system. Some of the identified impacts are as follows:

- 2.2.1 Increasing the response time, thus resulting in extremely slow response (Taiwo & Krebs, 1994) (Lakshminarayanan & Takada, 2001)
- 2.2.2 A small change in the disturbance variable causes a large change in the manipulated variable, also known as the "snowball effect" (Tremblay *et al.*, 2006) (Lakshminarayanan & Takada, 2001)
- 2.2.3 Higher process steady state sensitivity (Taiwo & Krebs, 1994)
- 2.2.4 Limit cycles (Madhukar et al., 2005) (Lakshminarayanan & Takada, 2001)
- 2.2.5 Instability (Madhukar et al., 2005) (Lakshminarayanan & Takada, 2001)

2.3 Controller Strategies for Processes with Recycle Stream

In order to solve the problem caused by the recycle stream, some controller strategies can be applied to the process. In this study, three strategies are studied which are the recycle compensator, Skogestad's tuning method and the direct synthesis method.

2.3.1 Recycle Compensator

According to Mészáros & Čirka (2009), a recycle compensator is a part of the regulator used to minimize or eliminate the effects of the recycle by suppressing the negative feedbacks. The compensator is introduced to eliminate recycle loop time constant. Figure 2.2 shows a block diagram of a system of a plant with recycle including a recycle compensator G_{RC} . The variables y, u, d are controlled, manipulated, disturbance controller outputs respectively. G_r^* is the transfer function of the recycle process.

Figure 2.2 Block diagram of a system consisting of a plant with recycle and a recycle compensator

The open-loop plant output is given by

$$y(s) = \frac{G}{(I - G_r *)}u(s) + \frac{G_d}{(I - G_r *)}d(s)(2.3)$$

The compensator that totally cancels the negative effect of the recycle is known as the perfect recycle compensator (Taiwo & Krebs, 1994). Such compensator revert the transfer function into its dynamically favourable state, which is the original transfer function without recycle, that is

$$y(s) = Gu(s) + G_d d(s)(2.4)$$

To specify the recycle compensator, block diagram algebra is applied to the inner loop G in Figure 2.2 to give

$$y(s) = \frac{G}{1 - GG_{RC} - G_{r} *} u(s) + \frac{G_{d}}{1 - GG_{RC} - G_{r} *} d(s)(2.5)$$

By choosing G_{RC} to be $G_{RC} = \frac{-G_{T^*}}{G}$ the expression $y(s) = Gu(s) + G_d d(s)$ is obtained. Therefore the design expression for the recycle compensator is given by

$$G_{RC} = \frac{-G_r *}{G} (2.6)$$

The recycle compensator is to handle internally generated disturbances to the process (Lakshminarayanan & Takada, 2001).

2.3.2 Skogestad Tuning Method

Skogestad's method is model-based, assuming that the mathematical model of the process which is the transfer function model is available. The controller parameters are expressed as functions of the process model parameters (Haugen, 2010).

Figure 2.3 shows a block diagram of the control system in PID tuning with Skogestad's method. The transfer function H_{psf} (s) is a combined transfer function of the process, the sensor, and the measurement lowpass filter. It represents all the dynamics that affect the controller. For simplicity, this transfer function denoted as the "process transfer function".

The design principle of Skogestad's method includes the control system tracking transfer function T(s), which is the transfer function from the set point to the process measurement, is specified as a first order transfer function with time delay:

$$T(s) = \frac{y_{mf}(s)}{y_{mSP}(s)} = \frac{1}{T_C s + 1} e^{-\tau s} (2.7)$$

Where T_C is the specified time constant of the control system and τ is the process time delay given by the process model. From the block diagram in Figure 2.3, the tracking transfer function is derived as:

$$T(s) = \frac{H_C(s)H_{psf}(s)}{1 + H_C(s)H_{psf}(s)}$$
(2.8)

Equating the equations (2.7) and (2.8):

$$\frac{H_C(s)H_{psf}(s)}{1+H_C(s)H_{psf}(s)} = \frac{1}{T_Cs+1}e^{-\tau s} (2.9)$$

In this equation, it is found that the only unknown is the controller transfer function $H_c(s)$. By making some proper simplifying approximations to the time delay term, the controller becomes PID controller or a PI controller for the process transfer function assumed (Haugen, 2010).

2.3.3 Direct Synthesis Method

In this method, the controller design is based on a process model and a desired closed-loop transfer function. The Direct Synthesis (DS) approach provides valuable insights into the relationship between the process model and the resulting controller (Seborg *et al.*, 2004). Figure 2.4 shows a block diagram for standard feedback control system.

Figure 2.4 Block diagram for a standard feedback control system

The close-loop transfer function for set-point changes is derived as:

$$\frac{Y}{Y_{SP}} = \frac{K_m G_c G_v G_p}{1 + G_c G_v G_p G_m}$$
(2.10)

To make it simple, let $G = G_c G_v G_p$ and assume that $G_m = K_m$

$$\frac{Y}{Y_{SP}} = \frac{G_c G}{1 + G_c G} \quad (2.11)$$

Expressing equation (2.11) in terms of G_C :

$$G_c = \frac{1}{G} \left(\frac{\frac{Y}{Y_{SP}}}{1 - \frac{Y}{Y_{SP}}} \right) (2.12)$$

Replacing G by \tilde{G} and $\frac{Y}{Y_{SP}}$ by a desired closed-loop transfer function, $\left(\frac{Y}{Y_{SP}}\right)_d$ into equation (12)

$$G_{c} = \frac{1}{\tilde{G}} \left(\frac{\left(\frac{Y}{Y_{SP}}\right)_{d}}{1 - \left(\frac{Y}{Y_{SP}}\right)_{d}} \right) (2.13)$$

Ideally, $\left(\frac{Y}{Y_{SP}}\right)_d = 1$ is desirable so that the controlled variable tracks set-point changes instantaneously without any error. This is also known as perfect control and cannot be achieved by feedback control. For processes without time delays, the first order model is more reasonable (Seborg *et al.*, 2004):

$$\left(\frac{Y}{Y_{SP}}\right)_d = \frac{1}{\tau_c s + 1} (2.14)$$

Where τ_c is the desired closed-loop time constant. By substituting this into the previous equation

$$G_C = \frac{1}{\tilde{G}} \frac{1}{\tau_C s} (2.14)$$

The term $\frac{1}{\tau_c s}$ provides integral control action and eliminates offsets (Seborg *et al.*, 2004). If the process transfer function contains a time delay θ , the desired closed-up transfer function is

$$\left(\frac{Y}{Y_{SP}}\right)_d = \frac{e^{-\theta s}}{\tau_c s + 1} \ (2.15)$$

Combining equations (2.14) and (2.15):

$$G_C = \frac{1}{\tilde{G}} \frac{e^{-\theta s}}{\tau_C s + 1 - e^{-\theta s}}$$
(2.16)

By using Taylor series expansion $e^{-\theta s} \approx 1 - \theta s$:

$$G_C = \frac{1}{\tilde{G}} \frac{e^{-\theta s}}{(\tau_C + \theta)s}$$
(2.17)

From equation (2.17), it is found to have integral control action. For first order plus time delay model, equation (2.18) is substituted into equation (2.17)

$$\tilde{G} = \frac{Ke^{-\theta s}}{\tau_c s + 1} \ (2.18)$$

The substitution gives the following first order plus time delay model (2.19):

$$G_C = K_C \left(1 + \frac{1}{\tau_I s} \right) (2.19)$$

Where $K_C = \frac{1}{K} \frac{\tau}{\theta + \tau_C}$ and $\tau_I = \tau$

2.4 Case study

In order to compare the control strategies reviewed before, one case study is needed to ensure the comparison is feasible and legitimate. In this study, the case study chosen is two CSTR systems with recycle. Figure 2.5 shows the schematics of 2 CSTR systems with recycle. The two reactors are connected in series with the outlet of the second reactor recycled into the inlet of the first reactor. The two reactors are assumed to be well mixed by which first order irreversible reactions not accompanied by any heat effects occur.

Figure 2.5 Schematic of 2 CSTR systems with recycle

The levels and flow rates are assumed to be constant, only the effect of the composition is taken into consideration. The control objective of this system is to maintain the reactor outlet compositions y_1 and y_2 at specified levels by manipulating the two feed compositions, u_1 and u_2 . The main disturbance is the composition d of the stream entering the first reactor. The description of the variables and the values of the operating parameters are given in Table 2.1 (Lakshminarayanan & Takada, 2000).

Parameter	Symbol	Value
Feed flow rate into reactor 1	F_1	1 m ³ /min
Feed flow rate into reactor 2	F_2	0.5 m ³ /min
Recycle flow rate	R	10 m ³ /min
Disturbance flow rate	F_d	0.5 m ³ /min
Product removal rate form Reactor 1	F_{p1}	1 m ³ /min
Product removal rate from Reactor 2	F_{p2}	1 m ³ /min
Composition of stream F ₁	<i>u</i> ₁	2 kmol/min
Composition of stream F ₂	<i>u</i> ₂	3 kmol/min
Composition of disturbance stream	d	1 kmol/min
Reactor 1 outlet composition	У1	1 kmol/min
Reactor 2 outlet composition	<i>y</i> ₂	1 kmol/min
Recycle stream composition at entrance of	y_2^*	1 kmol/min
Reactor 1		
Volume of Reactor 1	V_1	1 m^3
Volume of Reactor 2	V_2	10 m^3
Measurement delay in composition sensors	$ heta_m$	1 min
Recycle delay (outlet of Reactor 2 to inlet of	θ_r	2 min
Reactor 1)		
Kinetic rate constant (Reactor 1)	k_1	$1 \min^{-1}$
Kinetic rate constant (Reactor 2)	K_2	0.1 min^{-1}

Table 2.1 Variables and parameters for the 2 CSTR with recycle system

Main hypotheses of the process are (Scali & Ferrari, 1999):

- The two reactors are perfectly stirred and a first order irreversible reaction, with kinetic constant *k*₁ and *k*₂.
- Levels, temperatures and flow rates are constant.
- The control objective is to maintain constant output of the two compositions y_1 and y_2 , by manipulating the feed compositions u_1 and u_2 .
- The composition *d* of the uncontrolled flow to the first reactor is the main disturbance.

• Assuming perfect measurement of composition, with time delay of θ_m .

Line (1) is without recycle and line (2) is with recycle (Scali & Ferrari, 1999). It is found that the recycle stream greatly affects the dynamics of the plant. Therefore, this case study is suitable to be used in this study to compare the controller strategies that has been reviewed.

Figure 2.6 Open loop response of the two output concentrations (1) without recycle; (2) with recycle

CHAPTER 3

METHODOLOGY

3.1 General Research Methodology

3.2 Project Activities

The study will be conducted using the MATLAB simulation. Various controller strategies will be selected from the literature review and their performance will be tested using simulation of 2 CSTR systems with recycle.

Firstly, the transfer function of the system is derived based on the case study found in literature review. After the transfer function is derived, the block diagram is generated and the system is tested to find out the significance of the effect of the recycle stream to the dynamics of the system. If the recycle stream shows a significant effect, the system will be used. If otherwise, other system will be searched through literature.

After the case study block diagram and transfer function is derived, the system will be added with the derived control strategies to eliminate the effect of recycle stream on the system. The best control strategies will be selected based on their performance in the simulation.

In order to compare the three control strategies in a more precise manner, they are compared by using tuning relations based on integral error criteria. Three integral control criteria will be used in this project are (Seborg *et al.*, 2004):

3.2.1 Integral of the absolute value of the error (IAE)

$$IAE = \int_0^\infty |e(t)| dt$$

3.2.2 Integral of the squared error (ISE)

$$ISE = \int_0^\infty e(t)^2 dt$$

3.2.3 Integral of time-weighed absolute error (ITAE)

$$ITAE = \int_0^\infty t |e(t)| dt$$

These integral control criteria will be used to compare the performance of the recycle compensator, Ziegler-Nichols tuning method and Skogestad tuning method. The integral error values are compared and discussed for any improvement and modifications.

3.3 Tools/software

In this project, most of the works that will be done involves simulating the transfer functions. To assist the simulation, the software that will be used is the MATLAB Version 7.9.0.529 (R2009b).

Figure 3.1 the MATLAB software

3.4 Gantt Chart

Table 3.1 Gantt chart of Final Year Project (FYP)

			FYP 1														FY	YP 2													
No	Detail/Week	1	2	3	4	5	6	7		8	9	10	11	12	13	14	1	2	3	4	5	6	7		8	9	10	11	12	13	14
1	Selection of																														
	project topic																														
2	Preliminary																														
	research work																														
3	Submission of								4	-																					
	Extended								oreal															real							
	Proposal								ter t															ter ł							
	Defence								emes															emes							
4	Preparation for								lid-s															lid-s							
	proposal								N															Z							
	defence																														
5	Proposal																														
	Defence																														
6	Selection of																														
	case study																														

7	Review on															
	integral															
	control criteria															
	to compare the															
	performance															
	of control															
	strategies															
8	Preparation of															
	Interim Report															
9	Submission of															
	Interim Draft															
	Report															
10	Submission of															
	Interim Report															
11	Derivation of															
	system transfer															
	function and															
	block diagram															

12	Derivation of															
	recycle															
	compensator															
	and Z-G															
	tuning method															
13	Submission of															
	Progress report															
14	Derivation of															
	SIMC tuning															
	method															
	parameters															
15	SIMC testing															
16	Integral error															
	analysis and															
	comparison of															
	control															
	strategies															
17	Report-writing															
18	Submission of															
	dissertation															

CHAPTER 4

RESULT AND DISCUSSION

4 RESULTS AND DISCUSSION

4.1 Derivation of Transfer Functions and Block Diagram

From Figure 2.5, the mass balance of the two reactors is expressed as:

$$F_{1}u_{1} + F_{d}d + Ry_{2} = (F_{1} + F_{d} + R)y_{1} + V_{1}k_{1}y_{1} + V_{1}\frac{dy_{1}}{dt} (4.1)$$

$$F_{2}u_{2} + (F_{1} + F_{d} + R - F_{p1})y_{1} = (F_{p2} + R)y_{2} + V_{2}k_{2}y_{2} + V_{2}\frac{dy_{2}}{dt} (4.2)$$

.

The two concentrations in time can be expressed in the following equations:

$$\frac{dy_1}{dt} = \frac{F_1}{V_1}u_1 + \frac{F_d}{V_1}d + \frac{R}{V_1}y_2 - \left(\frac{(F_1 + F_d + R)}{V_1} + k_1\right)y_1 (4.3)$$
$$\frac{dy_2}{dt} = \frac{F_2}{V_2}u_2 + \frac{(F_1 + F_d + R - F_{p1})}{V_2}y_1 - \left(\frac{(F_{p2} + R)}{V_2} + k_2\right)y_2 (4.4)$$

The values of the variables and parameters in Table 2.1 are substituted in equations (4.3) and (4.4) to give the following equations:

$$\frac{dy_1}{dt} = u_1 + 0.5d + 10y_2 - 12.5y_1 (4.5)$$
$$\frac{dy_2}{dt} = 0.05u_2 + 1.05y_1 - 1.2y_2 (4.6)$$

Laplace transform is applied on equation (4.5) and further simplified to give:

$$sY_{1}(s) = U_{1}(s) + 0.5D(s) + 10Y_{2}(s) - 12.5Y_{1}(s)$$

$$(s + 12.5)Y_{1}(s) = U_{1}(s) + 0.5D(s) + 10Y_{2}(s)$$

$$Y_{1}(s) = \frac{1}{(s + 12.5)}U_{1}(s) + \frac{0.5}{(s + 12.5)}D(s) + \frac{10}{(s + 12.5)}Y_{2}(s)$$

$$Y_{1}(s) = \frac{0.08}{(0.08s + 1)}U_{1}(s) + \frac{0.04}{(0.08s + 1)}D(s) + \frac{0.8}{(0.08s + 1)}Y_{2}(s) (4.7)$$

Equation (4.6) is applied with Laplace transform and simplified to give:

$$sY_2(s) = 0.05U_2(s) + 1.05Y_1(s) - 1.2Y_2(s)$$
$$(s+1.2)Y_2(s) = 0.05U_2(s) + 1.05Y_1(s)$$
$$Y_2(s) = \frac{0.05}{(s+1.2)}U_2(s) + \frac{1.05}{(s+1.2)}Y_1(s)$$
$$Y_2(s) = \frac{0.0417}{(0.8333s+1)}U_2(s) + \frac{0.875}{(0.8333s+1)}Y_1(s)$$
(4.8)

With added time delays, the transfer equations (4.7) and (4.8) become:

$$Y_{1}(s) = \frac{0.08}{(0.08s+1)}e^{-s}U_{1}(s) + \frac{0.04}{(0.08s+1)}e^{-s}D(s) + \frac{0.8}{(0.08s+1)}e^{-2s}Y_{2}(s) (4.9)$$
$$Y_{2}(s) = \frac{0.0417}{(0.8333s+1)}e^{-s}U_{2}(s) + \frac{0.875}{(0.8333s+1)}Y_{1}(s) (4.10)$$

By inserting equation (4.9) into (4.10), the transfer function of the whole system is:

$$Y_{2}(s) = \frac{0.07}{(0.0667s^{2} + 0.9133s + 0.3)e^{-s}} U_{1}(s) + \frac{0.0417(0.08s + 1)}{(0.0667s^{2} + 0.9133s + 0.3)e^{-s}} U_{2}(s) + \frac{0.035}{(0.0667s^{2} + 0.9133s + 0.3)e^{-s}} D(s) (4.11)$$

The block diagram of these transfer equations are expressed in the block diagram shown in figure 4.1. Equation 4.11 shows the transfer function of the process. Here, the transfer function explains the relations between inputs U_1 , U_2 and D and output Y_2 .

Figure 4.1 Block diagram of 2 CSTR with recycle stream

4.2 Step Test on the Recycle System

In order to test the significance of the recycle stream on the whole dynamics of the plant, a step test is conducted. The cases of the tests are shown in Table 4.1. To test the dynamics of the recycling system, the inputs U1, U2 and disturbance D are manipulated as follows:

Casa	Step value	Step values											
Case	U1	U2	D	output									
1	1	0	0	Y1									
2	1	0	0	Y2									
3	0	1	0	Y1									
4	0	1	0	Y2									
5	0	0	1	Y1									
6	0	0	1	Y2									

 Table 4.1 Cases for step test

The graph resulting from the listed cases in Table 4.1 is shown in Figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7.

Figure 4.2 Case 1

Figure 4.3 Case 2

Figure 4.4 Case 3

Figure 4.5 Case 4

Figure 4.6 Case 5

Figure 4.7 Case 6

The system is also tested without the recycle stream to compare and identify the effect of the recycle stream on the whole dynamics of the plant. Figure 4.8 and Figure 4.9 show the disturbance step change response for system with and without recycle for outputs Y1 and Y2 respectively.

Figure 4.8 Response in disturbance step change for output Y1 for process with and without recycle

Figure 4.9 Response in disturbance step change for output Y2 for process with and without recycle

From Figures 4.8 and 4.9, it is found that the recycle stream affects the dynamics greatly in terms of offset and response time. From figure 4.9, it is observed that process with recycle shows a longer response time at about 40 minutes compared to without recycle at about 4 minutes. This shows that the recycle stream affect the dynamics of the whole process greatly and some control strategies are needed to counter this effect.

4.3 The Recycle Compensator

The first control strategy that will be used to overcome the problems caused by the recycle system is by using the recycle compensator. The recycle compensator uses a mathematical term that could simplify the transfer function of the recycle system as if the recycle stream does not exist. This will eventually cancel out the effects of the recycle stream on the dynamics of the whole plant.

4.3.1 Derivation and Block Diagram

In order to derive the transfer function, the block diagram of the system with recycle compensator is drawn. The transfer function is then derived based on the diagram. Figure 4.10 shows the block diagram of the system with recycle and recycle compensator.

Figure 4.10 Block diagram of process with recycle and recycle compensator

In order to ease the derivation, the block diagram is further simplified into Figure 4.11, where $G_R = \frac{G_3}{1 - G_r G_3}$

Figure 4.11 Simplified block diagram of process with recycle and recycle compensator

From Figure 4.11, the derived closed-loop transfer function is as follows:

$$Y_2(s) = \frac{G_1 G_R}{1 - G_1 G_R G_{RC}} U_1(s) + \frac{G_d G_R}{1 - G_1 G_R G_{RC}} D(s) + \frac{G_2 (1 - G_r G_3)}{1 - G_1 G_R G_{RC}} U_2(s)$$
(4.12)

Where $G_R = \frac{G_3}{1 - G_r G_3}$

By substituting the value of GR into equation (4.12) to give the following equation (4.13):

$$Y_{2}(s) = \frac{G_{1}G_{3}}{1 - G_{r}G_{3} - G_{1}G_{3}G_{RC}}U_{1}(s) + \frac{G_{3}G_{d}}{1 - G_{r}G_{3} - G_{1}G_{3}G_{RC}}D(s) + \frac{G_{2}(1 - G_{r}G_{3})^{2}}{1 - G_{r}G_{3} - G_{1}G_{3}G_{RC}}U_{2}(s) (4.13)$$

By choosing $G_{RC} = -\frac{G_r}{G_1}$, the denominator of the closed-loop transfer function can be cancelled out to 1, converting equation (4.12) into the general form without the effect of the recycle stream, as shown below:

$$if \ G_{RC} = -\frac{G_r}{G_1}$$

$$1 - G_r G_3 - G_1 G_3 G_{RC}$$

$$1 - G_r G_3 - G_1 G_3 \left(-\frac{G_r}{G_1}\right) = 1$$

By substituting the values of G_r and G_1 from equation (4.9), the recycle compensator is obtained as:

$$G_{RC} = -\frac{G_r}{G_1}$$

$$G_{RC} = -\frac{\frac{0.8}{0.08s+1}e^{-2s}}{\frac{0.08}{0.08s+1}e^{-s}} = -10e^{-s}$$

4.3.2 Step Test

In order to test the performance of the compensator, a series of step tests are conducted and the response of the system with recycle compensator is compared with system without recycle compensator, system with feedback controller and system with feedback controller and recycle compensator.

Figures 4.12 and 4.13 shows the graph of disturbance step change response for outputs y_1 and y_2 comparing for system with and without recycle compensator.

Figure 4.12 Disturbance step change for system with recycle compensator and without recycles compensator for output y_1

Figure 4.13 Disturbance step change for system with recycle compensator and without recycle compensator for output y_2

From Figures 4.12 and 4.13, it is found that the recycle compensator completely cancels out the effect of the recycle stream. It is also observed that the graph for system with recycle compensator is very similar to the system without recycle as shown in Figures 4.8 and 4.9.

4.4 Ziegler-Nichols Tuning Method

To further investigate the effect of the recycle compensator on the dynamics of the system, a comparison is done in case where a feedback controller is included in the system. This is to study the effect of the recycle compensator on the dynamics of a recycle system with feedback control systems. The values of K_c and τ_I are obtained from a paper by Lakshminarayanan & Takada (2001) as shown in the Table 4.2. The tuning method used is the Ziegler-Nichols tuning rules with fundamental model.

Table 4.2 Controller parameters for the two CSTR with recycle system(Lakshminarayanan & Takada, 2001)

Control	Feedback contro	oller 1	Feedback controller 2						
configuration	K _{c1}	$ au_{I1}$	K _{c2}	τ_{I2}					
Feedback +	3.6	0.58	16	1.33					
recycle									
compensator									
Feedback	4.63	1.89	17	2.29					

Figure 4.14 shows the block diagram of the two CSTR with recycle system with feedback controllers and recycle compensator in the MATLAB software. The parameters used for the feedback controller follows the values in Table 4.2. From this system, the performance is tested with a series of step tests.

Figure 4.14 block diagram of the two CSTR with recycle system with feedback controllers and recycle compensator in the MATLAB software

Figures 4.15 and 4.16 show the closed-loop performance for a step change in disturbance with the control setting shown in Table 4.2. From the figures, it is found that the feedback controlled system without recycle compensator for both outputs y_1 and y_2 show more oscillation than the feedback control system with recycle compensator also shows faster response time and it appears to reach the desired set point input faster than that the feedback controlled system without recycle compensator. However, it is also found that the feedback controlled system with recycle compensator undergo a slightly larger offset than feedback controlled system without recycle compensator before reaching the set point value.

Figure 4.15 Performance for disturbance step change for output Y1

Figure 4.16 Performance for disturbance step change for output Y2

4.4.1 Conclusion

From the tests that have been conducted, it is found that the recycle compensator did a very good job in eliminating the effects caused by the recycle stream. It is found that by including the recycle compensator to the system, the dynamics of the system is completely the same as if the recycle stream is not in the system. For systems with feedback controllers with Ziegler-Nichols tuning, it is found that the recycle compensator has significantly improved the dynamics by reducing the oscillation of the response as well as decreasing the response time.

4.5 Skogestad Tuning Method

4.5.1 Tuning of feedback controllers

Based on the Skogestad Tuning Method or also known as simple internal model controller (SIMC) tuning method, the calculated parameters of the feedback controllers are obtained as in Table 4.3.

	K _{C,1}	$\tau_{I,1}$	$\tau_{D,1}$	K _{C,2}	$\tau_{I,2}$	$\tau_{D,2}$
PI	0.04	0.08	-	0.0209	0.0417	-
PID	0.3867	0.58	0.0690	0.3611	0.5417	0.3849

Table 4.3 Parameters for feedback controllers using SIMC

4.5.2 Comparison of PI and PID controllers

Figures 4.17 and 4.18 shows the disturbance step change of the SIMC tuning using PI and PID controllers for the outputs Y1 and Y2 respectively. From the graph, it is found that PID controller shows a slightly better response. The PID controller produces less offset for Y1 output, but higher offset for output Y2. In both of the outputs, it is found that the PID controller shows a slightly faster response compared to the PI controller.

Figure 4.17 SIMC tuning for PI and PID for output Y1

Figure 4.18 SIMC tuning for PI and PID for output Y2

From the comparison, it is found that the PID controller with SIMC tuning shows better response than PI controller with SIMC tuning.

4.5.3 SIMC Tuning Method with Recycle compensator

Based on the previous tuning method, it is found that by adding the recycle compensator to the plant model, the response significantly improved. In order to further investigate the effect of the recycle compensator to the dynamic of the plant model, the recycle compensator is added.

4.5.3.1 PI controller

Figures 4.19 and 4.20 show the disturbance step change response for PI SIMC tuning method with and without recycle compensator for the output Y1 and Y2 respectively. From the graph, it is found that the response time of PI SIMC tuning method is significantly longer than the Ziegler-Nichols tuning method, which is about 150 minutes. However, SIMC tuning methods shows fewer oscillations, but a larger offset. The addition of the recycle compensator slightly improves the response by reducing the oscillation, response time and offset for both outputs Y1 and Y2.

Figure 4.19 Disturbance step changes for PI controller using SIMC tuning method with and without recycle compensator for output Y1

Figure 4.20 Disturbance step changes for PI controller using SIMC tuning method with and without recycle compensator for output Y2

4.5.3.2 PID controller

Figures 4.21 and 4.22 show the disturbance step change response for PID SIMC tuning method with and without recycle compensator for the output Y1 and Y2 respectively. From the graph, it is found that the response time of PID SIMC tuning method is slightly better compared to PI SIMC in terms of response time, offset and number of oscillations. Compared to Ziegler-Nichols tuning method, the PID SIMC tuning method shows a longer response time, larger offset but less oscillation. The addition of the recycle compensator slightly improves the response by reducing the oscillation, response time and offset for both outputs Y1 and Y2.

Figure 4.21 Disturbance step changes for PID controller using SIMC tuning method with and without recycle compensator for output Y1

Figure 4.22 Disturbance step changes for PID controller using SIMC tuning method with and without recycle compensator for output Y2

4.5.3.3 Conclusion

It is found that the Ziegler-Nichols tuning method handles the instability of the recycle system better than SIMC tuning method. From the response graph, it is found that the SIMC tuning method shows quite a long response time compared to Ziegler-Nichols tuning method. The offset value is slightly larger, but the oscillation is SIMC tuning method is found to be lesser than of Ziegler-Nichols'. By adding the recycle compensator to the system, the response slightly improved by reducing the oscillations, offset and the response time for both the PI and PID controllers.

4.6 Comparison of control strategies

The integral error analysis is performed on the response graph of each of the tested control strategy. This is to obtain a more accurate comparison to get better understanding on the respective performance.

4.6.1 Integral error analysis

The calculations of the integral errors are done by using the MATLAB software. The coding used is attached in the appendix. Table 4.4 and 4.5 shows the obtained values of IAE, ISE and ITAE for outputs Y1 and Y2 respectively. The values calculated represent the amount of error produced for each control strategy. The lesser the value, the better the performance of the control strategy.

Control Strategy	IAE	ISE	ITAE
Ziegler-Nichols	0.2072	0.0047	1.4677
Ziegler-Nichols + recycle	0.0805	0.0021	0.2091
compensator			
SIMC (PI)	1.3634	0.0537	36.6758
SIMC (PID)	1.0417	0.0367	23.0929
SIMC (PI) + recycle	1.0016	0.0207	25.8344
compensator			
SIMC (PID) + recycle	0.7513	0.0153	14.8013
compensator			

 Table 4.4 Integral Error Analysis of controller strategies for output Y1

 Table 4.5 Integral Error Analysis of controller strategies for output Y2

Control Strategy	IAE	ISE	ITAE
Ziegler-Nichols	0.1077	0.0011	0.8957
Ziegler-Nichols + recycle	0.0701	0.0009	0.2950
compensator			
SIMC (PI)	1.3661	0.0370	54.8441
SIMC (PID)	1.0179	0.0246	32.3198
SIMC (PI) + recycle	0.8949	0.0107	51.7417
compensator			
SIMC (PID) + recycle	0.6668	0.0078	29.4250
compensator			

From tables 4.4 and 4.5, it is confirmed that the Ziegler Nichols shows the best performance is stabilizing the problems caused by the recycle stream as it shows the least value of IAE, ISE and ITAE for both outputs Y1 and Y2 compared to PI SIMC

and PID SIMC. It is also confirmed that the addition of the recycle compensator to each controller improves the performance of the controller. It is observed that the values IAE, ISE and ITAE decreased significantly when the recycle compensator is included. The ITAE of SIMC tuning method shows a significantly high value due to the long response time exhibited by the controller.

4.6.2 Effect of recycle compensator on integral error values

Figures 4.23 and 4.24 shows the values of IAE, ISE and ITAE with and without the recycle compensator. The trends show that the addition of the recycle compensator reduces the integral error values of the controllers. The recycle compensator greatly affects the ITAE of PI SIMC and PID SIMC tuning method but shows very small effect on the integral error of the Ziegler-Nichols tuning method.

4.6.3 Conclusion

From the studies that has been conducted. It is concluded that the Ziegler-Nichols tuning method with recycle compensator is the best control strategy that can be used to control the recycle process. This control strategy has the shortest response time of 15 minutes and the smallest offset values of 0.025 for the Y2 output. The integral error values of this control strategy is also the smallest compared to the other control strategies, with values of IAE, ISE and ITAE of 0.0701, 0.0009 and 0.2950 respectively for the Y2 output.

Figure 4.23 Effect of Recycle Compensator on Control Strategies for output Y1

Figure 4.24 Effect of Recycle Compensator on Control Strategies for output Y2

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

From the studies and test that have been conducted, after comparing the performance of the three controller strategies based on for processes with recycle stream in a 2 CSTR system with recycle, the best control strategy is found to be the combination of the Ziegler-Nichols tuning method and the recycle compensator. This control strategy shows the shortest response time and the least value of offset compared to the other control strategies and their combinations.

In order to compare the control strategies in a more accurate manner, the performance of the controller strategies are tested using the integral error analysis, which are IAE, ISE and ITAE. The value calculated using these method represents the error produced by the control strategies. The combination of Ziegler-Nichols and recycle compensator shows the lowest value of IAE, ISE and ITAE therefore concluding that this control strategy is the best one tested in this study.

For future studies, it is recommended that more control strategies should be tested to control the recycle process. With the existing control strategies and the possible inventions in the future, it is possible to produce quite a number of control strategy combinations to further improve the control of recycle process.

REFERENCES

Bequette, B. W. (1998). *Process Dynamics: Modelling, Analysis and Simulation*. Upper Saddle River, NJ: Prentice Hall PTR.

Chau, P. C. (2002). *Process Control: A First Course with MATLAB*. NY: Cambridge University Press.

Haugen, F. (2010). Tuning of PID Controller. In *Basic Dynamics and Control* (pp. 129-155). Skien, Norway: TechTeach. Retrieved June 26, 2012 from <u>http://techteach.no/publications/books/dynamics_and_control/tuning_pid_controller.</u> pdf

Lakshminarayanan, S. & Takada, H. (2000). Empirical Modeling and Control of Processes with Recycle: Some Insights via Case Studies. *Chemical Engineering Science* 56, 3327-3340.

Madhukar, G.M. *et al.* (2005). Feedback Control of Processes with Recycle A Control Loop Performance Perspective. *Chemical Engineering Research and Design*, 83(A2): 143-152.

Mészáros, A. & Čirka, L. (2009). Control Analysis for Processes with Internal Recycle. *Chemical Engineering Transactions* 18

Roffel, B & Betlem, B. (2006). *Process Dynamics and Control: Modeling for Control and Prediction*. West Sussex, England: John Wiley & Sons Ltd.

Scali, C. & Ferrari, F. (1999). Performances of control systems based on recycle compensators in integrated plants. *Journal of Process Control* 9, 425-437.

Seborg, D. E. *et al.* (2004). PID Controller Design, Tuning, and Troubleshooting. In *Process Dynamics and Control* (2nd ed.). (pp. 300-323). Hoboken, NJ: John Wiley & Sons, Inc.

Taiwo, O. & Krebs, V. (1994). Robust Control System Design for Plant with Recycle. *The Chemical Engineering Journal*, 61. 1-6.

Tremblay, E. *et al.* (2006). Control of a Process with Recycle: Robustness of a Recycle Compensator. *Ind. Eng. Chem. Res.* 45, 1924-1934.

Case	Model	$K_c K$	τ,	τ_D
A	$\frac{K}{\pi s+1}$	$\frac{\tau}{\tau_c}$	τ	<u> </u>
В	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
С	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$
D	$\frac{K(-\beta s+1)}{\tau^2 s^2 + 2\zeta \tau s + 1}, \ \beta > 0$	$\frac{2\zeta\tau}{\tau_c+\beta}$	2ζτ	$\frac{\tau}{2\zeta}$
E	$\frac{K}{s}$	$\frac{2}{\tau_c}$	2τ _c	
F	$\frac{K}{s(\tau s+1)}$	$\frac{2\tau_c + \tau}{\tau_c^2}$	$2\tau_c + \tau$	$\frac{2\tau_c\tau}{2\tau_c+\tau}$
G	$\frac{Ke^{-\theta_s}}{\tau s + 1}$	$\frac{\tau}{\tau_c + \theta}$	τ	
H	$\frac{Ke^{-\theta s}}{\tau s+1}$	$\frac{\tau + \frac{\theta}{2}}{\tau_c + \frac{\theta}{2}}$	$\tau + \frac{\theta}{2}$	$\frac{\tau\theta}{2\tau+\theta}$
[$\frac{K(\tau_3 s+1)e^{-\theta s}}{(\tau_1 s+1)(\tau_2 s+1)}$	$\frac{\tau_1 + \tau_2 - \tau_3}{\tau_c + \theta}$	$\tau_1+\tau_2-\tau_3$	$\frac{\tau_1\tau_2-(\tau_1+\tau_2-\tau_3)\tau_3}{\tau_1+\tau_2-\tau_3}$
	$\frac{K(\tau_{3}s+1)e^{-\theta s}}{\tau^{2}s^{2}+2\zeta\tau s+1}$	$\frac{2\zeta\tau-\tau_3}{\tau_c+\theta}$	$2\zeta\tau - \tau_3$	$\frac{\tau^2-(2\zeta\tau-\tau_3)\tau_3}{2\zeta\tau-\tau_3}$
ζ	$\frac{K(-\tau_3 s+1)e^{-0s}}{(\tau_1 s+1)(\tau_2 s+1)}$	$\frac{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}}{\tau_c+\tau_3+\theta}$	$\tau_1 + \tau_2 + \frac{\tau_3\theta}{\tau_c + \tau_3 + \theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau_1\tau_2}{\tau_1+\tau_2+\frac{\tau_3\theta}{\tau_c+\tau_3+}}$
_	$\frac{K(-\tau_{3}s+1)e^{-\theta s}}{\tau^{2}s^{2}+2\zeta\tau s+1}$	$\frac{2\zeta\tau+\frac{\tau_{3}\theta}{\tau_{c}+\tau_{3}+\theta}}{\tau_{c}+\tau_{3}+\theta}$	$2\zeta\tau+\frac{\tau_{3}\theta}{\tau_{c}+\tau_{3}+\theta}$	$\frac{\tau_3\theta}{\tau_c+\tau_3+\theta}+\frac{\tau^2}{2\zeta\tau+\frac{\tau_3\theta}{\tau_c+\tau_2+\theta}}$
Л	$\frac{Ke^{-\theta s}}{s}$	$\frac{2\tau_c+\theta}{(\tau_c+\theta)^2}$	$2\tau_c + \theta$	
1	$\frac{Ke^{-\theta s}}{s}$	$\frac{2\tau_c+\theta}{\left(\tau_c+\frac{\theta}{2}\right)^2}$	$2\tau_c + \theta$	$\frac{\tau_c\theta+\frac{\theta^2}{4}}{2\tau_c+\theta}$
)	$Ke^{-\theta s}$	$\frac{2\tau_c + \tau + \theta}{2}$	$2\tau_c + \tau + \theta$	$\frac{(2\tau_c+\theta)\tau}{2}$

APPENDIX 1 – Simple IMC controller setting derivation

APPENDIX 2 – Block Diagram comparing Z-G tuning method with and without recycle compensator

APPENDIX 3 – MATLAB coding for calculation of integral errors

```
function [IAE, ISE, ITAE]=perform 3 (y,ysp,t)
%insert block diagram file name here
simOut = sim( 'compensatorwithcontroller' )
%formula for IAE
e=abs(y-ysp);
IAE=trapz(t,e)
%formula for ISE
e2=e.^2;
ISE=trapz(t,e2)
%formula for ITAE
e3=e.*t;
ITAE=trapz(t,e3)
simOut =
         0
                           3.6375
                                                 10.7641
    0.0000
                           3.7778
                                                 11.0070
    0.0002
                           3.9181
                                                 11.2570
    0.0012
                           4.0677
                                                 11.5371
    0.0062
                           4.2450
                                                 11.8006
    0.0313
                           4.4223
                                                 12.0368
                           4.5958
                                                 12.2708
    0.0842
    0.1472
                           4.7925
                                                 12.5274
    0.2222
                           4.9764
                                                 12.8018
    0.3110
                           5.1467
                                                 13.0737
    0.4177
                           5.3270
                                                 13.3260
    0.5492
                           5.5125
                                                 13.5698
    0.7174
                           5.6983
                                                 13.8266
    0.9421
                           5.8924
                                                 14.1008
    0.9811
                           6.0993
                                                 14.3718
                                                 14.6271
    1.0201
                           6.3175
    1.0623
                           6.5176
                                                 14.8752
    1.1114
                           6.7150
                                                 15.1332
    1.1831
                           6.8991
                                                 15.4065
    1.2802
                           7.0918
                                                 15.6795
    1.3749
                           7.2890
                                                 15.9392
    1.4864
                           7.5062
                                                 16.1902
    1.6191
                           7.7266
                                                 16.4477
                           7.9471
                                                 16.7193
    1.7841
                                                 16.9953
    1.9985
                           8.1856
    2.1621
                           8.4404
                                                 17.2605
    2.3258
                           8.7037
                                                 17.5138
    2.4863
                           8.9618
                                                 17.7677
    2.6357
                           9.2157
                                                 18.0345
    2.7763
                           9.5023
                                                 18.3111
    2.9325
                           9.7887
                                                 18.5819
                          10.0413
                                                 18.8391
    3.1071
    3.3030
                          10.2696
                                                 19.0910
                          10.5065
    3.4674
                                                 19.3521
```

19.6266	34.4601	49.2563
19.9022	34.7133	49.5023
20.1653	34.9588	49.7759
20.4175	35.2189	50.0671
20.6731	35.4997	50.3435
20.9428	35.7818	50.5914
21.2206	36.0442	50.8308
21.4904	36.2898	51.0909
21.7459	36.5406	51.3785
21.9976	36.8133	51.6657
22.2606	37.0987	51.9252
22.5371	37.3717	52.1639
22.8128	37.6225	52.4116
23.0742	37.8673	52.6892
23.3251	38.1293	52.9816
23.5813	38.4124	53.2550
23.8530	38.6944	53.4994
24.1320	38.9544	53.7388
24.4009	39.1982	54.0025
24.6545	39.4499	54.2933
24.9056	39.7253	54.5791
25.1701	40.0119	54.8345
25.4486	40.2831	55.0712
25.7244	40.5314	55.3213
25.9840	40.7758	55.6032
26.2334	41.0401	55.8965
26.4902	41.3256	56.1660
26.7640	41.6071	56.4068
27.0441	41.8644	56.6467
27.3118	42.1065	56.9149
27.5635	42.3594	57.2087
27.8141	42.6378	57.4923
28.0803	42.9253	57.7431
28.3607	43.1943	57.9782
28.6363	43.4400	58.2316
28.8940	43.6845	58.5181
29.1419	43.9514	58.8117
29.3994	44.2391	59.0766
29.6755	44.5195	59.3137
29.9566	44,7739	59.5549
30, 2228	45.0147	59.8283
30, 4724	45.2694	60.1249
30.7228	45.5508	60.4051
30,9908	45.8387	60.6508
31 2731	46 1051	60 8849
31 5483	46 3483	61 1426
31 8038	46 5933	61 4342
32 0504	46 8634	61 7271
32, 3090	47.1529	61 9863
32 5874	47 4317	62 2199
32 8691	47 6829	62 1633
33 1336	47 9228	62 7/00
33 3812	48 1799	63 0120
33 6316	48 4643	63 2175
33 9018	48 7522	63 5575
3/ 1959	10.1522	62 7010
J4.T0J0	49.0104	02.1913

64.0546	78.8951	93.7560
64.3517	79.1873	94.0435
64.6425	79.4738	94.3773
64.8951	79.7266	94.5972
65.1252	79.9607	94.8170
65.3724	80.2110	95.1013
65.6591	80.4971	95.4431
65.9601	80.7977	95.6649
66.2294	81.0656	95.8867
66.4632	81.2988	96.1721
66.6975	81.5339	96.5069
66.9681	81.8064	96.7329
67.2710	82.1137	96.9588
67.5580	82.4001	97.2426
67.8025	82.6396	97.5703
68.0297	82.8635	97.7987
68.2824	83.1181	98.0272
68.5776	83.4207	98.3095
68.8795	83.7295	98.6331
69.1403	83.9844	98.8642
69.3675	84.2019	99.0953
69.6039	84.4354	99.3768
69.8838	84.7233	99.6961
70.1931	85.0548	99.9270
70.4737	85.2717	100.0000
70.7083	85.4885	
70.9333	85.7723	
71.1940	86.1177	IAE =
71.4997	86.3424	
71.8000	86.5670	0.0702
72.0496	86.8548	
72.2698	87.1894	
72.5108	87.4137	ISE =
72.8031	87.6379	
73.1183	87.9217	8.8942e-004
73.3880	88.2517	
73.6106	88.4795	
73.8351	88.7074	ITAE =
74.1081	88.9906	
74.4278	89.3166	0.3023
74.6619	89.5466	
74.8960	89.7765	
75.1778	90.0588	
75.4962	90.3809	
75.7851	90.6125	
76.0177	90.8440	
76.2338	91.1251	
76.4875	91.4435	
76.7983	91.7332	
77.0511	91.9664	
77.3039	92.1825	
77.5823	92.4356	
77.8732	92.7452	
/8.1449	93.0631	
78.3891	93.3183	
78.6298	93.5291	